1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause 5 * 6 * Copyright (c) 1997, 1998 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/types.h> 36 #include <sys/malloc.h> 37 #include <sys/kernel.h> 38 #include <sys/bio.h> 39 #include <sys/conf.h> 40 #include <sys/devctl.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/buf.h> 44 #include <sys/proc.h> 45 #include <sys/devicestat.h> 46 #include <sys/sbuf.h> 47 #include <sys/sysctl.h> 48 #include <vm/vm.h> 49 #include <vm/vm_extern.h> 50 51 #include <cam/cam.h> 52 #include <cam/cam_ccb.h> 53 #include <cam/cam_compat.h> 54 #include <cam/cam_queue.h> 55 #include <cam/cam_xpt_periph.h> 56 #include <cam/cam_xpt_internal.h> 57 #include <cam/cam_periph.h> 58 #include <cam/cam_debug.h> 59 #include <cam/cam_sim.h> 60 61 #include <cam/scsi/scsi_all.h> 62 #include <cam/scsi/scsi_message.h> 63 #include <cam/scsi/scsi_pass.h> 64 65 static u_int camperiphnextunit(struct periph_driver *p_drv, 66 u_int newunit, bool wired, 67 path_id_t pathid, target_id_t target, 68 lun_id_t lun); 69 static u_int camperiphunit(struct periph_driver *p_drv, 70 path_id_t pathid, target_id_t target, 71 lun_id_t lun, 72 const char *sn); 73 static void camperiphdone(struct cam_periph *periph, 74 union ccb *done_ccb); 75 static void camperiphfree(struct cam_periph *periph); 76 static int camperiphscsistatuserror(union ccb *ccb, 77 union ccb **orig_ccb, 78 cam_flags camflags, 79 uint32_t sense_flags, 80 int *openings, 81 uint32_t *relsim_flags, 82 uint32_t *timeout, 83 uint32_t *action, 84 const char **action_string); 85 static int camperiphscsisenseerror(union ccb *ccb, 86 union ccb **orig_ccb, 87 cam_flags camflags, 88 uint32_t sense_flags, 89 int *openings, 90 uint32_t *relsim_flags, 91 uint32_t *timeout, 92 uint32_t *action, 93 const char **action_string); 94 static void cam_periph_devctl_notify(union ccb *ccb); 95 96 static int nperiph_drivers; 97 static int initialized = 0; 98 struct periph_driver **periph_drivers; 99 100 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 101 102 static int periph_selto_delay = 1000; 103 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 104 static int periph_noresrc_delay = 500; 105 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 106 static int periph_busy_delay = 500; 107 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 108 109 static u_int periph_mapmem_thresh = 65536; 110 SYSCTL_UINT(_kern_cam, OID_AUTO, mapmem_thresh, CTLFLAG_RWTUN, 111 &periph_mapmem_thresh, 0, "Threshold for user-space buffer mapping"); 112 113 void 114 periphdriver_register(void *data) 115 { 116 struct periph_driver *drv = (struct periph_driver *)data; 117 struct periph_driver **newdrivers, **old; 118 int ndrivers; 119 120 again: 121 ndrivers = nperiph_drivers + 2; 122 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 123 M_WAITOK); 124 xpt_lock_buses(); 125 if (ndrivers != nperiph_drivers + 2) { 126 /* 127 * Lost race against itself; go around. 128 */ 129 xpt_unlock_buses(); 130 free(newdrivers, M_CAMPERIPH); 131 goto again; 132 } 133 if (periph_drivers) 134 bcopy(periph_drivers, newdrivers, 135 sizeof(*newdrivers) * nperiph_drivers); 136 newdrivers[nperiph_drivers] = drv; 137 newdrivers[nperiph_drivers + 1] = NULL; 138 old = periph_drivers; 139 periph_drivers = newdrivers; 140 nperiph_drivers++; 141 xpt_unlock_buses(); 142 if (old) 143 free(old, M_CAMPERIPH); 144 /* If driver marked as early or it is late now, initialize it. */ 145 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 146 initialized > 1) 147 (*drv->init)(); 148 } 149 150 int 151 periphdriver_unregister(void *data) 152 { 153 struct periph_driver *drv = (struct periph_driver *)data; 154 int error, n; 155 156 /* If driver marked as early or it is late now, deinitialize it. */ 157 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 158 initialized > 1) { 159 if (drv->deinit == NULL) { 160 printf("CAM periph driver '%s' doesn't have deinit.\n", 161 drv->driver_name); 162 return (EOPNOTSUPP); 163 } 164 error = drv->deinit(); 165 if (error != 0) 166 return (error); 167 } 168 169 xpt_lock_buses(); 170 for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++) 171 ; 172 KASSERT(n < nperiph_drivers, 173 ("Periph driver '%s' was not registered", drv->driver_name)); 174 for (; n + 1 < nperiph_drivers; n++) 175 periph_drivers[n] = periph_drivers[n + 1]; 176 periph_drivers[n + 1] = NULL; 177 nperiph_drivers--; 178 xpt_unlock_buses(); 179 return (0); 180 } 181 182 void 183 periphdriver_init(int level) 184 { 185 int i, early; 186 187 initialized = max(initialized, level); 188 for (i = 0; periph_drivers[i] != NULL; i++) { 189 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 190 if (early == initialized) 191 (*periph_drivers[i]->init)(); 192 } 193 } 194 195 cam_status 196 cam_periph_alloc(periph_ctor_t *periph_ctor, 197 periph_oninv_t *periph_oninvalidate, 198 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 199 char *name, cam_periph_type type, struct cam_path *path, 200 ac_callback_t *ac_callback, ac_code code, void *arg) 201 { 202 struct periph_driver **p_drv; 203 struct cam_sim *sim; 204 struct cam_periph *periph; 205 struct cam_periph *cur_periph; 206 path_id_t path_id; 207 target_id_t target_id; 208 lun_id_t lun_id; 209 cam_status status; 210 u_int init_level; 211 212 init_level = 0; 213 /* 214 * Handle Hot-Plug scenarios. If there is already a peripheral 215 * of our type assigned to this path, we are likely waiting for 216 * final close on an old, invalidated, peripheral. If this is 217 * the case, queue up a deferred call to the peripheral's async 218 * handler. If it looks like a mistaken re-allocation, complain. 219 */ 220 if ((periph = cam_periph_find(path, name)) != NULL) { 221 if ((periph->flags & CAM_PERIPH_INVALID) != 0 222 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 223 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 224 periph->deferred_callback = ac_callback; 225 periph->deferred_ac = code; 226 return (CAM_REQ_INPROG); 227 } else { 228 printf("cam_periph_alloc: attempt to re-allocate " 229 "valid device %s%d rejected flags %#x " 230 "refcount %d\n", periph->periph_name, 231 periph->unit_number, periph->flags, 232 periph->refcount); 233 } 234 return (CAM_REQ_INVALID); 235 } 236 237 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 238 M_NOWAIT|M_ZERO); 239 240 if (periph == NULL) 241 return (CAM_RESRC_UNAVAIL); 242 243 init_level++; 244 245 sim = xpt_path_sim(path); 246 path_id = xpt_path_path_id(path); 247 target_id = xpt_path_target_id(path); 248 lun_id = xpt_path_lun_id(path); 249 periph->periph_start = periph_start; 250 periph->periph_dtor = periph_dtor; 251 periph->periph_oninval = periph_oninvalidate; 252 periph->type = type; 253 periph->periph_name = name; 254 periph->scheduled_priority = CAM_PRIORITY_NONE; 255 periph->immediate_priority = CAM_PRIORITY_NONE; 256 periph->refcount = 1; /* Dropped by invalidation. */ 257 periph->sim = sim; 258 SLIST_INIT(&periph->ccb_list); 259 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 260 if (status != CAM_REQ_CMP) 261 goto failure; 262 periph->path = path; 263 264 xpt_lock_buses(); 265 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 266 if (strcmp((*p_drv)->driver_name, name) == 0) 267 break; 268 } 269 if (*p_drv == NULL) { 270 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 271 xpt_unlock_buses(); 272 xpt_free_path(periph->path); 273 free(periph, M_CAMPERIPH); 274 return (CAM_REQ_INVALID); 275 } 276 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id, 277 path->device->serial_num); 278 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 279 while (cur_periph != NULL 280 && cur_periph->unit_number < periph->unit_number) 281 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 282 if (cur_periph != NULL) { 283 KASSERT(cur_periph->unit_number != periph->unit_number, 284 ("duplicate units on periph list")); 285 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 286 } else { 287 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 288 (*p_drv)->generation++; 289 } 290 xpt_unlock_buses(); 291 292 init_level++; 293 294 status = xpt_add_periph(periph); 295 if (status != CAM_REQ_CMP) 296 goto failure; 297 298 init_level++; 299 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 300 301 status = periph_ctor(periph, arg); 302 303 if (status == CAM_REQ_CMP) 304 init_level++; 305 306 failure: 307 switch (init_level) { 308 case 4: 309 /* Initialized successfully */ 310 break; 311 case 3: 312 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 313 xpt_remove_periph(periph); 314 /* FALLTHROUGH */ 315 case 2: 316 xpt_lock_buses(); 317 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 318 xpt_unlock_buses(); 319 xpt_free_path(periph->path); 320 /* FALLTHROUGH */ 321 case 1: 322 free(periph, M_CAMPERIPH); 323 /* FALLTHROUGH */ 324 case 0: 325 /* No cleanup to perform. */ 326 break; 327 default: 328 panic("%s: Unknown init level", __func__); 329 } 330 return(status); 331 } 332 333 /* 334 * Find a peripheral structure with the specified path, target, lun, 335 * and (optionally) type. If the name is NULL, this function will return 336 * the first peripheral driver that matches the specified path. 337 */ 338 struct cam_periph * 339 cam_periph_find(struct cam_path *path, char *name) 340 { 341 struct periph_driver **p_drv; 342 struct cam_periph *periph; 343 344 xpt_lock_buses(); 345 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 346 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 347 continue; 348 349 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 350 if (xpt_path_comp(periph->path, path) == 0) { 351 xpt_unlock_buses(); 352 cam_periph_assert(periph, MA_OWNED); 353 return(periph); 354 } 355 } 356 if (name != NULL) { 357 xpt_unlock_buses(); 358 return(NULL); 359 } 360 } 361 xpt_unlock_buses(); 362 return(NULL); 363 } 364 365 /* 366 * Find peripheral driver instances attached to the specified path. 367 */ 368 int 369 cam_periph_list(struct cam_path *path, struct sbuf *sb) 370 { 371 struct sbuf local_sb; 372 struct periph_driver **p_drv; 373 struct cam_periph *periph; 374 int count; 375 int sbuf_alloc_len; 376 377 sbuf_alloc_len = 16; 378 retry: 379 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 380 count = 0; 381 xpt_lock_buses(); 382 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 383 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 384 if (xpt_path_comp(periph->path, path) != 0) 385 continue; 386 387 if (sbuf_len(&local_sb) != 0) 388 sbuf_cat(&local_sb, ","); 389 390 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 391 periph->unit_number); 392 393 if (sbuf_error(&local_sb) == ENOMEM) { 394 sbuf_alloc_len *= 2; 395 xpt_unlock_buses(); 396 sbuf_delete(&local_sb); 397 goto retry; 398 } 399 count++; 400 } 401 } 402 xpt_unlock_buses(); 403 sbuf_finish(&local_sb); 404 if (sbuf_len(sb) != 0) 405 sbuf_cat(sb, ","); 406 sbuf_cat(sb, sbuf_data(&local_sb)); 407 sbuf_delete(&local_sb); 408 return (count); 409 } 410 411 int 412 cam_periph_acquire(struct cam_periph *periph) 413 { 414 int status; 415 416 if (periph == NULL) 417 return (EINVAL); 418 419 status = ENOENT; 420 xpt_lock_buses(); 421 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 422 periph->refcount++; 423 status = 0; 424 } 425 xpt_unlock_buses(); 426 427 return (status); 428 } 429 430 void 431 cam_periph_doacquire(struct cam_periph *periph) 432 { 433 434 xpt_lock_buses(); 435 KASSERT(periph->refcount >= 1, 436 ("cam_periph_doacquire() with refcount == %d", periph->refcount)); 437 periph->refcount++; 438 xpt_unlock_buses(); 439 } 440 441 void 442 cam_periph_release_locked_buses(struct cam_periph *periph) 443 { 444 445 cam_periph_assert(periph, MA_OWNED); 446 KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); 447 if (--periph->refcount == 0) 448 camperiphfree(periph); 449 } 450 451 void 452 cam_periph_release_locked(struct cam_periph *periph) 453 { 454 455 if (periph == NULL) 456 return; 457 458 xpt_lock_buses(); 459 cam_periph_release_locked_buses(periph); 460 xpt_unlock_buses(); 461 } 462 463 void 464 cam_periph_release(struct cam_periph *periph) 465 { 466 struct mtx *mtx; 467 468 if (periph == NULL) 469 return; 470 471 cam_periph_assert(periph, MA_NOTOWNED); 472 mtx = cam_periph_mtx(periph); 473 mtx_lock(mtx); 474 cam_periph_release_locked(periph); 475 mtx_unlock(mtx); 476 } 477 478 /* 479 * hold/unhold act as mutual exclusion for sections of the code that 480 * need to sleep and want to make sure that other sections that 481 * will interfere are held off. This only protects exclusive sections 482 * from each other. 483 */ 484 int 485 cam_periph_hold(struct cam_periph *periph, int priority) 486 { 487 int error; 488 489 /* 490 * Increment the reference count on the peripheral 491 * while we wait for our lock attempt to succeed 492 * to ensure the peripheral doesn't disappear out 493 * from user us while we sleep. 494 */ 495 496 if (cam_periph_acquire(periph) != 0) 497 return (ENXIO); 498 499 cam_periph_assert(periph, MA_OWNED); 500 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 501 periph->flags |= CAM_PERIPH_LOCK_WANTED; 502 if ((error = cam_periph_sleep(periph, periph, priority, 503 "caplck", 0)) != 0) { 504 cam_periph_release_locked(periph); 505 return (error); 506 } 507 if (periph->flags & CAM_PERIPH_INVALID) { 508 cam_periph_release_locked(periph); 509 return (ENXIO); 510 } 511 } 512 513 periph->flags |= CAM_PERIPH_LOCKED; 514 return (0); 515 } 516 517 void 518 cam_periph_unhold(struct cam_periph *periph) 519 { 520 521 cam_periph_assert(periph, MA_OWNED); 522 523 periph->flags &= ~CAM_PERIPH_LOCKED; 524 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 525 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 526 wakeup(periph); 527 } 528 529 cam_periph_release_locked(periph); 530 } 531 532 void 533 cam_periph_hold_boot(struct cam_periph *periph) 534 { 535 536 root_mount_hold_token(periph->periph_name, &periph->periph_rootmount); 537 } 538 539 void 540 cam_periph_release_boot(struct cam_periph *periph) 541 { 542 543 root_mount_rel(&periph->periph_rootmount); 544 } 545 546 /* 547 * Look for the next unit number that is not currently in use for this 548 * peripheral type starting at "newunit". Also exclude unit numbers that 549 * are reserved by for future "hardwiring" unless we already know that this 550 * is a potential wired device. Only assume that the device is "wired" the 551 * first time through the loop since after that we'll be looking at unit 552 * numbers that did not match a wiring entry. 553 */ 554 static u_int 555 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, bool wired, 556 path_id_t pathid, target_id_t target, lun_id_t lun) 557 { 558 struct cam_periph *periph; 559 char *periph_name; 560 int i, val, dunit, r; 561 const char *dname, *strval; 562 563 periph_name = p_drv->driver_name; 564 for (;;newunit++) { 565 for (periph = TAILQ_FIRST(&p_drv->units); 566 periph != NULL && periph->unit_number != newunit; 567 periph = TAILQ_NEXT(periph, unit_links)) 568 ; 569 570 if (periph != NULL && periph->unit_number == newunit) { 571 if (wired) { 572 xpt_print(periph->path, "Duplicate Wired " 573 "Device entry!\n"); 574 xpt_print(periph->path, "Second device (%s " 575 "device at scbus%d target %d lun %d) will " 576 "not be wired\n", periph_name, pathid, 577 target, lun); 578 wired = false; 579 } 580 continue; 581 } 582 if (wired) 583 break; 584 585 /* 586 * Don't allow the mere presence of any attributes of a device 587 * means that it is for a wired down entry. Instead, insist that 588 * one of the matching criteria from camperiphunit be present 589 * for the device. 590 */ 591 i = 0; 592 dname = periph_name; 593 for (;;) { 594 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 595 if (r != 0) 596 break; 597 598 if (newunit != dunit) 599 continue; 600 if (resource_string_value(dname, dunit, "sn", &strval) == 0 || 601 resource_int_value(dname, dunit, "lun", &val) == 0 || 602 resource_int_value(dname, dunit, "target", &val) == 0 || 603 resource_string_value(dname, dunit, "at", &strval) == 0) 604 break; 605 } 606 if (r != 0) 607 break; 608 } 609 return (newunit); 610 } 611 612 static u_int 613 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 614 target_id_t target, lun_id_t lun, const char *sn) 615 { 616 bool wired = false; 617 u_int unit; 618 int i, val, dunit; 619 const char *dname, *strval; 620 char pathbuf[32], *periph_name; 621 622 periph_name = p_drv->driver_name; 623 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 624 unit = 0; 625 i = 0; 626 dname = periph_name; 627 628 for (wired = false; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 629 wired = false) { 630 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 631 if (strcmp(strval, pathbuf) != 0) 632 continue; 633 wired = true; 634 } 635 if (resource_int_value(dname, dunit, "target", &val) == 0) { 636 if (val != target) 637 continue; 638 wired = true; 639 } 640 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 641 if (val != lun) 642 continue; 643 wired = true; 644 } 645 if (resource_string_value(dname, dunit, "sn", &strval) == 0) { 646 if (sn == NULL || strcmp(strval, sn) != 0) 647 continue; 648 wired = true; 649 } 650 if (wired) { 651 unit = dunit; 652 break; 653 } 654 } 655 656 /* 657 * Either start from 0 looking for the next unit or from 658 * the unit number given in the resource config. This way, 659 * if we have wildcard matches, we don't return the same 660 * unit number twice. 661 */ 662 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 663 664 return (unit); 665 } 666 667 void 668 cam_periph_invalidate(struct cam_periph *periph) 669 { 670 671 cam_periph_assert(periph, MA_OWNED); 672 /* 673 * We only tear down the device the first time a peripheral is 674 * invalidated. 675 */ 676 if ((periph->flags & CAM_PERIPH_INVALID) != 0) 677 return; 678 679 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 680 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) { 681 struct sbuf sb; 682 char buffer[160]; 683 684 sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN); 685 xpt_denounce_periph_sbuf(periph, &sb); 686 sbuf_finish(&sb); 687 sbuf_putbuf(&sb); 688 } 689 periph->flags |= CAM_PERIPH_INVALID; 690 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 691 if (periph->periph_oninval != NULL) 692 periph->periph_oninval(periph); 693 cam_periph_release_locked(periph); 694 } 695 696 static void 697 camperiphfree(struct cam_periph *periph) 698 { 699 struct periph_driver **p_drv; 700 struct periph_driver *drv; 701 702 cam_periph_assert(periph, MA_OWNED); 703 KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating", 704 periph->periph_name, periph->unit_number)); 705 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 706 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 707 break; 708 } 709 if (*p_drv == NULL) { 710 printf("camperiphfree: attempt to free non-existant periph\n"); 711 return; 712 } 713 /* 714 * Cache a pointer to the periph_driver structure. If a 715 * periph_driver is added or removed from the array (see 716 * periphdriver_register()) while we drop the toplogy lock 717 * below, p_drv may change. This doesn't protect against this 718 * particular periph_driver going away. That will require full 719 * reference counting in the periph_driver infrastructure. 720 */ 721 drv = *p_drv; 722 723 /* 724 * We need to set this flag before dropping the topology lock, to 725 * let anyone who is traversing the list that this peripheral is 726 * about to be freed, and there will be no more reference count 727 * checks. 728 */ 729 periph->flags |= CAM_PERIPH_FREE; 730 731 /* 732 * The peripheral destructor semantics dictate calling with only the 733 * SIM mutex held. Since it might sleep, it should not be called 734 * with the topology lock held. 735 */ 736 xpt_unlock_buses(); 737 738 /* 739 * We need to call the peripheral destructor prior to removing the 740 * peripheral from the list. Otherwise, we risk running into a 741 * scenario where the peripheral unit number may get reused 742 * (because it has been removed from the list), but some resources 743 * used by the peripheral are still hanging around. In particular, 744 * the devfs nodes used by some peripherals like the pass(4) driver 745 * aren't fully cleaned up until the destructor is run. If the 746 * unit number is reused before the devfs instance is fully gone, 747 * devfs will panic. 748 */ 749 if (periph->periph_dtor != NULL) 750 periph->periph_dtor(periph); 751 752 /* 753 * The peripheral list is protected by the topology lock. We have to 754 * remove the periph from the drv list before we call deferred_ac. The 755 * AC_FOUND_DEVICE callback won't create a new periph if it's still there. 756 */ 757 xpt_lock_buses(); 758 759 TAILQ_REMOVE(&drv->units, periph, unit_links); 760 drv->generation++; 761 762 xpt_remove_periph(periph); 763 764 xpt_unlock_buses(); 765 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) 766 xpt_print(periph->path, "Periph destroyed\n"); 767 else 768 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 769 770 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 771 union ccb ccb; 772 void *arg; 773 774 memset(&ccb, 0, sizeof(ccb)); 775 switch (periph->deferred_ac) { 776 case AC_FOUND_DEVICE: 777 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 778 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 779 xpt_action(&ccb); 780 arg = &ccb; 781 break; 782 case AC_PATH_REGISTERED: 783 xpt_path_inq(&ccb.cpi, periph->path); 784 arg = &ccb; 785 break; 786 default: 787 arg = NULL; 788 break; 789 } 790 periph->deferred_callback(NULL, periph->deferred_ac, 791 periph->path, arg); 792 } 793 xpt_free_path(periph->path); 794 free(periph, M_CAMPERIPH); 795 xpt_lock_buses(); 796 } 797 798 /* 799 * Map user virtual pointers into kernel virtual address space, so we can 800 * access the memory. This is now a generic function that centralizes most 801 * of the sanity checks on the data flags, if any. 802 * This also only works for up to maxphys memory. Since we use 803 * buffers to map stuff in and out, we're limited to the buffer size. 804 */ 805 int 806 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo, 807 u_int maxmap) 808 { 809 int numbufs, i; 810 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 811 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 812 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 813 814 bzero(mapinfo, sizeof(*mapinfo)); 815 if (maxmap == 0) 816 maxmap = DFLTPHYS; /* traditional default */ 817 else if (maxmap > maxphys) 818 maxmap = maxphys; /* for safety */ 819 switch(ccb->ccb_h.func_code) { 820 case XPT_DEV_MATCH: 821 if (ccb->cdm.match_buf_len == 0) { 822 printf("cam_periph_mapmem: invalid match buffer " 823 "length 0\n"); 824 return(EINVAL); 825 } 826 if (ccb->cdm.pattern_buf_len > 0) { 827 data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns; 828 lengths[0] = ccb->cdm.pattern_buf_len; 829 dirs[0] = CAM_DIR_OUT; 830 data_ptrs[1] = (uint8_t **)&ccb->cdm.matches; 831 lengths[1] = ccb->cdm.match_buf_len; 832 dirs[1] = CAM_DIR_IN; 833 numbufs = 2; 834 } else { 835 data_ptrs[0] = (uint8_t **)&ccb->cdm.matches; 836 lengths[0] = ccb->cdm.match_buf_len; 837 dirs[0] = CAM_DIR_IN; 838 numbufs = 1; 839 } 840 /* 841 * This request will not go to the hardware, no reason 842 * to be so strict. vmapbuf() is able to map up to maxphys. 843 */ 844 maxmap = maxphys; 845 break; 846 case XPT_SCSI_IO: 847 case XPT_CONT_TARGET_IO: 848 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 849 return(0); 850 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 851 return (EINVAL); 852 data_ptrs[0] = &ccb->csio.data_ptr; 853 lengths[0] = ccb->csio.dxfer_len; 854 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 855 numbufs = 1; 856 break; 857 case XPT_ATA_IO: 858 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 859 return(0); 860 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 861 return (EINVAL); 862 data_ptrs[0] = &ccb->ataio.data_ptr; 863 lengths[0] = ccb->ataio.dxfer_len; 864 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 865 numbufs = 1; 866 break; 867 case XPT_MMC_IO: 868 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 869 return(0); 870 /* Two mappings: one for cmd->data and one for cmd->data->data */ 871 data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data; 872 lengths[0] = sizeof(struct mmc_data *); 873 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 874 data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data; 875 lengths[1] = ccb->mmcio.cmd.data->len; 876 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 877 numbufs = 2; 878 break; 879 case XPT_SMP_IO: 880 data_ptrs[0] = &ccb->smpio.smp_request; 881 lengths[0] = ccb->smpio.smp_request_len; 882 dirs[0] = CAM_DIR_OUT; 883 data_ptrs[1] = &ccb->smpio.smp_response; 884 lengths[1] = ccb->smpio.smp_response_len; 885 dirs[1] = CAM_DIR_IN; 886 numbufs = 2; 887 break; 888 case XPT_NVME_IO: 889 case XPT_NVME_ADMIN: 890 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 891 return (0); 892 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 893 return (EINVAL); 894 data_ptrs[0] = &ccb->nvmeio.data_ptr; 895 lengths[0] = ccb->nvmeio.dxfer_len; 896 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 897 numbufs = 1; 898 break; 899 case XPT_DEV_ADVINFO: 900 if (ccb->cdai.bufsiz == 0) 901 return (0); 902 903 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 904 lengths[0] = ccb->cdai.bufsiz; 905 dirs[0] = CAM_DIR_IN; 906 numbufs = 1; 907 908 /* 909 * This request will not go to the hardware, no reason 910 * to be so strict. vmapbuf() is able to map up to maxphys. 911 */ 912 maxmap = maxphys; 913 break; 914 default: 915 return(EINVAL); 916 break; /* NOTREACHED */ 917 } 918 919 /* 920 * Check the transfer length and permissions first, so we don't 921 * have to unmap any previously mapped buffers. 922 */ 923 for (i = 0; i < numbufs; i++) { 924 if (lengths[i] > maxmap) { 925 printf("cam_periph_mapmem: attempt to map %lu bytes, " 926 "which is greater than %lu\n", 927 (long)(lengths[i]), (u_long)maxmap); 928 return (E2BIG); 929 } 930 } 931 932 /* 933 * This keeps the kernel stack of current thread from getting 934 * swapped. In low-memory situations where the kernel stack might 935 * otherwise get swapped out, this holds it and allows the thread 936 * to make progress and release the kernel mapped pages sooner. 937 * 938 * XXX KDM should I use P_NOSWAP instead? 939 */ 940 PHOLD(curproc); 941 942 for (i = 0; i < numbufs; i++) { 943 /* Save the user's data address. */ 944 mapinfo->orig[i] = *data_ptrs[i]; 945 946 /* 947 * For small buffers use malloc+copyin/copyout instead of 948 * mapping to KVA to avoid expensive TLB shootdowns. For 949 * small allocations malloc is backed by UMA, and so much 950 * cheaper on SMP systems. 951 */ 952 if (lengths[i] <= periph_mapmem_thresh && 953 ccb->ccb_h.func_code != XPT_MMC_IO) { 954 *data_ptrs[i] = malloc(lengths[i], M_CAMPERIPH, 955 M_WAITOK); 956 if (dirs[i] != CAM_DIR_IN) { 957 if (copyin(mapinfo->orig[i], *data_ptrs[i], 958 lengths[i]) != 0) { 959 free(*data_ptrs[i], M_CAMPERIPH); 960 *data_ptrs[i] = mapinfo->orig[i]; 961 goto fail; 962 } 963 } else 964 bzero(*data_ptrs[i], lengths[i]); 965 continue; 966 } 967 968 /* 969 * Get the buffer. 970 */ 971 mapinfo->bp[i] = uma_zalloc(pbuf_zone, M_WAITOK); 972 973 /* set the direction */ 974 mapinfo->bp[i]->b_iocmd = (dirs[i] == CAM_DIR_OUT) ? 975 BIO_WRITE : BIO_READ; 976 977 /* Map the buffer into kernel memory. */ 978 if (vmapbuf(mapinfo->bp[i], *data_ptrs[i], lengths[i], 1) < 0) { 979 uma_zfree(pbuf_zone, mapinfo->bp[i]); 980 goto fail; 981 } 982 983 /* set our pointer to the new mapped area */ 984 *data_ptrs[i] = mapinfo->bp[i]->b_data; 985 } 986 987 /* 988 * Now that we've gotten this far, change ownership to the kernel 989 * of the buffers so that we don't run afoul of returning to user 990 * space with locks (on the buffer) held. 991 */ 992 for (i = 0; i < numbufs; i++) { 993 if (mapinfo->bp[i]) 994 BUF_KERNPROC(mapinfo->bp[i]); 995 } 996 997 mapinfo->num_bufs_used = numbufs; 998 return(0); 999 1000 fail: 1001 for (i--; i >= 0; i--) { 1002 if (mapinfo->bp[i]) { 1003 vunmapbuf(mapinfo->bp[i]); 1004 uma_zfree(pbuf_zone, mapinfo->bp[i]); 1005 } else 1006 free(*data_ptrs[i], M_CAMPERIPH); 1007 *data_ptrs[i] = mapinfo->orig[i]; 1008 } 1009 PRELE(curproc); 1010 return(EACCES); 1011 } 1012 1013 /* 1014 * Unmap memory segments mapped into kernel virtual address space by 1015 * cam_periph_mapmem(). 1016 */ 1017 void 1018 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 1019 { 1020 int numbufs, i; 1021 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1022 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 1023 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 1024 1025 if (mapinfo->num_bufs_used <= 0) { 1026 /* nothing to free and the process wasn't held. */ 1027 return; 1028 } 1029 1030 switch (ccb->ccb_h.func_code) { 1031 case XPT_DEV_MATCH: 1032 if (ccb->cdm.pattern_buf_len > 0) { 1033 data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns; 1034 lengths[0] = ccb->cdm.pattern_buf_len; 1035 dirs[0] = CAM_DIR_OUT; 1036 data_ptrs[1] = (uint8_t **)&ccb->cdm.matches; 1037 lengths[1] = ccb->cdm.match_buf_len; 1038 dirs[1] = CAM_DIR_IN; 1039 numbufs = 2; 1040 } else { 1041 data_ptrs[0] = (uint8_t **)&ccb->cdm.matches; 1042 lengths[0] = ccb->cdm.match_buf_len; 1043 dirs[0] = CAM_DIR_IN; 1044 numbufs = 1; 1045 } 1046 break; 1047 case XPT_SCSI_IO: 1048 case XPT_CONT_TARGET_IO: 1049 data_ptrs[0] = &ccb->csio.data_ptr; 1050 lengths[0] = ccb->csio.dxfer_len; 1051 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1052 numbufs = 1; 1053 break; 1054 case XPT_ATA_IO: 1055 data_ptrs[0] = &ccb->ataio.data_ptr; 1056 lengths[0] = ccb->ataio.dxfer_len; 1057 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1058 numbufs = 1; 1059 break; 1060 case XPT_MMC_IO: 1061 data_ptrs[0] = (uint8_t **)&ccb->mmcio.cmd.data; 1062 lengths[0] = sizeof(struct mmc_data *); 1063 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1064 data_ptrs[1] = (uint8_t **)&ccb->mmcio.cmd.data->data; 1065 lengths[1] = ccb->mmcio.cmd.data->len; 1066 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 1067 numbufs = 2; 1068 break; 1069 case XPT_SMP_IO: 1070 data_ptrs[0] = &ccb->smpio.smp_request; 1071 lengths[0] = ccb->smpio.smp_request_len; 1072 dirs[0] = CAM_DIR_OUT; 1073 data_ptrs[1] = &ccb->smpio.smp_response; 1074 lengths[1] = ccb->smpio.smp_response_len; 1075 dirs[1] = CAM_DIR_IN; 1076 numbufs = 2; 1077 break; 1078 case XPT_NVME_IO: 1079 case XPT_NVME_ADMIN: 1080 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1081 lengths[0] = ccb->nvmeio.dxfer_len; 1082 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1083 numbufs = 1; 1084 break; 1085 case XPT_DEV_ADVINFO: 1086 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1087 lengths[0] = ccb->cdai.bufsiz; 1088 dirs[0] = CAM_DIR_IN; 1089 numbufs = 1; 1090 break; 1091 default: 1092 /* allow ourselves to be swapped once again */ 1093 PRELE(curproc); 1094 return; 1095 break; /* NOTREACHED */ 1096 } 1097 1098 for (i = 0; i < numbufs; i++) { 1099 if (mapinfo->bp[i]) { 1100 /* unmap the buffer */ 1101 vunmapbuf(mapinfo->bp[i]); 1102 1103 /* release the buffer */ 1104 uma_zfree(pbuf_zone, mapinfo->bp[i]); 1105 } else { 1106 if (dirs[i] != CAM_DIR_OUT) { 1107 copyout(*data_ptrs[i], mapinfo->orig[i], 1108 lengths[i]); 1109 } 1110 free(*data_ptrs[i], M_CAMPERIPH); 1111 } 1112 1113 /* Set the user's pointer back to the original value */ 1114 *data_ptrs[i] = mapinfo->orig[i]; 1115 } 1116 1117 /* allow ourselves to be swapped once again */ 1118 PRELE(curproc); 1119 } 1120 1121 int 1122 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 1123 int (*error_routine)(union ccb *ccb, 1124 cam_flags camflags, 1125 uint32_t sense_flags)) 1126 { 1127 union ccb *ccb; 1128 int error; 1129 int found; 1130 1131 error = found = 0; 1132 1133 switch(cmd){ 1134 case CAMGETPASSTHRU_0x19: 1135 case CAMGETPASSTHRU: 1136 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 1137 xpt_setup_ccb(&ccb->ccb_h, 1138 ccb->ccb_h.path, 1139 CAM_PRIORITY_NORMAL); 1140 ccb->ccb_h.func_code = XPT_GDEVLIST; 1141 1142 /* 1143 * Basically, the point of this is that we go through 1144 * getting the list of devices, until we find a passthrough 1145 * device. In the current version of the CAM code, the 1146 * only way to determine what type of device we're dealing 1147 * with is by its name. 1148 */ 1149 while (found == 0) { 1150 ccb->cgdl.index = 0; 1151 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1152 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1153 /* we want the next device in the list */ 1154 xpt_action(ccb); 1155 if (strncmp(ccb->cgdl.periph_name, 1156 "pass", 4) == 0){ 1157 found = 1; 1158 break; 1159 } 1160 } 1161 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1162 (found == 0)) { 1163 ccb->cgdl.periph_name[0] = '\0'; 1164 ccb->cgdl.unit_number = 0; 1165 break; 1166 } 1167 } 1168 1169 /* copy the result back out */ 1170 bcopy(ccb, addr, sizeof(union ccb)); 1171 1172 /* and release the ccb */ 1173 xpt_release_ccb(ccb); 1174 1175 break; 1176 default: 1177 error = ENOTTY; 1178 break; 1179 } 1180 return(error); 1181 } 1182 1183 static void 1184 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb) 1185 { 1186 1187 panic("%s: already done with ccb %p", __func__, done_ccb); 1188 } 1189 1190 static void 1191 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb) 1192 { 1193 1194 /* Caller will release the CCB */ 1195 xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED); 1196 done_ccb->ccb_h.cbfcnp = cam_periph_done_panic; 1197 wakeup(&done_ccb->ccb_h.cbfcnp); 1198 } 1199 1200 static void 1201 cam_periph_ccbwait(union ccb *ccb) 1202 { 1203 1204 if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 1205 while (ccb->ccb_h.cbfcnp != cam_periph_done_panic) 1206 xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, 1207 PRIBIO, "cbwait", 0); 1208 } 1209 KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && 1210 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG, 1211 ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, " 1212 "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code, 1213 ccb->ccb_h.status, ccb->ccb_h.pinfo.index)); 1214 } 1215 1216 /* 1217 * Dispatch a CCB and wait for it to complete. If the CCB has set a 1218 * callback function (ccb->ccb_h.cbfcnp), it will be overwritten and lost. 1219 */ 1220 int 1221 cam_periph_runccb(union ccb *ccb, 1222 int (*error_routine)(union ccb *ccb, 1223 cam_flags camflags, 1224 uint32_t sense_flags), 1225 cam_flags camflags, uint32_t sense_flags, 1226 struct devstat *ds) 1227 { 1228 struct bintime *starttime; 1229 struct bintime ltime; 1230 int error; 1231 bool must_poll; 1232 uint32_t timeout = 1; 1233 1234 starttime = NULL; 1235 xpt_path_assert(ccb->ccb_h.path, MA_OWNED); 1236 KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0, 1237 ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb, 1238 ccb->ccb_h.func_code, ccb->ccb_h.flags)); 1239 1240 /* 1241 * If the user has supplied a stats structure, and if we understand 1242 * this particular type of ccb, record the transaction start. 1243 */ 1244 if (ds != NULL && 1245 (ccb->ccb_h.func_code == XPT_SCSI_IO || 1246 ccb->ccb_h.func_code == XPT_ATA_IO || 1247 ccb->ccb_h.func_code == XPT_NVME_IO)) { 1248 starttime = <ime; 1249 binuptime(starttime); 1250 devstat_start_transaction(ds, starttime); 1251 } 1252 1253 /* 1254 * We must poll the I/O while we're dumping. The scheduler is normally 1255 * stopped for dumping, except when we call doadump from ddb. While the 1256 * scheduler is running in this case, we still need to poll the I/O to 1257 * avoid sleeping waiting for the ccb to complete. 1258 * 1259 * A panic triggered dump stops the scheduler, any callback from the 1260 * shutdown_post_sync event will run with the scheduler stopped, but 1261 * before we're officially dumping. To avoid hanging in adashutdown 1262 * initiated commands (or other similar situations), we have to test for 1263 * either dumping or SCHEDULER_STOPPED() here. 1264 * 1265 * To avoid locking problems, dumping/polling callers must call 1266 * without a periph lock held. 1267 */ 1268 must_poll = dumping || SCHEDULER_STOPPED(); 1269 ccb->ccb_h.cbfcnp = cam_periph_done; 1270 1271 /* 1272 * If we're polling, then we need to ensure that we have ample resources 1273 * in the periph. cam_periph_error can reschedule the ccb by calling 1274 * xpt_action and returning ERESTART, so we have to effect the polling 1275 * in the do loop below. 1276 */ 1277 if (must_poll) { 1278 if (cam_sim_pollable(ccb->ccb_h.path->bus->sim)) 1279 timeout = xpt_poll_setup(ccb); 1280 else 1281 timeout = 0; 1282 } 1283 1284 if (timeout == 0) { 1285 ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 1286 error = EBUSY; 1287 } else { 1288 xpt_action(ccb); 1289 do { 1290 if (must_poll) { 1291 xpt_pollwait(ccb, timeout); 1292 timeout = ccb->ccb_h.timeout * 10; 1293 } else { 1294 cam_periph_ccbwait(ccb); 1295 } 1296 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1297 error = 0; 1298 else if (error_routine != NULL) { 1299 /* 1300 * cbfcnp is modified by cam_periph_ccbwait so 1301 * reset it before we call the error routine 1302 * which may call xpt_done. 1303 */ 1304 ccb->ccb_h.cbfcnp = cam_periph_done; 1305 error = (*error_routine)(ccb, camflags, sense_flags); 1306 } else 1307 error = 0; 1308 } while (error == ERESTART); 1309 } 1310 1311 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1312 cam_release_devq(ccb->ccb_h.path, 1313 /* relsim_flags */0, 1314 /* openings */0, 1315 /* timeout */0, 1316 /* getcount_only */ FALSE); 1317 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1318 } 1319 1320 if (ds != NULL) { 1321 uint32_t bytes; 1322 devstat_tag_type tag; 1323 bool valid = true; 1324 1325 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1326 bytes = ccb->csio.dxfer_len - ccb->csio.resid; 1327 tag = (devstat_tag_type)(ccb->csio.tag_action & 0x3); 1328 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1329 bytes = ccb->ataio.dxfer_len - ccb->ataio.resid; 1330 tag = (devstat_tag_type)0; 1331 } else if (ccb->ccb_h.func_code == XPT_NVME_IO) { 1332 bytes = ccb->nvmeio.dxfer_len; /* NB: resid no possible */ 1333 tag = (devstat_tag_type)0; 1334 } else { 1335 valid = false; 1336 } 1337 if (valid) 1338 devstat_end_transaction(ds, bytes, tag, 1339 ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? 1340 DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1341 DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime); 1342 } 1343 1344 return(error); 1345 } 1346 1347 void 1348 cam_freeze_devq(struct cam_path *path) 1349 { 1350 struct ccb_hdr ccb_h; 1351 1352 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n")); 1353 memset(&ccb_h, 0, sizeof(ccb_h)); 1354 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 1355 ccb_h.func_code = XPT_NOOP; 1356 ccb_h.flags = CAM_DEV_QFREEZE; 1357 xpt_action((union ccb *)&ccb_h); 1358 } 1359 1360 uint32_t 1361 cam_release_devq(struct cam_path *path, uint32_t relsim_flags, 1362 uint32_t openings, uint32_t arg, 1363 int getcount_only) 1364 { 1365 struct ccb_relsim crs; 1366 1367 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n", 1368 relsim_flags, openings, arg, getcount_only)); 1369 memset(&crs, 0, sizeof(crs)); 1370 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1371 crs.ccb_h.func_code = XPT_REL_SIMQ; 1372 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1373 crs.release_flags = relsim_flags; 1374 crs.openings = openings; 1375 crs.release_timeout = arg; 1376 xpt_action((union ccb *)&crs); 1377 return (crs.qfrozen_cnt); 1378 } 1379 1380 #define saved_ccb_ptr ppriv_ptr0 1381 static void 1382 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1383 { 1384 union ccb *saved_ccb; 1385 cam_status status; 1386 struct scsi_start_stop_unit *scsi_cmd; 1387 int error = 0, error_code, sense_key, asc, ascq; 1388 uint16_t done_flags; 1389 1390 scsi_cmd = (struct scsi_start_stop_unit *) 1391 &done_ccb->csio.cdb_io.cdb_bytes; 1392 status = done_ccb->ccb_h.status; 1393 1394 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1395 if (scsi_extract_sense_ccb(done_ccb, 1396 &error_code, &sense_key, &asc, &ascq)) { 1397 /* 1398 * If the error is "invalid field in CDB", 1399 * and the load/eject flag is set, turn the 1400 * flag off and try again. This is just in 1401 * case the drive in question barfs on the 1402 * load eject flag. The CAM code should set 1403 * the load/eject flag by default for 1404 * removable media. 1405 */ 1406 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1407 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1408 (asc == 0x24) && (ascq == 0x00)) { 1409 scsi_cmd->how &= ~SSS_LOEJ; 1410 if (status & CAM_DEV_QFRZN) { 1411 cam_release_devq(done_ccb->ccb_h.path, 1412 0, 0, 0, 0); 1413 done_ccb->ccb_h.status &= 1414 ~CAM_DEV_QFRZN; 1415 } 1416 xpt_action(done_ccb); 1417 goto out; 1418 } 1419 } 1420 error = cam_periph_error(done_ccb, 0, 1421 SF_RETRY_UA | SF_NO_PRINT); 1422 if (error == ERESTART) 1423 goto out; 1424 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1425 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1426 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1427 } 1428 } else { 1429 /* 1430 * If we have successfully taken a device from the not 1431 * ready to ready state, re-scan the device and re-get 1432 * the inquiry information. Many devices (mostly disks) 1433 * don't properly report their inquiry information unless 1434 * they are spun up. 1435 */ 1436 if (scsi_cmd->opcode == START_STOP_UNIT) 1437 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1438 } 1439 1440 /* If we tried long wait and still failed, remember that. */ 1441 if ((periph->flags & CAM_PERIPH_RECOVERY_WAIT) && 1442 (done_ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY)) { 1443 periph->flags &= ~CAM_PERIPH_RECOVERY_WAIT; 1444 if (error != 0 && done_ccb->ccb_h.retry_count == 0) 1445 periph->flags |= CAM_PERIPH_RECOVERY_WAIT_FAILED; 1446 } 1447 1448 /* 1449 * After recovery action(s) completed, return to the original CCB. 1450 * If the recovery CCB has failed, considering its own possible 1451 * retries and recovery, assume we are back in state where we have 1452 * been originally, but without recovery hopes left. In such case, 1453 * after the final attempt below, we cancel any further retries, 1454 * blocking by that also any new recovery attempts for this CCB, 1455 * and the result will be the final one returned to the CCB owher. 1456 */ 1457 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1458 KASSERT(saved_ccb->ccb_h.func_code == XPT_SCSI_IO, 1459 ("%s: saved_ccb func_code %#x != XPT_SCSI_IO", 1460 __func__, saved_ccb->ccb_h.func_code)); 1461 KASSERT(done_ccb->ccb_h.func_code == XPT_SCSI_IO, 1462 ("%s: done_ccb func_code %#x != XPT_SCSI_IO", 1463 __func__, done_ccb->ccb_h.func_code)); 1464 saved_ccb->ccb_h.periph_links = done_ccb->ccb_h.periph_links; 1465 done_flags = done_ccb->ccb_h.alloc_flags; 1466 bcopy(saved_ccb, done_ccb, sizeof(struct ccb_scsiio)); 1467 done_ccb->ccb_h.alloc_flags = done_flags; 1468 xpt_free_ccb(saved_ccb); 1469 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1470 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1471 if (error != 0) 1472 done_ccb->ccb_h.retry_count = 0; 1473 xpt_action(done_ccb); 1474 1475 out: 1476 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1477 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1478 } 1479 1480 /* 1481 * Generic Async Event handler. Peripheral drivers usually 1482 * filter out the events that require personal attention, 1483 * and leave the rest to this function. 1484 */ 1485 void 1486 cam_periph_async(struct cam_periph *periph, uint32_t code, 1487 struct cam_path *path, void *arg) 1488 { 1489 switch (code) { 1490 case AC_LOST_DEVICE: 1491 cam_periph_invalidate(periph); 1492 break; 1493 default: 1494 break; 1495 } 1496 } 1497 1498 void 1499 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1500 { 1501 struct ccb_getdevstats cgds; 1502 1503 memset(&cgds, 0, sizeof(cgds)); 1504 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1505 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1506 xpt_action((union ccb *)&cgds); 1507 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1508 } 1509 1510 void 1511 cam_periph_freeze_after_event(struct cam_periph *periph, 1512 struct timeval* event_time, u_int duration_ms) 1513 { 1514 struct timeval delta; 1515 struct timeval duration_tv; 1516 1517 if (!timevalisset(event_time)) 1518 return; 1519 1520 microtime(&delta); 1521 timevalsub(&delta, event_time); 1522 duration_tv.tv_sec = duration_ms / 1000; 1523 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1524 if (timevalcmp(&delta, &duration_tv, <)) { 1525 timevalsub(&duration_tv, &delta); 1526 1527 duration_ms = duration_tv.tv_sec * 1000; 1528 duration_ms += duration_tv.tv_usec / 1000; 1529 cam_freeze_devq(periph->path); 1530 cam_release_devq(periph->path, 1531 RELSIM_RELEASE_AFTER_TIMEOUT, 1532 /*reduction*/0, 1533 /*timeout*/duration_ms, 1534 /*getcount_only*/0); 1535 } 1536 1537 } 1538 1539 static int 1540 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1541 cam_flags camflags, uint32_t sense_flags, 1542 int *openings, uint32_t *relsim_flags, 1543 uint32_t *timeout, uint32_t *action, const char **action_string) 1544 { 1545 struct cam_periph *periph; 1546 int error; 1547 1548 switch (ccb->csio.scsi_status) { 1549 case SCSI_STATUS_OK: 1550 case SCSI_STATUS_COND_MET: 1551 case SCSI_STATUS_INTERMED: 1552 case SCSI_STATUS_INTERMED_COND_MET: 1553 error = 0; 1554 break; 1555 case SCSI_STATUS_CMD_TERMINATED: 1556 case SCSI_STATUS_CHECK_COND: 1557 error = camperiphscsisenseerror(ccb, orig_ccb, 1558 camflags, 1559 sense_flags, 1560 openings, 1561 relsim_flags, 1562 timeout, 1563 action, 1564 action_string); 1565 break; 1566 case SCSI_STATUS_QUEUE_FULL: 1567 { 1568 /* no decrement */ 1569 struct ccb_getdevstats cgds; 1570 1571 /* 1572 * First off, find out what the current 1573 * transaction counts are. 1574 */ 1575 memset(&cgds, 0, sizeof(cgds)); 1576 xpt_setup_ccb(&cgds.ccb_h, 1577 ccb->ccb_h.path, 1578 CAM_PRIORITY_NORMAL); 1579 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1580 xpt_action((union ccb *)&cgds); 1581 1582 /* 1583 * If we were the only transaction active, treat 1584 * the QUEUE FULL as if it were a BUSY condition. 1585 */ 1586 if (cgds.dev_active != 0) { 1587 int total_openings; 1588 1589 /* 1590 * Reduce the number of openings to 1591 * be 1 less than the amount it took 1592 * to get a queue full bounded by the 1593 * minimum allowed tag count for this 1594 * device. 1595 */ 1596 total_openings = cgds.dev_active + cgds.dev_openings; 1597 *openings = cgds.dev_active; 1598 if (*openings < cgds.mintags) 1599 *openings = cgds.mintags; 1600 if (*openings < total_openings) 1601 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1602 else { 1603 /* 1604 * Some devices report queue full for 1605 * temporary resource shortages. For 1606 * this reason, we allow a minimum 1607 * tag count to be entered via a 1608 * quirk entry to prevent the queue 1609 * count on these devices from falling 1610 * to a pessimisticly low value. We 1611 * still wait for the next successful 1612 * completion, however, before queueing 1613 * more transactions to the device. 1614 */ 1615 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1616 } 1617 *timeout = 0; 1618 error = ERESTART; 1619 *action &= ~SSQ_PRINT_SENSE; 1620 break; 1621 } 1622 /* FALLTHROUGH */ 1623 } 1624 case SCSI_STATUS_BUSY: 1625 /* 1626 * Restart the queue after either another 1627 * command completes or a 1 second timeout. 1628 */ 1629 periph = xpt_path_periph(ccb->ccb_h.path); 1630 if (periph->flags & CAM_PERIPH_INVALID) { 1631 error = ENXIO; 1632 *action_string = "Periph was invalidated"; 1633 } else if ((sense_flags & SF_RETRY_BUSY) != 0 || 1634 ccb->ccb_h.retry_count > 0) { 1635 if ((sense_flags & SF_RETRY_BUSY) == 0) 1636 ccb->ccb_h.retry_count--; 1637 error = ERESTART; 1638 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1639 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1640 *timeout = 1000; 1641 } else { 1642 error = EIO; 1643 *action_string = "Retries exhausted"; 1644 } 1645 break; 1646 case SCSI_STATUS_RESERV_CONFLICT: 1647 default: 1648 error = EIO; 1649 break; 1650 } 1651 return (error); 1652 } 1653 1654 static int 1655 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1656 cam_flags camflags, uint32_t sense_flags, 1657 int *openings, uint32_t *relsim_flags, 1658 uint32_t *timeout, uint32_t *action, const char **action_string) 1659 { 1660 struct cam_periph *periph; 1661 union ccb *orig_ccb = ccb; 1662 int error, recoveryccb; 1663 uint16_t flags; 1664 1665 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1666 if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL) 1667 biotrack(ccb->csio.bio, __func__); 1668 #endif 1669 1670 periph = xpt_path_periph(ccb->ccb_h.path); 1671 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1672 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1673 /* 1674 * If error recovery is already in progress, don't attempt 1675 * to process this error, but requeue it unconditionally 1676 * and attempt to process it once error recovery has 1677 * completed. This failed command is probably related to 1678 * the error that caused the currently active error recovery 1679 * action so our current recovery efforts should also 1680 * address this command. Be aware that the error recovery 1681 * code assumes that only one recovery action is in progress 1682 * on a particular peripheral instance at any given time 1683 * (e.g. only one saved CCB for error recovery) so it is 1684 * imperitive that we don't violate this assumption. 1685 */ 1686 error = ERESTART; 1687 *action &= ~SSQ_PRINT_SENSE; 1688 } else { 1689 scsi_sense_action err_action; 1690 struct ccb_getdev cgd; 1691 1692 /* 1693 * Grab the inquiry data for this device. 1694 */ 1695 memset(&cgd, 0, sizeof(cgd)); 1696 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1697 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1698 xpt_action((union ccb *)&cgd); 1699 1700 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1701 sense_flags); 1702 error = err_action & SS_ERRMASK; 1703 1704 /* 1705 * Do not autostart sequential access devices 1706 * to avoid unexpected tape loading. 1707 */ 1708 if ((err_action & SS_MASK) == SS_START && 1709 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1710 *action_string = "Will not autostart a " 1711 "sequential access device"; 1712 goto sense_error_done; 1713 } 1714 1715 /* 1716 * Avoid recovery recursion if recovery action is the same. 1717 */ 1718 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1719 if (((err_action & SS_MASK) == SS_START && 1720 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1721 ((err_action & SS_MASK) == SS_TUR && 1722 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1723 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1724 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1725 *timeout = 500; 1726 } 1727 } 1728 1729 /* 1730 * If the recovery action will consume a retry, 1731 * make sure we actually have retries available. 1732 */ 1733 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1734 if (ccb->ccb_h.retry_count > 0 && 1735 (periph->flags & CAM_PERIPH_INVALID) == 0) 1736 ccb->ccb_h.retry_count--; 1737 else { 1738 *action_string = "Retries exhausted"; 1739 goto sense_error_done; 1740 } 1741 } 1742 1743 if ((err_action & SS_MASK) >= SS_START) { 1744 /* 1745 * Do common portions of commands that 1746 * use recovery CCBs. 1747 */ 1748 orig_ccb = xpt_alloc_ccb_nowait(); 1749 if (orig_ccb == NULL) { 1750 *action_string = "Can't allocate recovery CCB"; 1751 goto sense_error_done; 1752 } 1753 /* 1754 * Clear freeze flag for original request here, as 1755 * this freeze will be dropped as part of ERESTART. 1756 */ 1757 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1758 1759 KASSERT(ccb->ccb_h.func_code == XPT_SCSI_IO, 1760 ("%s: ccb func_code %#x != XPT_SCSI_IO", 1761 __func__, ccb->ccb_h.func_code)); 1762 flags = orig_ccb->ccb_h.alloc_flags; 1763 bcopy(ccb, orig_ccb, sizeof(struct ccb_scsiio)); 1764 orig_ccb->ccb_h.alloc_flags = flags; 1765 } 1766 1767 switch (err_action & SS_MASK) { 1768 case SS_NOP: 1769 *action_string = "No recovery action needed"; 1770 error = 0; 1771 break; 1772 case SS_RETRY: 1773 *action_string = "Retrying command (per sense data)"; 1774 error = ERESTART; 1775 break; 1776 case SS_FAIL: 1777 *action_string = "Unretryable error"; 1778 break; 1779 case SS_START: 1780 { 1781 int le; 1782 1783 /* 1784 * Send a start unit command to the device, and 1785 * then retry the command. 1786 */ 1787 *action_string = "Attempting to start unit"; 1788 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1789 1790 /* 1791 * Check for removable media and set 1792 * load/eject flag appropriately. 1793 */ 1794 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1795 le = TRUE; 1796 else 1797 le = FALSE; 1798 1799 scsi_start_stop(&ccb->csio, 1800 /*retries*/1, 1801 camperiphdone, 1802 MSG_SIMPLE_Q_TAG, 1803 /*start*/TRUE, 1804 /*load/eject*/le, 1805 /*immediate*/FALSE, 1806 SSD_FULL_SIZE, 1807 /*timeout*/50000); 1808 break; 1809 } 1810 case SS_TUR: 1811 { 1812 /* 1813 * Send a Test Unit Ready to the device. 1814 * If the 'many' flag is set, we send 120 1815 * test unit ready commands, one every half 1816 * second. Otherwise, we just send one TUR. 1817 * We only want to do this if the retry 1818 * count has not been exhausted. 1819 */ 1820 int retries; 1821 1822 if ((err_action & SSQ_MANY) != 0 && (periph->flags & 1823 CAM_PERIPH_RECOVERY_WAIT_FAILED) == 0) { 1824 periph->flags |= CAM_PERIPH_RECOVERY_WAIT; 1825 *action_string = "Polling device for readiness"; 1826 retries = 120; 1827 } else { 1828 *action_string = "Testing device for readiness"; 1829 retries = 1; 1830 } 1831 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1832 scsi_test_unit_ready(&ccb->csio, 1833 retries, 1834 camperiphdone, 1835 MSG_SIMPLE_Q_TAG, 1836 SSD_FULL_SIZE, 1837 /*timeout*/5000); 1838 1839 /* 1840 * Accomplish our 500ms delay by deferring 1841 * the release of our device queue appropriately. 1842 */ 1843 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1844 *timeout = 500; 1845 break; 1846 } 1847 default: 1848 panic("Unhandled error action %x", err_action); 1849 } 1850 1851 if ((err_action & SS_MASK) >= SS_START) { 1852 /* 1853 * Drop the priority, so that the recovery 1854 * CCB is the first to execute. Freeze the queue 1855 * after this command is sent so that we can 1856 * restore the old csio and have it queued in 1857 * the proper order before we release normal 1858 * transactions to the device. 1859 */ 1860 ccb->ccb_h.pinfo.priority--; 1861 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1862 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1863 error = ERESTART; 1864 *orig = orig_ccb; 1865 } 1866 1867 sense_error_done: 1868 *action = err_action; 1869 } 1870 return (error); 1871 } 1872 1873 /* 1874 * Generic error handler. Peripheral drivers usually filter 1875 * out the errors that they handle in a unique manner, then 1876 * call this function. 1877 */ 1878 int 1879 cam_periph_error(union ccb *ccb, cam_flags camflags, 1880 uint32_t sense_flags) 1881 { 1882 struct cam_path *newpath; 1883 union ccb *orig_ccb, *scan_ccb; 1884 struct cam_periph *periph; 1885 const char *action_string; 1886 cam_status status; 1887 int frozen, error, openings, devctl_err; 1888 uint32_t action, relsim_flags, timeout; 1889 1890 action = SSQ_PRINT_SENSE; 1891 periph = xpt_path_periph(ccb->ccb_h.path); 1892 action_string = NULL; 1893 status = ccb->ccb_h.status; 1894 frozen = (status & CAM_DEV_QFRZN) != 0; 1895 status &= CAM_STATUS_MASK; 1896 devctl_err = openings = relsim_flags = timeout = 0; 1897 orig_ccb = ccb; 1898 1899 /* Filter the errors that should be reported via devctl */ 1900 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 1901 case CAM_CMD_TIMEOUT: 1902 case CAM_REQ_ABORTED: 1903 case CAM_REQ_CMP_ERR: 1904 case CAM_REQ_TERMIO: 1905 case CAM_UNREC_HBA_ERROR: 1906 case CAM_DATA_RUN_ERR: 1907 case CAM_SCSI_STATUS_ERROR: 1908 case CAM_ATA_STATUS_ERROR: 1909 case CAM_SMP_STATUS_ERROR: 1910 case CAM_DEV_NOT_THERE: 1911 case CAM_NVME_STATUS_ERROR: 1912 devctl_err++; 1913 break; 1914 default: 1915 break; 1916 } 1917 1918 switch (status) { 1919 case CAM_REQ_CMP: 1920 error = 0; 1921 action &= ~SSQ_PRINT_SENSE; 1922 break; 1923 case CAM_SCSI_STATUS_ERROR: 1924 error = camperiphscsistatuserror(ccb, &orig_ccb, 1925 camflags, sense_flags, &openings, &relsim_flags, 1926 &timeout, &action, &action_string); 1927 break; 1928 case CAM_AUTOSENSE_FAIL: 1929 error = EIO; /* we have to kill the command */ 1930 break; 1931 case CAM_UA_ABORT: 1932 case CAM_UA_TERMIO: 1933 case CAM_MSG_REJECT_REC: 1934 /* XXX Don't know that these are correct */ 1935 error = EIO; 1936 break; 1937 case CAM_SEL_TIMEOUT: 1938 if ((camflags & CAM_RETRY_SELTO) != 0) { 1939 if (ccb->ccb_h.retry_count > 0 && 1940 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1941 ccb->ccb_h.retry_count--; 1942 error = ERESTART; 1943 1944 /* 1945 * Wait a bit to give the device 1946 * time to recover before we try again. 1947 */ 1948 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1949 timeout = periph_selto_delay; 1950 break; 1951 } 1952 action_string = "Retries exhausted"; 1953 } 1954 /* FALLTHROUGH */ 1955 case CAM_DEV_NOT_THERE: 1956 error = ENXIO; 1957 action = SSQ_LOST; 1958 break; 1959 case CAM_REQ_INVALID: 1960 case CAM_PATH_INVALID: 1961 case CAM_NO_HBA: 1962 case CAM_PROVIDE_FAIL: 1963 case CAM_REQ_TOO_BIG: 1964 case CAM_LUN_INVALID: 1965 case CAM_TID_INVALID: 1966 case CAM_FUNC_NOTAVAIL: 1967 error = EINVAL; 1968 break; 1969 case CAM_SCSI_BUS_RESET: 1970 case CAM_BDR_SENT: 1971 /* 1972 * Commands that repeatedly timeout and cause these 1973 * kinds of error recovery actions, should return 1974 * CAM_CMD_TIMEOUT, which allows us to safely assume 1975 * that this command was an innocent bystander to 1976 * these events and should be unconditionally 1977 * retried. 1978 */ 1979 case CAM_REQUEUE_REQ: 1980 /* Unconditional requeue if device is still there */ 1981 if (periph->flags & CAM_PERIPH_INVALID) { 1982 action_string = "Periph was invalidated"; 1983 error = ENXIO; 1984 } else if (sense_flags & SF_NO_RETRY) { 1985 error = EIO; 1986 action_string = "Retry was blocked"; 1987 } else { 1988 error = ERESTART; 1989 action &= ~SSQ_PRINT_SENSE; 1990 } 1991 break; 1992 case CAM_RESRC_UNAVAIL: 1993 /* Wait a bit for the resource shortage to abate. */ 1994 timeout = periph_noresrc_delay; 1995 /* FALLTHROUGH */ 1996 case CAM_BUSY: 1997 if (timeout == 0) { 1998 /* Wait a bit for the busy condition to abate. */ 1999 timeout = periph_busy_delay; 2000 } 2001 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 2002 /* FALLTHROUGH */ 2003 case CAM_ATA_STATUS_ERROR: 2004 case CAM_NVME_STATUS_ERROR: 2005 case CAM_SMP_STATUS_ERROR: 2006 case CAM_REQ_CMP_ERR: 2007 case CAM_CMD_TIMEOUT: 2008 case CAM_UNEXP_BUSFREE: 2009 case CAM_UNCOR_PARITY: 2010 case CAM_DATA_RUN_ERR: 2011 default: 2012 if (periph->flags & CAM_PERIPH_INVALID) { 2013 error = ENXIO; 2014 action_string = "Periph was invalidated"; 2015 } else if (ccb->ccb_h.retry_count == 0) { 2016 error = EIO; 2017 action_string = "Retries exhausted"; 2018 } else if (sense_flags & SF_NO_RETRY) { 2019 error = EIO; 2020 action_string = "Retry was blocked"; 2021 } else { 2022 ccb->ccb_h.retry_count--; 2023 error = ERESTART; 2024 } 2025 break; 2026 } 2027 2028 if ((sense_flags & SF_PRINT_ALWAYS) || 2029 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 2030 action |= SSQ_PRINT_SENSE; 2031 else if (sense_flags & SF_NO_PRINT) 2032 action &= ~SSQ_PRINT_SENSE; 2033 if ((action & SSQ_PRINT_SENSE) != 0) 2034 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 2035 if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) { 2036 if (error != ERESTART) { 2037 if (action_string == NULL) 2038 action_string = "Unretryable error"; 2039 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 2040 error, action_string); 2041 } else if (action_string != NULL) 2042 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 2043 else { 2044 xpt_print(ccb->ccb_h.path, 2045 "Retrying command, %d more tries remain\n", 2046 ccb->ccb_h.retry_count); 2047 } 2048 } 2049 2050 if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0)) 2051 cam_periph_devctl_notify(orig_ccb); 2052 2053 if ((action & SSQ_LOST) != 0) { 2054 lun_id_t lun_id; 2055 2056 /* 2057 * For a selection timeout, we consider all of the LUNs on 2058 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 2059 * then we only get rid of the device(s) specified by the 2060 * path in the original CCB. 2061 */ 2062 if (status == CAM_SEL_TIMEOUT) 2063 lun_id = CAM_LUN_WILDCARD; 2064 else 2065 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 2066 2067 /* Should we do more if we can't create the path?? */ 2068 if (xpt_create_path(&newpath, periph, 2069 xpt_path_path_id(ccb->ccb_h.path), 2070 xpt_path_target_id(ccb->ccb_h.path), 2071 lun_id) == CAM_REQ_CMP) { 2072 /* 2073 * Let peripheral drivers know that this 2074 * device has gone away. 2075 */ 2076 xpt_async(AC_LOST_DEVICE, newpath, NULL); 2077 xpt_free_path(newpath); 2078 } 2079 } 2080 2081 /* Broadcast UNIT ATTENTIONs to all periphs. */ 2082 if ((action & SSQ_UA) != 0) 2083 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 2084 2085 /* Rescan target on "Reported LUNs data has changed" */ 2086 if ((action & SSQ_RESCAN) != 0) { 2087 if (xpt_create_path(&newpath, NULL, 2088 xpt_path_path_id(ccb->ccb_h.path), 2089 xpt_path_target_id(ccb->ccb_h.path), 2090 CAM_LUN_WILDCARD) == CAM_REQ_CMP) { 2091 scan_ccb = xpt_alloc_ccb_nowait(); 2092 if (scan_ccb != NULL) { 2093 scan_ccb->ccb_h.path = newpath; 2094 scan_ccb->ccb_h.func_code = XPT_SCAN_TGT; 2095 scan_ccb->crcn.flags = 0; 2096 xpt_rescan(scan_ccb); 2097 } else { 2098 xpt_print(newpath, 2099 "Can't allocate CCB to rescan target\n"); 2100 xpt_free_path(newpath); 2101 } 2102 } 2103 } 2104 2105 /* Attempt a retry */ 2106 if (error == ERESTART || error == 0) { 2107 if (frozen != 0) 2108 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 2109 if (error == ERESTART) 2110 xpt_action(ccb); 2111 if (frozen != 0) 2112 cam_release_devq(ccb->ccb_h.path, 2113 relsim_flags, 2114 openings, 2115 timeout, 2116 /*getcount_only*/0); 2117 } 2118 2119 return (error); 2120 } 2121 2122 #define CAM_PERIPH_DEVD_MSG_SIZE 256 2123 2124 static void 2125 cam_periph_devctl_notify(union ccb *ccb) 2126 { 2127 struct cam_periph *periph; 2128 struct ccb_getdev *cgd; 2129 struct sbuf sb; 2130 int serr, sk, asc, ascq; 2131 char *sbmsg, *type; 2132 2133 sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT); 2134 if (sbmsg == NULL) 2135 return; 2136 2137 sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN); 2138 2139 periph = xpt_path_periph(ccb->ccb_h.path); 2140 sbuf_printf(&sb, "device=%s%d ", periph->periph_name, 2141 periph->unit_number); 2142 2143 sbuf_printf(&sb, "serial=\""); 2144 if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) { 2145 xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path, 2146 CAM_PRIORITY_NORMAL); 2147 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 2148 xpt_action((union ccb *)cgd); 2149 2150 if (cgd->ccb_h.status == CAM_REQ_CMP) 2151 sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len); 2152 xpt_free_ccb((union ccb *)cgd); 2153 } 2154 sbuf_printf(&sb, "\" "); 2155 sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status); 2156 2157 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 2158 case CAM_CMD_TIMEOUT: 2159 sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout); 2160 type = "timeout"; 2161 break; 2162 case CAM_SCSI_STATUS_ERROR: 2163 sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status); 2164 if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq)) 2165 sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ", 2166 serr, sk, asc, ascq); 2167 type = "error"; 2168 break; 2169 case CAM_ATA_STATUS_ERROR: 2170 sbuf_printf(&sb, "RES=\""); 2171 ata_res_sbuf(&ccb->ataio.res, &sb); 2172 sbuf_printf(&sb, "\" "); 2173 type = "error"; 2174 break; 2175 default: 2176 type = "error"; 2177 break; 2178 } 2179 2180 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 2181 sbuf_printf(&sb, "CDB=\""); 2182 scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb); 2183 sbuf_printf(&sb, "\" "); 2184 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 2185 sbuf_printf(&sb, "ACB=\""); 2186 ata_cmd_sbuf(&ccb->ataio.cmd, &sb); 2187 sbuf_printf(&sb, "\" "); 2188 } 2189 2190 if (sbuf_finish(&sb) == 0) 2191 devctl_notify("CAM", "periph", type, sbuf_data(&sb)); 2192 sbuf_delete(&sb); 2193 free(sbmsg, M_CAMPERIPH); 2194 } 2195 2196 /* 2197 * Sysctl to force an invalidation of the drive right now. Can be 2198 * called with CTLFLAG_MPSAFE since we take periph lock. 2199 */ 2200 int 2201 cam_periph_invalidate_sysctl(SYSCTL_HANDLER_ARGS) 2202 { 2203 struct cam_periph *periph; 2204 int error, value; 2205 2206 periph = arg1; 2207 value = 0; 2208 error = sysctl_handle_int(oidp, &value, 0, req); 2209 if (error != 0 || req->newptr == NULL || value != 1) 2210 return (error); 2211 2212 cam_periph_lock(periph); 2213 cam_periph_invalidate(periph); 2214 cam_periph_unlock(periph); 2215 2216 return (0); 2217 } 2218