1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/types.h> 38 #include <sys/malloc.h> 39 #include <sys/kernel.h> 40 #include <sys/bio.h> 41 #include <sys/conf.h> 42 #include <sys/devctl.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/buf.h> 46 #include <sys/proc.h> 47 #include <sys/devicestat.h> 48 #include <sys/sbuf.h> 49 #include <sys/sysctl.h> 50 #include <vm/vm.h> 51 #include <vm/vm_extern.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_queue.h> 56 #include <cam/cam_xpt_periph.h> 57 #include <cam/cam_periph.h> 58 #include <cam/cam_debug.h> 59 #include <cam/cam_sim.h> 60 61 #include <cam/scsi/scsi_all.h> 62 #include <cam/scsi/scsi_message.h> 63 #include <cam/scsi/scsi_pass.h> 64 65 static u_int camperiphnextunit(struct periph_driver *p_drv, 66 u_int newunit, int wired, 67 path_id_t pathid, target_id_t target, 68 lun_id_t lun); 69 static u_int camperiphunit(struct periph_driver *p_drv, 70 path_id_t pathid, target_id_t target, 71 lun_id_t lun); 72 static void camperiphdone(struct cam_periph *periph, 73 union ccb *done_ccb); 74 static void camperiphfree(struct cam_periph *periph); 75 static int camperiphscsistatuserror(union ccb *ccb, 76 union ccb **orig_ccb, 77 cam_flags camflags, 78 u_int32_t sense_flags, 79 int *openings, 80 u_int32_t *relsim_flags, 81 u_int32_t *timeout, 82 u_int32_t *action, 83 const char **action_string); 84 static int camperiphscsisenseerror(union ccb *ccb, 85 union ccb **orig_ccb, 86 cam_flags camflags, 87 u_int32_t sense_flags, 88 int *openings, 89 u_int32_t *relsim_flags, 90 u_int32_t *timeout, 91 u_int32_t *action, 92 const char **action_string); 93 static void cam_periph_devctl_notify(union ccb *ccb); 94 95 static int nperiph_drivers; 96 static int initialized = 0; 97 struct periph_driver **periph_drivers; 98 99 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 100 101 static int periph_selto_delay = 1000; 102 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 103 static int periph_noresrc_delay = 500; 104 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 105 static int periph_busy_delay = 500; 106 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 107 108 static u_int periph_mapmem_thresh = 65536; 109 SYSCTL_UINT(_kern_cam, OID_AUTO, mapmem_thresh, CTLFLAG_RWTUN, 110 &periph_mapmem_thresh, 0, "Threshold for user-space buffer mapping"); 111 112 void 113 periphdriver_register(void *data) 114 { 115 struct periph_driver *drv = (struct periph_driver *)data; 116 struct periph_driver **newdrivers, **old; 117 int ndrivers; 118 119 again: 120 ndrivers = nperiph_drivers + 2; 121 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 122 M_WAITOK); 123 xpt_lock_buses(); 124 if (ndrivers != nperiph_drivers + 2) { 125 /* 126 * Lost race against itself; go around. 127 */ 128 xpt_unlock_buses(); 129 free(newdrivers, M_CAMPERIPH); 130 goto again; 131 } 132 if (periph_drivers) 133 bcopy(periph_drivers, newdrivers, 134 sizeof(*newdrivers) * nperiph_drivers); 135 newdrivers[nperiph_drivers] = drv; 136 newdrivers[nperiph_drivers + 1] = NULL; 137 old = periph_drivers; 138 periph_drivers = newdrivers; 139 nperiph_drivers++; 140 xpt_unlock_buses(); 141 if (old) 142 free(old, M_CAMPERIPH); 143 /* If driver marked as early or it is late now, initialize it. */ 144 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 145 initialized > 1) 146 (*drv->init)(); 147 } 148 149 int 150 periphdriver_unregister(void *data) 151 { 152 struct periph_driver *drv = (struct periph_driver *)data; 153 int error, n; 154 155 /* If driver marked as early or it is late now, deinitialize it. */ 156 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 157 initialized > 1) { 158 if (drv->deinit == NULL) { 159 printf("CAM periph driver '%s' doesn't have deinit.\n", 160 drv->driver_name); 161 return (EOPNOTSUPP); 162 } 163 error = drv->deinit(); 164 if (error != 0) 165 return (error); 166 } 167 168 xpt_lock_buses(); 169 for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++) 170 ; 171 KASSERT(n < nperiph_drivers, 172 ("Periph driver '%s' was not registered", drv->driver_name)); 173 for (; n + 1 < nperiph_drivers; n++) 174 periph_drivers[n] = periph_drivers[n + 1]; 175 periph_drivers[n + 1] = NULL; 176 nperiph_drivers--; 177 xpt_unlock_buses(); 178 return (0); 179 } 180 181 void 182 periphdriver_init(int level) 183 { 184 int i, early; 185 186 initialized = max(initialized, level); 187 for (i = 0; periph_drivers[i] != NULL; i++) { 188 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 189 if (early == initialized) 190 (*periph_drivers[i]->init)(); 191 } 192 } 193 194 cam_status 195 cam_periph_alloc(periph_ctor_t *periph_ctor, 196 periph_oninv_t *periph_oninvalidate, 197 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 198 char *name, cam_periph_type type, struct cam_path *path, 199 ac_callback_t *ac_callback, ac_code code, void *arg) 200 { 201 struct periph_driver **p_drv; 202 struct cam_sim *sim; 203 struct cam_periph *periph; 204 struct cam_periph *cur_periph; 205 path_id_t path_id; 206 target_id_t target_id; 207 lun_id_t lun_id; 208 cam_status status; 209 u_int init_level; 210 211 init_level = 0; 212 /* 213 * Handle Hot-Plug scenarios. If there is already a peripheral 214 * of our type assigned to this path, we are likely waiting for 215 * final close on an old, invalidated, peripheral. If this is 216 * the case, queue up a deferred call to the peripheral's async 217 * handler. If it looks like a mistaken re-allocation, complain. 218 */ 219 if ((periph = cam_periph_find(path, name)) != NULL) { 220 if ((periph->flags & CAM_PERIPH_INVALID) != 0 221 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 222 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 223 periph->deferred_callback = ac_callback; 224 periph->deferred_ac = code; 225 return (CAM_REQ_INPROG); 226 } else { 227 printf("cam_periph_alloc: attempt to re-allocate " 228 "valid device %s%d rejected flags %#x " 229 "refcount %d\n", periph->periph_name, 230 periph->unit_number, periph->flags, 231 periph->refcount); 232 } 233 return (CAM_REQ_INVALID); 234 } 235 236 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 237 M_NOWAIT|M_ZERO); 238 239 if (periph == NULL) 240 return (CAM_RESRC_UNAVAIL); 241 242 init_level++; 243 244 sim = xpt_path_sim(path); 245 path_id = xpt_path_path_id(path); 246 target_id = xpt_path_target_id(path); 247 lun_id = xpt_path_lun_id(path); 248 periph->periph_start = periph_start; 249 periph->periph_dtor = periph_dtor; 250 periph->periph_oninval = periph_oninvalidate; 251 periph->type = type; 252 periph->periph_name = name; 253 periph->scheduled_priority = CAM_PRIORITY_NONE; 254 periph->immediate_priority = CAM_PRIORITY_NONE; 255 periph->refcount = 1; /* Dropped by invalidation. */ 256 periph->sim = sim; 257 SLIST_INIT(&periph->ccb_list); 258 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 259 if (status != CAM_REQ_CMP) 260 goto failure; 261 periph->path = path; 262 263 xpt_lock_buses(); 264 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 265 if (strcmp((*p_drv)->driver_name, name) == 0) 266 break; 267 } 268 if (*p_drv == NULL) { 269 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 270 xpt_unlock_buses(); 271 xpt_free_path(periph->path); 272 free(periph, M_CAMPERIPH); 273 return (CAM_REQ_INVALID); 274 } 275 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); 276 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 277 while (cur_periph != NULL 278 && cur_periph->unit_number < periph->unit_number) 279 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 280 if (cur_periph != NULL) { 281 KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list")); 282 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 283 } else { 284 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 285 (*p_drv)->generation++; 286 } 287 xpt_unlock_buses(); 288 289 init_level++; 290 291 status = xpt_add_periph(periph); 292 if (status != CAM_REQ_CMP) 293 goto failure; 294 295 init_level++; 296 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 297 298 status = periph_ctor(periph, arg); 299 300 if (status == CAM_REQ_CMP) 301 init_level++; 302 303 failure: 304 switch (init_level) { 305 case 4: 306 /* Initialized successfully */ 307 break; 308 case 3: 309 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 310 xpt_remove_periph(periph); 311 /* FALLTHROUGH */ 312 case 2: 313 xpt_lock_buses(); 314 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 315 xpt_unlock_buses(); 316 xpt_free_path(periph->path); 317 /* FALLTHROUGH */ 318 case 1: 319 free(periph, M_CAMPERIPH); 320 /* FALLTHROUGH */ 321 case 0: 322 /* No cleanup to perform. */ 323 break; 324 default: 325 panic("%s: Unknown init level", __func__); 326 } 327 return(status); 328 } 329 330 /* 331 * Find a peripheral structure with the specified path, target, lun, 332 * and (optionally) type. If the name is NULL, this function will return 333 * the first peripheral driver that matches the specified path. 334 */ 335 struct cam_periph * 336 cam_periph_find(struct cam_path *path, char *name) 337 { 338 struct periph_driver **p_drv; 339 struct cam_periph *periph; 340 341 xpt_lock_buses(); 342 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 343 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 344 continue; 345 346 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 347 if (xpt_path_comp(periph->path, path) == 0) { 348 xpt_unlock_buses(); 349 cam_periph_assert(periph, MA_OWNED); 350 return(periph); 351 } 352 } 353 if (name != NULL) { 354 xpt_unlock_buses(); 355 return(NULL); 356 } 357 } 358 xpt_unlock_buses(); 359 return(NULL); 360 } 361 362 /* 363 * Find peripheral driver instances attached to the specified path. 364 */ 365 int 366 cam_periph_list(struct cam_path *path, struct sbuf *sb) 367 { 368 struct sbuf local_sb; 369 struct periph_driver **p_drv; 370 struct cam_periph *periph; 371 int count; 372 int sbuf_alloc_len; 373 374 sbuf_alloc_len = 16; 375 retry: 376 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 377 count = 0; 378 xpt_lock_buses(); 379 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 380 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 381 if (xpt_path_comp(periph->path, path) != 0) 382 continue; 383 384 if (sbuf_len(&local_sb) != 0) 385 sbuf_cat(&local_sb, ","); 386 387 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 388 periph->unit_number); 389 390 if (sbuf_error(&local_sb) == ENOMEM) { 391 sbuf_alloc_len *= 2; 392 xpt_unlock_buses(); 393 sbuf_delete(&local_sb); 394 goto retry; 395 } 396 count++; 397 } 398 } 399 xpt_unlock_buses(); 400 sbuf_finish(&local_sb); 401 if (sbuf_len(sb) != 0) 402 sbuf_cat(sb, ","); 403 sbuf_cat(sb, sbuf_data(&local_sb)); 404 sbuf_delete(&local_sb); 405 return (count); 406 } 407 408 int 409 cam_periph_acquire(struct cam_periph *periph) 410 { 411 int status; 412 413 if (periph == NULL) 414 return (EINVAL); 415 416 status = ENOENT; 417 xpt_lock_buses(); 418 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 419 periph->refcount++; 420 status = 0; 421 } 422 xpt_unlock_buses(); 423 424 return (status); 425 } 426 427 void 428 cam_periph_doacquire(struct cam_periph *periph) 429 { 430 431 xpt_lock_buses(); 432 KASSERT(periph->refcount >= 1, 433 ("cam_periph_doacquire() with refcount == %d", periph->refcount)); 434 periph->refcount++; 435 xpt_unlock_buses(); 436 } 437 438 void 439 cam_periph_release_locked_buses(struct cam_periph *periph) 440 { 441 442 cam_periph_assert(periph, MA_OWNED); 443 KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); 444 if (--periph->refcount == 0) 445 camperiphfree(periph); 446 } 447 448 void 449 cam_periph_release_locked(struct cam_periph *periph) 450 { 451 452 if (periph == NULL) 453 return; 454 455 xpt_lock_buses(); 456 cam_periph_release_locked_buses(periph); 457 xpt_unlock_buses(); 458 } 459 460 void 461 cam_periph_release(struct cam_periph *periph) 462 { 463 struct mtx *mtx; 464 465 if (periph == NULL) 466 return; 467 468 cam_periph_assert(periph, MA_NOTOWNED); 469 mtx = cam_periph_mtx(periph); 470 mtx_lock(mtx); 471 cam_periph_release_locked(periph); 472 mtx_unlock(mtx); 473 } 474 475 /* 476 * hold/unhold act as mutual exclusion for sections of the code that 477 * need to sleep and want to make sure that other sections that 478 * will interfere are held off. This only protects exclusive sections 479 * from each other. 480 */ 481 int 482 cam_periph_hold(struct cam_periph *periph, int priority) 483 { 484 int error; 485 486 /* 487 * Increment the reference count on the peripheral 488 * while we wait for our lock attempt to succeed 489 * to ensure the peripheral doesn't disappear out 490 * from user us while we sleep. 491 */ 492 493 if (cam_periph_acquire(periph) != 0) 494 return (ENXIO); 495 496 cam_periph_assert(periph, MA_OWNED); 497 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 498 periph->flags |= CAM_PERIPH_LOCK_WANTED; 499 if ((error = cam_periph_sleep(periph, periph, priority, 500 "caplck", 0)) != 0) { 501 cam_periph_release_locked(periph); 502 return (error); 503 } 504 if (periph->flags & CAM_PERIPH_INVALID) { 505 cam_periph_release_locked(periph); 506 return (ENXIO); 507 } 508 } 509 510 periph->flags |= CAM_PERIPH_LOCKED; 511 return (0); 512 } 513 514 void 515 cam_periph_unhold(struct cam_periph *periph) 516 { 517 518 cam_periph_assert(periph, MA_OWNED); 519 520 periph->flags &= ~CAM_PERIPH_LOCKED; 521 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 522 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 523 wakeup(periph); 524 } 525 526 cam_periph_release_locked(periph); 527 } 528 529 /* 530 * Look for the next unit number that is not currently in use for this 531 * peripheral type starting at "newunit". Also exclude unit numbers that 532 * are reserved by for future "hardwiring" unless we already know that this 533 * is a potential wired device. Only assume that the device is "wired" the 534 * first time through the loop since after that we'll be looking at unit 535 * numbers that did not match a wiring entry. 536 */ 537 static u_int 538 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, 539 path_id_t pathid, target_id_t target, lun_id_t lun) 540 { 541 struct cam_periph *periph; 542 char *periph_name; 543 int i, val, dunit, r; 544 const char *dname, *strval; 545 546 periph_name = p_drv->driver_name; 547 for (;;newunit++) { 548 for (periph = TAILQ_FIRST(&p_drv->units); 549 periph != NULL && periph->unit_number != newunit; 550 periph = TAILQ_NEXT(periph, unit_links)) 551 ; 552 553 if (periph != NULL && periph->unit_number == newunit) { 554 if (wired != 0) { 555 xpt_print(periph->path, "Duplicate Wired " 556 "Device entry!\n"); 557 xpt_print(periph->path, "Second device (%s " 558 "device at scbus%d target %d lun %d) will " 559 "not be wired\n", periph_name, pathid, 560 target, lun); 561 wired = 0; 562 } 563 continue; 564 } 565 if (wired) 566 break; 567 568 /* 569 * Don't match entries like "da 4" as a wired down 570 * device, but do match entries like "da 4 target 5" 571 * or even "da 4 scbus 1". 572 */ 573 i = 0; 574 dname = periph_name; 575 for (;;) { 576 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 577 if (r != 0) 578 break; 579 /* if no "target" and no specific scbus, skip */ 580 if (resource_int_value(dname, dunit, "target", &val) && 581 (resource_string_value(dname, dunit, "at",&strval)|| 582 strcmp(strval, "scbus") == 0)) 583 continue; 584 if (newunit == dunit) 585 break; 586 } 587 if (r != 0) 588 break; 589 } 590 return (newunit); 591 } 592 593 static u_int 594 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 595 target_id_t target, lun_id_t lun) 596 { 597 u_int unit; 598 int wired, i, val, dunit; 599 const char *dname, *strval; 600 char pathbuf[32], *periph_name; 601 602 periph_name = p_drv->driver_name; 603 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 604 unit = 0; 605 i = 0; 606 dname = periph_name; 607 for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 608 wired = 0) { 609 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 610 if (strcmp(strval, pathbuf) != 0) 611 continue; 612 wired++; 613 } 614 if (resource_int_value(dname, dunit, "target", &val) == 0) { 615 if (val != target) 616 continue; 617 wired++; 618 } 619 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 620 if (val != lun) 621 continue; 622 wired++; 623 } 624 if (wired != 0) { 625 unit = dunit; 626 break; 627 } 628 } 629 630 /* 631 * Either start from 0 looking for the next unit or from 632 * the unit number given in the resource config. This way, 633 * if we have wildcard matches, we don't return the same 634 * unit number twice. 635 */ 636 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 637 638 return (unit); 639 } 640 641 void 642 cam_periph_invalidate(struct cam_periph *periph) 643 { 644 645 cam_periph_assert(periph, MA_OWNED); 646 /* 647 * We only tear down the device the first time a peripheral is 648 * invalidated. 649 */ 650 if ((periph->flags & CAM_PERIPH_INVALID) != 0) 651 return; 652 653 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 654 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) { 655 struct sbuf sb; 656 char buffer[160]; 657 658 sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN); 659 xpt_denounce_periph_sbuf(periph, &sb); 660 sbuf_finish(&sb); 661 sbuf_putbuf(&sb); 662 } 663 periph->flags |= CAM_PERIPH_INVALID; 664 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 665 if (periph->periph_oninval != NULL) 666 periph->periph_oninval(periph); 667 cam_periph_release_locked(periph); 668 } 669 670 static void 671 camperiphfree(struct cam_periph *periph) 672 { 673 struct periph_driver **p_drv; 674 struct periph_driver *drv; 675 676 cam_periph_assert(periph, MA_OWNED); 677 KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating", 678 periph->periph_name, periph->unit_number)); 679 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 680 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 681 break; 682 } 683 if (*p_drv == NULL) { 684 printf("camperiphfree: attempt to free non-existant periph\n"); 685 return; 686 } 687 /* 688 * Cache a pointer to the periph_driver structure. If a 689 * periph_driver is added or removed from the array (see 690 * periphdriver_register()) while we drop the toplogy lock 691 * below, p_drv may change. This doesn't protect against this 692 * particular periph_driver going away. That will require full 693 * reference counting in the periph_driver infrastructure. 694 */ 695 drv = *p_drv; 696 697 /* 698 * We need to set this flag before dropping the topology lock, to 699 * let anyone who is traversing the list that this peripheral is 700 * about to be freed, and there will be no more reference count 701 * checks. 702 */ 703 periph->flags |= CAM_PERIPH_FREE; 704 705 /* 706 * The peripheral destructor semantics dictate calling with only the 707 * SIM mutex held. Since it might sleep, it should not be called 708 * with the topology lock held. 709 */ 710 xpt_unlock_buses(); 711 712 /* 713 * We need to call the peripheral destructor prior to removing the 714 * peripheral from the list. Otherwise, we risk running into a 715 * scenario where the peripheral unit number may get reused 716 * (because it has been removed from the list), but some resources 717 * used by the peripheral are still hanging around. In particular, 718 * the devfs nodes used by some peripherals like the pass(4) driver 719 * aren't fully cleaned up until the destructor is run. If the 720 * unit number is reused before the devfs instance is fully gone, 721 * devfs will panic. 722 */ 723 if (periph->periph_dtor != NULL) 724 periph->periph_dtor(periph); 725 726 /* 727 * The peripheral list is protected by the topology lock. We have to 728 * remove the periph from the drv list before we call deferred_ac. The 729 * AC_FOUND_DEVICE callback won't create a new periph if it's still there. 730 */ 731 xpt_lock_buses(); 732 733 TAILQ_REMOVE(&drv->units, periph, unit_links); 734 drv->generation++; 735 736 xpt_remove_periph(periph); 737 738 xpt_unlock_buses(); 739 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) 740 xpt_print(periph->path, "Periph destroyed\n"); 741 else 742 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 743 744 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 745 union ccb ccb; 746 void *arg; 747 748 switch (periph->deferred_ac) { 749 case AC_FOUND_DEVICE: 750 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 751 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 752 xpt_action(&ccb); 753 arg = &ccb; 754 break; 755 case AC_PATH_REGISTERED: 756 xpt_path_inq(&ccb.cpi, periph->path); 757 arg = &ccb; 758 break; 759 default: 760 arg = NULL; 761 break; 762 } 763 periph->deferred_callback(NULL, periph->deferred_ac, 764 periph->path, arg); 765 } 766 xpt_free_path(periph->path); 767 free(periph, M_CAMPERIPH); 768 xpt_lock_buses(); 769 } 770 771 /* 772 * Map user virtual pointers into kernel virtual address space, so we can 773 * access the memory. This is now a generic function that centralizes most 774 * of the sanity checks on the data flags, if any. 775 * This also only works for up to MAXPHYS memory. Since we use 776 * buffers to map stuff in and out, we're limited to the buffer size. 777 */ 778 int 779 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo, 780 u_int maxmap) 781 { 782 int numbufs, i; 783 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 784 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 785 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 786 bool misaligned[CAM_PERIPH_MAXMAPS]; 787 788 bzero(mapinfo, sizeof(*mapinfo)); 789 if (maxmap == 0) 790 maxmap = DFLTPHYS; /* traditional default */ 791 else if (maxmap > MAXPHYS) 792 maxmap = MAXPHYS; /* for safety */ 793 switch(ccb->ccb_h.func_code) { 794 case XPT_DEV_MATCH: 795 if (ccb->cdm.match_buf_len == 0) { 796 printf("cam_periph_mapmem: invalid match buffer " 797 "length 0\n"); 798 return(EINVAL); 799 } 800 if (ccb->cdm.pattern_buf_len > 0) { 801 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 802 lengths[0] = ccb->cdm.pattern_buf_len; 803 dirs[0] = CAM_DIR_OUT; 804 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 805 lengths[1] = ccb->cdm.match_buf_len; 806 dirs[1] = CAM_DIR_IN; 807 numbufs = 2; 808 } else { 809 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 810 lengths[0] = ccb->cdm.match_buf_len; 811 dirs[0] = CAM_DIR_IN; 812 numbufs = 1; 813 } 814 /* 815 * This request will not go to the hardware, no reason 816 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 817 */ 818 maxmap = MAXPHYS; 819 break; 820 case XPT_SCSI_IO: 821 case XPT_CONT_TARGET_IO: 822 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 823 return(0); 824 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 825 return (EINVAL); 826 data_ptrs[0] = &ccb->csio.data_ptr; 827 lengths[0] = ccb->csio.dxfer_len; 828 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 829 numbufs = 1; 830 break; 831 case XPT_ATA_IO: 832 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 833 return(0); 834 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 835 return (EINVAL); 836 data_ptrs[0] = &ccb->ataio.data_ptr; 837 lengths[0] = ccb->ataio.dxfer_len; 838 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 839 numbufs = 1; 840 break; 841 case XPT_MMC_IO: 842 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 843 return(0); 844 /* Two mappings: one for cmd->data and one for cmd->data->data */ 845 data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data; 846 lengths[0] = sizeof(struct mmc_data *); 847 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 848 data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data; 849 lengths[1] = ccb->mmcio.cmd.data->len; 850 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 851 numbufs = 2; 852 break; 853 case XPT_SMP_IO: 854 data_ptrs[0] = &ccb->smpio.smp_request; 855 lengths[0] = ccb->smpio.smp_request_len; 856 dirs[0] = CAM_DIR_OUT; 857 data_ptrs[1] = &ccb->smpio.smp_response; 858 lengths[1] = ccb->smpio.smp_response_len; 859 dirs[1] = CAM_DIR_IN; 860 numbufs = 2; 861 break; 862 case XPT_NVME_IO: 863 case XPT_NVME_ADMIN: 864 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 865 return (0); 866 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 867 return (EINVAL); 868 data_ptrs[0] = &ccb->nvmeio.data_ptr; 869 lengths[0] = ccb->nvmeio.dxfer_len; 870 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 871 numbufs = 1; 872 break; 873 case XPT_DEV_ADVINFO: 874 if (ccb->cdai.bufsiz == 0) 875 return (0); 876 877 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 878 lengths[0] = ccb->cdai.bufsiz; 879 dirs[0] = CAM_DIR_IN; 880 numbufs = 1; 881 882 /* 883 * This request will not go to the hardware, no reason 884 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 885 */ 886 maxmap = MAXPHYS; 887 break; 888 default: 889 return(EINVAL); 890 break; /* NOTREACHED */ 891 } 892 893 /* 894 * Check the transfer length and permissions first, so we don't 895 * have to unmap any previously mapped buffers. 896 */ 897 for (i = 0; i < numbufs; i++) { 898 if (lengths[i] > maxmap) { 899 printf("cam_periph_mapmem: attempt to map %lu bytes, " 900 "which is greater than %lu\n", 901 (long)(lengths[i]), (u_long)maxmap); 902 return (E2BIG); 903 } 904 905 /* 906 * The userland data pointer passed in may not be page 907 * aligned. vmapbuf() truncates the address to a page 908 * boundary, so if the address isn't page aligned, we'll 909 * need enough space for the given transfer length, plus 910 * whatever extra space is necessary to make it to the page 911 * boundary. 912 */ 913 misaligned[i] = (lengths[i] + 914 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK) > MAXPHYS); 915 } 916 917 /* 918 * This keeps the kernel stack of current thread from getting 919 * swapped. In low-memory situations where the kernel stack might 920 * otherwise get swapped out, this holds it and allows the thread 921 * to make progress and release the kernel mapped pages sooner. 922 * 923 * XXX KDM should I use P_NOSWAP instead? 924 */ 925 PHOLD(curproc); 926 927 for (i = 0; i < numbufs; i++) { 928 /* Save the user's data address. */ 929 mapinfo->orig[i] = *data_ptrs[i]; 930 931 /* 932 * For small buffers use malloc+copyin/copyout instead of 933 * mapping to KVA to avoid expensive TLB shootdowns. For 934 * small allocations malloc is backed by UMA, and so much 935 * cheaper on SMP systems. 936 */ 937 if ((lengths[i] <= periph_mapmem_thresh || misaligned[i]) && 938 ccb->ccb_h.func_code != XPT_MMC_IO) { 939 *data_ptrs[i] = malloc(lengths[i], M_CAMPERIPH, 940 M_WAITOK); 941 if (dirs[i] != CAM_DIR_IN) { 942 if (copyin(mapinfo->orig[i], *data_ptrs[i], 943 lengths[i]) != 0) { 944 free(*data_ptrs[i], M_CAMPERIPH); 945 *data_ptrs[i] = mapinfo->orig[i]; 946 goto fail; 947 } 948 } else 949 bzero(*data_ptrs[i], lengths[i]); 950 continue; 951 } 952 953 /* 954 * Get the buffer. 955 */ 956 mapinfo->bp[i] = uma_zalloc(pbuf_zone, M_WAITOK); 957 958 /* put our pointer in the data slot */ 959 mapinfo->bp[i]->b_data = *data_ptrs[i]; 960 961 /* set the transfer length, we know it's < MAXPHYS */ 962 mapinfo->bp[i]->b_bufsize = lengths[i]; 963 964 /* set the direction */ 965 mapinfo->bp[i]->b_iocmd = (dirs[i] == CAM_DIR_OUT) ? 966 BIO_WRITE : BIO_READ; 967 968 /* Map the buffer into kernel memory. */ 969 if (vmapbuf(mapinfo->bp[i], 1) < 0) { 970 uma_zfree(pbuf_zone, mapinfo->bp[i]); 971 goto fail; 972 } 973 974 /* set our pointer to the new mapped area */ 975 *data_ptrs[i] = mapinfo->bp[i]->b_data; 976 } 977 978 /* 979 * Now that we've gotten this far, change ownership to the kernel 980 * of the buffers so that we don't run afoul of returning to user 981 * space with locks (on the buffer) held. 982 */ 983 for (i = 0; i < numbufs; i++) { 984 if (mapinfo->bp[i]) 985 BUF_KERNPROC(mapinfo->bp[i]); 986 } 987 988 mapinfo->num_bufs_used = numbufs; 989 return(0); 990 991 fail: 992 for (i--; i >= 0; i--) { 993 if (mapinfo->bp[i]) { 994 vunmapbuf(mapinfo->bp[i]); 995 uma_zfree(pbuf_zone, mapinfo->bp[i]); 996 } else 997 free(*data_ptrs[i], M_CAMPERIPH); 998 *data_ptrs[i] = mapinfo->orig[i]; 999 } 1000 PRELE(curproc); 1001 return(EACCES); 1002 } 1003 1004 /* 1005 * Unmap memory segments mapped into kernel virtual address space by 1006 * cam_periph_mapmem(). 1007 */ 1008 void 1009 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 1010 { 1011 int numbufs, i; 1012 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1013 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 1014 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 1015 1016 if (mapinfo->num_bufs_used <= 0) { 1017 /* nothing to free and the process wasn't held. */ 1018 return; 1019 } 1020 1021 switch (ccb->ccb_h.func_code) { 1022 case XPT_DEV_MATCH: 1023 if (ccb->cdm.pattern_buf_len > 0) { 1024 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1025 lengths[0] = ccb->cdm.pattern_buf_len; 1026 dirs[0] = CAM_DIR_OUT; 1027 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1028 lengths[1] = ccb->cdm.match_buf_len; 1029 dirs[1] = CAM_DIR_IN; 1030 numbufs = 2; 1031 } else { 1032 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1033 lengths[0] = ccb->cdm.match_buf_len; 1034 dirs[0] = CAM_DIR_IN; 1035 numbufs = 1; 1036 } 1037 break; 1038 case XPT_SCSI_IO: 1039 case XPT_CONT_TARGET_IO: 1040 data_ptrs[0] = &ccb->csio.data_ptr; 1041 lengths[0] = ccb->csio.dxfer_len; 1042 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1043 numbufs = 1; 1044 break; 1045 case XPT_ATA_IO: 1046 data_ptrs[0] = &ccb->ataio.data_ptr; 1047 lengths[0] = ccb->ataio.dxfer_len; 1048 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1049 numbufs = 1; 1050 break; 1051 case XPT_MMC_IO: 1052 data_ptrs[0] = (u_int8_t **)&ccb->mmcio.cmd.data; 1053 lengths[0] = sizeof(struct mmc_data *); 1054 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1055 data_ptrs[1] = (u_int8_t **)&ccb->mmcio.cmd.data->data; 1056 lengths[1] = ccb->mmcio.cmd.data->len; 1057 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 1058 numbufs = 2; 1059 break; 1060 case XPT_SMP_IO: 1061 data_ptrs[0] = &ccb->smpio.smp_request; 1062 lengths[0] = ccb->smpio.smp_request_len; 1063 dirs[0] = CAM_DIR_OUT; 1064 data_ptrs[1] = &ccb->smpio.smp_response; 1065 lengths[1] = ccb->smpio.smp_response_len; 1066 dirs[1] = CAM_DIR_IN; 1067 numbufs = 2; 1068 break; 1069 case XPT_NVME_IO: 1070 case XPT_NVME_ADMIN: 1071 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1072 lengths[0] = ccb->nvmeio.dxfer_len; 1073 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1074 numbufs = 1; 1075 break; 1076 case XPT_DEV_ADVINFO: 1077 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1078 lengths[0] = ccb->cdai.bufsiz; 1079 dirs[0] = CAM_DIR_IN; 1080 numbufs = 1; 1081 break; 1082 default: 1083 /* allow ourselves to be swapped once again */ 1084 PRELE(curproc); 1085 return; 1086 break; /* NOTREACHED */ 1087 } 1088 1089 for (i = 0; i < numbufs; i++) { 1090 if (mapinfo->bp[i]) { 1091 /* unmap the buffer */ 1092 vunmapbuf(mapinfo->bp[i]); 1093 1094 /* release the buffer */ 1095 uma_zfree(pbuf_zone, mapinfo->bp[i]); 1096 } else { 1097 if (dirs[i] != CAM_DIR_OUT) { 1098 copyout(*data_ptrs[i], mapinfo->orig[i], 1099 lengths[i]); 1100 } 1101 free(*data_ptrs[i], M_CAMPERIPH); 1102 } 1103 1104 /* Set the user's pointer back to the original value */ 1105 *data_ptrs[i] = mapinfo->orig[i]; 1106 } 1107 1108 /* allow ourselves to be swapped once again */ 1109 PRELE(curproc); 1110 } 1111 1112 int 1113 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 1114 int (*error_routine)(union ccb *ccb, 1115 cam_flags camflags, 1116 u_int32_t sense_flags)) 1117 { 1118 union ccb *ccb; 1119 int error; 1120 int found; 1121 1122 error = found = 0; 1123 1124 switch(cmd){ 1125 case CAMGETPASSTHRU: 1126 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 1127 xpt_setup_ccb(&ccb->ccb_h, 1128 ccb->ccb_h.path, 1129 CAM_PRIORITY_NORMAL); 1130 ccb->ccb_h.func_code = XPT_GDEVLIST; 1131 1132 /* 1133 * Basically, the point of this is that we go through 1134 * getting the list of devices, until we find a passthrough 1135 * device. In the current version of the CAM code, the 1136 * only way to determine what type of device we're dealing 1137 * with is by its name. 1138 */ 1139 while (found == 0) { 1140 ccb->cgdl.index = 0; 1141 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1142 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1143 /* we want the next device in the list */ 1144 xpt_action(ccb); 1145 if (strncmp(ccb->cgdl.periph_name, 1146 "pass", 4) == 0){ 1147 found = 1; 1148 break; 1149 } 1150 } 1151 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1152 (found == 0)) { 1153 ccb->cgdl.periph_name[0] = '\0'; 1154 ccb->cgdl.unit_number = 0; 1155 break; 1156 } 1157 } 1158 1159 /* copy the result back out */ 1160 bcopy(ccb, addr, sizeof(union ccb)); 1161 1162 /* and release the ccb */ 1163 xpt_release_ccb(ccb); 1164 1165 break; 1166 default: 1167 error = ENOTTY; 1168 break; 1169 } 1170 return(error); 1171 } 1172 1173 static void 1174 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb) 1175 { 1176 1177 panic("%s: already done with ccb %p", __func__, done_ccb); 1178 } 1179 1180 static void 1181 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb) 1182 { 1183 1184 /* Caller will release the CCB */ 1185 xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED); 1186 done_ccb->ccb_h.cbfcnp = cam_periph_done_panic; 1187 wakeup(&done_ccb->ccb_h.cbfcnp); 1188 } 1189 1190 static void 1191 cam_periph_ccbwait(union ccb *ccb) 1192 { 1193 1194 if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 1195 while (ccb->ccb_h.cbfcnp != cam_periph_done_panic) 1196 xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, 1197 PRIBIO, "cbwait", 0); 1198 } 1199 KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && 1200 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG, 1201 ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, " 1202 "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code, 1203 ccb->ccb_h.status, ccb->ccb_h.pinfo.index)); 1204 } 1205 1206 /* 1207 * Dispatch a CCB and wait for it to complete. If the CCB has set a 1208 * callback function (ccb->ccb_h.cbfcnp), it will be overwritten and lost. 1209 */ 1210 int 1211 cam_periph_runccb(union ccb *ccb, 1212 int (*error_routine)(union ccb *ccb, 1213 cam_flags camflags, 1214 u_int32_t sense_flags), 1215 cam_flags camflags, u_int32_t sense_flags, 1216 struct devstat *ds) 1217 { 1218 struct bintime *starttime; 1219 struct bintime ltime; 1220 int error; 1221 bool must_poll; 1222 uint32_t timeout = 1; 1223 1224 starttime = NULL; 1225 xpt_path_assert(ccb->ccb_h.path, MA_OWNED); 1226 KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0, 1227 ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb, 1228 ccb->ccb_h.func_code, ccb->ccb_h.flags)); 1229 1230 /* 1231 * If the user has supplied a stats structure, and if we understand 1232 * this particular type of ccb, record the transaction start. 1233 */ 1234 if (ds != NULL && 1235 (ccb->ccb_h.func_code == XPT_SCSI_IO || 1236 ccb->ccb_h.func_code == XPT_ATA_IO || 1237 ccb->ccb_h.func_code == XPT_NVME_IO)) { 1238 starttime = <ime; 1239 binuptime(starttime); 1240 devstat_start_transaction(ds, starttime); 1241 } 1242 1243 /* 1244 * We must poll the I/O while we're dumping. The scheduler is normally 1245 * stopped for dumping, except when we call doadump from ddb. While the 1246 * scheduler is running in this case, we still need to poll the I/O to 1247 * avoid sleeping waiting for the ccb to complete. 1248 * 1249 * A panic triggered dump stops the scheduler, any callback from the 1250 * shutdown_post_sync event will run with the scheduler stopped, but 1251 * before we're officially dumping. To avoid hanging in adashutdown 1252 * initiated commands (or other similar situations), we have to test for 1253 * either SCHEDULER_STOPPED() here as well. 1254 * 1255 * To avoid locking problems, dumping/polling callers must call 1256 * without a periph lock held. 1257 */ 1258 must_poll = dumping || SCHEDULER_STOPPED(); 1259 ccb->ccb_h.cbfcnp = cam_periph_done; 1260 1261 /* 1262 * If we're polling, then we need to ensure that we have ample resources 1263 * in the periph. cam_periph_error can reschedule the ccb by calling 1264 * xpt_action and returning ERESTART, so we have to effect the polling 1265 * in the do loop below. 1266 */ 1267 if (must_poll) { 1268 timeout = xpt_poll_setup(ccb); 1269 } 1270 1271 if (timeout == 0) { 1272 ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 1273 error = EBUSY; 1274 } else { 1275 xpt_action(ccb); 1276 do { 1277 if (must_poll) { 1278 xpt_pollwait(ccb, timeout); 1279 timeout = ccb->ccb_h.timeout * 10; 1280 } else { 1281 cam_periph_ccbwait(ccb); 1282 } 1283 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1284 error = 0; 1285 else if (error_routine != NULL) { 1286 ccb->ccb_h.cbfcnp = cam_periph_done; 1287 error = (*error_routine)(ccb, camflags, sense_flags); 1288 } else 1289 error = 0; 1290 } while (error == ERESTART); 1291 } 1292 1293 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1294 cam_release_devq(ccb->ccb_h.path, 1295 /* relsim_flags */0, 1296 /* openings */0, 1297 /* timeout */0, 1298 /* getcount_only */ FALSE); 1299 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1300 } 1301 1302 if (ds != NULL) { 1303 uint32_t bytes; 1304 devstat_tag_type tag; 1305 bool valid = true; 1306 1307 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1308 bytes = ccb->csio.dxfer_len - ccb->csio.resid; 1309 tag = (devstat_tag_type)(ccb->csio.tag_action & 0x3); 1310 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1311 bytes = ccb->ataio.dxfer_len - ccb->ataio.resid; 1312 tag = (devstat_tag_type)0; 1313 } else if (ccb->ccb_h.func_code == XPT_NVME_IO) { 1314 bytes = ccb->nvmeio.dxfer_len; /* NB: resid no possible */ 1315 tag = (devstat_tag_type)0; 1316 } else { 1317 valid = false; 1318 } 1319 if (valid) 1320 devstat_end_transaction(ds, bytes, tag, 1321 ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? 1322 DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1323 DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime); 1324 } 1325 1326 return(error); 1327 } 1328 1329 void 1330 cam_freeze_devq(struct cam_path *path) 1331 { 1332 struct ccb_hdr ccb_h; 1333 1334 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n")); 1335 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 1336 ccb_h.func_code = XPT_NOOP; 1337 ccb_h.flags = CAM_DEV_QFREEZE; 1338 xpt_action((union ccb *)&ccb_h); 1339 } 1340 1341 u_int32_t 1342 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 1343 u_int32_t openings, u_int32_t arg, 1344 int getcount_only) 1345 { 1346 struct ccb_relsim crs; 1347 1348 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n", 1349 relsim_flags, openings, arg, getcount_only)); 1350 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1351 crs.ccb_h.func_code = XPT_REL_SIMQ; 1352 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1353 crs.release_flags = relsim_flags; 1354 crs.openings = openings; 1355 crs.release_timeout = arg; 1356 xpt_action((union ccb *)&crs); 1357 return (crs.qfrozen_cnt); 1358 } 1359 1360 #define saved_ccb_ptr ppriv_ptr0 1361 static void 1362 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1363 { 1364 union ccb *saved_ccb; 1365 cam_status status; 1366 struct scsi_start_stop_unit *scsi_cmd; 1367 int error = 0, error_code, sense_key, asc, ascq; 1368 1369 scsi_cmd = (struct scsi_start_stop_unit *) 1370 &done_ccb->csio.cdb_io.cdb_bytes; 1371 status = done_ccb->ccb_h.status; 1372 1373 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1374 if (scsi_extract_sense_ccb(done_ccb, 1375 &error_code, &sense_key, &asc, &ascq)) { 1376 /* 1377 * If the error is "invalid field in CDB", 1378 * and the load/eject flag is set, turn the 1379 * flag off and try again. This is just in 1380 * case the drive in question barfs on the 1381 * load eject flag. The CAM code should set 1382 * the load/eject flag by default for 1383 * removable media. 1384 */ 1385 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1386 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1387 (asc == 0x24) && (ascq == 0x00)) { 1388 scsi_cmd->how &= ~SSS_LOEJ; 1389 if (status & CAM_DEV_QFRZN) { 1390 cam_release_devq(done_ccb->ccb_h.path, 1391 0, 0, 0, 0); 1392 done_ccb->ccb_h.status &= 1393 ~CAM_DEV_QFRZN; 1394 } 1395 xpt_action(done_ccb); 1396 goto out; 1397 } 1398 } 1399 error = cam_periph_error(done_ccb, 0, 1400 SF_RETRY_UA | SF_NO_PRINT); 1401 if (error == ERESTART) 1402 goto out; 1403 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1404 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1405 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1406 } 1407 } else { 1408 /* 1409 * If we have successfully taken a device from the not 1410 * ready to ready state, re-scan the device and re-get 1411 * the inquiry information. Many devices (mostly disks) 1412 * don't properly report their inquiry information unless 1413 * they are spun up. 1414 */ 1415 if (scsi_cmd->opcode == START_STOP_UNIT) 1416 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1417 } 1418 1419 /* If we tried long wait and still failed, remember that. */ 1420 if ((periph->flags & CAM_PERIPH_RECOVERY_WAIT) && 1421 (done_ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY)) { 1422 periph->flags &= ~CAM_PERIPH_RECOVERY_WAIT; 1423 if (error != 0 && done_ccb->ccb_h.retry_count == 0) 1424 periph->flags |= CAM_PERIPH_RECOVERY_WAIT_FAILED; 1425 } 1426 1427 /* 1428 * After recovery action(s) completed, return to the original CCB. 1429 * If the recovery CCB has failed, considering its own possible 1430 * retries and recovery, assume we are back in state where we have 1431 * been originally, but without recovery hopes left. In such case, 1432 * after the final attempt below, we cancel any further retries, 1433 * blocking by that also any new recovery attempts for this CCB, 1434 * and the result will be the final one returned to the CCB owher. 1435 */ 1436 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1437 bcopy(saved_ccb, done_ccb, sizeof(*done_ccb)); 1438 xpt_free_ccb(saved_ccb); 1439 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1440 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1441 if (error != 0) 1442 done_ccb->ccb_h.retry_count = 0; 1443 xpt_action(done_ccb); 1444 1445 out: 1446 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1447 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1448 } 1449 1450 /* 1451 * Generic Async Event handler. Peripheral drivers usually 1452 * filter out the events that require personal attention, 1453 * and leave the rest to this function. 1454 */ 1455 void 1456 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1457 struct cam_path *path, void *arg) 1458 { 1459 switch (code) { 1460 case AC_LOST_DEVICE: 1461 cam_periph_invalidate(periph); 1462 break; 1463 default: 1464 break; 1465 } 1466 } 1467 1468 void 1469 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1470 { 1471 struct ccb_getdevstats cgds; 1472 1473 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1474 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1475 xpt_action((union ccb *)&cgds); 1476 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1477 } 1478 1479 void 1480 cam_periph_freeze_after_event(struct cam_periph *periph, 1481 struct timeval* event_time, u_int duration_ms) 1482 { 1483 struct timeval delta; 1484 struct timeval duration_tv; 1485 1486 if (!timevalisset(event_time)) 1487 return; 1488 1489 microtime(&delta); 1490 timevalsub(&delta, event_time); 1491 duration_tv.tv_sec = duration_ms / 1000; 1492 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1493 if (timevalcmp(&delta, &duration_tv, <)) { 1494 timevalsub(&duration_tv, &delta); 1495 1496 duration_ms = duration_tv.tv_sec * 1000; 1497 duration_ms += duration_tv.tv_usec / 1000; 1498 cam_freeze_devq(periph->path); 1499 cam_release_devq(periph->path, 1500 RELSIM_RELEASE_AFTER_TIMEOUT, 1501 /*reduction*/0, 1502 /*timeout*/duration_ms, 1503 /*getcount_only*/0); 1504 } 1505 1506 } 1507 1508 static int 1509 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1510 cam_flags camflags, u_int32_t sense_flags, 1511 int *openings, u_int32_t *relsim_flags, 1512 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1513 { 1514 struct cam_periph *periph; 1515 int error; 1516 1517 switch (ccb->csio.scsi_status) { 1518 case SCSI_STATUS_OK: 1519 case SCSI_STATUS_COND_MET: 1520 case SCSI_STATUS_INTERMED: 1521 case SCSI_STATUS_INTERMED_COND_MET: 1522 error = 0; 1523 break; 1524 case SCSI_STATUS_CMD_TERMINATED: 1525 case SCSI_STATUS_CHECK_COND: 1526 error = camperiphscsisenseerror(ccb, orig_ccb, 1527 camflags, 1528 sense_flags, 1529 openings, 1530 relsim_flags, 1531 timeout, 1532 action, 1533 action_string); 1534 break; 1535 case SCSI_STATUS_QUEUE_FULL: 1536 { 1537 /* no decrement */ 1538 struct ccb_getdevstats cgds; 1539 1540 /* 1541 * First off, find out what the current 1542 * transaction counts are. 1543 */ 1544 xpt_setup_ccb(&cgds.ccb_h, 1545 ccb->ccb_h.path, 1546 CAM_PRIORITY_NORMAL); 1547 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1548 xpt_action((union ccb *)&cgds); 1549 1550 /* 1551 * If we were the only transaction active, treat 1552 * the QUEUE FULL as if it were a BUSY condition. 1553 */ 1554 if (cgds.dev_active != 0) { 1555 int total_openings; 1556 1557 /* 1558 * Reduce the number of openings to 1559 * be 1 less than the amount it took 1560 * to get a queue full bounded by the 1561 * minimum allowed tag count for this 1562 * device. 1563 */ 1564 total_openings = cgds.dev_active + cgds.dev_openings; 1565 *openings = cgds.dev_active; 1566 if (*openings < cgds.mintags) 1567 *openings = cgds.mintags; 1568 if (*openings < total_openings) 1569 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1570 else { 1571 /* 1572 * Some devices report queue full for 1573 * temporary resource shortages. For 1574 * this reason, we allow a minimum 1575 * tag count to be entered via a 1576 * quirk entry to prevent the queue 1577 * count on these devices from falling 1578 * to a pessimisticly low value. We 1579 * still wait for the next successful 1580 * completion, however, before queueing 1581 * more transactions to the device. 1582 */ 1583 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1584 } 1585 *timeout = 0; 1586 error = ERESTART; 1587 *action &= ~SSQ_PRINT_SENSE; 1588 break; 1589 } 1590 /* FALLTHROUGH */ 1591 } 1592 case SCSI_STATUS_BUSY: 1593 /* 1594 * Restart the queue after either another 1595 * command completes or a 1 second timeout. 1596 */ 1597 periph = xpt_path_periph(ccb->ccb_h.path); 1598 if (periph->flags & CAM_PERIPH_INVALID) { 1599 error = EIO; 1600 *action_string = "Periph was invalidated"; 1601 } else if ((sense_flags & SF_RETRY_BUSY) != 0 || 1602 ccb->ccb_h.retry_count > 0) { 1603 if ((sense_flags & SF_RETRY_BUSY) == 0) 1604 ccb->ccb_h.retry_count--; 1605 error = ERESTART; 1606 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1607 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1608 *timeout = 1000; 1609 } else { 1610 error = EIO; 1611 *action_string = "Retries exhausted"; 1612 } 1613 break; 1614 case SCSI_STATUS_RESERV_CONFLICT: 1615 default: 1616 error = EIO; 1617 break; 1618 } 1619 return (error); 1620 } 1621 1622 static int 1623 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1624 cam_flags camflags, u_int32_t sense_flags, 1625 int *openings, u_int32_t *relsim_flags, 1626 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1627 { 1628 struct cam_periph *periph; 1629 union ccb *orig_ccb = ccb; 1630 int error, recoveryccb; 1631 1632 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1633 if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL) 1634 biotrack(ccb->csio.bio, __func__); 1635 #endif 1636 1637 periph = xpt_path_periph(ccb->ccb_h.path); 1638 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1639 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1640 /* 1641 * If error recovery is already in progress, don't attempt 1642 * to process this error, but requeue it unconditionally 1643 * and attempt to process it once error recovery has 1644 * completed. This failed command is probably related to 1645 * the error that caused the currently active error recovery 1646 * action so our current recovery efforts should also 1647 * address this command. Be aware that the error recovery 1648 * code assumes that only one recovery action is in progress 1649 * on a particular peripheral instance at any given time 1650 * (e.g. only one saved CCB for error recovery) so it is 1651 * imperitive that we don't violate this assumption. 1652 */ 1653 error = ERESTART; 1654 *action &= ~SSQ_PRINT_SENSE; 1655 } else { 1656 scsi_sense_action err_action; 1657 struct ccb_getdev cgd; 1658 1659 /* 1660 * Grab the inquiry data for this device. 1661 */ 1662 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1663 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1664 xpt_action((union ccb *)&cgd); 1665 1666 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1667 sense_flags); 1668 error = err_action & SS_ERRMASK; 1669 1670 /* 1671 * Do not autostart sequential access devices 1672 * to avoid unexpected tape loading. 1673 */ 1674 if ((err_action & SS_MASK) == SS_START && 1675 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1676 *action_string = "Will not autostart a " 1677 "sequential access device"; 1678 goto sense_error_done; 1679 } 1680 1681 /* 1682 * Avoid recovery recursion if recovery action is the same. 1683 */ 1684 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1685 if (((err_action & SS_MASK) == SS_START && 1686 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1687 ((err_action & SS_MASK) == SS_TUR && 1688 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1689 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1690 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1691 *timeout = 500; 1692 } 1693 } 1694 1695 /* 1696 * If the recovery action will consume a retry, 1697 * make sure we actually have retries available. 1698 */ 1699 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1700 if (ccb->ccb_h.retry_count > 0 && 1701 (periph->flags & CAM_PERIPH_INVALID) == 0) 1702 ccb->ccb_h.retry_count--; 1703 else { 1704 *action_string = "Retries exhausted"; 1705 goto sense_error_done; 1706 } 1707 } 1708 1709 if ((err_action & SS_MASK) >= SS_START) { 1710 /* 1711 * Do common portions of commands that 1712 * use recovery CCBs. 1713 */ 1714 orig_ccb = xpt_alloc_ccb_nowait(); 1715 if (orig_ccb == NULL) { 1716 *action_string = "Can't allocate recovery CCB"; 1717 goto sense_error_done; 1718 } 1719 /* 1720 * Clear freeze flag for original request here, as 1721 * this freeze will be dropped as part of ERESTART. 1722 */ 1723 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1724 bcopy(ccb, orig_ccb, sizeof(*orig_ccb)); 1725 } 1726 1727 switch (err_action & SS_MASK) { 1728 case SS_NOP: 1729 *action_string = "No recovery action needed"; 1730 error = 0; 1731 break; 1732 case SS_RETRY: 1733 *action_string = "Retrying command (per sense data)"; 1734 error = ERESTART; 1735 break; 1736 case SS_FAIL: 1737 *action_string = "Unretryable error"; 1738 break; 1739 case SS_START: 1740 { 1741 int le; 1742 1743 /* 1744 * Send a start unit command to the device, and 1745 * then retry the command. 1746 */ 1747 *action_string = "Attempting to start unit"; 1748 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1749 1750 /* 1751 * Check for removable media and set 1752 * load/eject flag appropriately. 1753 */ 1754 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1755 le = TRUE; 1756 else 1757 le = FALSE; 1758 1759 scsi_start_stop(&ccb->csio, 1760 /*retries*/1, 1761 camperiphdone, 1762 MSG_SIMPLE_Q_TAG, 1763 /*start*/TRUE, 1764 /*load/eject*/le, 1765 /*immediate*/FALSE, 1766 SSD_FULL_SIZE, 1767 /*timeout*/50000); 1768 break; 1769 } 1770 case SS_TUR: 1771 { 1772 /* 1773 * Send a Test Unit Ready to the device. 1774 * If the 'many' flag is set, we send 120 1775 * test unit ready commands, one every half 1776 * second. Otherwise, we just send one TUR. 1777 * We only want to do this if the retry 1778 * count has not been exhausted. 1779 */ 1780 int retries; 1781 1782 if ((err_action & SSQ_MANY) != 0 && (periph->flags & 1783 CAM_PERIPH_RECOVERY_WAIT_FAILED) == 0) { 1784 periph->flags |= CAM_PERIPH_RECOVERY_WAIT; 1785 *action_string = "Polling device for readiness"; 1786 retries = 120; 1787 } else { 1788 *action_string = "Testing device for readiness"; 1789 retries = 1; 1790 } 1791 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1792 scsi_test_unit_ready(&ccb->csio, 1793 retries, 1794 camperiphdone, 1795 MSG_SIMPLE_Q_TAG, 1796 SSD_FULL_SIZE, 1797 /*timeout*/5000); 1798 1799 /* 1800 * Accomplish our 500ms delay by deferring 1801 * the release of our device queue appropriately. 1802 */ 1803 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1804 *timeout = 500; 1805 break; 1806 } 1807 default: 1808 panic("Unhandled error action %x", err_action); 1809 } 1810 1811 if ((err_action & SS_MASK) >= SS_START) { 1812 /* 1813 * Drop the priority, so that the recovery 1814 * CCB is the first to execute. Freeze the queue 1815 * after this command is sent so that we can 1816 * restore the old csio and have it queued in 1817 * the proper order before we release normal 1818 * transactions to the device. 1819 */ 1820 ccb->ccb_h.pinfo.priority--; 1821 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1822 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1823 error = ERESTART; 1824 *orig = orig_ccb; 1825 } 1826 1827 sense_error_done: 1828 *action = err_action; 1829 } 1830 return (error); 1831 } 1832 1833 /* 1834 * Generic error handler. Peripheral drivers usually filter 1835 * out the errors that they handle in a unique manner, then 1836 * call this function. 1837 */ 1838 int 1839 cam_periph_error(union ccb *ccb, cam_flags camflags, 1840 u_int32_t sense_flags) 1841 { 1842 struct cam_path *newpath; 1843 union ccb *orig_ccb, *scan_ccb; 1844 struct cam_periph *periph; 1845 const char *action_string; 1846 cam_status status; 1847 int frozen, error, openings, devctl_err; 1848 u_int32_t action, relsim_flags, timeout; 1849 1850 action = SSQ_PRINT_SENSE; 1851 periph = xpt_path_periph(ccb->ccb_h.path); 1852 action_string = NULL; 1853 status = ccb->ccb_h.status; 1854 frozen = (status & CAM_DEV_QFRZN) != 0; 1855 status &= CAM_STATUS_MASK; 1856 devctl_err = openings = relsim_flags = timeout = 0; 1857 orig_ccb = ccb; 1858 1859 /* Filter the errors that should be reported via devctl */ 1860 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 1861 case CAM_CMD_TIMEOUT: 1862 case CAM_REQ_ABORTED: 1863 case CAM_REQ_CMP_ERR: 1864 case CAM_REQ_TERMIO: 1865 case CAM_UNREC_HBA_ERROR: 1866 case CAM_DATA_RUN_ERR: 1867 case CAM_SCSI_STATUS_ERROR: 1868 case CAM_ATA_STATUS_ERROR: 1869 case CAM_SMP_STATUS_ERROR: 1870 devctl_err++; 1871 break; 1872 default: 1873 break; 1874 } 1875 1876 switch (status) { 1877 case CAM_REQ_CMP: 1878 error = 0; 1879 action &= ~SSQ_PRINT_SENSE; 1880 break; 1881 case CAM_SCSI_STATUS_ERROR: 1882 error = camperiphscsistatuserror(ccb, &orig_ccb, 1883 camflags, sense_flags, &openings, &relsim_flags, 1884 &timeout, &action, &action_string); 1885 break; 1886 case CAM_AUTOSENSE_FAIL: 1887 error = EIO; /* we have to kill the command */ 1888 break; 1889 case CAM_UA_ABORT: 1890 case CAM_UA_TERMIO: 1891 case CAM_MSG_REJECT_REC: 1892 /* XXX Don't know that these are correct */ 1893 error = EIO; 1894 break; 1895 case CAM_SEL_TIMEOUT: 1896 if ((camflags & CAM_RETRY_SELTO) != 0) { 1897 if (ccb->ccb_h.retry_count > 0 && 1898 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1899 ccb->ccb_h.retry_count--; 1900 error = ERESTART; 1901 1902 /* 1903 * Wait a bit to give the device 1904 * time to recover before we try again. 1905 */ 1906 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1907 timeout = periph_selto_delay; 1908 break; 1909 } 1910 action_string = "Retries exhausted"; 1911 } 1912 /* FALLTHROUGH */ 1913 case CAM_DEV_NOT_THERE: 1914 error = ENXIO; 1915 action = SSQ_LOST; 1916 break; 1917 case CAM_REQ_INVALID: 1918 case CAM_PATH_INVALID: 1919 case CAM_NO_HBA: 1920 case CAM_PROVIDE_FAIL: 1921 case CAM_REQ_TOO_BIG: 1922 case CAM_LUN_INVALID: 1923 case CAM_TID_INVALID: 1924 case CAM_FUNC_NOTAVAIL: 1925 error = EINVAL; 1926 break; 1927 case CAM_SCSI_BUS_RESET: 1928 case CAM_BDR_SENT: 1929 /* 1930 * Commands that repeatedly timeout and cause these 1931 * kinds of error recovery actions, should return 1932 * CAM_CMD_TIMEOUT, which allows us to safely assume 1933 * that this command was an innocent bystander to 1934 * these events and should be unconditionally 1935 * retried. 1936 */ 1937 case CAM_REQUEUE_REQ: 1938 /* Unconditional requeue if device is still there */ 1939 if (periph->flags & CAM_PERIPH_INVALID) { 1940 action_string = "Periph was invalidated"; 1941 error = EIO; 1942 } else if (sense_flags & SF_NO_RETRY) { 1943 error = EIO; 1944 action_string = "Retry was blocked"; 1945 } else { 1946 error = ERESTART; 1947 action &= ~SSQ_PRINT_SENSE; 1948 } 1949 break; 1950 case CAM_RESRC_UNAVAIL: 1951 /* Wait a bit for the resource shortage to abate. */ 1952 timeout = periph_noresrc_delay; 1953 /* FALLTHROUGH */ 1954 case CAM_BUSY: 1955 if (timeout == 0) { 1956 /* Wait a bit for the busy condition to abate. */ 1957 timeout = periph_busy_delay; 1958 } 1959 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1960 /* FALLTHROUGH */ 1961 case CAM_ATA_STATUS_ERROR: 1962 case CAM_REQ_CMP_ERR: 1963 case CAM_CMD_TIMEOUT: 1964 case CAM_UNEXP_BUSFREE: 1965 case CAM_UNCOR_PARITY: 1966 case CAM_DATA_RUN_ERR: 1967 default: 1968 if (periph->flags & CAM_PERIPH_INVALID) { 1969 error = EIO; 1970 action_string = "Periph was invalidated"; 1971 } else if (ccb->ccb_h.retry_count == 0) { 1972 error = EIO; 1973 action_string = "Retries exhausted"; 1974 } else if (sense_flags & SF_NO_RETRY) { 1975 error = EIO; 1976 action_string = "Retry was blocked"; 1977 } else { 1978 ccb->ccb_h.retry_count--; 1979 error = ERESTART; 1980 } 1981 break; 1982 } 1983 1984 if ((sense_flags & SF_PRINT_ALWAYS) || 1985 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 1986 action |= SSQ_PRINT_SENSE; 1987 else if (sense_flags & SF_NO_PRINT) 1988 action &= ~SSQ_PRINT_SENSE; 1989 if ((action & SSQ_PRINT_SENSE) != 0) 1990 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 1991 if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) { 1992 if (error != ERESTART) { 1993 if (action_string == NULL) 1994 action_string = "Unretryable error"; 1995 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 1996 error, action_string); 1997 } else if (action_string != NULL) 1998 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 1999 else { 2000 xpt_print(ccb->ccb_h.path, 2001 "Retrying command, %d more tries remain\n", 2002 ccb->ccb_h.retry_count); 2003 } 2004 } 2005 2006 if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0)) 2007 cam_periph_devctl_notify(orig_ccb); 2008 2009 if ((action & SSQ_LOST) != 0) { 2010 lun_id_t lun_id; 2011 2012 /* 2013 * For a selection timeout, we consider all of the LUNs on 2014 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 2015 * then we only get rid of the device(s) specified by the 2016 * path in the original CCB. 2017 */ 2018 if (status == CAM_SEL_TIMEOUT) 2019 lun_id = CAM_LUN_WILDCARD; 2020 else 2021 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 2022 2023 /* Should we do more if we can't create the path?? */ 2024 if (xpt_create_path(&newpath, periph, 2025 xpt_path_path_id(ccb->ccb_h.path), 2026 xpt_path_target_id(ccb->ccb_h.path), 2027 lun_id) == CAM_REQ_CMP) { 2028 /* 2029 * Let peripheral drivers know that this 2030 * device has gone away. 2031 */ 2032 xpt_async(AC_LOST_DEVICE, newpath, NULL); 2033 xpt_free_path(newpath); 2034 } 2035 } 2036 2037 /* Broadcast UNIT ATTENTIONs to all periphs. */ 2038 if ((action & SSQ_UA) != 0) 2039 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 2040 2041 /* Rescan target on "Reported LUNs data has changed" */ 2042 if ((action & SSQ_RESCAN) != 0) { 2043 if (xpt_create_path(&newpath, NULL, 2044 xpt_path_path_id(ccb->ccb_h.path), 2045 xpt_path_target_id(ccb->ccb_h.path), 2046 CAM_LUN_WILDCARD) == CAM_REQ_CMP) { 2047 scan_ccb = xpt_alloc_ccb_nowait(); 2048 if (scan_ccb != NULL) { 2049 scan_ccb->ccb_h.path = newpath; 2050 scan_ccb->ccb_h.func_code = XPT_SCAN_TGT; 2051 scan_ccb->crcn.flags = 0; 2052 xpt_rescan(scan_ccb); 2053 } else { 2054 xpt_print(newpath, 2055 "Can't allocate CCB to rescan target\n"); 2056 xpt_free_path(newpath); 2057 } 2058 } 2059 } 2060 2061 /* Attempt a retry */ 2062 if (error == ERESTART || error == 0) { 2063 if (frozen != 0) 2064 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 2065 if (error == ERESTART) 2066 xpt_action(ccb); 2067 if (frozen != 0) 2068 cam_release_devq(ccb->ccb_h.path, 2069 relsim_flags, 2070 openings, 2071 timeout, 2072 /*getcount_only*/0); 2073 } 2074 2075 return (error); 2076 } 2077 2078 #define CAM_PERIPH_DEVD_MSG_SIZE 256 2079 2080 static void 2081 cam_periph_devctl_notify(union ccb *ccb) 2082 { 2083 struct cam_periph *periph; 2084 struct ccb_getdev *cgd; 2085 struct sbuf sb; 2086 int serr, sk, asc, ascq; 2087 char *sbmsg, *type; 2088 2089 sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT); 2090 if (sbmsg == NULL) 2091 return; 2092 2093 sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN); 2094 2095 periph = xpt_path_periph(ccb->ccb_h.path); 2096 sbuf_printf(&sb, "device=%s%d ", periph->periph_name, 2097 periph->unit_number); 2098 2099 sbuf_printf(&sb, "serial=\""); 2100 if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) { 2101 xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path, 2102 CAM_PRIORITY_NORMAL); 2103 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 2104 xpt_action((union ccb *)cgd); 2105 2106 if (cgd->ccb_h.status == CAM_REQ_CMP) 2107 sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len); 2108 xpt_free_ccb((union ccb *)cgd); 2109 } 2110 sbuf_printf(&sb, "\" "); 2111 sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status); 2112 2113 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 2114 case CAM_CMD_TIMEOUT: 2115 sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout); 2116 type = "timeout"; 2117 break; 2118 case CAM_SCSI_STATUS_ERROR: 2119 sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status); 2120 if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq)) 2121 sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ", 2122 serr, sk, asc, ascq); 2123 type = "error"; 2124 break; 2125 case CAM_ATA_STATUS_ERROR: 2126 sbuf_printf(&sb, "RES=\""); 2127 ata_res_sbuf(&ccb->ataio.res, &sb); 2128 sbuf_printf(&sb, "\" "); 2129 type = "error"; 2130 break; 2131 default: 2132 type = "error"; 2133 break; 2134 } 2135 2136 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 2137 sbuf_printf(&sb, "CDB=\""); 2138 scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb); 2139 sbuf_printf(&sb, "\" "); 2140 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 2141 sbuf_printf(&sb, "ACB=\""); 2142 ata_cmd_sbuf(&ccb->ataio.cmd, &sb); 2143 sbuf_printf(&sb, "\" "); 2144 } 2145 2146 if (sbuf_finish(&sb) == 0) 2147 devctl_notify("CAM", "periph", type, sbuf_data(&sb)); 2148 sbuf_delete(&sb); 2149 free(sbmsg, M_CAMPERIPH); 2150 } 2151 2152 /* 2153 * Sysctl to force an invalidation of the drive right now. Can be 2154 * called with CTLFLAG_MPSAFE since we take periph lock. 2155 */ 2156 int 2157 cam_periph_invalidate_sysctl(SYSCTL_HANDLER_ARGS) 2158 { 2159 struct cam_periph *periph; 2160 int error, value; 2161 2162 periph = arg1; 2163 value = 0; 2164 error = sysctl_handle_int(oidp, &value, 0, req); 2165 if (error != 0 || req->newptr == NULL || value != 1) 2166 return (error); 2167 2168 cam_periph_lock(periph); 2169 cam_periph_invalidate(periph); 2170 cam_periph_unlock(periph); 2171 2172 return (0); 2173 } 2174