1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * Copyright (c) 1997, 1998 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/types.h> 36 #include <sys/malloc.h> 37 #include <sys/kernel.h> 38 #include <sys/linker_set.h> 39 #include <sys/bio.h> 40 #include <sys/lock.h> 41 #include <sys/mutex.h> 42 #include <sys/buf.h> 43 #include <sys/proc.h> 44 #include <sys/devicestat.h> 45 #include <sys/bus.h> 46 #include <vm/vm.h> 47 #include <vm/vm_extern.h> 48 49 #include <cam/cam.h> 50 #include <cam/cam_ccb.h> 51 #include <cam/cam_queue.h> 52 #include <cam/cam_xpt_periph.h> 53 #include <cam/cam_periph.h> 54 #include <cam/cam_debug.h> 55 #include <cam/cam_sim.h> 56 57 #include <cam/scsi/scsi_all.h> 58 #include <cam/scsi/scsi_message.h> 59 #include <cam/scsi/scsi_pass.h> 60 61 static u_int camperiphnextunit(struct periph_driver *p_drv, 62 u_int newunit, int wired, 63 path_id_t pathid, target_id_t target, 64 lun_id_t lun); 65 static u_int camperiphunit(struct periph_driver *p_drv, 66 path_id_t pathid, target_id_t target, 67 lun_id_t lun); 68 static void camperiphdone(struct cam_periph *periph, 69 union ccb *done_ccb); 70 static void camperiphfree(struct cam_periph *periph); 71 static int camperiphscsistatuserror(union ccb *ccb, 72 cam_flags camflags, 73 u_int32_t sense_flags, 74 union ccb *save_ccb, 75 int *openings, 76 u_int32_t *relsim_flags, 77 u_int32_t *timeout); 78 static int camperiphscsisenseerror(union ccb *ccb, 79 cam_flags camflags, 80 u_int32_t sense_flags, 81 union ccb *save_ccb, 82 int *openings, 83 u_int32_t *relsim_flags, 84 u_int32_t *timeout); 85 86 static int nperiph_drivers; 87 struct periph_driver **periph_drivers; 88 89 MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 90 91 static int periph_selto_delay = 1000; 92 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 93 static int periph_noresrc_delay = 500; 94 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 95 static int periph_busy_delay = 500; 96 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 97 98 99 void 100 periphdriver_register(void *data) 101 { 102 struct periph_driver **newdrivers, **old; 103 int ndrivers; 104 105 ndrivers = nperiph_drivers + 2; 106 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 107 M_WAITOK); 108 if (periph_drivers) 109 bcopy(periph_drivers, newdrivers, 110 sizeof(*newdrivers) * nperiph_drivers); 111 newdrivers[nperiph_drivers] = (struct periph_driver *)data; 112 newdrivers[nperiph_drivers + 1] = NULL; 113 old = periph_drivers; 114 periph_drivers = newdrivers; 115 if (old) 116 free(old, M_CAMPERIPH); 117 nperiph_drivers++; 118 } 119 120 cam_status 121 cam_periph_alloc(periph_ctor_t *periph_ctor, 122 periph_oninv_t *periph_oninvalidate, 123 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 124 char *name, cam_periph_type type, struct cam_path *path, 125 ac_callback_t *ac_callback, ac_code code, void *arg) 126 { 127 struct periph_driver **p_drv; 128 struct cam_sim *sim; 129 struct cam_periph *periph; 130 struct cam_periph *cur_periph; 131 path_id_t path_id; 132 target_id_t target_id; 133 lun_id_t lun_id; 134 cam_status status; 135 u_int init_level; 136 137 init_level = 0; 138 /* 139 * Handle Hot-Plug scenarios. If there is already a peripheral 140 * of our type assigned to this path, we are likely waiting for 141 * final close on an old, invalidated, peripheral. If this is 142 * the case, queue up a deferred call to the peripheral's async 143 * handler. If it looks like a mistaken re-allocation, complain. 144 */ 145 if ((periph = cam_periph_find(path, name)) != NULL) { 146 147 if ((periph->flags & CAM_PERIPH_INVALID) != 0 148 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 149 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 150 periph->deferred_callback = ac_callback; 151 periph->deferred_ac = code; 152 return (CAM_REQ_INPROG); 153 } else { 154 printf("cam_periph_alloc: attempt to re-allocate " 155 "valid device %s%d rejected\n", 156 periph->periph_name, periph->unit_number); 157 } 158 return (CAM_REQ_INVALID); 159 } 160 161 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 162 M_NOWAIT); 163 164 if (periph == NULL) 165 return (CAM_RESRC_UNAVAIL); 166 167 init_level++; 168 169 xpt_lock_buses(); 170 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 171 if (strcmp((*p_drv)->driver_name, name) == 0) 172 break; 173 } 174 xpt_unlock_buses(); 175 if (*p_drv == NULL) { 176 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 177 free(periph, M_CAMPERIPH); 178 return (CAM_REQ_INVALID); 179 } 180 181 sim = xpt_path_sim(path); 182 path_id = xpt_path_path_id(path); 183 target_id = xpt_path_target_id(path); 184 lun_id = xpt_path_lun_id(path); 185 bzero(periph, sizeof(*periph)); 186 cam_init_pinfo(&periph->pinfo); 187 periph->periph_start = periph_start; 188 periph->periph_dtor = periph_dtor; 189 periph->periph_oninval = periph_oninvalidate; 190 periph->type = type; 191 periph->periph_name = name; 192 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); 193 periph->immediate_priority = CAM_PRIORITY_NONE; 194 periph->refcount = 0; 195 periph->sim = sim; 196 SLIST_INIT(&periph->ccb_list); 197 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 198 if (status != CAM_REQ_CMP) 199 goto failure; 200 201 periph->path = path; 202 init_level++; 203 204 status = xpt_add_periph(periph); 205 206 if (status != CAM_REQ_CMP) 207 goto failure; 208 209 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 210 while (cur_periph != NULL 211 && cur_periph->unit_number < periph->unit_number) 212 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 213 214 if (cur_periph != NULL) 215 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 216 else { 217 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 218 (*p_drv)->generation++; 219 } 220 221 init_level++; 222 223 status = periph_ctor(periph, arg); 224 225 if (status == CAM_REQ_CMP) 226 init_level++; 227 228 failure: 229 switch (init_level) { 230 case 4: 231 /* Initialized successfully */ 232 break; 233 case 3: 234 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 235 xpt_remove_periph(periph); 236 /* FALLTHROUGH */ 237 case 2: 238 xpt_free_path(periph->path); 239 /* FALLTHROUGH */ 240 case 1: 241 free(periph, M_CAMPERIPH); 242 /* FALLTHROUGH */ 243 case 0: 244 /* No cleanup to perform. */ 245 break; 246 default: 247 panic("cam_periph_alloc: Unkown init level"); 248 } 249 return(status); 250 } 251 252 /* 253 * Find a peripheral structure with the specified path, target, lun, 254 * and (optionally) type. If the name is NULL, this function will return 255 * the first peripheral driver that matches the specified path. 256 */ 257 struct cam_periph * 258 cam_periph_find(struct cam_path *path, char *name) 259 { 260 struct periph_driver **p_drv; 261 struct cam_periph *periph; 262 263 xpt_lock_buses(); 264 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 265 266 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 267 continue; 268 269 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 270 if (xpt_path_comp(periph->path, path) == 0) { 271 xpt_unlock_buses(); 272 return(periph); 273 } 274 } 275 if (name != NULL) { 276 xpt_unlock_buses(); 277 return(NULL); 278 } 279 } 280 xpt_unlock_buses(); 281 return(NULL); 282 } 283 284 cam_status 285 cam_periph_acquire(struct cam_periph *periph) 286 { 287 288 if (periph == NULL) 289 return(CAM_REQ_CMP_ERR); 290 291 xpt_lock_buses(); 292 periph->refcount++; 293 xpt_unlock_buses(); 294 295 return(CAM_REQ_CMP); 296 } 297 298 void 299 cam_periph_release_locked(struct cam_periph *periph) 300 { 301 302 if (periph == NULL) 303 return; 304 305 xpt_lock_buses(); 306 if ((--periph->refcount == 0) 307 && (periph->flags & CAM_PERIPH_INVALID)) { 308 camperiphfree(periph); 309 } 310 xpt_unlock_buses(); 311 } 312 313 void 314 cam_periph_release(struct cam_periph *periph) 315 { 316 struct cam_sim *sim; 317 318 if (periph == NULL) 319 return; 320 321 sim = periph->sim; 322 mtx_assert(sim->mtx, MA_NOTOWNED); 323 mtx_lock(sim->mtx); 324 cam_periph_release_locked(periph); 325 mtx_unlock(sim->mtx); 326 } 327 328 int 329 cam_periph_hold(struct cam_periph *periph, int priority) 330 { 331 int error; 332 333 /* 334 * Increment the reference count on the peripheral 335 * while we wait for our lock attempt to succeed 336 * to ensure the peripheral doesn't disappear out 337 * from user us while we sleep. 338 */ 339 340 if (cam_periph_acquire(periph) != CAM_REQ_CMP) 341 return (ENXIO); 342 343 mtx_assert(periph->sim->mtx, MA_OWNED); 344 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 345 periph->flags |= CAM_PERIPH_LOCK_WANTED; 346 if ((error = mtx_sleep(periph, periph->sim->mtx, priority, 347 "caplck", 0)) != 0) { 348 cam_periph_release_locked(periph); 349 return (error); 350 } 351 } 352 353 periph->flags |= CAM_PERIPH_LOCKED; 354 return (0); 355 } 356 357 void 358 cam_periph_unhold(struct cam_periph *periph) 359 { 360 361 mtx_assert(periph->sim->mtx, MA_OWNED); 362 363 periph->flags &= ~CAM_PERIPH_LOCKED; 364 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 365 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 366 wakeup(periph); 367 } 368 369 cam_periph_release_locked(periph); 370 } 371 372 /* 373 * Look for the next unit number that is not currently in use for this 374 * peripheral type starting at "newunit". Also exclude unit numbers that 375 * are reserved by for future "hardwiring" unless we already know that this 376 * is a potential wired device. Only assume that the device is "wired" the 377 * first time through the loop since after that we'll be looking at unit 378 * numbers that did not match a wiring entry. 379 */ 380 static u_int 381 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, 382 path_id_t pathid, target_id_t target, lun_id_t lun) 383 { 384 struct cam_periph *periph; 385 char *periph_name; 386 int i, val, dunit, r; 387 const char *dname, *strval; 388 389 periph_name = p_drv->driver_name; 390 for (;;newunit++) { 391 392 for (periph = TAILQ_FIRST(&p_drv->units); 393 periph != NULL && periph->unit_number != newunit; 394 periph = TAILQ_NEXT(periph, unit_links)) 395 ; 396 397 if (periph != NULL && periph->unit_number == newunit) { 398 if (wired != 0) { 399 xpt_print(periph->path, "Duplicate Wired " 400 "Device entry!\n"); 401 xpt_print(periph->path, "Second device (%s " 402 "device at scbus%d target %d lun %d) will " 403 "not be wired\n", periph_name, pathid, 404 target, lun); 405 wired = 0; 406 } 407 continue; 408 } 409 if (wired) 410 break; 411 412 /* 413 * Don't match entries like "da 4" as a wired down 414 * device, but do match entries like "da 4 target 5" 415 * or even "da 4 scbus 1". 416 */ 417 i = 0; 418 dname = periph_name; 419 for (;;) { 420 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 421 if (r != 0) 422 break; 423 /* if no "target" and no specific scbus, skip */ 424 if (resource_int_value(dname, dunit, "target", &val) && 425 (resource_string_value(dname, dunit, "at",&strval)|| 426 strcmp(strval, "scbus") == 0)) 427 continue; 428 if (newunit == dunit) 429 break; 430 } 431 if (r != 0) 432 break; 433 } 434 return (newunit); 435 } 436 437 static u_int 438 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 439 target_id_t target, lun_id_t lun) 440 { 441 u_int unit; 442 int wired, i, val, dunit; 443 const char *dname, *strval; 444 char pathbuf[32], *periph_name; 445 446 periph_name = p_drv->driver_name; 447 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 448 unit = 0; 449 i = 0; 450 dname = periph_name; 451 for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 452 wired = 0) { 453 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 454 if (strcmp(strval, pathbuf) != 0) 455 continue; 456 wired++; 457 } 458 if (resource_int_value(dname, dunit, "target", &val) == 0) { 459 if (val != target) 460 continue; 461 wired++; 462 } 463 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 464 if (val != lun) 465 continue; 466 wired++; 467 } 468 if (wired != 0) { 469 unit = dunit; 470 break; 471 } 472 } 473 474 /* 475 * Either start from 0 looking for the next unit or from 476 * the unit number given in the resource config. This way, 477 * if we have wildcard matches, we don't return the same 478 * unit number twice. 479 */ 480 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 481 482 return (unit); 483 } 484 485 void 486 cam_periph_invalidate(struct cam_periph *periph) 487 { 488 489 /* 490 * We only call this routine the first time a peripheral is 491 * invalidated. 492 */ 493 if (((periph->flags & CAM_PERIPH_INVALID) == 0) 494 && (periph->periph_oninval != NULL)) 495 periph->periph_oninval(periph); 496 497 periph->flags |= CAM_PERIPH_INVALID; 498 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 499 500 xpt_lock_buses(); 501 if (periph->refcount == 0) 502 camperiphfree(periph); 503 else if (periph->refcount < 0) 504 printf("cam_invalidate_periph: refcount < 0!!\n"); 505 xpt_unlock_buses(); 506 } 507 508 static void 509 camperiphfree(struct cam_periph *periph) 510 { 511 struct periph_driver **p_drv; 512 513 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 514 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 515 break; 516 } 517 if (*p_drv == NULL) { 518 printf("camperiphfree: attempt to free non-existant periph\n"); 519 return; 520 } 521 522 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 523 (*p_drv)->generation++; 524 xpt_unlock_buses(); 525 526 if (periph->periph_dtor != NULL) 527 periph->periph_dtor(periph); 528 xpt_remove_periph(periph); 529 530 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 531 union ccb ccb; 532 void *arg; 533 534 switch (periph->deferred_ac) { 535 case AC_FOUND_DEVICE: 536 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 537 xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1); 538 xpt_action(&ccb); 539 arg = &ccb; 540 break; 541 case AC_PATH_REGISTERED: 542 ccb.ccb_h.func_code = XPT_PATH_INQ; 543 xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1); 544 xpt_action(&ccb); 545 arg = &ccb; 546 break; 547 default: 548 arg = NULL; 549 break; 550 } 551 periph->deferred_callback(NULL, periph->deferred_ac, 552 periph->path, arg); 553 } 554 xpt_free_path(periph->path); 555 free(periph, M_CAMPERIPH); 556 xpt_lock_buses(); 557 } 558 559 /* 560 * Map user virtual pointers into kernel virtual address space, so we can 561 * access the memory. This won't work on physical pointers, for now it's 562 * up to the caller to check for that. (XXX KDM -- should we do that here 563 * instead?) This also only works for up to MAXPHYS memory. Since we use 564 * buffers to map stuff in and out, we're limited to the buffer size. 565 */ 566 int 567 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 568 { 569 int numbufs, i, j; 570 int flags[CAM_PERIPH_MAXMAPS]; 571 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 572 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 573 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 574 /* Some controllers may not be able to handle more data. */ 575 size_t maxmap = DFLTPHYS; 576 577 switch(ccb->ccb_h.func_code) { 578 case XPT_DEV_MATCH: 579 if (ccb->cdm.match_buf_len == 0) { 580 printf("cam_periph_mapmem: invalid match buffer " 581 "length 0\n"); 582 return(EINVAL); 583 } 584 if (ccb->cdm.pattern_buf_len > 0) { 585 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 586 lengths[0] = ccb->cdm.pattern_buf_len; 587 dirs[0] = CAM_DIR_OUT; 588 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 589 lengths[1] = ccb->cdm.match_buf_len; 590 dirs[1] = CAM_DIR_IN; 591 numbufs = 2; 592 } else { 593 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 594 lengths[0] = ccb->cdm.match_buf_len; 595 dirs[0] = CAM_DIR_IN; 596 numbufs = 1; 597 } 598 /* 599 * This request will not go to the hardware, no reason 600 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 601 */ 602 maxmap = MAXPHYS; 603 break; 604 case XPT_SCSI_IO: 605 case XPT_CONT_TARGET_IO: 606 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 607 return(0); 608 609 data_ptrs[0] = &ccb->csio.data_ptr; 610 lengths[0] = ccb->csio.dxfer_len; 611 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 612 numbufs = 1; 613 break; 614 case XPT_ATA_IO: 615 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 616 return(0); 617 618 data_ptrs[0] = &ccb->ataio.data_ptr; 619 lengths[0] = ccb->ataio.dxfer_len; 620 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 621 numbufs = 1; 622 break; 623 default: 624 return(EINVAL); 625 break; /* NOTREACHED */ 626 } 627 628 /* 629 * Check the transfer length and permissions first, so we don't 630 * have to unmap any previously mapped buffers. 631 */ 632 for (i = 0; i < numbufs; i++) { 633 634 flags[i] = 0; 635 636 /* 637 * The userland data pointer passed in may not be page 638 * aligned. vmapbuf() truncates the address to a page 639 * boundary, so if the address isn't page aligned, we'll 640 * need enough space for the given transfer length, plus 641 * whatever extra space is necessary to make it to the page 642 * boundary. 643 */ 644 if ((lengths[i] + 645 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){ 646 printf("cam_periph_mapmem: attempt to map %lu bytes, " 647 "which is greater than %lu\n", 648 (long)(lengths[i] + 649 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)), 650 (u_long)maxmap); 651 return(E2BIG); 652 } 653 654 if (dirs[i] & CAM_DIR_OUT) { 655 flags[i] = BIO_WRITE; 656 } 657 658 if (dirs[i] & CAM_DIR_IN) { 659 flags[i] = BIO_READ; 660 } 661 662 } 663 664 /* this keeps the current process from getting swapped */ 665 /* 666 * XXX KDM should I use P_NOSWAP instead? 667 */ 668 PHOLD(curproc); 669 670 for (i = 0; i < numbufs; i++) { 671 /* 672 * Get the buffer. 673 */ 674 mapinfo->bp[i] = getpbuf(NULL); 675 676 /* save the buffer's data address */ 677 mapinfo->bp[i]->b_saveaddr = mapinfo->bp[i]->b_data; 678 679 /* put our pointer in the data slot */ 680 mapinfo->bp[i]->b_data = *data_ptrs[i]; 681 682 /* set the transfer length, we know it's < MAXPHYS */ 683 mapinfo->bp[i]->b_bufsize = lengths[i]; 684 685 /* set the direction */ 686 mapinfo->bp[i]->b_iocmd = flags[i]; 687 688 /* 689 * Map the buffer into kernel memory. 690 * 691 * Note that useracc() alone is not a sufficient test. 692 * vmapbuf() can still fail due to a smaller file mapped 693 * into a larger area of VM, or if userland races against 694 * vmapbuf() after the useracc() check. 695 */ 696 if (vmapbuf(mapinfo->bp[i]) < 0) { 697 for (j = 0; j < i; ++j) { 698 *data_ptrs[j] = mapinfo->bp[j]->b_saveaddr; 699 vunmapbuf(mapinfo->bp[j]); 700 relpbuf(mapinfo->bp[j], NULL); 701 } 702 relpbuf(mapinfo->bp[i], NULL); 703 PRELE(curproc); 704 return(EACCES); 705 } 706 707 /* set our pointer to the new mapped area */ 708 *data_ptrs[i] = mapinfo->bp[i]->b_data; 709 710 mapinfo->num_bufs_used++; 711 } 712 713 /* 714 * Now that we've gotten this far, change ownership to the kernel 715 * of the buffers so that we don't run afoul of returning to user 716 * space with locks (on the buffer) held. 717 */ 718 for (i = 0; i < numbufs; i++) { 719 BUF_KERNPROC(mapinfo->bp[i]); 720 } 721 722 723 return(0); 724 } 725 726 /* 727 * Unmap memory segments mapped into kernel virtual address space by 728 * cam_periph_mapmem(). 729 */ 730 void 731 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 732 { 733 int numbufs, i; 734 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 735 736 if (mapinfo->num_bufs_used <= 0) { 737 /* allow ourselves to be swapped once again */ 738 PRELE(curproc); 739 return; 740 } 741 742 switch (ccb->ccb_h.func_code) { 743 case XPT_DEV_MATCH: 744 numbufs = min(mapinfo->num_bufs_used, 2); 745 746 if (numbufs == 1) { 747 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 748 } else { 749 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 750 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 751 } 752 break; 753 case XPT_SCSI_IO: 754 case XPT_CONT_TARGET_IO: 755 data_ptrs[0] = &ccb->csio.data_ptr; 756 numbufs = min(mapinfo->num_bufs_used, 1); 757 break; 758 case XPT_ATA_IO: 759 data_ptrs[0] = &ccb->ataio.data_ptr; 760 numbufs = min(mapinfo->num_bufs_used, 1); 761 break; 762 default: 763 /* allow ourselves to be swapped once again */ 764 PRELE(curproc); 765 return; 766 break; /* NOTREACHED */ 767 } 768 769 for (i = 0; i < numbufs; i++) { 770 /* Set the user's pointer back to the original value */ 771 *data_ptrs[i] = mapinfo->bp[i]->b_saveaddr; 772 773 /* unmap the buffer */ 774 vunmapbuf(mapinfo->bp[i]); 775 776 /* release the buffer */ 777 relpbuf(mapinfo->bp[i], NULL); 778 } 779 780 /* allow ourselves to be swapped once again */ 781 PRELE(curproc); 782 } 783 784 union ccb * 785 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 786 { 787 struct ccb_hdr *ccb_h; 788 789 mtx_assert(periph->sim->mtx, MA_OWNED); 790 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n")); 791 792 while (SLIST_FIRST(&periph->ccb_list) == NULL) { 793 if (periph->immediate_priority > priority) 794 periph->immediate_priority = priority; 795 xpt_schedule(periph, priority); 796 if ((SLIST_FIRST(&periph->ccb_list) != NULL) 797 && (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority)) 798 break; 799 mtx_assert(periph->sim->mtx, MA_OWNED); 800 mtx_sleep(&periph->ccb_list, periph->sim->mtx, PRIBIO, "cgticb", 801 0); 802 } 803 804 ccb_h = SLIST_FIRST(&periph->ccb_list); 805 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 806 return ((union ccb *)ccb_h); 807 } 808 809 void 810 cam_periph_ccbwait(union ccb *ccb) 811 { 812 struct cam_sim *sim; 813 814 sim = xpt_path_sim(ccb->ccb_h.path); 815 if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX) 816 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)) 817 mtx_sleep(&ccb->ccb_h.cbfcnp, sim->mtx, PRIBIO, "cbwait", 0); 818 } 819 820 int 821 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 822 int (*error_routine)(union ccb *ccb, 823 cam_flags camflags, 824 u_int32_t sense_flags)) 825 { 826 union ccb *ccb; 827 int error; 828 int found; 829 830 error = found = 0; 831 832 switch(cmd){ 833 case CAMGETPASSTHRU: 834 ccb = cam_periph_getccb(periph, /* priority */ 1); 835 xpt_setup_ccb(&ccb->ccb_h, 836 ccb->ccb_h.path, 837 /*priority*/1); 838 ccb->ccb_h.func_code = XPT_GDEVLIST; 839 840 /* 841 * Basically, the point of this is that we go through 842 * getting the list of devices, until we find a passthrough 843 * device. In the current version of the CAM code, the 844 * only way to determine what type of device we're dealing 845 * with is by its name. 846 */ 847 while (found == 0) { 848 ccb->cgdl.index = 0; 849 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 850 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 851 852 /* we want the next device in the list */ 853 xpt_action(ccb); 854 if (strncmp(ccb->cgdl.periph_name, 855 "pass", 4) == 0){ 856 found = 1; 857 break; 858 } 859 } 860 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 861 (found == 0)) { 862 ccb->cgdl.periph_name[0] = '\0'; 863 ccb->cgdl.unit_number = 0; 864 break; 865 } 866 } 867 868 /* copy the result back out */ 869 bcopy(ccb, addr, sizeof(union ccb)); 870 871 /* and release the ccb */ 872 xpt_release_ccb(ccb); 873 874 break; 875 default: 876 error = ENOTTY; 877 break; 878 } 879 return(error); 880 } 881 882 int 883 cam_periph_runccb(union ccb *ccb, 884 int (*error_routine)(union ccb *ccb, 885 cam_flags camflags, 886 u_int32_t sense_flags), 887 cam_flags camflags, u_int32_t sense_flags, 888 struct devstat *ds) 889 { 890 struct cam_sim *sim; 891 int error; 892 893 error = 0; 894 sim = xpt_path_sim(ccb->ccb_h.path); 895 mtx_assert(sim->mtx, MA_OWNED); 896 897 /* 898 * If the user has supplied a stats structure, and if we understand 899 * this particular type of ccb, record the transaction start. 900 */ 901 if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO)) 902 devstat_start_transaction(ds, NULL); 903 904 xpt_action(ccb); 905 906 do { 907 cam_periph_ccbwait(ccb); 908 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 909 error = 0; 910 else if (error_routine != NULL) 911 error = (*error_routine)(ccb, camflags, sense_flags); 912 else 913 error = 0; 914 915 } while (error == ERESTART); 916 917 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) 918 cam_release_devq(ccb->ccb_h.path, 919 /* relsim_flags */0, 920 /* openings */0, 921 /* timeout */0, 922 /* getcount_only */ FALSE); 923 924 if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO)) 925 devstat_end_transaction(ds, 926 ccb->csio.dxfer_len, 927 ccb->csio.tag_action & 0xf, 928 ((ccb->ccb_h.flags & CAM_DIR_MASK) == 929 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 930 (ccb->ccb_h.flags & CAM_DIR_OUT) ? 931 DEVSTAT_WRITE : 932 DEVSTAT_READ, NULL, NULL); 933 934 return(error); 935 } 936 937 void 938 cam_freeze_devq(struct cam_path *path) 939 { 940 struct ccb_hdr ccb_h; 941 942 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 943 ccb_h.func_code = XPT_NOOP; 944 ccb_h.flags = CAM_DEV_QFREEZE; 945 xpt_action((union ccb *)&ccb_h); 946 } 947 948 u_int32_t 949 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 950 u_int32_t openings, u_int32_t timeout, 951 int getcount_only) 952 { 953 struct ccb_relsim crs; 954 955 xpt_setup_ccb(&crs.ccb_h, path, 956 /*priority*/1); 957 crs.ccb_h.func_code = XPT_REL_SIMQ; 958 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 959 crs.release_flags = relsim_flags; 960 crs.openings = openings; 961 crs.release_timeout = timeout; 962 xpt_action((union ccb *)&crs); 963 return (crs.qfrozen_cnt); 964 } 965 966 #define saved_ccb_ptr ppriv_ptr0 967 static void 968 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 969 { 970 union ccb *saved_ccb; 971 cam_status status; 972 int frozen; 973 int sense; 974 struct scsi_start_stop_unit *scsi_cmd; 975 u_int32_t relsim_flags, timeout; 976 u_int32_t qfrozen_cnt; 977 int xpt_done_ccb; 978 979 xpt_done_ccb = FALSE; 980 status = done_ccb->ccb_h.status; 981 frozen = (status & CAM_DEV_QFRZN) != 0; 982 sense = (status & CAM_AUTOSNS_VALID) != 0; 983 status &= CAM_STATUS_MASK; 984 985 timeout = 0; 986 relsim_flags = 0; 987 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 988 989 /* 990 * Unfreeze the queue once if it is already frozen.. 991 */ 992 if (frozen != 0) { 993 qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path, 994 /*relsim_flags*/0, 995 /*openings*/0, 996 /*timeout*/0, 997 /*getcount_only*/0); 998 } 999 1000 switch (status) { 1001 case CAM_REQ_CMP: 1002 { 1003 /* 1004 * If we have successfully taken a device from the not 1005 * ready to ready state, re-scan the device and re-get 1006 * the inquiry information. Many devices (mostly disks) 1007 * don't properly report their inquiry information unless 1008 * they are spun up. 1009 * 1010 * If we manually retrieved sense into a CCB and got 1011 * something other than "NO SENSE" send the updated CCB 1012 * back to the client via xpt_done() to be processed via 1013 * the error recovery code again. 1014 */ 1015 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO) { 1016 scsi_cmd = (struct scsi_start_stop_unit *) 1017 &done_ccb->csio.cdb_io.cdb_bytes; 1018 1019 if (scsi_cmd->opcode == START_STOP_UNIT) 1020 xpt_async(AC_INQ_CHANGED, 1021 done_ccb->ccb_h.path, NULL); 1022 if (scsi_cmd->opcode == REQUEST_SENSE) { 1023 u_int sense_key; 1024 1025 sense_key = saved_ccb->csio.sense_data.flags; 1026 sense_key &= SSD_KEY; 1027 if (sense_key != SSD_KEY_NO_SENSE) { 1028 saved_ccb->ccb_h.status |= 1029 CAM_AUTOSNS_VALID; 1030 #if 0 1031 xpt_print(saved_ccb->ccb_h.path, 1032 "Recovered Sense\n"); 1033 scsi_sense_print(&saved_ccb->csio); 1034 cam_error_print(saved_ccb, CAM_ESF_ALL, 1035 CAM_EPF_ALL); 1036 #endif 1037 xpt_done_ccb = TRUE; 1038 } 1039 } 1040 } 1041 bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb, 1042 sizeof(union ccb)); 1043 1044 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1045 1046 if (xpt_done_ccb == FALSE) 1047 xpt_action(done_ccb); 1048 1049 break; 1050 } 1051 case CAM_SCSI_STATUS_ERROR: 1052 scsi_cmd = (struct scsi_start_stop_unit *) 1053 &done_ccb->csio.cdb_io.cdb_bytes; 1054 if (sense != 0) { 1055 struct ccb_getdev cgd; 1056 struct scsi_sense_data *sense; 1057 int error_code, sense_key, asc, ascq; 1058 scsi_sense_action err_action; 1059 1060 sense = &done_ccb->csio.sense_data; 1061 scsi_extract_sense(sense, &error_code, 1062 &sense_key, &asc, &ascq); 1063 1064 /* 1065 * Grab the inquiry data for this device. 1066 */ 1067 xpt_setup_ccb(&cgd.ccb_h, done_ccb->ccb_h.path, 1068 /*priority*/ 1); 1069 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1070 xpt_action((union ccb *)&cgd); 1071 err_action = scsi_error_action(&done_ccb->csio, 1072 &cgd.inq_data, 0); 1073 1074 /* 1075 * If the error is "invalid field in CDB", 1076 * and the load/eject flag is set, turn the 1077 * flag off and try again. This is just in 1078 * case the drive in question barfs on the 1079 * load eject flag. The CAM code should set 1080 * the load/eject flag by default for 1081 * removable media. 1082 */ 1083 1084 /* XXX KDM 1085 * Should we check to see what the specific 1086 * scsi status is?? Or does it not matter 1087 * since we already know that there was an 1088 * error, and we know what the specific 1089 * error code was, and we know what the 1090 * opcode is.. 1091 */ 1092 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1093 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1094 (asc == 0x24) && (ascq == 0x00) && 1095 (done_ccb->ccb_h.retry_count > 0)) { 1096 1097 scsi_cmd->how &= ~SSS_LOEJ; 1098 1099 xpt_action(done_ccb); 1100 1101 } else if ((done_ccb->ccb_h.retry_count > 1) 1102 && ((err_action & SS_MASK) != SS_FAIL)) { 1103 1104 /* 1105 * In this case, the error recovery 1106 * command failed, but we've got 1107 * some retries left on it. Give 1108 * it another try unless this is an 1109 * unretryable error. 1110 */ 1111 1112 /* set the timeout to .5 sec */ 1113 relsim_flags = 1114 RELSIM_RELEASE_AFTER_TIMEOUT; 1115 timeout = 500; 1116 1117 xpt_action(done_ccb); 1118 1119 break; 1120 1121 } else { 1122 /* 1123 * Perform the final retry with the original 1124 * CCB so that final error processing is 1125 * performed by the owner of the CCB. 1126 */ 1127 bcopy(done_ccb->ccb_h.saved_ccb_ptr, 1128 done_ccb, sizeof(union ccb)); 1129 1130 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1131 1132 xpt_action(done_ccb); 1133 } 1134 } else { 1135 /* 1136 * Eh?? The command failed, but we don't 1137 * have any sense. What's up with that? 1138 * Fire the CCB again to return it to the 1139 * caller. 1140 */ 1141 bcopy(done_ccb->ccb_h.saved_ccb_ptr, 1142 done_ccb, sizeof(union ccb)); 1143 1144 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1145 1146 xpt_action(done_ccb); 1147 1148 } 1149 break; 1150 default: 1151 bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb, 1152 sizeof(union ccb)); 1153 1154 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1155 1156 xpt_action(done_ccb); 1157 1158 break; 1159 } 1160 1161 /* decrement the retry count */ 1162 /* 1163 * XXX This isn't appropriate in all cases. Restructure, 1164 * so that the retry count is only decremented on an 1165 * actual retry. Remeber that the orignal ccb had its 1166 * retry count dropped before entering recovery, so 1167 * doing it again is a bug. 1168 */ 1169 if (done_ccb->ccb_h.retry_count > 0) 1170 done_ccb->ccb_h.retry_count--; 1171 1172 qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path, 1173 /*relsim_flags*/relsim_flags, 1174 /*openings*/0, 1175 /*timeout*/timeout, 1176 /*getcount_only*/0); 1177 if (xpt_done_ccb == TRUE) 1178 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 1179 } 1180 1181 /* 1182 * Generic Async Event handler. Peripheral drivers usually 1183 * filter out the events that require personal attention, 1184 * and leave the rest to this function. 1185 */ 1186 void 1187 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1188 struct cam_path *path, void *arg) 1189 { 1190 switch (code) { 1191 case AC_LOST_DEVICE: 1192 cam_periph_invalidate(periph); 1193 break; 1194 case AC_SENT_BDR: 1195 case AC_BUS_RESET: 1196 { 1197 cam_periph_bus_settle(periph, scsi_delay); 1198 break; 1199 } 1200 default: 1201 break; 1202 } 1203 } 1204 1205 void 1206 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1207 { 1208 struct ccb_getdevstats cgds; 1209 1210 xpt_setup_ccb(&cgds.ccb_h, periph->path, /*priority*/1); 1211 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1212 xpt_action((union ccb *)&cgds); 1213 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1214 } 1215 1216 void 1217 cam_periph_freeze_after_event(struct cam_periph *periph, 1218 struct timeval* event_time, u_int duration_ms) 1219 { 1220 struct timeval delta; 1221 struct timeval duration_tv; 1222 1223 microtime(&delta); 1224 timevalsub(&delta, event_time); 1225 duration_tv.tv_sec = duration_ms / 1000; 1226 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1227 if (timevalcmp(&delta, &duration_tv, <)) { 1228 timevalsub(&duration_tv, &delta); 1229 1230 duration_ms = duration_tv.tv_sec * 1000; 1231 duration_ms += duration_tv.tv_usec / 1000; 1232 cam_freeze_devq(periph->path); 1233 cam_release_devq(periph->path, 1234 RELSIM_RELEASE_AFTER_TIMEOUT, 1235 /*reduction*/0, 1236 /*timeout*/duration_ms, 1237 /*getcount_only*/0); 1238 } 1239 1240 } 1241 1242 static int 1243 camperiphscsistatuserror(union ccb *ccb, cam_flags camflags, 1244 u_int32_t sense_flags, union ccb *save_ccb, 1245 int *openings, u_int32_t *relsim_flags, 1246 u_int32_t *timeout) 1247 { 1248 int error; 1249 1250 switch (ccb->csio.scsi_status) { 1251 case SCSI_STATUS_OK: 1252 case SCSI_STATUS_COND_MET: 1253 case SCSI_STATUS_INTERMED: 1254 case SCSI_STATUS_INTERMED_COND_MET: 1255 error = 0; 1256 break; 1257 case SCSI_STATUS_CMD_TERMINATED: 1258 case SCSI_STATUS_CHECK_COND: 1259 error = camperiphscsisenseerror(ccb, 1260 camflags, 1261 sense_flags, 1262 save_ccb, 1263 openings, 1264 relsim_flags, 1265 timeout); 1266 break; 1267 case SCSI_STATUS_QUEUE_FULL: 1268 { 1269 /* no decrement */ 1270 struct ccb_getdevstats cgds; 1271 1272 /* 1273 * First off, find out what the current 1274 * transaction counts are. 1275 */ 1276 xpt_setup_ccb(&cgds.ccb_h, 1277 ccb->ccb_h.path, 1278 /*priority*/1); 1279 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1280 xpt_action((union ccb *)&cgds); 1281 1282 /* 1283 * If we were the only transaction active, treat 1284 * the QUEUE FULL as if it were a BUSY condition. 1285 */ 1286 if (cgds.dev_active != 0) { 1287 int total_openings; 1288 1289 /* 1290 * Reduce the number of openings to 1291 * be 1 less than the amount it took 1292 * to get a queue full bounded by the 1293 * minimum allowed tag count for this 1294 * device. 1295 */ 1296 total_openings = cgds.dev_active + cgds.dev_openings; 1297 *openings = cgds.dev_active; 1298 if (*openings < cgds.mintags) 1299 *openings = cgds.mintags; 1300 if (*openings < total_openings) 1301 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1302 else { 1303 /* 1304 * Some devices report queue full for 1305 * temporary resource shortages. For 1306 * this reason, we allow a minimum 1307 * tag count to be entered via a 1308 * quirk entry to prevent the queue 1309 * count on these devices from falling 1310 * to a pessimisticly low value. We 1311 * still wait for the next successful 1312 * completion, however, before queueing 1313 * more transactions to the device. 1314 */ 1315 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1316 } 1317 *timeout = 0; 1318 error = ERESTART; 1319 if (bootverbose) { 1320 xpt_print(ccb->ccb_h.path, "Queue Full\n"); 1321 } 1322 break; 1323 } 1324 /* FALLTHROUGH */ 1325 } 1326 case SCSI_STATUS_BUSY: 1327 /* 1328 * Restart the queue after either another 1329 * command completes or a 1 second timeout. 1330 */ 1331 if (bootverbose) { 1332 xpt_print(ccb->ccb_h.path, "Device Busy\n"); 1333 } 1334 if (ccb->ccb_h.retry_count > 0) { 1335 ccb->ccb_h.retry_count--; 1336 error = ERESTART; 1337 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1338 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1339 *timeout = 1000; 1340 } else { 1341 error = EIO; 1342 } 1343 break; 1344 case SCSI_STATUS_RESERV_CONFLICT: 1345 xpt_print(ccb->ccb_h.path, "Reservation Conflict\n"); 1346 error = EIO; 1347 break; 1348 default: 1349 xpt_print(ccb->ccb_h.path, "SCSI Status 0x%x\n", 1350 ccb->csio.scsi_status); 1351 error = EIO; 1352 break; 1353 } 1354 return (error); 1355 } 1356 1357 static int 1358 camperiphscsisenseerror(union ccb *ccb, cam_flags camflags, 1359 u_int32_t sense_flags, union ccb *save_ccb, 1360 int *openings, u_int32_t *relsim_flags, 1361 u_int32_t *timeout) 1362 { 1363 struct cam_periph *periph; 1364 int error; 1365 1366 periph = xpt_path_periph(ccb->ccb_h.path); 1367 if (periph->flags & CAM_PERIPH_RECOVERY_INPROG) { 1368 1369 /* 1370 * If error recovery is already in progress, don't attempt 1371 * to process this error, but requeue it unconditionally 1372 * and attempt to process it once error recovery has 1373 * completed. This failed command is probably related to 1374 * the error that caused the currently active error recovery 1375 * action so our current recovery efforts should also 1376 * address this command. Be aware that the error recovery 1377 * code assumes that only one recovery action is in progress 1378 * on a particular peripheral instance at any given time 1379 * (e.g. only one saved CCB for error recovery) so it is 1380 * imperitive that we don't violate this assumption. 1381 */ 1382 error = ERESTART; 1383 } else { 1384 scsi_sense_action err_action; 1385 struct ccb_getdev cgd; 1386 const char *action_string; 1387 union ccb* print_ccb; 1388 1389 /* A description of the error recovery action performed */ 1390 action_string = NULL; 1391 1392 /* 1393 * The location of the orignal ccb 1394 * for sense printing purposes. 1395 */ 1396 print_ccb = ccb; 1397 1398 /* 1399 * Grab the inquiry data for this device. 1400 */ 1401 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, /*priority*/ 1); 1402 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1403 xpt_action((union ccb *)&cgd); 1404 1405 if ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0) 1406 err_action = scsi_error_action(&ccb->csio, 1407 &cgd.inq_data, 1408 sense_flags); 1409 else if ((ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0) 1410 err_action = SS_REQSENSE; 1411 else 1412 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1413 1414 error = err_action & SS_ERRMASK; 1415 1416 /* 1417 * If the recovery action will consume a retry, 1418 * make sure we actually have retries available. 1419 */ 1420 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1421 if (ccb->ccb_h.retry_count > 0) 1422 ccb->ccb_h.retry_count--; 1423 else { 1424 action_string = "Retries Exhausted"; 1425 goto sense_error_done; 1426 } 1427 } 1428 1429 if ((err_action & SS_MASK) >= SS_START) { 1430 /* 1431 * Do common portions of commands that 1432 * use recovery CCBs. 1433 */ 1434 if (save_ccb == NULL) { 1435 action_string = "No recovery CCB supplied"; 1436 goto sense_error_done; 1437 } 1438 bcopy(ccb, save_ccb, sizeof(*save_ccb)); 1439 print_ccb = save_ccb; 1440 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1441 } 1442 1443 switch (err_action & SS_MASK) { 1444 case SS_NOP: 1445 action_string = "No Recovery Action Needed"; 1446 error = 0; 1447 break; 1448 case SS_RETRY: 1449 action_string = "Retrying Command (per Sense Data)"; 1450 error = ERESTART; 1451 break; 1452 case SS_FAIL: 1453 action_string = "Unretryable error"; 1454 break; 1455 case SS_START: 1456 { 1457 int le; 1458 1459 /* 1460 * Send a start unit command to the device, and 1461 * then retry the command. 1462 */ 1463 action_string = "Attempting to Start Unit"; 1464 1465 /* 1466 * Check for removable media and set 1467 * load/eject flag appropriately. 1468 */ 1469 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1470 le = TRUE; 1471 else 1472 le = FALSE; 1473 1474 scsi_start_stop(&ccb->csio, 1475 /*retries*/1, 1476 camperiphdone, 1477 MSG_SIMPLE_Q_TAG, 1478 /*start*/TRUE, 1479 /*load/eject*/le, 1480 /*immediate*/FALSE, 1481 SSD_FULL_SIZE, 1482 /*timeout*/50000); 1483 break; 1484 } 1485 case SS_TUR: 1486 { 1487 /* 1488 * Send a Test Unit Ready to the device. 1489 * If the 'many' flag is set, we send 120 1490 * test unit ready commands, one every half 1491 * second. Otherwise, we just send one TUR. 1492 * We only want to do this if the retry 1493 * count has not been exhausted. 1494 */ 1495 int retries; 1496 1497 if ((err_action & SSQ_MANY) != 0) { 1498 action_string = "Polling device for readiness"; 1499 retries = 120; 1500 } else { 1501 action_string = "Testing device for readiness"; 1502 retries = 1; 1503 } 1504 scsi_test_unit_ready(&ccb->csio, 1505 retries, 1506 camperiphdone, 1507 MSG_SIMPLE_Q_TAG, 1508 SSD_FULL_SIZE, 1509 /*timeout*/5000); 1510 1511 /* 1512 * Accomplish our 500ms delay by deferring 1513 * the release of our device queue appropriately. 1514 */ 1515 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1516 *timeout = 500; 1517 break; 1518 } 1519 case SS_REQSENSE: 1520 { 1521 /* 1522 * Send a Request Sense to the device. We 1523 * assume that we are in a contingent allegiance 1524 * condition so we do not tag this request. 1525 */ 1526 scsi_request_sense(&ccb->csio, /*retries*/1, 1527 camperiphdone, 1528 &save_ccb->csio.sense_data, 1529 sizeof(save_ccb->csio.sense_data), 1530 CAM_TAG_ACTION_NONE, 1531 /*sense_len*/SSD_FULL_SIZE, 1532 /*timeout*/5000); 1533 break; 1534 } 1535 default: 1536 panic("Unhandled error action %x", err_action); 1537 } 1538 1539 if ((err_action & SS_MASK) >= SS_START) { 1540 /* 1541 * Drop the priority to 0 so that the recovery 1542 * CCB is the first to execute. Freeze the queue 1543 * after this command is sent so that we can 1544 * restore the old csio and have it queued in 1545 * the proper order before we release normal 1546 * transactions to the device. 1547 */ 1548 ccb->ccb_h.pinfo.priority = 0; 1549 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1550 ccb->ccb_h.saved_ccb_ptr = save_ccb; 1551 error = ERESTART; 1552 } 1553 1554 sense_error_done: 1555 if ((err_action & SSQ_PRINT_SENSE) != 0 1556 && (ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0) { 1557 cam_error_print(print_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 1558 xpt_print_path(ccb->ccb_h.path); 1559 if (bootverbose) 1560 scsi_sense_print(&print_ccb->csio); 1561 printf("%s\n", action_string); 1562 } 1563 } 1564 return (error); 1565 } 1566 1567 /* 1568 * Generic error handler. Peripheral drivers usually filter 1569 * out the errors that they handle in a unique mannor, then 1570 * call this function. 1571 */ 1572 int 1573 cam_periph_error(union ccb *ccb, cam_flags camflags, 1574 u_int32_t sense_flags, union ccb *save_ccb) 1575 { 1576 const char *action_string; 1577 cam_status status; 1578 int frozen; 1579 int error, printed = 0; 1580 int openings; 1581 u_int32_t relsim_flags; 1582 u_int32_t timeout = 0; 1583 1584 action_string = NULL; 1585 status = ccb->ccb_h.status; 1586 frozen = (status & CAM_DEV_QFRZN) != 0; 1587 status &= CAM_STATUS_MASK; 1588 openings = relsim_flags = 0; 1589 1590 switch (status) { 1591 case CAM_REQ_CMP: 1592 error = 0; 1593 break; 1594 case CAM_SCSI_STATUS_ERROR: 1595 error = camperiphscsistatuserror(ccb, 1596 camflags, 1597 sense_flags, 1598 save_ccb, 1599 &openings, 1600 &relsim_flags, 1601 &timeout); 1602 break; 1603 case CAM_AUTOSENSE_FAIL: 1604 xpt_print(ccb->ccb_h.path, "AutoSense Failed\n"); 1605 error = EIO; /* we have to kill the command */ 1606 break; 1607 case CAM_ATA_STATUS_ERROR: 1608 if (bootverbose && printed == 0) { 1609 xpt_print(ccb->ccb_h.path, 1610 "Request completed with CAM_ATA_STATUS_ERROR\n"); 1611 printed++; 1612 } 1613 /* FALLTHROUGH */ 1614 case CAM_REQ_CMP_ERR: 1615 if (bootverbose && printed == 0) { 1616 xpt_print(ccb->ccb_h.path, 1617 "Request completed with CAM_REQ_CMP_ERR\n"); 1618 printed++; 1619 } 1620 /* FALLTHROUGH */ 1621 case CAM_CMD_TIMEOUT: 1622 if (bootverbose && printed == 0) { 1623 xpt_print(ccb->ccb_h.path, "Command timed out\n"); 1624 printed++; 1625 } 1626 /* FALLTHROUGH */ 1627 case CAM_UNEXP_BUSFREE: 1628 if (bootverbose && printed == 0) { 1629 xpt_print(ccb->ccb_h.path, "Unexpected Bus Free\n"); 1630 printed++; 1631 } 1632 /* FALLTHROUGH */ 1633 case CAM_UNCOR_PARITY: 1634 if (bootverbose && printed == 0) { 1635 xpt_print(ccb->ccb_h.path, 1636 "Uncorrected Parity Error\n"); 1637 printed++; 1638 } 1639 /* FALLTHROUGH */ 1640 case CAM_DATA_RUN_ERR: 1641 if (bootverbose && printed == 0) { 1642 xpt_print(ccb->ccb_h.path, "Data Overrun\n"); 1643 printed++; 1644 } 1645 error = EIO; /* we have to kill the command */ 1646 /* decrement the number of retries */ 1647 if (ccb->ccb_h.retry_count > 0) { 1648 ccb->ccb_h.retry_count--; 1649 error = ERESTART; 1650 } else { 1651 action_string = "Retries Exhausted"; 1652 error = EIO; 1653 } 1654 break; 1655 case CAM_UA_ABORT: 1656 case CAM_UA_TERMIO: 1657 case CAM_MSG_REJECT_REC: 1658 /* XXX Don't know that these are correct */ 1659 error = EIO; 1660 break; 1661 case CAM_SEL_TIMEOUT: 1662 { 1663 struct cam_path *newpath; 1664 1665 if ((camflags & CAM_RETRY_SELTO) != 0) { 1666 if (ccb->ccb_h.retry_count > 0) { 1667 1668 ccb->ccb_h.retry_count--; 1669 error = ERESTART; 1670 if (bootverbose && printed == 0) { 1671 xpt_print(ccb->ccb_h.path, 1672 "Selection Timeout\n"); 1673 printed++; 1674 } 1675 1676 /* 1677 * Wait a bit to give the device 1678 * time to recover before we try again. 1679 */ 1680 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1681 timeout = periph_selto_delay; 1682 break; 1683 } 1684 } 1685 error = ENXIO; 1686 /* Should we do more if we can't create the path?? */ 1687 if (xpt_create_path(&newpath, xpt_path_periph(ccb->ccb_h.path), 1688 xpt_path_path_id(ccb->ccb_h.path), 1689 xpt_path_target_id(ccb->ccb_h.path), 1690 CAM_LUN_WILDCARD) != CAM_REQ_CMP) 1691 break; 1692 1693 /* 1694 * Let peripheral drivers know that this device has gone 1695 * away. 1696 */ 1697 xpt_async(AC_LOST_DEVICE, newpath, NULL); 1698 xpt_free_path(newpath); 1699 break; 1700 } 1701 case CAM_REQ_INVALID: 1702 case CAM_PATH_INVALID: 1703 case CAM_DEV_NOT_THERE: 1704 case CAM_NO_HBA: 1705 case CAM_PROVIDE_FAIL: 1706 case CAM_REQ_TOO_BIG: 1707 case CAM_LUN_INVALID: 1708 case CAM_TID_INVALID: 1709 error = EINVAL; 1710 break; 1711 case CAM_SCSI_BUS_RESET: 1712 case CAM_BDR_SENT: 1713 /* 1714 * Commands that repeatedly timeout and cause these 1715 * kinds of error recovery actions, should return 1716 * CAM_CMD_TIMEOUT, which allows us to safely assume 1717 * that this command was an innocent bystander to 1718 * these events and should be unconditionally 1719 * retried. 1720 */ 1721 if (bootverbose && printed == 0) { 1722 xpt_print_path(ccb->ccb_h.path); 1723 if (status == CAM_BDR_SENT) 1724 printf("Bus Device Reset sent\n"); 1725 else 1726 printf("Bus Reset issued\n"); 1727 printed++; 1728 } 1729 /* FALLTHROUGH */ 1730 case CAM_REQUEUE_REQ: 1731 /* Unconditional requeue */ 1732 error = ERESTART; 1733 if (bootverbose && printed == 0) { 1734 xpt_print(ccb->ccb_h.path, "Request Requeued\n"); 1735 printed++; 1736 } 1737 break; 1738 case CAM_RESRC_UNAVAIL: 1739 /* Wait a bit for the resource shortage to abate. */ 1740 timeout = periph_noresrc_delay; 1741 /* FALLTHROUGH */ 1742 case CAM_BUSY: 1743 if (timeout == 0) { 1744 /* Wait a bit for the busy condition to abate. */ 1745 timeout = periph_busy_delay; 1746 } 1747 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1748 /* FALLTHROUGH */ 1749 default: 1750 /* decrement the number of retries */ 1751 if (ccb->ccb_h.retry_count > 0) { 1752 ccb->ccb_h.retry_count--; 1753 error = ERESTART; 1754 if (bootverbose && printed == 0) { 1755 xpt_print(ccb->ccb_h.path, "CAM Status 0x%x\n", 1756 status); 1757 printed++; 1758 } 1759 } else { 1760 error = EIO; 1761 action_string = "Retries Exhausted"; 1762 } 1763 break; 1764 } 1765 1766 /* Attempt a retry */ 1767 if (error == ERESTART || error == 0) { 1768 if (frozen != 0) 1769 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1770 1771 if (error == ERESTART) { 1772 action_string = "Retrying Command"; 1773 xpt_action(ccb); 1774 } 1775 1776 if (frozen != 0) 1777 cam_release_devq(ccb->ccb_h.path, 1778 relsim_flags, 1779 openings, 1780 timeout, 1781 /*getcount_only*/0); 1782 } 1783 1784 /* 1785 * If we have and error and are booting verbosely, whine 1786 * *unless* this was a non-retryable selection timeout. 1787 */ 1788 if (error != 0 && bootverbose && 1789 !(status == CAM_SEL_TIMEOUT && (camflags & CAM_RETRY_SELTO) == 0)) { 1790 1791 1792 if (action_string == NULL) 1793 action_string = "Unretryable Error"; 1794 if (error != ERESTART) { 1795 xpt_print(ccb->ccb_h.path, "error %d\n", error); 1796 } 1797 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 1798 } 1799 1800 return (error); 1801 } 1802