1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/types.h> 38 #include <sys/malloc.h> 39 #include <sys/kernel.h> 40 #include <sys/bio.h> 41 #include <sys/conf.h> 42 #include <sys/lock.h> 43 #include <sys/mutex.h> 44 #include <sys/buf.h> 45 #include <sys/proc.h> 46 #include <sys/devicestat.h> 47 #include <sys/bus.h> 48 #include <sys/sbuf.h> 49 #include <vm/vm.h> 50 #include <vm/vm_extern.h> 51 52 #include <cam/cam.h> 53 #include <cam/cam_ccb.h> 54 #include <cam/cam_queue.h> 55 #include <cam/cam_xpt_periph.h> 56 #include <cam/cam_periph.h> 57 #include <cam/cam_debug.h> 58 #include <cam/cam_sim.h> 59 60 #include <cam/scsi/scsi_all.h> 61 #include <cam/scsi/scsi_message.h> 62 #include <cam/scsi/scsi_pass.h> 63 64 static u_int camperiphnextunit(struct periph_driver *p_drv, 65 u_int newunit, int wired, 66 path_id_t pathid, target_id_t target, 67 lun_id_t lun); 68 static u_int camperiphunit(struct periph_driver *p_drv, 69 path_id_t pathid, target_id_t target, 70 lun_id_t lun); 71 static void camperiphdone(struct cam_periph *periph, 72 union ccb *done_ccb); 73 static void camperiphfree(struct cam_periph *periph); 74 static int camperiphscsistatuserror(union ccb *ccb, 75 union ccb **orig_ccb, 76 cam_flags camflags, 77 u_int32_t sense_flags, 78 int *openings, 79 u_int32_t *relsim_flags, 80 u_int32_t *timeout, 81 u_int32_t *action, 82 const char **action_string); 83 static int camperiphscsisenseerror(union ccb *ccb, 84 union ccb **orig_ccb, 85 cam_flags camflags, 86 u_int32_t sense_flags, 87 int *openings, 88 u_int32_t *relsim_flags, 89 u_int32_t *timeout, 90 u_int32_t *action, 91 const char **action_string); 92 static void cam_periph_devctl_notify(union ccb *ccb); 93 94 static int nperiph_drivers; 95 static int initialized = 0; 96 struct periph_driver **periph_drivers; 97 98 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 99 100 static int periph_selto_delay = 1000; 101 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 102 static int periph_noresrc_delay = 500; 103 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 104 static int periph_busy_delay = 500; 105 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 106 107 108 void 109 periphdriver_register(void *data) 110 { 111 struct periph_driver *drv = (struct periph_driver *)data; 112 struct periph_driver **newdrivers, **old; 113 int ndrivers; 114 115 again: 116 ndrivers = nperiph_drivers + 2; 117 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 118 M_WAITOK); 119 xpt_lock_buses(); 120 if (ndrivers != nperiph_drivers + 2) { 121 /* 122 * Lost race against itself; go around. 123 */ 124 xpt_unlock_buses(); 125 free(newdrivers, M_CAMPERIPH); 126 goto again; 127 } 128 if (periph_drivers) 129 bcopy(periph_drivers, newdrivers, 130 sizeof(*newdrivers) * nperiph_drivers); 131 newdrivers[nperiph_drivers] = drv; 132 newdrivers[nperiph_drivers + 1] = NULL; 133 old = periph_drivers; 134 periph_drivers = newdrivers; 135 nperiph_drivers++; 136 xpt_unlock_buses(); 137 if (old) 138 free(old, M_CAMPERIPH); 139 /* If driver marked as early or it is late now, initialize it. */ 140 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 141 initialized > 1) 142 (*drv->init)(); 143 } 144 145 int 146 periphdriver_unregister(void *data) 147 { 148 struct periph_driver *drv = (struct periph_driver *)data; 149 int error, n; 150 151 /* If driver marked as early or it is late now, deinitialize it. */ 152 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 153 initialized > 1) { 154 if (drv->deinit == NULL) { 155 printf("CAM periph driver '%s' doesn't have deinit.\n", 156 drv->driver_name); 157 return (EOPNOTSUPP); 158 } 159 error = drv->deinit(); 160 if (error != 0) 161 return (error); 162 } 163 164 xpt_lock_buses(); 165 for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++) 166 ; 167 KASSERT(n < nperiph_drivers, 168 ("Periph driver '%s' was not registered", drv->driver_name)); 169 for (; n + 1 < nperiph_drivers; n++) 170 periph_drivers[n] = periph_drivers[n + 1]; 171 periph_drivers[n + 1] = NULL; 172 nperiph_drivers--; 173 xpt_unlock_buses(); 174 return (0); 175 } 176 177 void 178 periphdriver_init(int level) 179 { 180 int i, early; 181 182 initialized = max(initialized, level); 183 for (i = 0; periph_drivers[i] != NULL; i++) { 184 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 185 if (early == initialized) 186 (*periph_drivers[i]->init)(); 187 } 188 } 189 190 cam_status 191 cam_periph_alloc(periph_ctor_t *periph_ctor, 192 periph_oninv_t *periph_oninvalidate, 193 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 194 char *name, cam_periph_type type, struct cam_path *path, 195 ac_callback_t *ac_callback, ac_code code, void *arg) 196 { 197 struct periph_driver **p_drv; 198 struct cam_sim *sim; 199 struct cam_periph *periph; 200 struct cam_periph *cur_periph; 201 path_id_t path_id; 202 target_id_t target_id; 203 lun_id_t lun_id; 204 cam_status status; 205 u_int init_level; 206 207 init_level = 0; 208 /* 209 * Handle Hot-Plug scenarios. If there is already a peripheral 210 * of our type assigned to this path, we are likely waiting for 211 * final close on an old, invalidated, peripheral. If this is 212 * the case, queue up a deferred call to the peripheral's async 213 * handler. If it looks like a mistaken re-allocation, complain. 214 */ 215 if ((periph = cam_periph_find(path, name)) != NULL) { 216 217 if ((periph->flags & CAM_PERIPH_INVALID) != 0 218 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 219 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 220 periph->deferred_callback = ac_callback; 221 periph->deferred_ac = code; 222 return (CAM_REQ_INPROG); 223 } else { 224 printf("cam_periph_alloc: attempt to re-allocate " 225 "valid device %s%d rejected flags %#x " 226 "refcount %d\n", periph->periph_name, 227 periph->unit_number, periph->flags, 228 periph->refcount); 229 } 230 return (CAM_REQ_INVALID); 231 } 232 233 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 234 M_NOWAIT|M_ZERO); 235 236 if (periph == NULL) 237 return (CAM_RESRC_UNAVAIL); 238 239 init_level++; 240 241 242 sim = xpt_path_sim(path); 243 path_id = xpt_path_path_id(path); 244 target_id = xpt_path_target_id(path); 245 lun_id = xpt_path_lun_id(path); 246 periph->periph_start = periph_start; 247 periph->periph_dtor = periph_dtor; 248 periph->periph_oninval = periph_oninvalidate; 249 periph->type = type; 250 periph->periph_name = name; 251 periph->scheduled_priority = CAM_PRIORITY_NONE; 252 periph->immediate_priority = CAM_PRIORITY_NONE; 253 periph->refcount = 1; /* Dropped by invalidation. */ 254 periph->sim = sim; 255 SLIST_INIT(&periph->ccb_list); 256 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 257 if (status != CAM_REQ_CMP) 258 goto failure; 259 periph->path = path; 260 261 xpt_lock_buses(); 262 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 263 if (strcmp((*p_drv)->driver_name, name) == 0) 264 break; 265 } 266 if (*p_drv == NULL) { 267 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 268 xpt_unlock_buses(); 269 xpt_free_path(periph->path); 270 free(periph, M_CAMPERIPH); 271 return (CAM_REQ_INVALID); 272 } 273 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); 274 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 275 while (cur_periph != NULL 276 && cur_periph->unit_number < periph->unit_number) 277 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 278 if (cur_periph != NULL) { 279 KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list")); 280 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 281 } else { 282 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 283 (*p_drv)->generation++; 284 } 285 xpt_unlock_buses(); 286 287 init_level++; 288 289 status = xpt_add_periph(periph); 290 if (status != CAM_REQ_CMP) 291 goto failure; 292 293 init_level++; 294 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 295 296 status = periph_ctor(periph, arg); 297 298 if (status == CAM_REQ_CMP) 299 init_level++; 300 301 failure: 302 switch (init_level) { 303 case 4: 304 /* Initialized successfully */ 305 break; 306 case 3: 307 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 308 xpt_remove_periph(periph); 309 /* FALLTHROUGH */ 310 case 2: 311 xpt_lock_buses(); 312 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 313 xpt_unlock_buses(); 314 xpt_free_path(periph->path); 315 /* FALLTHROUGH */ 316 case 1: 317 free(periph, M_CAMPERIPH); 318 /* FALLTHROUGH */ 319 case 0: 320 /* No cleanup to perform. */ 321 break; 322 default: 323 panic("%s: Unknown init level", __func__); 324 } 325 return(status); 326 } 327 328 /* 329 * Find a peripheral structure with the specified path, target, lun, 330 * and (optionally) type. If the name is NULL, this function will return 331 * the first peripheral driver that matches the specified path. 332 */ 333 struct cam_periph * 334 cam_periph_find(struct cam_path *path, char *name) 335 { 336 struct periph_driver **p_drv; 337 struct cam_periph *periph; 338 339 xpt_lock_buses(); 340 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 341 342 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 343 continue; 344 345 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 346 if (xpt_path_comp(periph->path, path) == 0) { 347 xpt_unlock_buses(); 348 cam_periph_assert(periph, MA_OWNED); 349 return(periph); 350 } 351 } 352 if (name != NULL) { 353 xpt_unlock_buses(); 354 return(NULL); 355 } 356 } 357 xpt_unlock_buses(); 358 return(NULL); 359 } 360 361 /* 362 * Find peripheral driver instances attached to the specified path. 363 */ 364 int 365 cam_periph_list(struct cam_path *path, struct sbuf *sb) 366 { 367 struct sbuf local_sb; 368 struct periph_driver **p_drv; 369 struct cam_periph *periph; 370 int count; 371 int sbuf_alloc_len; 372 373 sbuf_alloc_len = 16; 374 retry: 375 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 376 count = 0; 377 xpt_lock_buses(); 378 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 379 380 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 381 if (xpt_path_comp(periph->path, path) != 0) 382 continue; 383 384 if (sbuf_len(&local_sb) != 0) 385 sbuf_cat(&local_sb, ","); 386 387 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 388 periph->unit_number); 389 390 if (sbuf_error(&local_sb) == ENOMEM) { 391 sbuf_alloc_len *= 2; 392 xpt_unlock_buses(); 393 sbuf_delete(&local_sb); 394 goto retry; 395 } 396 count++; 397 } 398 } 399 xpt_unlock_buses(); 400 sbuf_finish(&local_sb); 401 sbuf_cpy(sb, sbuf_data(&local_sb)); 402 sbuf_delete(&local_sb); 403 return (count); 404 } 405 406 int 407 cam_periph_acquire(struct cam_periph *periph) 408 { 409 int status; 410 411 if (periph == NULL) 412 return (EINVAL); 413 414 status = ENOENT; 415 xpt_lock_buses(); 416 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 417 periph->refcount++; 418 status = 0; 419 } 420 xpt_unlock_buses(); 421 422 return (status); 423 } 424 425 void 426 cam_periph_doacquire(struct cam_periph *periph) 427 { 428 429 xpt_lock_buses(); 430 KASSERT(periph->refcount >= 1, 431 ("cam_periph_doacquire() with refcount == %d", periph->refcount)); 432 periph->refcount++; 433 xpt_unlock_buses(); 434 } 435 436 void 437 cam_periph_release_locked_buses(struct cam_periph *periph) 438 { 439 440 cam_periph_assert(periph, MA_OWNED); 441 KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); 442 if (--periph->refcount == 0) 443 camperiphfree(periph); 444 } 445 446 void 447 cam_periph_release_locked(struct cam_periph *periph) 448 { 449 450 if (periph == NULL) 451 return; 452 453 xpt_lock_buses(); 454 cam_periph_release_locked_buses(periph); 455 xpt_unlock_buses(); 456 } 457 458 void 459 cam_periph_release(struct cam_periph *periph) 460 { 461 struct mtx *mtx; 462 463 if (periph == NULL) 464 return; 465 466 cam_periph_assert(periph, MA_NOTOWNED); 467 mtx = cam_periph_mtx(periph); 468 mtx_lock(mtx); 469 cam_periph_release_locked(periph); 470 mtx_unlock(mtx); 471 } 472 473 /* 474 * hold/unhold act as mutual exclusion for sections of the code that 475 * need to sleep and want to make sure that other sections that 476 * will interfere are held off. This only protects exclusive sections 477 * from each other. 478 */ 479 int 480 cam_periph_hold(struct cam_periph *periph, int priority) 481 { 482 int error; 483 484 /* 485 * Increment the reference count on the peripheral 486 * while we wait for our lock attempt to succeed 487 * to ensure the peripheral doesn't disappear out 488 * from user us while we sleep. 489 */ 490 491 if (cam_periph_acquire(periph) != 0) 492 return (ENXIO); 493 494 cam_periph_assert(periph, MA_OWNED); 495 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 496 periph->flags |= CAM_PERIPH_LOCK_WANTED; 497 if ((error = cam_periph_sleep(periph, periph, priority, 498 "caplck", 0)) != 0) { 499 cam_periph_release_locked(periph); 500 return (error); 501 } 502 if (periph->flags & CAM_PERIPH_INVALID) { 503 cam_periph_release_locked(periph); 504 return (ENXIO); 505 } 506 } 507 508 periph->flags |= CAM_PERIPH_LOCKED; 509 return (0); 510 } 511 512 void 513 cam_periph_unhold(struct cam_periph *periph) 514 { 515 516 cam_periph_assert(periph, MA_OWNED); 517 518 periph->flags &= ~CAM_PERIPH_LOCKED; 519 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 520 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 521 wakeup(periph); 522 } 523 524 cam_periph_release_locked(periph); 525 } 526 527 /* 528 * Look for the next unit number that is not currently in use for this 529 * peripheral type starting at "newunit". Also exclude unit numbers that 530 * are reserved by for future "hardwiring" unless we already know that this 531 * is a potential wired device. Only assume that the device is "wired" the 532 * first time through the loop since after that we'll be looking at unit 533 * numbers that did not match a wiring entry. 534 */ 535 static u_int 536 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, 537 path_id_t pathid, target_id_t target, lun_id_t lun) 538 { 539 struct cam_periph *periph; 540 char *periph_name; 541 int i, val, dunit, r; 542 const char *dname, *strval; 543 544 periph_name = p_drv->driver_name; 545 for (;;newunit++) { 546 547 for (periph = TAILQ_FIRST(&p_drv->units); 548 periph != NULL && periph->unit_number != newunit; 549 periph = TAILQ_NEXT(periph, unit_links)) 550 ; 551 552 if (periph != NULL && periph->unit_number == newunit) { 553 if (wired != 0) { 554 xpt_print(periph->path, "Duplicate Wired " 555 "Device entry!\n"); 556 xpt_print(periph->path, "Second device (%s " 557 "device at scbus%d target %d lun %d) will " 558 "not be wired\n", periph_name, pathid, 559 target, lun); 560 wired = 0; 561 } 562 continue; 563 } 564 if (wired) 565 break; 566 567 /* 568 * Don't match entries like "da 4" as a wired down 569 * device, but do match entries like "da 4 target 5" 570 * or even "da 4 scbus 1". 571 */ 572 i = 0; 573 dname = periph_name; 574 for (;;) { 575 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 576 if (r != 0) 577 break; 578 /* if no "target" and no specific scbus, skip */ 579 if (resource_int_value(dname, dunit, "target", &val) && 580 (resource_string_value(dname, dunit, "at",&strval)|| 581 strcmp(strval, "scbus") == 0)) 582 continue; 583 if (newunit == dunit) 584 break; 585 } 586 if (r != 0) 587 break; 588 } 589 return (newunit); 590 } 591 592 static u_int 593 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 594 target_id_t target, lun_id_t lun) 595 { 596 u_int unit; 597 int wired, i, val, dunit; 598 const char *dname, *strval; 599 char pathbuf[32], *periph_name; 600 601 periph_name = p_drv->driver_name; 602 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 603 unit = 0; 604 i = 0; 605 dname = periph_name; 606 for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 607 wired = 0) { 608 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 609 if (strcmp(strval, pathbuf) != 0) 610 continue; 611 wired++; 612 } 613 if (resource_int_value(dname, dunit, "target", &val) == 0) { 614 if (val != target) 615 continue; 616 wired++; 617 } 618 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 619 if (val != lun) 620 continue; 621 wired++; 622 } 623 if (wired != 0) { 624 unit = dunit; 625 break; 626 } 627 } 628 629 /* 630 * Either start from 0 looking for the next unit or from 631 * the unit number given in the resource config. This way, 632 * if we have wildcard matches, we don't return the same 633 * unit number twice. 634 */ 635 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 636 637 return (unit); 638 } 639 640 void 641 cam_periph_invalidate(struct cam_periph *periph) 642 { 643 644 cam_periph_assert(periph, MA_OWNED); 645 /* 646 * We only call this routine the first time a peripheral is 647 * invalidated. 648 */ 649 if ((periph->flags & CAM_PERIPH_INVALID) != 0) 650 return; 651 652 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 653 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) { 654 struct sbuf sb; 655 char buffer[160]; 656 657 sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN); 658 xpt_denounce_periph_sbuf(periph, &sb); 659 sbuf_finish(&sb); 660 sbuf_putbuf(&sb); 661 } 662 periph->flags |= CAM_PERIPH_INVALID; 663 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 664 if (periph->periph_oninval != NULL) 665 periph->periph_oninval(periph); 666 cam_periph_release_locked(periph); 667 } 668 669 static void 670 camperiphfree(struct cam_periph *periph) 671 { 672 struct periph_driver **p_drv; 673 struct periph_driver *drv; 674 675 cam_periph_assert(periph, MA_OWNED); 676 KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating", 677 periph->periph_name, periph->unit_number)); 678 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 679 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 680 break; 681 } 682 if (*p_drv == NULL) { 683 printf("camperiphfree: attempt to free non-existant periph\n"); 684 return; 685 } 686 /* 687 * Cache a pointer to the periph_driver structure. If a 688 * periph_driver is added or removed from the array (see 689 * periphdriver_register()) while we drop the toplogy lock 690 * below, p_drv may change. This doesn't protect against this 691 * particular periph_driver going away. That will require full 692 * reference counting in the periph_driver infrastructure. 693 */ 694 drv = *p_drv; 695 696 /* 697 * We need to set this flag before dropping the topology lock, to 698 * let anyone who is traversing the list that this peripheral is 699 * about to be freed, and there will be no more reference count 700 * checks. 701 */ 702 periph->flags |= CAM_PERIPH_FREE; 703 704 /* 705 * The peripheral destructor semantics dictate calling with only the 706 * SIM mutex held. Since it might sleep, it should not be called 707 * with the topology lock held. 708 */ 709 xpt_unlock_buses(); 710 711 /* 712 * We need to call the peripheral destructor prior to removing the 713 * peripheral from the list. Otherwise, we risk running into a 714 * scenario where the peripheral unit number may get reused 715 * (because it has been removed from the list), but some resources 716 * used by the peripheral are still hanging around. In particular, 717 * the devfs nodes used by some peripherals like the pass(4) driver 718 * aren't fully cleaned up until the destructor is run. If the 719 * unit number is reused before the devfs instance is fully gone, 720 * devfs will panic. 721 */ 722 if (periph->periph_dtor != NULL) 723 periph->periph_dtor(periph); 724 725 /* 726 * The peripheral list is protected by the topology lock. 727 */ 728 xpt_lock_buses(); 729 730 TAILQ_REMOVE(&drv->units, periph, unit_links); 731 drv->generation++; 732 733 xpt_remove_periph(periph); 734 735 xpt_unlock_buses(); 736 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) 737 xpt_print(periph->path, "Periph destroyed\n"); 738 else 739 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 740 741 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 742 union ccb ccb; 743 void *arg; 744 745 switch (periph->deferred_ac) { 746 case AC_FOUND_DEVICE: 747 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 748 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 749 xpt_action(&ccb); 750 arg = &ccb; 751 break; 752 case AC_PATH_REGISTERED: 753 xpt_path_inq(&ccb.cpi, periph->path); 754 arg = &ccb; 755 break; 756 default: 757 arg = NULL; 758 break; 759 } 760 periph->deferred_callback(NULL, periph->deferred_ac, 761 periph->path, arg); 762 } 763 xpt_free_path(periph->path); 764 free(periph, M_CAMPERIPH); 765 xpt_lock_buses(); 766 } 767 768 /* 769 * Map user virtual pointers into kernel virtual address space, so we can 770 * access the memory. This is now a generic function that centralizes most 771 * of the sanity checks on the data flags, if any. 772 * This also only works for up to MAXPHYS memory. Since we use 773 * buffers to map stuff in and out, we're limited to the buffer size. 774 */ 775 int 776 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo, 777 u_int maxmap) 778 { 779 int numbufs, i, j; 780 int flags[CAM_PERIPH_MAXMAPS]; 781 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 782 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 783 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 784 785 if (maxmap == 0) 786 maxmap = DFLTPHYS; /* traditional default */ 787 else if (maxmap > MAXPHYS) 788 maxmap = MAXPHYS; /* for safety */ 789 switch(ccb->ccb_h.func_code) { 790 case XPT_DEV_MATCH: 791 if (ccb->cdm.match_buf_len == 0) { 792 printf("cam_periph_mapmem: invalid match buffer " 793 "length 0\n"); 794 return(EINVAL); 795 } 796 if (ccb->cdm.pattern_buf_len > 0) { 797 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 798 lengths[0] = ccb->cdm.pattern_buf_len; 799 dirs[0] = CAM_DIR_OUT; 800 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 801 lengths[1] = ccb->cdm.match_buf_len; 802 dirs[1] = CAM_DIR_IN; 803 numbufs = 2; 804 } else { 805 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 806 lengths[0] = ccb->cdm.match_buf_len; 807 dirs[0] = CAM_DIR_IN; 808 numbufs = 1; 809 } 810 /* 811 * This request will not go to the hardware, no reason 812 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 813 */ 814 maxmap = MAXPHYS; 815 break; 816 case XPT_SCSI_IO: 817 case XPT_CONT_TARGET_IO: 818 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 819 return(0); 820 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 821 return (EINVAL); 822 data_ptrs[0] = &ccb->csio.data_ptr; 823 lengths[0] = ccb->csio.dxfer_len; 824 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 825 numbufs = 1; 826 break; 827 case XPT_ATA_IO: 828 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 829 return(0); 830 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 831 return (EINVAL); 832 data_ptrs[0] = &ccb->ataio.data_ptr; 833 lengths[0] = ccb->ataio.dxfer_len; 834 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 835 numbufs = 1; 836 break; 837 case XPT_MMC_IO: 838 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 839 return(0); 840 /* Two mappings: one for cmd->data and one for cmd->data->data */ 841 data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data; 842 lengths[0] = sizeof(struct mmc_data *); 843 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 844 data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data; 845 lengths[1] = ccb->mmcio.cmd.data->len; 846 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 847 numbufs = 2; 848 break; 849 case XPT_SMP_IO: 850 data_ptrs[0] = &ccb->smpio.smp_request; 851 lengths[0] = ccb->smpio.smp_request_len; 852 dirs[0] = CAM_DIR_OUT; 853 data_ptrs[1] = &ccb->smpio.smp_response; 854 lengths[1] = ccb->smpio.smp_response_len; 855 dirs[1] = CAM_DIR_IN; 856 numbufs = 2; 857 break; 858 case XPT_NVME_IO: 859 case XPT_NVME_ADMIN: 860 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 861 return (0); 862 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 863 return (EINVAL); 864 data_ptrs[0] = &ccb->nvmeio.data_ptr; 865 lengths[0] = ccb->nvmeio.dxfer_len; 866 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 867 numbufs = 1; 868 break; 869 case XPT_DEV_ADVINFO: 870 if (ccb->cdai.bufsiz == 0) 871 return (0); 872 873 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 874 lengths[0] = ccb->cdai.bufsiz; 875 dirs[0] = CAM_DIR_IN; 876 numbufs = 1; 877 878 /* 879 * This request will not go to the hardware, no reason 880 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 881 */ 882 maxmap = MAXPHYS; 883 break; 884 default: 885 return(EINVAL); 886 break; /* NOTREACHED */ 887 } 888 889 /* 890 * Check the transfer length and permissions first, so we don't 891 * have to unmap any previously mapped buffers. 892 */ 893 for (i = 0; i < numbufs; i++) { 894 895 flags[i] = 0; 896 897 /* 898 * The userland data pointer passed in may not be page 899 * aligned. vmapbuf() truncates the address to a page 900 * boundary, so if the address isn't page aligned, we'll 901 * need enough space for the given transfer length, plus 902 * whatever extra space is necessary to make it to the page 903 * boundary. 904 */ 905 if ((lengths[i] + 906 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){ 907 printf("cam_periph_mapmem: attempt to map %lu bytes, " 908 "which is greater than %lu\n", 909 (long)(lengths[i] + 910 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)), 911 (u_long)maxmap); 912 return(E2BIG); 913 } 914 915 if (dirs[i] & CAM_DIR_OUT) { 916 flags[i] = BIO_WRITE; 917 } 918 919 if (dirs[i] & CAM_DIR_IN) { 920 flags[i] = BIO_READ; 921 } 922 923 } 924 925 /* 926 * This keeps the kernel stack of current thread from getting 927 * swapped. In low-memory situations where the kernel stack might 928 * otherwise get swapped out, this holds it and allows the thread 929 * to make progress and release the kernel mapped pages sooner. 930 * 931 * XXX KDM should I use P_NOSWAP instead? 932 */ 933 PHOLD(curproc); 934 935 for (i = 0; i < numbufs; i++) { 936 /* 937 * Get the buffer. 938 */ 939 mapinfo->bp[i] = uma_zalloc(pbuf_zone, M_WAITOK); 940 941 /* put our pointer in the data slot */ 942 mapinfo->bp[i]->b_data = *data_ptrs[i]; 943 944 /* save the user's data address */ 945 mapinfo->bp[i]->b_caller1 = *data_ptrs[i]; 946 947 /* set the transfer length, we know it's < MAXPHYS */ 948 mapinfo->bp[i]->b_bufsize = lengths[i]; 949 950 /* set the direction */ 951 mapinfo->bp[i]->b_iocmd = flags[i]; 952 953 /* 954 * Map the buffer into kernel memory. 955 * 956 * Note that useracc() alone is not a sufficient test. 957 * vmapbuf() can still fail due to a smaller file mapped 958 * into a larger area of VM, or if userland races against 959 * vmapbuf() after the useracc() check. 960 */ 961 if (vmapbuf(mapinfo->bp[i], 1) < 0) { 962 for (j = 0; j < i; ++j) { 963 *data_ptrs[j] = mapinfo->bp[j]->b_caller1; 964 vunmapbuf(mapinfo->bp[j]); 965 uma_zfree(pbuf_zone, mapinfo->bp[j]); 966 } 967 uma_zfree(pbuf_zone, mapinfo->bp[i]); 968 PRELE(curproc); 969 return(EACCES); 970 } 971 972 /* set our pointer to the new mapped area */ 973 *data_ptrs[i] = mapinfo->bp[i]->b_data; 974 975 mapinfo->num_bufs_used++; 976 } 977 978 /* 979 * Now that we've gotten this far, change ownership to the kernel 980 * of the buffers so that we don't run afoul of returning to user 981 * space with locks (on the buffer) held. 982 */ 983 for (i = 0; i < numbufs; i++) { 984 BUF_KERNPROC(mapinfo->bp[i]); 985 } 986 987 988 return(0); 989 } 990 991 /* 992 * Unmap memory segments mapped into kernel virtual address space by 993 * cam_periph_mapmem(). 994 */ 995 void 996 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 997 { 998 int numbufs, i; 999 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1000 1001 if (mapinfo->num_bufs_used <= 0) { 1002 /* nothing to free and the process wasn't held. */ 1003 return; 1004 } 1005 1006 switch (ccb->ccb_h.func_code) { 1007 case XPT_DEV_MATCH: 1008 numbufs = min(mapinfo->num_bufs_used, 2); 1009 1010 if (numbufs == 1) { 1011 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1012 } else { 1013 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1014 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1015 } 1016 break; 1017 case XPT_SCSI_IO: 1018 case XPT_CONT_TARGET_IO: 1019 data_ptrs[0] = &ccb->csio.data_ptr; 1020 numbufs = min(mapinfo->num_bufs_used, 1); 1021 break; 1022 case XPT_ATA_IO: 1023 data_ptrs[0] = &ccb->ataio.data_ptr; 1024 numbufs = min(mapinfo->num_bufs_used, 1); 1025 break; 1026 case XPT_SMP_IO: 1027 numbufs = min(mapinfo->num_bufs_used, 2); 1028 data_ptrs[0] = &ccb->smpio.smp_request; 1029 data_ptrs[1] = &ccb->smpio.smp_response; 1030 break; 1031 case XPT_DEV_ADVINFO: 1032 numbufs = min(mapinfo->num_bufs_used, 1); 1033 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1034 break; 1035 case XPT_NVME_IO: 1036 case XPT_NVME_ADMIN: 1037 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1038 numbufs = min(mapinfo->num_bufs_used, 1); 1039 break; 1040 default: 1041 /* allow ourselves to be swapped once again */ 1042 PRELE(curproc); 1043 return; 1044 break; /* NOTREACHED */ 1045 } 1046 1047 for (i = 0; i < numbufs; i++) { 1048 /* Set the user's pointer back to the original value */ 1049 *data_ptrs[i] = mapinfo->bp[i]->b_caller1; 1050 1051 /* unmap the buffer */ 1052 vunmapbuf(mapinfo->bp[i]); 1053 1054 /* release the buffer */ 1055 uma_zfree(pbuf_zone, mapinfo->bp[i]); 1056 } 1057 1058 /* allow ourselves to be swapped once again */ 1059 PRELE(curproc); 1060 } 1061 1062 int 1063 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 1064 int (*error_routine)(union ccb *ccb, 1065 cam_flags camflags, 1066 u_int32_t sense_flags)) 1067 { 1068 union ccb *ccb; 1069 int error; 1070 int found; 1071 1072 error = found = 0; 1073 1074 switch(cmd){ 1075 case CAMGETPASSTHRU: 1076 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 1077 xpt_setup_ccb(&ccb->ccb_h, 1078 ccb->ccb_h.path, 1079 CAM_PRIORITY_NORMAL); 1080 ccb->ccb_h.func_code = XPT_GDEVLIST; 1081 1082 /* 1083 * Basically, the point of this is that we go through 1084 * getting the list of devices, until we find a passthrough 1085 * device. In the current version of the CAM code, the 1086 * only way to determine what type of device we're dealing 1087 * with is by its name. 1088 */ 1089 while (found == 0) { 1090 ccb->cgdl.index = 0; 1091 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1092 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1093 1094 /* we want the next device in the list */ 1095 xpt_action(ccb); 1096 if (strncmp(ccb->cgdl.periph_name, 1097 "pass", 4) == 0){ 1098 found = 1; 1099 break; 1100 } 1101 } 1102 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1103 (found == 0)) { 1104 ccb->cgdl.periph_name[0] = '\0'; 1105 ccb->cgdl.unit_number = 0; 1106 break; 1107 } 1108 } 1109 1110 /* copy the result back out */ 1111 bcopy(ccb, addr, sizeof(union ccb)); 1112 1113 /* and release the ccb */ 1114 xpt_release_ccb(ccb); 1115 1116 break; 1117 default: 1118 error = ENOTTY; 1119 break; 1120 } 1121 return(error); 1122 } 1123 1124 static void 1125 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb) 1126 { 1127 1128 panic("%s: already done with ccb %p", __func__, done_ccb); 1129 } 1130 1131 static void 1132 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb) 1133 { 1134 1135 /* Caller will release the CCB */ 1136 xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED); 1137 done_ccb->ccb_h.cbfcnp = cam_periph_done_panic; 1138 wakeup(&done_ccb->ccb_h.cbfcnp); 1139 } 1140 1141 static void 1142 cam_periph_ccbwait(union ccb *ccb) 1143 { 1144 1145 if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 1146 while (ccb->ccb_h.cbfcnp != cam_periph_done_panic) 1147 xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, 1148 PRIBIO, "cbwait", 0); 1149 } 1150 KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && 1151 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG, 1152 ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, " 1153 "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code, 1154 ccb->ccb_h.status, ccb->ccb_h.pinfo.index)); 1155 } 1156 1157 /* 1158 * Dispatch a CCB and wait for it to complete. If the CCB has set a 1159 * callback function (ccb->ccb_h.cbfcnp), it will be overwritten and lost. 1160 */ 1161 int 1162 cam_periph_runccb(union ccb *ccb, 1163 int (*error_routine)(union ccb *ccb, 1164 cam_flags camflags, 1165 u_int32_t sense_flags), 1166 cam_flags camflags, u_int32_t sense_flags, 1167 struct devstat *ds) 1168 { 1169 struct bintime *starttime; 1170 struct bintime ltime; 1171 int error; 1172 bool must_poll; 1173 uint32_t timeout = 1; 1174 1175 starttime = NULL; 1176 xpt_path_assert(ccb->ccb_h.path, MA_OWNED); 1177 KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0, 1178 ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb, 1179 ccb->ccb_h.func_code, ccb->ccb_h.flags)); 1180 1181 /* 1182 * If the user has supplied a stats structure, and if we understand 1183 * this particular type of ccb, record the transaction start. 1184 */ 1185 if (ds != NULL && 1186 (ccb->ccb_h.func_code == XPT_SCSI_IO || 1187 ccb->ccb_h.func_code == XPT_ATA_IO || 1188 ccb->ccb_h.func_code == XPT_NVME_IO)) { 1189 starttime = <ime; 1190 binuptime(starttime); 1191 devstat_start_transaction(ds, starttime); 1192 } 1193 1194 /* 1195 * We must poll the I/O while we're dumping. The scheduler is normally 1196 * stopped for dumping, except when we call doadump from ddb. While the 1197 * scheduler is running in this case, we still need to poll the I/O to 1198 * avoid sleeping waiting for the ccb to complete. 1199 * 1200 * A panic triggered dump stops the scheduler, any callback from the 1201 * shutdown_post_sync event will run with the scheduler stopped, but 1202 * before we're officially dumping. To avoid hanging in adashutdown 1203 * initiated commands (or other similar situations), we have to test for 1204 * either SCHEDULER_STOPPED() here as well. 1205 * 1206 * To avoid locking problems, dumping/polling callers must call 1207 * without a periph lock held. 1208 */ 1209 must_poll = dumping || SCHEDULER_STOPPED(); 1210 ccb->ccb_h.cbfcnp = cam_periph_done; 1211 1212 /* 1213 * If we're polling, then we need to ensure that we have ample resources 1214 * in the periph. cam_periph_error can reschedule the ccb by calling 1215 * xpt_action and returning ERESTART, so we have to effect the polling 1216 * in the do loop below. 1217 */ 1218 if (must_poll) { 1219 timeout = xpt_poll_setup(ccb); 1220 } 1221 1222 if (timeout == 0) { 1223 ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 1224 error = EBUSY; 1225 } else { 1226 xpt_action(ccb); 1227 do { 1228 if (must_poll) { 1229 xpt_pollwait(ccb, timeout); 1230 timeout = ccb->ccb_h.timeout * 10; 1231 } else { 1232 cam_periph_ccbwait(ccb); 1233 } 1234 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1235 error = 0; 1236 else if (error_routine != NULL) { 1237 ccb->ccb_h.cbfcnp = cam_periph_done; 1238 error = (*error_routine)(ccb, camflags, sense_flags); 1239 } else 1240 error = 0; 1241 } while (error == ERESTART); 1242 } 1243 1244 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1245 cam_release_devq(ccb->ccb_h.path, 1246 /* relsim_flags */0, 1247 /* openings */0, 1248 /* timeout */0, 1249 /* getcount_only */ FALSE); 1250 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1251 } 1252 1253 if (ds != NULL) { 1254 uint32_t bytes; 1255 devstat_tag_type tag; 1256 bool valid = true; 1257 1258 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1259 bytes = ccb->csio.dxfer_len - ccb->csio.resid; 1260 tag = (devstat_tag_type)(ccb->csio.tag_action & 0x3); 1261 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1262 bytes = ccb->ataio.dxfer_len - ccb->ataio.resid; 1263 tag = (devstat_tag_type)0; 1264 } else if (ccb->ccb_h.func_code == XPT_NVME_IO) { 1265 bytes = ccb->nvmeio.dxfer_len; /* NB: resid no possible */ 1266 tag = (devstat_tag_type)0; 1267 } else { 1268 valid = false; 1269 } 1270 if (valid) 1271 devstat_end_transaction(ds, bytes, tag, 1272 ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? 1273 DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1274 DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime); 1275 } 1276 1277 return(error); 1278 } 1279 1280 void 1281 cam_freeze_devq(struct cam_path *path) 1282 { 1283 struct ccb_hdr ccb_h; 1284 1285 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n")); 1286 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 1287 ccb_h.func_code = XPT_NOOP; 1288 ccb_h.flags = CAM_DEV_QFREEZE; 1289 xpt_action((union ccb *)&ccb_h); 1290 } 1291 1292 u_int32_t 1293 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 1294 u_int32_t openings, u_int32_t arg, 1295 int getcount_only) 1296 { 1297 struct ccb_relsim crs; 1298 1299 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n", 1300 relsim_flags, openings, arg, getcount_only)); 1301 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1302 crs.ccb_h.func_code = XPT_REL_SIMQ; 1303 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1304 crs.release_flags = relsim_flags; 1305 crs.openings = openings; 1306 crs.release_timeout = arg; 1307 xpt_action((union ccb *)&crs); 1308 return (crs.qfrozen_cnt); 1309 } 1310 1311 #define saved_ccb_ptr ppriv_ptr0 1312 static void 1313 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1314 { 1315 union ccb *saved_ccb; 1316 cam_status status; 1317 struct scsi_start_stop_unit *scsi_cmd; 1318 int error = 0, error_code, sense_key, asc, ascq; 1319 1320 scsi_cmd = (struct scsi_start_stop_unit *) 1321 &done_ccb->csio.cdb_io.cdb_bytes; 1322 status = done_ccb->ccb_h.status; 1323 1324 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1325 if (scsi_extract_sense_ccb(done_ccb, 1326 &error_code, &sense_key, &asc, &ascq)) { 1327 /* 1328 * If the error is "invalid field in CDB", 1329 * and the load/eject flag is set, turn the 1330 * flag off and try again. This is just in 1331 * case the drive in question barfs on the 1332 * load eject flag. The CAM code should set 1333 * the load/eject flag by default for 1334 * removable media. 1335 */ 1336 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1337 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1338 (asc == 0x24) && (ascq == 0x00)) { 1339 scsi_cmd->how &= ~SSS_LOEJ; 1340 if (status & CAM_DEV_QFRZN) { 1341 cam_release_devq(done_ccb->ccb_h.path, 1342 0, 0, 0, 0); 1343 done_ccb->ccb_h.status &= 1344 ~CAM_DEV_QFRZN; 1345 } 1346 xpt_action(done_ccb); 1347 goto out; 1348 } 1349 } 1350 error = cam_periph_error(done_ccb, 0, 1351 SF_RETRY_UA | SF_NO_PRINT); 1352 if (error == ERESTART) 1353 goto out; 1354 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1355 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1356 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1357 } 1358 } else { 1359 /* 1360 * If we have successfully taken a device from the not 1361 * ready to ready state, re-scan the device and re-get 1362 * the inquiry information. Many devices (mostly disks) 1363 * don't properly report their inquiry information unless 1364 * they are spun up. 1365 */ 1366 if (scsi_cmd->opcode == START_STOP_UNIT) 1367 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1368 } 1369 1370 /* 1371 * After recovery action(s) completed, return to the original CCB. 1372 * If the recovery CCB has failed, considering its own possible 1373 * retries and recovery, assume we are back in state where we have 1374 * been originally, but without recovery hopes left. In such case, 1375 * after the final attempt below, we cancel any further retries, 1376 * blocking by that also any new recovery attempts for this CCB, 1377 * and the result will be the final one returned to the CCB owher. 1378 */ 1379 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1380 bcopy(saved_ccb, done_ccb, sizeof(*done_ccb)); 1381 xpt_free_ccb(saved_ccb); 1382 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1383 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1384 if (error != 0) 1385 done_ccb->ccb_h.retry_count = 0; 1386 xpt_action(done_ccb); 1387 1388 out: 1389 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1390 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1391 } 1392 1393 /* 1394 * Generic Async Event handler. Peripheral drivers usually 1395 * filter out the events that require personal attention, 1396 * and leave the rest to this function. 1397 */ 1398 void 1399 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1400 struct cam_path *path, void *arg) 1401 { 1402 switch (code) { 1403 case AC_LOST_DEVICE: 1404 cam_periph_invalidate(periph); 1405 break; 1406 default: 1407 break; 1408 } 1409 } 1410 1411 void 1412 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1413 { 1414 struct ccb_getdevstats cgds; 1415 1416 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1417 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1418 xpt_action((union ccb *)&cgds); 1419 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1420 } 1421 1422 void 1423 cam_periph_freeze_after_event(struct cam_periph *periph, 1424 struct timeval* event_time, u_int duration_ms) 1425 { 1426 struct timeval delta; 1427 struct timeval duration_tv; 1428 1429 if (!timevalisset(event_time)) 1430 return; 1431 1432 microtime(&delta); 1433 timevalsub(&delta, event_time); 1434 duration_tv.tv_sec = duration_ms / 1000; 1435 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1436 if (timevalcmp(&delta, &duration_tv, <)) { 1437 timevalsub(&duration_tv, &delta); 1438 1439 duration_ms = duration_tv.tv_sec * 1000; 1440 duration_ms += duration_tv.tv_usec / 1000; 1441 cam_freeze_devq(periph->path); 1442 cam_release_devq(periph->path, 1443 RELSIM_RELEASE_AFTER_TIMEOUT, 1444 /*reduction*/0, 1445 /*timeout*/duration_ms, 1446 /*getcount_only*/0); 1447 } 1448 1449 } 1450 1451 static int 1452 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1453 cam_flags camflags, u_int32_t sense_flags, 1454 int *openings, u_int32_t *relsim_flags, 1455 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1456 { 1457 int error; 1458 1459 switch (ccb->csio.scsi_status) { 1460 case SCSI_STATUS_OK: 1461 case SCSI_STATUS_COND_MET: 1462 case SCSI_STATUS_INTERMED: 1463 case SCSI_STATUS_INTERMED_COND_MET: 1464 error = 0; 1465 break; 1466 case SCSI_STATUS_CMD_TERMINATED: 1467 case SCSI_STATUS_CHECK_COND: 1468 error = camperiphscsisenseerror(ccb, orig_ccb, 1469 camflags, 1470 sense_flags, 1471 openings, 1472 relsim_flags, 1473 timeout, 1474 action, 1475 action_string); 1476 break; 1477 case SCSI_STATUS_QUEUE_FULL: 1478 { 1479 /* no decrement */ 1480 struct ccb_getdevstats cgds; 1481 1482 /* 1483 * First off, find out what the current 1484 * transaction counts are. 1485 */ 1486 xpt_setup_ccb(&cgds.ccb_h, 1487 ccb->ccb_h.path, 1488 CAM_PRIORITY_NORMAL); 1489 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1490 xpt_action((union ccb *)&cgds); 1491 1492 /* 1493 * If we were the only transaction active, treat 1494 * the QUEUE FULL as if it were a BUSY condition. 1495 */ 1496 if (cgds.dev_active != 0) { 1497 int total_openings; 1498 1499 /* 1500 * Reduce the number of openings to 1501 * be 1 less than the amount it took 1502 * to get a queue full bounded by the 1503 * minimum allowed tag count for this 1504 * device. 1505 */ 1506 total_openings = cgds.dev_active + cgds.dev_openings; 1507 *openings = cgds.dev_active; 1508 if (*openings < cgds.mintags) 1509 *openings = cgds.mintags; 1510 if (*openings < total_openings) 1511 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1512 else { 1513 /* 1514 * Some devices report queue full for 1515 * temporary resource shortages. For 1516 * this reason, we allow a minimum 1517 * tag count to be entered via a 1518 * quirk entry to prevent the queue 1519 * count on these devices from falling 1520 * to a pessimisticly low value. We 1521 * still wait for the next successful 1522 * completion, however, before queueing 1523 * more transactions to the device. 1524 */ 1525 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1526 } 1527 *timeout = 0; 1528 error = ERESTART; 1529 *action &= ~SSQ_PRINT_SENSE; 1530 break; 1531 } 1532 /* FALLTHROUGH */ 1533 } 1534 case SCSI_STATUS_BUSY: 1535 /* 1536 * Restart the queue after either another 1537 * command completes or a 1 second timeout. 1538 */ 1539 if ((sense_flags & SF_RETRY_BUSY) != 0 || 1540 (ccb->ccb_h.retry_count--) > 0) { 1541 error = ERESTART; 1542 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1543 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1544 *timeout = 1000; 1545 } else { 1546 error = EIO; 1547 } 1548 break; 1549 case SCSI_STATUS_RESERV_CONFLICT: 1550 default: 1551 error = EIO; 1552 break; 1553 } 1554 return (error); 1555 } 1556 1557 static int 1558 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1559 cam_flags camflags, u_int32_t sense_flags, 1560 int *openings, u_int32_t *relsim_flags, 1561 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1562 { 1563 struct cam_periph *periph; 1564 union ccb *orig_ccb = ccb; 1565 int error, recoveryccb; 1566 1567 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1568 if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL) 1569 biotrack(ccb->csio.bio, __func__); 1570 #endif 1571 1572 periph = xpt_path_periph(ccb->ccb_h.path); 1573 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1574 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1575 /* 1576 * If error recovery is already in progress, don't attempt 1577 * to process this error, but requeue it unconditionally 1578 * and attempt to process it once error recovery has 1579 * completed. This failed command is probably related to 1580 * the error that caused the currently active error recovery 1581 * action so our current recovery efforts should also 1582 * address this command. Be aware that the error recovery 1583 * code assumes that only one recovery action is in progress 1584 * on a particular peripheral instance at any given time 1585 * (e.g. only one saved CCB for error recovery) so it is 1586 * imperitive that we don't violate this assumption. 1587 */ 1588 error = ERESTART; 1589 *action &= ~SSQ_PRINT_SENSE; 1590 } else { 1591 scsi_sense_action err_action; 1592 struct ccb_getdev cgd; 1593 1594 /* 1595 * Grab the inquiry data for this device. 1596 */ 1597 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1598 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1599 xpt_action((union ccb *)&cgd); 1600 1601 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1602 sense_flags); 1603 error = err_action & SS_ERRMASK; 1604 1605 /* 1606 * Do not autostart sequential access devices 1607 * to avoid unexpected tape loading. 1608 */ 1609 if ((err_action & SS_MASK) == SS_START && 1610 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1611 *action_string = "Will not autostart a " 1612 "sequential access device"; 1613 goto sense_error_done; 1614 } 1615 1616 /* 1617 * Avoid recovery recursion if recovery action is the same. 1618 */ 1619 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1620 if (((err_action & SS_MASK) == SS_START && 1621 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1622 ((err_action & SS_MASK) == SS_TUR && 1623 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1624 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1625 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1626 *timeout = 500; 1627 } 1628 } 1629 1630 /* 1631 * If the recovery action will consume a retry, 1632 * make sure we actually have retries available. 1633 */ 1634 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1635 if (ccb->ccb_h.retry_count > 0 && 1636 (periph->flags & CAM_PERIPH_INVALID) == 0) 1637 ccb->ccb_h.retry_count--; 1638 else { 1639 *action_string = "Retries exhausted"; 1640 goto sense_error_done; 1641 } 1642 } 1643 1644 if ((err_action & SS_MASK) >= SS_START) { 1645 /* 1646 * Do common portions of commands that 1647 * use recovery CCBs. 1648 */ 1649 orig_ccb = xpt_alloc_ccb_nowait(); 1650 if (orig_ccb == NULL) { 1651 *action_string = "Can't allocate recovery CCB"; 1652 goto sense_error_done; 1653 } 1654 /* 1655 * Clear freeze flag for original request here, as 1656 * this freeze will be dropped as part of ERESTART. 1657 */ 1658 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1659 bcopy(ccb, orig_ccb, sizeof(*orig_ccb)); 1660 } 1661 1662 switch (err_action & SS_MASK) { 1663 case SS_NOP: 1664 *action_string = "No recovery action needed"; 1665 error = 0; 1666 break; 1667 case SS_RETRY: 1668 *action_string = "Retrying command (per sense data)"; 1669 error = ERESTART; 1670 break; 1671 case SS_FAIL: 1672 *action_string = "Unretryable error"; 1673 break; 1674 case SS_START: 1675 { 1676 int le; 1677 1678 /* 1679 * Send a start unit command to the device, and 1680 * then retry the command. 1681 */ 1682 *action_string = "Attempting to start unit"; 1683 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1684 1685 /* 1686 * Check for removable media and set 1687 * load/eject flag appropriately. 1688 */ 1689 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1690 le = TRUE; 1691 else 1692 le = FALSE; 1693 1694 scsi_start_stop(&ccb->csio, 1695 /*retries*/1, 1696 camperiphdone, 1697 MSG_SIMPLE_Q_TAG, 1698 /*start*/TRUE, 1699 /*load/eject*/le, 1700 /*immediate*/FALSE, 1701 SSD_FULL_SIZE, 1702 /*timeout*/50000); 1703 break; 1704 } 1705 case SS_TUR: 1706 { 1707 /* 1708 * Send a Test Unit Ready to the device. 1709 * If the 'many' flag is set, we send 120 1710 * test unit ready commands, one every half 1711 * second. Otherwise, we just send one TUR. 1712 * We only want to do this if the retry 1713 * count has not been exhausted. 1714 */ 1715 int retries; 1716 1717 if ((err_action & SSQ_MANY) != 0) { 1718 *action_string = "Polling device for readiness"; 1719 retries = 120; 1720 } else { 1721 *action_string = "Testing device for readiness"; 1722 retries = 1; 1723 } 1724 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1725 scsi_test_unit_ready(&ccb->csio, 1726 retries, 1727 camperiphdone, 1728 MSG_SIMPLE_Q_TAG, 1729 SSD_FULL_SIZE, 1730 /*timeout*/5000); 1731 1732 /* 1733 * Accomplish our 500ms delay by deferring 1734 * the release of our device queue appropriately. 1735 */ 1736 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1737 *timeout = 500; 1738 break; 1739 } 1740 default: 1741 panic("Unhandled error action %x", err_action); 1742 } 1743 1744 if ((err_action & SS_MASK) >= SS_START) { 1745 /* 1746 * Drop the priority, so that the recovery 1747 * CCB is the first to execute. Freeze the queue 1748 * after this command is sent so that we can 1749 * restore the old csio and have it queued in 1750 * the proper order before we release normal 1751 * transactions to the device. 1752 */ 1753 ccb->ccb_h.pinfo.priority--; 1754 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1755 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1756 error = ERESTART; 1757 *orig = orig_ccb; 1758 } 1759 1760 sense_error_done: 1761 *action = err_action; 1762 } 1763 return (error); 1764 } 1765 1766 /* 1767 * Generic error handler. Peripheral drivers usually filter 1768 * out the errors that they handle in a unique manner, then 1769 * call this function. 1770 */ 1771 int 1772 cam_periph_error(union ccb *ccb, cam_flags camflags, 1773 u_int32_t sense_flags) 1774 { 1775 struct cam_path *newpath; 1776 union ccb *orig_ccb, *scan_ccb; 1777 struct cam_periph *periph; 1778 const char *action_string; 1779 cam_status status; 1780 int frozen, error, openings, devctl_err; 1781 u_int32_t action, relsim_flags, timeout; 1782 1783 action = SSQ_PRINT_SENSE; 1784 periph = xpt_path_periph(ccb->ccb_h.path); 1785 action_string = NULL; 1786 status = ccb->ccb_h.status; 1787 frozen = (status & CAM_DEV_QFRZN) != 0; 1788 status &= CAM_STATUS_MASK; 1789 devctl_err = openings = relsim_flags = timeout = 0; 1790 orig_ccb = ccb; 1791 1792 /* Filter the errors that should be reported via devctl */ 1793 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 1794 case CAM_CMD_TIMEOUT: 1795 case CAM_REQ_ABORTED: 1796 case CAM_REQ_CMP_ERR: 1797 case CAM_REQ_TERMIO: 1798 case CAM_UNREC_HBA_ERROR: 1799 case CAM_DATA_RUN_ERR: 1800 case CAM_SCSI_STATUS_ERROR: 1801 case CAM_ATA_STATUS_ERROR: 1802 case CAM_SMP_STATUS_ERROR: 1803 devctl_err++; 1804 break; 1805 default: 1806 break; 1807 } 1808 1809 switch (status) { 1810 case CAM_REQ_CMP: 1811 error = 0; 1812 action &= ~SSQ_PRINT_SENSE; 1813 break; 1814 case CAM_SCSI_STATUS_ERROR: 1815 error = camperiphscsistatuserror(ccb, &orig_ccb, 1816 camflags, sense_flags, &openings, &relsim_flags, 1817 &timeout, &action, &action_string); 1818 break; 1819 case CAM_AUTOSENSE_FAIL: 1820 error = EIO; /* we have to kill the command */ 1821 break; 1822 case CAM_UA_ABORT: 1823 case CAM_UA_TERMIO: 1824 case CAM_MSG_REJECT_REC: 1825 /* XXX Don't know that these are correct */ 1826 error = EIO; 1827 break; 1828 case CAM_SEL_TIMEOUT: 1829 if ((camflags & CAM_RETRY_SELTO) != 0) { 1830 if (ccb->ccb_h.retry_count > 0 && 1831 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1832 ccb->ccb_h.retry_count--; 1833 error = ERESTART; 1834 1835 /* 1836 * Wait a bit to give the device 1837 * time to recover before we try again. 1838 */ 1839 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1840 timeout = periph_selto_delay; 1841 break; 1842 } 1843 action_string = "Retries exhausted"; 1844 } 1845 /* FALLTHROUGH */ 1846 case CAM_DEV_NOT_THERE: 1847 error = ENXIO; 1848 action = SSQ_LOST; 1849 break; 1850 case CAM_REQ_INVALID: 1851 case CAM_PATH_INVALID: 1852 case CAM_NO_HBA: 1853 case CAM_PROVIDE_FAIL: 1854 case CAM_REQ_TOO_BIG: 1855 case CAM_LUN_INVALID: 1856 case CAM_TID_INVALID: 1857 case CAM_FUNC_NOTAVAIL: 1858 error = EINVAL; 1859 break; 1860 case CAM_SCSI_BUS_RESET: 1861 case CAM_BDR_SENT: 1862 /* 1863 * Commands that repeatedly timeout and cause these 1864 * kinds of error recovery actions, should return 1865 * CAM_CMD_TIMEOUT, which allows us to safely assume 1866 * that this command was an innocent bystander to 1867 * these events and should be unconditionally 1868 * retried. 1869 */ 1870 case CAM_REQUEUE_REQ: 1871 /* Unconditional requeue if device is still there */ 1872 if (periph->flags & CAM_PERIPH_INVALID) { 1873 action_string = "Periph was invalidated"; 1874 error = EIO; 1875 } else if (sense_flags & SF_NO_RETRY) { 1876 error = EIO; 1877 action_string = "Retry was blocked"; 1878 } else { 1879 error = ERESTART; 1880 action &= ~SSQ_PRINT_SENSE; 1881 } 1882 break; 1883 case CAM_RESRC_UNAVAIL: 1884 /* Wait a bit for the resource shortage to abate. */ 1885 timeout = periph_noresrc_delay; 1886 /* FALLTHROUGH */ 1887 case CAM_BUSY: 1888 if (timeout == 0) { 1889 /* Wait a bit for the busy condition to abate. */ 1890 timeout = periph_busy_delay; 1891 } 1892 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1893 /* FALLTHROUGH */ 1894 case CAM_ATA_STATUS_ERROR: 1895 case CAM_REQ_CMP_ERR: 1896 case CAM_CMD_TIMEOUT: 1897 case CAM_UNEXP_BUSFREE: 1898 case CAM_UNCOR_PARITY: 1899 case CAM_DATA_RUN_ERR: 1900 default: 1901 if (periph->flags & CAM_PERIPH_INVALID) { 1902 error = EIO; 1903 action_string = "Periph was invalidated"; 1904 } else if (ccb->ccb_h.retry_count == 0) { 1905 error = EIO; 1906 action_string = "Retries exhausted"; 1907 } else if (sense_flags & SF_NO_RETRY) { 1908 error = EIO; 1909 action_string = "Retry was blocked"; 1910 } else { 1911 ccb->ccb_h.retry_count--; 1912 error = ERESTART; 1913 } 1914 break; 1915 } 1916 1917 if ((sense_flags & SF_PRINT_ALWAYS) || 1918 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 1919 action |= SSQ_PRINT_SENSE; 1920 else if (sense_flags & SF_NO_PRINT) 1921 action &= ~SSQ_PRINT_SENSE; 1922 if ((action & SSQ_PRINT_SENSE) != 0) 1923 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 1924 if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) { 1925 if (error != ERESTART) { 1926 if (action_string == NULL) 1927 action_string = "Unretryable error"; 1928 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 1929 error, action_string); 1930 } else if (action_string != NULL) 1931 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 1932 else { 1933 xpt_print(ccb->ccb_h.path, 1934 "Retrying command, %d more tries remain\n", 1935 ccb->ccb_h.retry_count); 1936 } 1937 } 1938 1939 if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0)) 1940 cam_periph_devctl_notify(orig_ccb); 1941 1942 if ((action & SSQ_LOST) != 0) { 1943 lun_id_t lun_id; 1944 1945 /* 1946 * For a selection timeout, we consider all of the LUNs on 1947 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 1948 * then we only get rid of the device(s) specified by the 1949 * path in the original CCB. 1950 */ 1951 if (status == CAM_SEL_TIMEOUT) 1952 lun_id = CAM_LUN_WILDCARD; 1953 else 1954 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 1955 1956 /* Should we do more if we can't create the path?? */ 1957 if (xpt_create_path(&newpath, periph, 1958 xpt_path_path_id(ccb->ccb_h.path), 1959 xpt_path_target_id(ccb->ccb_h.path), 1960 lun_id) == CAM_REQ_CMP) { 1961 1962 /* 1963 * Let peripheral drivers know that this 1964 * device has gone away. 1965 */ 1966 xpt_async(AC_LOST_DEVICE, newpath, NULL); 1967 xpt_free_path(newpath); 1968 } 1969 } 1970 1971 /* Broadcast UNIT ATTENTIONs to all periphs. */ 1972 if ((action & SSQ_UA) != 0) 1973 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 1974 1975 /* Rescan target on "Reported LUNs data has changed" */ 1976 if ((action & SSQ_RESCAN) != 0) { 1977 if (xpt_create_path(&newpath, NULL, 1978 xpt_path_path_id(ccb->ccb_h.path), 1979 xpt_path_target_id(ccb->ccb_h.path), 1980 CAM_LUN_WILDCARD) == CAM_REQ_CMP) { 1981 1982 scan_ccb = xpt_alloc_ccb_nowait(); 1983 if (scan_ccb != NULL) { 1984 scan_ccb->ccb_h.path = newpath; 1985 scan_ccb->ccb_h.func_code = XPT_SCAN_TGT; 1986 scan_ccb->crcn.flags = 0; 1987 xpt_rescan(scan_ccb); 1988 } else { 1989 xpt_print(newpath, 1990 "Can't allocate CCB to rescan target\n"); 1991 xpt_free_path(newpath); 1992 } 1993 } 1994 } 1995 1996 /* Attempt a retry */ 1997 if (error == ERESTART || error == 0) { 1998 if (frozen != 0) 1999 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 2000 if (error == ERESTART) 2001 xpt_action(ccb); 2002 if (frozen != 0) 2003 cam_release_devq(ccb->ccb_h.path, 2004 relsim_flags, 2005 openings, 2006 timeout, 2007 /*getcount_only*/0); 2008 } 2009 2010 return (error); 2011 } 2012 2013 #define CAM_PERIPH_DEVD_MSG_SIZE 256 2014 2015 static void 2016 cam_periph_devctl_notify(union ccb *ccb) 2017 { 2018 struct cam_periph *periph; 2019 struct ccb_getdev *cgd; 2020 struct sbuf sb; 2021 int serr, sk, asc, ascq; 2022 char *sbmsg, *type; 2023 2024 sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT); 2025 if (sbmsg == NULL) 2026 return; 2027 2028 sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN); 2029 2030 periph = xpt_path_periph(ccb->ccb_h.path); 2031 sbuf_printf(&sb, "device=%s%d ", periph->periph_name, 2032 periph->unit_number); 2033 2034 sbuf_printf(&sb, "serial=\""); 2035 if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) { 2036 xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path, 2037 CAM_PRIORITY_NORMAL); 2038 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 2039 xpt_action((union ccb *)cgd); 2040 2041 if (cgd->ccb_h.status == CAM_REQ_CMP) 2042 sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len); 2043 xpt_free_ccb((union ccb *)cgd); 2044 } 2045 sbuf_printf(&sb, "\" "); 2046 sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status); 2047 2048 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 2049 case CAM_CMD_TIMEOUT: 2050 sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout); 2051 type = "timeout"; 2052 break; 2053 case CAM_SCSI_STATUS_ERROR: 2054 sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status); 2055 if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq)) 2056 sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ", 2057 serr, sk, asc, ascq); 2058 type = "error"; 2059 break; 2060 case CAM_ATA_STATUS_ERROR: 2061 sbuf_printf(&sb, "RES=\""); 2062 ata_res_sbuf(&ccb->ataio.res, &sb); 2063 sbuf_printf(&sb, "\" "); 2064 type = "error"; 2065 break; 2066 default: 2067 type = "error"; 2068 break; 2069 } 2070 2071 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 2072 sbuf_printf(&sb, "CDB=\""); 2073 scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb); 2074 sbuf_printf(&sb, "\" "); 2075 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 2076 sbuf_printf(&sb, "ACB=\""); 2077 ata_cmd_sbuf(&ccb->ataio.cmd, &sb); 2078 sbuf_printf(&sb, "\" "); 2079 } 2080 2081 if (sbuf_finish(&sb) == 0) 2082 devctl_notify("CAM", "periph", type, sbuf_data(&sb)); 2083 sbuf_delete(&sb); 2084 free(sbmsg, M_CAMPERIPH); 2085 } 2086 2087 /* 2088 * Sysctl to force an invalidation of the drive right now. Can be 2089 * called with CTLFLAG_MPSAFE since we take periph lock. 2090 */ 2091 int 2092 cam_periph_invalidate_sysctl(SYSCTL_HANDLER_ARGS) 2093 { 2094 struct cam_periph *periph; 2095 int error, value; 2096 2097 periph = arg1; 2098 value = 0; 2099 error = sysctl_handle_int(oidp, &value, 0, req); 2100 if (error != 0 || req->newptr == NULL || value != 1) 2101 return (error); 2102 2103 cam_periph_lock(periph); 2104 cam_periph_invalidate(periph); 2105 cam_periph_unlock(periph); 2106 2107 return (0); 2108 } 2109