1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/types.h> 38 #include <sys/malloc.h> 39 #include <sys/kernel.h> 40 #include <sys/bio.h> 41 #include <sys/conf.h> 42 #include <sys/devctl.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/buf.h> 46 #include <sys/proc.h> 47 #include <sys/devicestat.h> 48 #include <sys/sbuf.h> 49 #include <sys/sysctl.h> 50 #include <vm/vm.h> 51 #include <vm/vm_extern.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_queue.h> 56 #include <cam/cam_xpt_periph.h> 57 #include <cam/cam_xpt_internal.h> 58 #include <cam/cam_periph.h> 59 #include <cam/cam_debug.h> 60 #include <cam/cam_sim.h> 61 62 #include <cam/scsi/scsi_all.h> 63 #include <cam/scsi/scsi_message.h> 64 #include <cam/scsi/scsi_pass.h> 65 66 static u_int camperiphnextunit(struct periph_driver *p_drv, 67 u_int newunit, bool wired, 68 path_id_t pathid, target_id_t target, 69 lun_id_t lun); 70 static u_int camperiphunit(struct periph_driver *p_drv, 71 path_id_t pathid, target_id_t target, 72 lun_id_t lun, 73 const char *sn); 74 static void camperiphdone(struct cam_periph *periph, 75 union ccb *done_ccb); 76 static void camperiphfree(struct cam_periph *periph); 77 static int camperiphscsistatuserror(union ccb *ccb, 78 union ccb **orig_ccb, 79 cam_flags camflags, 80 u_int32_t sense_flags, 81 int *openings, 82 u_int32_t *relsim_flags, 83 u_int32_t *timeout, 84 u_int32_t *action, 85 const char **action_string); 86 static int camperiphscsisenseerror(union ccb *ccb, 87 union ccb **orig_ccb, 88 cam_flags camflags, 89 u_int32_t sense_flags, 90 int *openings, 91 u_int32_t *relsim_flags, 92 u_int32_t *timeout, 93 u_int32_t *action, 94 const char **action_string); 95 static void cam_periph_devctl_notify(union ccb *ccb); 96 97 static int nperiph_drivers; 98 static int initialized = 0; 99 struct periph_driver **periph_drivers; 100 101 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 102 103 static int periph_selto_delay = 1000; 104 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 105 static int periph_noresrc_delay = 500; 106 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 107 static int periph_busy_delay = 500; 108 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 109 110 static u_int periph_mapmem_thresh = 65536; 111 SYSCTL_UINT(_kern_cam, OID_AUTO, mapmem_thresh, CTLFLAG_RWTUN, 112 &periph_mapmem_thresh, 0, "Threshold for user-space buffer mapping"); 113 114 void 115 periphdriver_register(void *data) 116 { 117 struct periph_driver *drv = (struct periph_driver *)data; 118 struct periph_driver **newdrivers, **old; 119 int ndrivers; 120 121 again: 122 ndrivers = nperiph_drivers + 2; 123 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 124 M_WAITOK); 125 xpt_lock_buses(); 126 if (ndrivers != nperiph_drivers + 2) { 127 /* 128 * Lost race against itself; go around. 129 */ 130 xpt_unlock_buses(); 131 free(newdrivers, M_CAMPERIPH); 132 goto again; 133 } 134 if (periph_drivers) 135 bcopy(periph_drivers, newdrivers, 136 sizeof(*newdrivers) * nperiph_drivers); 137 newdrivers[nperiph_drivers] = drv; 138 newdrivers[nperiph_drivers + 1] = NULL; 139 old = periph_drivers; 140 periph_drivers = newdrivers; 141 nperiph_drivers++; 142 xpt_unlock_buses(); 143 if (old) 144 free(old, M_CAMPERIPH); 145 /* If driver marked as early or it is late now, initialize it. */ 146 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 147 initialized > 1) 148 (*drv->init)(); 149 } 150 151 int 152 periphdriver_unregister(void *data) 153 { 154 struct periph_driver *drv = (struct periph_driver *)data; 155 int error, n; 156 157 /* If driver marked as early or it is late now, deinitialize it. */ 158 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 159 initialized > 1) { 160 if (drv->deinit == NULL) { 161 printf("CAM periph driver '%s' doesn't have deinit.\n", 162 drv->driver_name); 163 return (EOPNOTSUPP); 164 } 165 error = drv->deinit(); 166 if (error != 0) 167 return (error); 168 } 169 170 xpt_lock_buses(); 171 for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++) 172 ; 173 KASSERT(n < nperiph_drivers, 174 ("Periph driver '%s' was not registered", drv->driver_name)); 175 for (; n + 1 < nperiph_drivers; n++) 176 periph_drivers[n] = periph_drivers[n + 1]; 177 periph_drivers[n + 1] = NULL; 178 nperiph_drivers--; 179 xpt_unlock_buses(); 180 return (0); 181 } 182 183 void 184 periphdriver_init(int level) 185 { 186 int i, early; 187 188 initialized = max(initialized, level); 189 for (i = 0; periph_drivers[i] != NULL; i++) { 190 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 191 if (early == initialized) 192 (*periph_drivers[i]->init)(); 193 } 194 } 195 196 cam_status 197 cam_periph_alloc(periph_ctor_t *periph_ctor, 198 periph_oninv_t *periph_oninvalidate, 199 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 200 char *name, cam_periph_type type, struct cam_path *path, 201 ac_callback_t *ac_callback, ac_code code, void *arg) 202 { 203 struct periph_driver **p_drv; 204 struct cam_sim *sim; 205 struct cam_periph *periph; 206 struct cam_periph *cur_periph; 207 path_id_t path_id; 208 target_id_t target_id; 209 lun_id_t lun_id; 210 cam_status status; 211 u_int init_level; 212 213 init_level = 0; 214 /* 215 * Handle Hot-Plug scenarios. If there is already a peripheral 216 * of our type assigned to this path, we are likely waiting for 217 * final close on an old, invalidated, peripheral. If this is 218 * the case, queue up a deferred call to the peripheral's async 219 * handler. If it looks like a mistaken re-allocation, complain. 220 */ 221 if ((periph = cam_periph_find(path, name)) != NULL) { 222 if ((periph->flags & CAM_PERIPH_INVALID) != 0 223 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 224 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 225 periph->deferred_callback = ac_callback; 226 periph->deferred_ac = code; 227 return (CAM_REQ_INPROG); 228 } else { 229 printf("cam_periph_alloc: attempt to re-allocate " 230 "valid device %s%d rejected flags %#x " 231 "refcount %d\n", periph->periph_name, 232 periph->unit_number, periph->flags, 233 periph->refcount); 234 } 235 return (CAM_REQ_INVALID); 236 } 237 238 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 239 M_NOWAIT|M_ZERO); 240 241 if (periph == NULL) 242 return (CAM_RESRC_UNAVAIL); 243 244 init_level++; 245 246 sim = xpt_path_sim(path); 247 path_id = xpt_path_path_id(path); 248 target_id = xpt_path_target_id(path); 249 lun_id = xpt_path_lun_id(path); 250 periph->periph_start = periph_start; 251 periph->periph_dtor = periph_dtor; 252 periph->periph_oninval = periph_oninvalidate; 253 periph->type = type; 254 periph->periph_name = name; 255 periph->scheduled_priority = CAM_PRIORITY_NONE; 256 periph->immediate_priority = CAM_PRIORITY_NONE; 257 periph->refcount = 1; /* Dropped by invalidation. */ 258 periph->sim = sim; 259 SLIST_INIT(&periph->ccb_list); 260 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 261 if (status != CAM_REQ_CMP) 262 goto failure; 263 periph->path = path; 264 265 xpt_lock_buses(); 266 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 267 if (strcmp((*p_drv)->driver_name, name) == 0) 268 break; 269 } 270 if (*p_drv == NULL) { 271 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 272 xpt_unlock_buses(); 273 xpt_free_path(periph->path); 274 free(periph, M_CAMPERIPH); 275 return (CAM_REQ_INVALID); 276 } 277 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id, 278 path->device->serial_num); 279 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 280 while (cur_periph != NULL 281 && cur_periph->unit_number < periph->unit_number) 282 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 283 if (cur_periph != NULL) { 284 KASSERT(cur_periph->unit_number != periph->unit_number, 285 ("duplicate units on periph list")); 286 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 287 } else { 288 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 289 (*p_drv)->generation++; 290 } 291 xpt_unlock_buses(); 292 293 init_level++; 294 295 status = xpt_add_periph(periph); 296 if (status != CAM_REQ_CMP) 297 goto failure; 298 299 init_level++; 300 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 301 302 status = periph_ctor(periph, arg); 303 304 if (status == CAM_REQ_CMP) 305 init_level++; 306 307 failure: 308 switch (init_level) { 309 case 4: 310 /* Initialized successfully */ 311 break; 312 case 3: 313 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 314 xpt_remove_periph(periph); 315 /* FALLTHROUGH */ 316 case 2: 317 xpt_lock_buses(); 318 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 319 xpt_unlock_buses(); 320 xpt_free_path(periph->path); 321 /* FALLTHROUGH */ 322 case 1: 323 free(periph, M_CAMPERIPH); 324 /* FALLTHROUGH */ 325 case 0: 326 /* No cleanup to perform. */ 327 break; 328 default: 329 panic("%s: Unknown init level", __func__); 330 } 331 return(status); 332 } 333 334 /* 335 * Find a peripheral structure with the specified path, target, lun, 336 * and (optionally) type. If the name is NULL, this function will return 337 * the first peripheral driver that matches the specified path. 338 */ 339 struct cam_periph * 340 cam_periph_find(struct cam_path *path, char *name) 341 { 342 struct periph_driver **p_drv; 343 struct cam_periph *periph; 344 345 xpt_lock_buses(); 346 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 347 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 348 continue; 349 350 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 351 if (xpt_path_comp(periph->path, path) == 0) { 352 xpt_unlock_buses(); 353 cam_periph_assert(periph, MA_OWNED); 354 return(periph); 355 } 356 } 357 if (name != NULL) { 358 xpt_unlock_buses(); 359 return(NULL); 360 } 361 } 362 xpt_unlock_buses(); 363 return(NULL); 364 } 365 366 /* 367 * Find peripheral driver instances attached to the specified path. 368 */ 369 int 370 cam_periph_list(struct cam_path *path, struct sbuf *sb) 371 { 372 struct sbuf local_sb; 373 struct periph_driver **p_drv; 374 struct cam_periph *periph; 375 int count; 376 int sbuf_alloc_len; 377 378 sbuf_alloc_len = 16; 379 retry: 380 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 381 count = 0; 382 xpt_lock_buses(); 383 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 384 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 385 if (xpt_path_comp(periph->path, path) != 0) 386 continue; 387 388 if (sbuf_len(&local_sb) != 0) 389 sbuf_cat(&local_sb, ","); 390 391 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 392 periph->unit_number); 393 394 if (sbuf_error(&local_sb) == ENOMEM) { 395 sbuf_alloc_len *= 2; 396 xpt_unlock_buses(); 397 sbuf_delete(&local_sb); 398 goto retry; 399 } 400 count++; 401 } 402 } 403 xpt_unlock_buses(); 404 sbuf_finish(&local_sb); 405 if (sbuf_len(sb) != 0) 406 sbuf_cat(sb, ","); 407 sbuf_cat(sb, sbuf_data(&local_sb)); 408 sbuf_delete(&local_sb); 409 return (count); 410 } 411 412 int 413 cam_periph_acquire(struct cam_periph *periph) 414 { 415 int status; 416 417 if (periph == NULL) 418 return (EINVAL); 419 420 status = ENOENT; 421 xpt_lock_buses(); 422 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 423 periph->refcount++; 424 status = 0; 425 } 426 xpt_unlock_buses(); 427 428 return (status); 429 } 430 431 void 432 cam_periph_doacquire(struct cam_periph *periph) 433 { 434 435 xpt_lock_buses(); 436 KASSERT(periph->refcount >= 1, 437 ("cam_periph_doacquire() with refcount == %d", periph->refcount)); 438 periph->refcount++; 439 xpt_unlock_buses(); 440 } 441 442 void 443 cam_periph_release_locked_buses(struct cam_periph *periph) 444 { 445 446 cam_periph_assert(periph, MA_OWNED); 447 KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); 448 if (--periph->refcount == 0) 449 camperiphfree(periph); 450 } 451 452 void 453 cam_periph_release_locked(struct cam_periph *periph) 454 { 455 456 if (periph == NULL) 457 return; 458 459 xpt_lock_buses(); 460 cam_periph_release_locked_buses(periph); 461 xpt_unlock_buses(); 462 } 463 464 void 465 cam_periph_release(struct cam_periph *periph) 466 { 467 struct mtx *mtx; 468 469 if (periph == NULL) 470 return; 471 472 cam_periph_assert(periph, MA_NOTOWNED); 473 mtx = cam_periph_mtx(periph); 474 mtx_lock(mtx); 475 cam_periph_release_locked(periph); 476 mtx_unlock(mtx); 477 } 478 479 /* 480 * hold/unhold act as mutual exclusion for sections of the code that 481 * need to sleep and want to make sure that other sections that 482 * will interfere are held off. This only protects exclusive sections 483 * from each other. 484 */ 485 int 486 cam_periph_hold(struct cam_periph *periph, int priority) 487 { 488 int error; 489 490 /* 491 * Increment the reference count on the peripheral 492 * while we wait for our lock attempt to succeed 493 * to ensure the peripheral doesn't disappear out 494 * from user us while we sleep. 495 */ 496 497 if (cam_periph_acquire(periph) != 0) 498 return (ENXIO); 499 500 cam_periph_assert(periph, MA_OWNED); 501 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 502 periph->flags |= CAM_PERIPH_LOCK_WANTED; 503 if ((error = cam_periph_sleep(periph, periph, priority, 504 "caplck", 0)) != 0) { 505 cam_periph_release_locked(periph); 506 return (error); 507 } 508 if (periph->flags & CAM_PERIPH_INVALID) { 509 cam_periph_release_locked(periph); 510 return (ENXIO); 511 } 512 } 513 514 periph->flags |= CAM_PERIPH_LOCKED; 515 return (0); 516 } 517 518 void 519 cam_periph_unhold(struct cam_periph *periph) 520 { 521 522 cam_periph_assert(periph, MA_OWNED); 523 524 periph->flags &= ~CAM_PERIPH_LOCKED; 525 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 526 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 527 wakeup(periph); 528 } 529 530 cam_periph_release_locked(periph); 531 } 532 533 void 534 cam_periph_hold_boot(struct cam_periph *periph) 535 { 536 537 root_mount_hold_token(periph->periph_name, &periph->periph_rootmount); 538 } 539 540 void 541 cam_periph_release_boot(struct cam_periph *periph) 542 { 543 544 root_mount_rel(&periph->periph_rootmount); 545 } 546 547 /* 548 * Look for the next unit number that is not currently in use for this 549 * peripheral type starting at "newunit". Also exclude unit numbers that 550 * are reserved by for future "hardwiring" unless we already know that this 551 * is a potential wired device. Only assume that the device is "wired" the 552 * first time through the loop since after that we'll be looking at unit 553 * numbers that did not match a wiring entry. 554 */ 555 static u_int 556 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, bool wired, 557 path_id_t pathid, target_id_t target, lun_id_t lun) 558 { 559 struct cam_periph *periph; 560 char *periph_name; 561 int i, val, dunit, r; 562 const char *dname, *strval; 563 564 periph_name = p_drv->driver_name; 565 for (;;newunit++) { 566 for (periph = TAILQ_FIRST(&p_drv->units); 567 periph != NULL && periph->unit_number != newunit; 568 periph = TAILQ_NEXT(periph, unit_links)) 569 ; 570 571 if (periph != NULL && periph->unit_number == newunit) { 572 if (wired) { 573 xpt_print(periph->path, "Duplicate Wired " 574 "Device entry!\n"); 575 xpt_print(periph->path, "Second device (%s " 576 "device at scbus%d target %d lun %d) will " 577 "not be wired\n", periph_name, pathid, 578 target, lun); 579 wired = false; 580 } 581 continue; 582 } 583 if (wired) 584 break; 585 586 /* 587 * Don't allow the mere presence of any attributes of a device 588 * means that it is for a wired down entry. Instead, insist that 589 * one of the matching criteria from camperiphunit be present 590 * for the device. 591 */ 592 i = 0; 593 dname = periph_name; 594 for (;;) { 595 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 596 if (r != 0) 597 break; 598 599 if (newunit != dunit) 600 continue; 601 if (resource_string_value(dname, dunit, "sn", &strval) == 0 || 602 resource_int_value(dname, dunit, "lun", &val) == 0 || 603 resource_int_value(dname, dunit, "target", &val) == 0 || 604 resource_string_value(dname, dunit, "at", &strval) == 0) 605 break; 606 } 607 if (r != 0) 608 break; 609 } 610 return (newunit); 611 } 612 613 static u_int 614 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 615 target_id_t target, lun_id_t lun, const char *sn) 616 { 617 bool wired = false; 618 u_int unit; 619 int i, val, dunit; 620 const char *dname, *strval; 621 char pathbuf[32], *periph_name; 622 623 periph_name = p_drv->driver_name; 624 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 625 unit = 0; 626 i = 0; 627 dname = periph_name; 628 629 for (wired = false; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 630 wired = false) { 631 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 632 if (strcmp(strval, pathbuf) != 0) 633 continue; 634 wired = true; 635 } 636 if (resource_int_value(dname, dunit, "target", &val) == 0) { 637 if (val != target) 638 continue; 639 wired = true; 640 } 641 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 642 if (val != lun) 643 continue; 644 wired = true; 645 } 646 if (resource_string_value(dname, dunit, "sn", &strval) == 0) { 647 if (sn == NULL || strcmp(strval, sn) != 0) 648 continue; 649 wired = true; 650 } 651 if (wired) { 652 unit = dunit; 653 break; 654 } 655 } 656 657 /* 658 * Either start from 0 looking for the next unit or from 659 * the unit number given in the resource config. This way, 660 * if we have wildcard matches, we don't return the same 661 * unit number twice. 662 */ 663 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 664 665 return (unit); 666 } 667 668 void 669 cam_periph_invalidate(struct cam_periph *periph) 670 { 671 672 cam_periph_assert(periph, MA_OWNED); 673 /* 674 * We only tear down the device the first time a peripheral is 675 * invalidated. 676 */ 677 if ((periph->flags & CAM_PERIPH_INVALID) != 0) 678 return; 679 680 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 681 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) { 682 struct sbuf sb; 683 char buffer[160]; 684 685 sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN); 686 xpt_denounce_periph_sbuf(periph, &sb); 687 sbuf_finish(&sb); 688 sbuf_putbuf(&sb); 689 } 690 periph->flags |= CAM_PERIPH_INVALID; 691 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 692 if (periph->periph_oninval != NULL) 693 periph->periph_oninval(periph); 694 cam_periph_release_locked(periph); 695 } 696 697 static void 698 camperiphfree(struct cam_periph *periph) 699 { 700 struct periph_driver **p_drv; 701 struct periph_driver *drv; 702 703 cam_periph_assert(periph, MA_OWNED); 704 KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating", 705 periph->periph_name, periph->unit_number)); 706 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 707 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 708 break; 709 } 710 if (*p_drv == NULL) { 711 printf("camperiphfree: attempt to free non-existant periph\n"); 712 return; 713 } 714 /* 715 * Cache a pointer to the periph_driver structure. If a 716 * periph_driver is added or removed from the array (see 717 * periphdriver_register()) while we drop the toplogy lock 718 * below, p_drv may change. This doesn't protect against this 719 * particular periph_driver going away. That will require full 720 * reference counting in the periph_driver infrastructure. 721 */ 722 drv = *p_drv; 723 724 /* 725 * We need to set this flag before dropping the topology lock, to 726 * let anyone who is traversing the list that this peripheral is 727 * about to be freed, and there will be no more reference count 728 * checks. 729 */ 730 periph->flags |= CAM_PERIPH_FREE; 731 732 /* 733 * The peripheral destructor semantics dictate calling with only the 734 * SIM mutex held. Since it might sleep, it should not be called 735 * with the topology lock held. 736 */ 737 xpt_unlock_buses(); 738 739 /* 740 * We need to call the peripheral destructor prior to removing the 741 * peripheral from the list. Otherwise, we risk running into a 742 * scenario where the peripheral unit number may get reused 743 * (because it has been removed from the list), but some resources 744 * used by the peripheral are still hanging around. In particular, 745 * the devfs nodes used by some peripherals like the pass(4) driver 746 * aren't fully cleaned up until the destructor is run. If the 747 * unit number is reused before the devfs instance is fully gone, 748 * devfs will panic. 749 */ 750 if (periph->periph_dtor != NULL) 751 periph->periph_dtor(periph); 752 753 /* 754 * The peripheral list is protected by the topology lock. We have to 755 * remove the periph from the drv list before we call deferred_ac. The 756 * AC_FOUND_DEVICE callback won't create a new periph if it's still there. 757 */ 758 xpt_lock_buses(); 759 760 TAILQ_REMOVE(&drv->units, periph, unit_links); 761 drv->generation++; 762 763 xpt_remove_periph(periph); 764 765 xpt_unlock_buses(); 766 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) 767 xpt_print(periph->path, "Periph destroyed\n"); 768 else 769 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 770 771 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 772 union ccb ccb; 773 void *arg; 774 775 memset(&ccb, 0, sizeof(ccb)); 776 switch (periph->deferred_ac) { 777 case AC_FOUND_DEVICE: 778 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 779 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 780 xpt_action(&ccb); 781 arg = &ccb; 782 break; 783 case AC_PATH_REGISTERED: 784 xpt_path_inq(&ccb.cpi, periph->path); 785 arg = &ccb; 786 break; 787 default: 788 arg = NULL; 789 break; 790 } 791 periph->deferred_callback(NULL, periph->deferred_ac, 792 periph->path, arg); 793 } 794 xpt_free_path(periph->path); 795 free(periph, M_CAMPERIPH); 796 xpt_lock_buses(); 797 } 798 799 /* 800 * Map user virtual pointers into kernel virtual address space, so we can 801 * access the memory. This is now a generic function that centralizes most 802 * of the sanity checks on the data flags, if any. 803 * This also only works for up to maxphys memory. Since we use 804 * buffers to map stuff in and out, we're limited to the buffer size. 805 */ 806 int 807 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo, 808 u_int maxmap) 809 { 810 int numbufs, i; 811 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 812 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 813 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 814 815 bzero(mapinfo, sizeof(*mapinfo)); 816 if (maxmap == 0) 817 maxmap = DFLTPHYS; /* traditional default */ 818 else if (maxmap > maxphys) 819 maxmap = maxphys; /* for safety */ 820 switch(ccb->ccb_h.func_code) { 821 case XPT_DEV_MATCH: 822 if (ccb->cdm.match_buf_len == 0) { 823 printf("cam_periph_mapmem: invalid match buffer " 824 "length 0\n"); 825 return(EINVAL); 826 } 827 if (ccb->cdm.pattern_buf_len > 0) { 828 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 829 lengths[0] = ccb->cdm.pattern_buf_len; 830 dirs[0] = CAM_DIR_OUT; 831 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 832 lengths[1] = ccb->cdm.match_buf_len; 833 dirs[1] = CAM_DIR_IN; 834 numbufs = 2; 835 } else { 836 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 837 lengths[0] = ccb->cdm.match_buf_len; 838 dirs[0] = CAM_DIR_IN; 839 numbufs = 1; 840 } 841 /* 842 * This request will not go to the hardware, no reason 843 * to be so strict. vmapbuf() is able to map up to maxphys. 844 */ 845 maxmap = maxphys; 846 break; 847 case XPT_SCSI_IO: 848 case XPT_CONT_TARGET_IO: 849 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 850 return(0); 851 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 852 return (EINVAL); 853 data_ptrs[0] = &ccb->csio.data_ptr; 854 lengths[0] = ccb->csio.dxfer_len; 855 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 856 numbufs = 1; 857 break; 858 case XPT_ATA_IO: 859 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 860 return(0); 861 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 862 return (EINVAL); 863 data_ptrs[0] = &ccb->ataio.data_ptr; 864 lengths[0] = ccb->ataio.dxfer_len; 865 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 866 numbufs = 1; 867 break; 868 case XPT_MMC_IO: 869 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 870 return(0); 871 /* Two mappings: one for cmd->data and one for cmd->data->data */ 872 data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data; 873 lengths[0] = sizeof(struct mmc_data *); 874 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 875 data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data; 876 lengths[1] = ccb->mmcio.cmd.data->len; 877 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 878 numbufs = 2; 879 break; 880 case XPT_SMP_IO: 881 data_ptrs[0] = &ccb->smpio.smp_request; 882 lengths[0] = ccb->smpio.smp_request_len; 883 dirs[0] = CAM_DIR_OUT; 884 data_ptrs[1] = &ccb->smpio.smp_response; 885 lengths[1] = ccb->smpio.smp_response_len; 886 dirs[1] = CAM_DIR_IN; 887 numbufs = 2; 888 break; 889 case XPT_NVME_IO: 890 case XPT_NVME_ADMIN: 891 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 892 return (0); 893 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 894 return (EINVAL); 895 data_ptrs[0] = &ccb->nvmeio.data_ptr; 896 lengths[0] = ccb->nvmeio.dxfer_len; 897 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 898 numbufs = 1; 899 break; 900 case XPT_DEV_ADVINFO: 901 if (ccb->cdai.bufsiz == 0) 902 return (0); 903 904 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 905 lengths[0] = ccb->cdai.bufsiz; 906 dirs[0] = CAM_DIR_IN; 907 numbufs = 1; 908 909 /* 910 * This request will not go to the hardware, no reason 911 * to be so strict. vmapbuf() is able to map up to maxphys. 912 */ 913 maxmap = maxphys; 914 break; 915 default: 916 return(EINVAL); 917 break; /* NOTREACHED */ 918 } 919 920 /* 921 * Check the transfer length and permissions first, so we don't 922 * have to unmap any previously mapped buffers. 923 */ 924 for (i = 0; i < numbufs; i++) { 925 if (lengths[i] > maxmap) { 926 printf("cam_periph_mapmem: attempt to map %lu bytes, " 927 "which is greater than %lu\n", 928 (long)(lengths[i]), (u_long)maxmap); 929 return (E2BIG); 930 } 931 } 932 933 /* 934 * This keeps the kernel stack of current thread from getting 935 * swapped. In low-memory situations where the kernel stack might 936 * otherwise get swapped out, this holds it and allows the thread 937 * to make progress and release the kernel mapped pages sooner. 938 * 939 * XXX KDM should I use P_NOSWAP instead? 940 */ 941 PHOLD(curproc); 942 943 for (i = 0; i < numbufs; i++) { 944 /* Save the user's data address. */ 945 mapinfo->orig[i] = *data_ptrs[i]; 946 947 /* 948 * For small buffers use malloc+copyin/copyout instead of 949 * mapping to KVA to avoid expensive TLB shootdowns. For 950 * small allocations malloc is backed by UMA, and so much 951 * cheaper on SMP systems. 952 */ 953 if (lengths[i] <= periph_mapmem_thresh && 954 ccb->ccb_h.func_code != XPT_MMC_IO) { 955 *data_ptrs[i] = malloc(lengths[i], M_CAMPERIPH, 956 M_WAITOK); 957 if (dirs[i] != CAM_DIR_IN) { 958 if (copyin(mapinfo->orig[i], *data_ptrs[i], 959 lengths[i]) != 0) { 960 free(*data_ptrs[i], M_CAMPERIPH); 961 *data_ptrs[i] = mapinfo->orig[i]; 962 goto fail; 963 } 964 } else 965 bzero(*data_ptrs[i], lengths[i]); 966 continue; 967 } 968 969 /* 970 * Get the buffer. 971 */ 972 mapinfo->bp[i] = uma_zalloc(pbuf_zone, M_WAITOK); 973 974 /* set the direction */ 975 mapinfo->bp[i]->b_iocmd = (dirs[i] == CAM_DIR_OUT) ? 976 BIO_WRITE : BIO_READ; 977 978 /* Map the buffer into kernel memory. */ 979 if (vmapbuf(mapinfo->bp[i], *data_ptrs[i], lengths[i], 1) < 0) { 980 uma_zfree(pbuf_zone, mapinfo->bp[i]); 981 goto fail; 982 } 983 984 /* set our pointer to the new mapped area */ 985 *data_ptrs[i] = mapinfo->bp[i]->b_data; 986 } 987 988 /* 989 * Now that we've gotten this far, change ownership to the kernel 990 * of the buffers so that we don't run afoul of returning to user 991 * space with locks (on the buffer) held. 992 */ 993 for (i = 0; i < numbufs; i++) { 994 if (mapinfo->bp[i]) 995 BUF_KERNPROC(mapinfo->bp[i]); 996 } 997 998 mapinfo->num_bufs_used = numbufs; 999 return(0); 1000 1001 fail: 1002 for (i--; i >= 0; i--) { 1003 if (mapinfo->bp[i]) { 1004 vunmapbuf(mapinfo->bp[i]); 1005 uma_zfree(pbuf_zone, mapinfo->bp[i]); 1006 } else 1007 free(*data_ptrs[i], M_CAMPERIPH); 1008 *data_ptrs[i] = mapinfo->orig[i]; 1009 } 1010 PRELE(curproc); 1011 return(EACCES); 1012 } 1013 1014 /* 1015 * Unmap memory segments mapped into kernel virtual address space by 1016 * cam_periph_mapmem(). 1017 */ 1018 void 1019 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 1020 { 1021 int numbufs, i; 1022 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1023 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 1024 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 1025 1026 if (mapinfo->num_bufs_used <= 0) { 1027 /* nothing to free and the process wasn't held. */ 1028 return; 1029 } 1030 1031 switch (ccb->ccb_h.func_code) { 1032 case XPT_DEV_MATCH: 1033 if (ccb->cdm.pattern_buf_len > 0) { 1034 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1035 lengths[0] = ccb->cdm.pattern_buf_len; 1036 dirs[0] = CAM_DIR_OUT; 1037 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1038 lengths[1] = ccb->cdm.match_buf_len; 1039 dirs[1] = CAM_DIR_IN; 1040 numbufs = 2; 1041 } else { 1042 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1043 lengths[0] = ccb->cdm.match_buf_len; 1044 dirs[0] = CAM_DIR_IN; 1045 numbufs = 1; 1046 } 1047 break; 1048 case XPT_SCSI_IO: 1049 case XPT_CONT_TARGET_IO: 1050 data_ptrs[0] = &ccb->csio.data_ptr; 1051 lengths[0] = ccb->csio.dxfer_len; 1052 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1053 numbufs = 1; 1054 break; 1055 case XPT_ATA_IO: 1056 data_ptrs[0] = &ccb->ataio.data_ptr; 1057 lengths[0] = ccb->ataio.dxfer_len; 1058 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1059 numbufs = 1; 1060 break; 1061 case XPT_MMC_IO: 1062 data_ptrs[0] = (u_int8_t **)&ccb->mmcio.cmd.data; 1063 lengths[0] = sizeof(struct mmc_data *); 1064 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1065 data_ptrs[1] = (u_int8_t **)&ccb->mmcio.cmd.data->data; 1066 lengths[1] = ccb->mmcio.cmd.data->len; 1067 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 1068 numbufs = 2; 1069 break; 1070 case XPT_SMP_IO: 1071 data_ptrs[0] = &ccb->smpio.smp_request; 1072 lengths[0] = ccb->smpio.smp_request_len; 1073 dirs[0] = CAM_DIR_OUT; 1074 data_ptrs[1] = &ccb->smpio.smp_response; 1075 lengths[1] = ccb->smpio.smp_response_len; 1076 dirs[1] = CAM_DIR_IN; 1077 numbufs = 2; 1078 break; 1079 case XPT_NVME_IO: 1080 case XPT_NVME_ADMIN: 1081 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1082 lengths[0] = ccb->nvmeio.dxfer_len; 1083 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1084 numbufs = 1; 1085 break; 1086 case XPT_DEV_ADVINFO: 1087 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1088 lengths[0] = ccb->cdai.bufsiz; 1089 dirs[0] = CAM_DIR_IN; 1090 numbufs = 1; 1091 break; 1092 default: 1093 /* allow ourselves to be swapped once again */ 1094 PRELE(curproc); 1095 return; 1096 break; /* NOTREACHED */ 1097 } 1098 1099 for (i = 0; i < numbufs; i++) { 1100 if (mapinfo->bp[i]) { 1101 /* unmap the buffer */ 1102 vunmapbuf(mapinfo->bp[i]); 1103 1104 /* release the buffer */ 1105 uma_zfree(pbuf_zone, mapinfo->bp[i]); 1106 } else { 1107 if (dirs[i] != CAM_DIR_OUT) { 1108 copyout(*data_ptrs[i], mapinfo->orig[i], 1109 lengths[i]); 1110 } 1111 free(*data_ptrs[i], M_CAMPERIPH); 1112 } 1113 1114 /* Set the user's pointer back to the original value */ 1115 *data_ptrs[i] = mapinfo->orig[i]; 1116 } 1117 1118 /* allow ourselves to be swapped once again */ 1119 PRELE(curproc); 1120 } 1121 1122 int 1123 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 1124 int (*error_routine)(union ccb *ccb, 1125 cam_flags camflags, 1126 u_int32_t sense_flags)) 1127 { 1128 union ccb *ccb; 1129 int error; 1130 int found; 1131 1132 error = found = 0; 1133 1134 switch(cmd){ 1135 case CAMGETPASSTHRU: 1136 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 1137 xpt_setup_ccb(&ccb->ccb_h, 1138 ccb->ccb_h.path, 1139 CAM_PRIORITY_NORMAL); 1140 ccb->ccb_h.func_code = XPT_GDEVLIST; 1141 1142 /* 1143 * Basically, the point of this is that we go through 1144 * getting the list of devices, until we find a passthrough 1145 * device. In the current version of the CAM code, the 1146 * only way to determine what type of device we're dealing 1147 * with is by its name. 1148 */ 1149 while (found == 0) { 1150 ccb->cgdl.index = 0; 1151 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1152 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1153 /* we want the next device in the list */ 1154 xpt_action(ccb); 1155 if (strncmp(ccb->cgdl.periph_name, 1156 "pass", 4) == 0){ 1157 found = 1; 1158 break; 1159 } 1160 } 1161 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1162 (found == 0)) { 1163 ccb->cgdl.periph_name[0] = '\0'; 1164 ccb->cgdl.unit_number = 0; 1165 break; 1166 } 1167 } 1168 1169 /* copy the result back out */ 1170 bcopy(ccb, addr, sizeof(union ccb)); 1171 1172 /* and release the ccb */ 1173 xpt_release_ccb(ccb); 1174 1175 break; 1176 default: 1177 error = ENOTTY; 1178 break; 1179 } 1180 return(error); 1181 } 1182 1183 static void 1184 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb) 1185 { 1186 1187 panic("%s: already done with ccb %p", __func__, done_ccb); 1188 } 1189 1190 static void 1191 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb) 1192 { 1193 1194 /* Caller will release the CCB */ 1195 xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED); 1196 done_ccb->ccb_h.cbfcnp = cam_periph_done_panic; 1197 wakeup(&done_ccb->ccb_h.cbfcnp); 1198 } 1199 1200 static void 1201 cam_periph_ccbwait(union ccb *ccb) 1202 { 1203 1204 if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 1205 while (ccb->ccb_h.cbfcnp != cam_periph_done_panic) 1206 xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, 1207 PRIBIO, "cbwait", 0); 1208 } 1209 KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && 1210 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG, 1211 ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, " 1212 "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code, 1213 ccb->ccb_h.status, ccb->ccb_h.pinfo.index)); 1214 } 1215 1216 /* 1217 * Dispatch a CCB and wait for it to complete. If the CCB has set a 1218 * callback function (ccb->ccb_h.cbfcnp), it will be overwritten and lost. 1219 */ 1220 int 1221 cam_periph_runccb(union ccb *ccb, 1222 int (*error_routine)(union ccb *ccb, 1223 cam_flags camflags, 1224 u_int32_t sense_flags), 1225 cam_flags camflags, u_int32_t sense_flags, 1226 struct devstat *ds) 1227 { 1228 struct bintime *starttime; 1229 struct bintime ltime; 1230 int error; 1231 bool must_poll; 1232 uint32_t timeout = 1; 1233 1234 starttime = NULL; 1235 xpt_path_assert(ccb->ccb_h.path, MA_OWNED); 1236 KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0, 1237 ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb, 1238 ccb->ccb_h.func_code, ccb->ccb_h.flags)); 1239 1240 /* 1241 * If the user has supplied a stats structure, and if we understand 1242 * this particular type of ccb, record the transaction start. 1243 */ 1244 if (ds != NULL && 1245 (ccb->ccb_h.func_code == XPT_SCSI_IO || 1246 ccb->ccb_h.func_code == XPT_ATA_IO || 1247 ccb->ccb_h.func_code == XPT_NVME_IO)) { 1248 starttime = <ime; 1249 binuptime(starttime); 1250 devstat_start_transaction(ds, starttime); 1251 } 1252 1253 /* 1254 * We must poll the I/O while we're dumping. The scheduler is normally 1255 * stopped for dumping, except when we call doadump from ddb. While the 1256 * scheduler is running in this case, we still need to poll the I/O to 1257 * avoid sleeping waiting for the ccb to complete. 1258 * 1259 * A panic triggered dump stops the scheduler, any callback from the 1260 * shutdown_post_sync event will run with the scheduler stopped, but 1261 * before we're officially dumping. To avoid hanging in adashutdown 1262 * initiated commands (or other similar situations), we have to test for 1263 * either SCHEDULER_STOPPED() here as well. 1264 * 1265 * To avoid locking problems, dumping/polling callers must call 1266 * without a periph lock held. 1267 */ 1268 must_poll = dumping || SCHEDULER_STOPPED(); 1269 ccb->ccb_h.cbfcnp = cam_periph_done; 1270 1271 /* 1272 * If we're polling, then we need to ensure that we have ample resources 1273 * in the periph. cam_periph_error can reschedule the ccb by calling 1274 * xpt_action and returning ERESTART, so we have to effect the polling 1275 * in the do loop below. 1276 */ 1277 if (must_poll) { 1278 if (cam_sim_pollable(ccb->ccb_h.path->bus->sim)) 1279 timeout = xpt_poll_setup(ccb); 1280 else 1281 timeout = 0; 1282 } 1283 1284 if (timeout == 0) { 1285 ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 1286 error = EBUSY; 1287 } else { 1288 xpt_action(ccb); 1289 do { 1290 if (must_poll) { 1291 xpt_pollwait(ccb, timeout); 1292 timeout = ccb->ccb_h.timeout * 10; 1293 } else { 1294 cam_periph_ccbwait(ccb); 1295 } 1296 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1297 error = 0; 1298 else if (error_routine != NULL) { 1299 ccb->ccb_h.cbfcnp = cam_periph_done; 1300 error = (*error_routine)(ccb, camflags, sense_flags); 1301 } else 1302 error = 0; 1303 } while (error == ERESTART); 1304 } 1305 1306 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1307 cam_release_devq(ccb->ccb_h.path, 1308 /* relsim_flags */0, 1309 /* openings */0, 1310 /* timeout */0, 1311 /* getcount_only */ FALSE); 1312 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1313 } 1314 1315 if (ds != NULL) { 1316 uint32_t bytes; 1317 devstat_tag_type tag; 1318 bool valid = true; 1319 1320 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1321 bytes = ccb->csio.dxfer_len - ccb->csio.resid; 1322 tag = (devstat_tag_type)(ccb->csio.tag_action & 0x3); 1323 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1324 bytes = ccb->ataio.dxfer_len - ccb->ataio.resid; 1325 tag = (devstat_tag_type)0; 1326 } else if (ccb->ccb_h.func_code == XPT_NVME_IO) { 1327 bytes = ccb->nvmeio.dxfer_len; /* NB: resid no possible */ 1328 tag = (devstat_tag_type)0; 1329 } else { 1330 valid = false; 1331 } 1332 if (valid) 1333 devstat_end_transaction(ds, bytes, tag, 1334 ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? 1335 DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1336 DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime); 1337 } 1338 1339 return(error); 1340 } 1341 1342 void 1343 cam_freeze_devq(struct cam_path *path) 1344 { 1345 struct ccb_hdr ccb_h; 1346 1347 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n")); 1348 memset(&ccb_h, 0, sizeof(ccb_h)); 1349 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 1350 ccb_h.func_code = XPT_NOOP; 1351 ccb_h.flags = CAM_DEV_QFREEZE; 1352 xpt_action((union ccb *)&ccb_h); 1353 } 1354 1355 u_int32_t 1356 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 1357 u_int32_t openings, u_int32_t arg, 1358 int getcount_only) 1359 { 1360 struct ccb_relsim crs; 1361 1362 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n", 1363 relsim_flags, openings, arg, getcount_only)); 1364 memset(&crs, 0, sizeof(crs)); 1365 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1366 crs.ccb_h.func_code = XPT_REL_SIMQ; 1367 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1368 crs.release_flags = relsim_flags; 1369 crs.openings = openings; 1370 crs.release_timeout = arg; 1371 xpt_action((union ccb *)&crs); 1372 return (crs.qfrozen_cnt); 1373 } 1374 1375 #define saved_ccb_ptr ppriv_ptr0 1376 static void 1377 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1378 { 1379 union ccb *saved_ccb; 1380 cam_status status; 1381 struct scsi_start_stop_unit *scsi_cmd; 1382 int error = 0, error_code, sense_key, asc, ascq; 1383 u_int16_t done_flags; 1384 1385 scsi_cmd = (struct scsi_start_stop_unit *) 1386 &done_ccb->csio.cdb_io.cdb_bytes; 1387 status = done_ccb->ccb_h.status; 1388 1389 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1390 if (scsi_extract_sense_ccb(done_ccb, 1391 &error_code, &sense_key, &asc, &ascq)) { 1392 /* 1393 * If the error is "invalid field in CDB", 1394 * and the load/eject flag is set, turn the 1395 * flag off and try again. This is just in 1396 * case the drive in question barfs on the 1397 * load eject flag. The CAM code should set 1398 * the load/eject flag by default for 1399 * removable media. 1400 */ 1401 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1402 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1403 (asc == 0x24) && (ascq == 0x00)) { 1404 scsi_cmd->how &= ~SSS_LOEJ; 1405 if (status & CAM_DEV_QFRZN) { 1406 cam_release_devq(done_ccb->ccb_h.path, 1407 0, 0, 0, 0); 1408 done_ccb->ccb_h.status &= 1409 ~CAM_DEV_QFRZN; 1410 } 1411 xpt_action(done_ccb); 1412 goto out; 1413 } 1414 } 1415 error = cam_periph_error(done_ccb, 0, 1416 SF_RETRY_UA | SF_NO_PRINT); 1417 if (error == ERESTART) 1418 goto out; 1419 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1420 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1421 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1422 } 1423 } else { 1424 /* 1425 * If we have successfully taken a device from the not 1426 * ready to ready state, re-scan the device and re-get 1427 * the inquiry information. Many devices (mostly disks) 1428 * don't properly report their inquiry information unless 1429 * they are spun up. 1430 */ 1431 if (scsi_cmd->opcode == START_STOP_UNIT) 1432 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1433 } 1434 1435 /* If we tried long wait and still failed, remember that. */ 1436 if ((periph->flags & CAM_PERIPH_RECOVERY_WAIT) && 1437 (done_ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY)) { 1438 periph->flags &= ~CAM_PERIPH_RECOVERY_WAIT; 1439 if (error != 0 && done_ccb->ccb_h.retry_count == 0) 1440 periph->flags |= CAM_PERIPH_RECOVERY_WAIT_FAILED; 1441 } 1442 1443 /* 1444 * After recovery action(s) completed, return to the original CCB. 1445 * If the recovery CCB has failed, considering its own possible 1446 * retries and recovery, assume we are back in state where we have 1447 * been originally, but without recovery hopes left. In such case, 1448 * after the final attempt below, we cancel any further retries, 1449 * blocking by that also any new recovery attempts for this CCB, 1450 * and the result will be the final one returned to the CCB owher. 1451 */ 1452 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1453 KASSERT(saved_ccb->ccb_h.func_code == XPT_SCSI_IO, 1454 ("%s: saved_ccb func_code %#x != XPT_SCSI_IO", 1455 __func__, saved_ccb->ccb_h.func_code)); 1456 KASSERT(done_ccb->ccb_h.func_code == XPT_SCSI_IO, 1457 ("%s: done_ccb func_code %#x != XPT_SCSI_IO", 1458 __func__, done_ccb->ccb_h.func_code)); 1459 saved_ccb->ccb_h.periph_links = done_ccb->ccb_h.periph_links; 1460 done_flags = done_ccb->ccb_h.alloc_flags; 1461 bcopy(saved_ccb, done_ccb, sizeof(struct ccb_scsiio)); 1462 done_ccb->ccb_h.alloc_flags = done_flags; 1463 xpt_free_ccb(saved_ccb); 1464 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1465 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1466 if (error != 0) 1467 done_ccb->ccb_h.retry_count = 0; 1468 xpt_action(done_ccb); 1469 1470 out: 1471 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1472 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1473 } 1474 1475 /* 1476 * Generic Async Event handler. Peripheral drivers usually 1477 * filter out the events that require personal attention, 1478 * and leave the rest to this function. 1479 */ 1480 void 1481 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1482 struct cam_path *path, void *arg) 1483 { 1484 switch (code) { 1485 case AC_LOST_DEVICE: 1486 cam_periph_invalidate(periph); 1487 break; 1488 default: 1489 break; 1490 } 1491 } 1492 1493 void 1494 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1495 { 1496 struct ccb_getdevstats cgds; 1497 1498 memset(&cgds, 0, sizeof(cgds)); 1499 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1500 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1501 xpt_action((union ccb *)&cgds); 1502 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1503 } 1504 1505 void 1506 cam_periph_freeze_after_event(struct cam_periph *periph, 1507 struct timeval* event_time, u_int duration_ms) 1508 { 1509 struct timeval delta; 1510 struct timeval duration_tv; 1511 1512 if (!timevalisset(event_time)) 1513 return; 1514 1515 microtime(&delta); 1516 timevalsub(&delta, event_time); 1517 duration_tv.tv_sec = duration_ms / 1000; 1518 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1519 if (timevalcmp(&delta, &duration_tv, <)) { 1520 timevalsub(&duration_tv, &delta); 1521 1522 duration_ms = duration_tv.tv_sec * 1000; 1523 duration_ms += duration_tv.tv_usec / 1000; 1524 cam_freeze_devq(periph->path); 1525 cam_release_devq(periph->path, 1526 RELSIM_RELEASE_AFTER_TIMEOUT, 1527 /*reduction*/0, 1528 /*timeout*/duration_ms, 1529 /*getcount_only*/0); 1530 } 1531 1532 } 1533 1534 static int 1535 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1536 cam_flags camflags, u_int32_t sense_flags, 1537 int *openings, u_int32_t *relsim_flags, 1538 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1539 { 1540 struct cam_periph *periph; 1541 int error; 1542 1543 switch (ccb->csio.scsi_status) { 1544 case SCSI_STATUS_OK: 1545 case SCSI_STATUS_COND_MET: 1546 case SCSI_STATUS_INTERMED: 1547 case SCSI_STATUS_INTERMED_COND_MET: 1548 error = 0; 1549 break; 1550 case SCSI_STATUS_CMD_TERMINATED: 1551 case SCSI_STATUS_CHECK_COND: 1552 error = camperiphscsisenseerror(ccb, orig_ccb, 1553 camflags, 1554 sense_flags, 1555 openings, 1556 relsim_flags, 1557 timeout, 1558 action, 1559 action_string); 1560 break; 1561 case SCSI_STATUS_QUEUE_FULL: 1562 { 1563 /* no decrement */ 1564 struct ccb_getdevstats cgds; 1565 1566 /* 1567 * First off, find out what the current 1568 * transaction counts are. 1569 */ 1570 memset(&cgds, 0, sizeof(cgds)); 1571 xpt_setup_ccb(&cgds.ccb_h, 1572 ccb->ccb_h.path, 1573 CAM_PRIORITY_NORMAL); 1574 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1575 xpt_action((union ccb *)&cgds); 1576 1577 /* 1578 * If we were the only transaction active, treat 1579 * the QUEUE FULL as if it were a BUSY condition. 1580 */ 1581 if (cgds.dev_active != 0) { 1582 int total_openings; 1583 1584 /* 1585 * Reduce the number of openings to 1586 * be 1 less than the amount it took 1587 * to get a queue full bounded by the 1588 * minimum allowed tag count for this 1589 * device. 1590 */ 1591 total_openings = cgds.dev_active + cgds.dev_openings; 1592 *openings = cgds.dev_active; 1593 if (*openings < cgds.mintags) 1594 *openings = cgds.mintags; 1595 if (*openings < total_openings) 1596 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1597 else { 1598 /* 1599 * Some devices report queue full for 1600 * temporary resource shortages. For 1601 * this reason, we allow a minimum 1602 * tag count to be entered via a 1603 * quirk entry to prevent the queue 1604 * count on these devices from falling 1605 * to a pessimisticly low value. We 1606 * still wait for the next successful 1607 * completion, however, before queueing 1608 * more transactions to the device. 1609 */ 1610 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1611 } 1612 *timeout = 0; 1613 error = ERESTART; 1614 *action &= ~SSQ_PRINT_SENSE; 1615 break; 1616 } 1617 /* FALLTHROUGH */ 1618 } 1619 case SCSI_STATUS_BUSY: 1620 /* 1621 * Restart the queue after either another 1622 * command completes or a 1 second timeout. 1623 */ 1624 periph = xpt_path_periph(ccb->ccb_h.path); 1625 if (periph->flags & CAM_PERIPH_INVALID) { 1626 error = ENXIO; 1627 *action_string = "Periph was invalidated"; 1628 } else if ((sense_flags & SF_RETRY_BUSY) != 0 || 1629 ccb->ccb_h.retry_count > 0) { 1630 if ((sense_flags & SF_RETRY_BUSY) == 0) 1631 ccb->ccb_h.retry_count--; 1632 error = ERESTART; 1633 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1634 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1635 *timeout = 1000; 1636 } else { 1637 error = EIO; 1638 *action_string = "Retries exhausted"; 1639 } 1640 break; 1641 case SCSI_STATUS_RESERV_CONFLICT: 1642 default: 1643 error = EIO; 1644 break; 1645 } 1646 return (error); 1647 } 1648 1649 static int 1650 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1651 cam_flags camflags, u_int32_t sense_flags, 1652 int *openings, u_int32_t *relsim_flags, 1653 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1654 { 1655 struct cam_periph *periph; 1656 union ccb *orig_ccb = ccb; 1657 int error, recoveryccb; 1658 u_int16_t flags; 1659 1660 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1661 if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL) 1662 biotrack(ccb->csio.bio, __func__); 1663 #endif 1664 1665 periph = xpt_path_periph(ccb->ccb_h.path); 1666 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1667 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1668 /* 1669 * If error recovery is already in progress, don't attempt 1670 * to process this error, but requeue it unconditionally 1671 * and attempt to process it once error recovery has 1672 * completed. This failed command is probably related to 1673 * the error that caused the currently active error recovery 1674 * action so our current recovery efforts should also 1675 * address this command. Be aware that the error recovery 1676 * code assumes that only one recovery action is in progress 1677 * on a particular peripheral instance at any given time 1678 * (e.g. only one saved CCB for error recovery) so it is 1679 * imperitive that we don't violate this assumption. 1680 */ 1681 error = ERESTART; 1682 *action &= ~SSQ_PRINT_SENSE; 1683 } else { 1684 scsi_sense_action err_action; 1685 struct ccb_getdev cgd; 1686 1687 /* 1688 * Grab the inquiry data for this device. 1689 */ 1690 memset(&cgd, 0, sizeof(cgd)); 1691 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1692 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1693 xpt_action((union ccb *)&cgd); 1694 1695 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1696 sense_flags); 1697 error = err_action & SS_ERRMASK; 1698 1699 /* 1700 * Do not autostart sequential access devices 1701 * to avoid unexpected tape loading. 1702 */ 1703 if ((err_action & SS_MASK) == SS_START && 1704 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1705 *action_string = "Will not autostart a " 1706 "sequential access device"; 1707 goto sense_error_done; 1708 } 1709 1710 /* 1711 * Avoid recovery recursion if recovery action is the same. 1712 */ 1713 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1714 if (((err_action & SS_MASK) == SS_START && 1715 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1716 ((err_action & SS_MASK) == SS_TUR && 1717 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1718 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1719 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1720 *timeout = 500; 1721 } 1722 } 1723 1724 /* 1725 * If the recovery action will consume a retry, 1726 * make sure we actually have retries available. 1727 */ 1728 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1729 if (ccb->ccb_h.retry_count > 0 && 1730 (periph->flags & CAM_PERIPH_INVALID) == 0) 1731 ccb->ccb_h.retry_count--; 1732 else { 1733 *action_string = "Retries exhausted"; 1734 goto sense_error_done; 1735 } 1736 } 1737 1738 if ((err_action & SS_MASK) >= SS_START) { 1739 /* 1740 * Do common portions of commands that 1741 * use recovery CCBs. 1742 */ 1743 orig_ccb = xpt_alloc_ccb_nowait(); 1744 if (orig_ccb == NULL) { 1745 *action_string = "Can't allocate recovery CCB"; 1746 goto sense_error_done; 1747 } 1748 /* 1749 * Clear freeze flag for original request here, as 1750 * this freeze will be dropped as part of ERESTART. 1751 */ 1752 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1753 1754 KASSERT(ccb->ccb_h.func_code == XPT_SCSI_IO, 1755 ("%s: ccb func_code %#x != XPT_SCSI_IO", 1756 __func__, ccb->ccb_h.func_code)); 1757 flags = orig_ccb->ccb_h.alloc_flags; 1758 bcopy(ccb, orig_ccb, sizeof(struct ccb_scsiio)); 1759 orig_ccb->ccb_h.alloc_flags = flags; 1760 } 1761 1762 switch (err_action & SS_MASK) { 1763 case SS_NOP: 1764 *action_string = "No recovery action needed"; 1765 error = 0; 1766 break; 1767 case SS_RETRY: 1768 *action_string = "Retrying command (per sense data)"; 1769 error = ERESTART; 1770 break; 1771 case SS_FAIL: 1772 *action_string = "Unretryable error"; 1773 break; 1774 case SS_START: 1775 { 1776 int le; 1777 1778 /* 1779 * Send a start unit command to the device, and 1780 * then retry the command. 1781 */ 1782 *action_string = "Attempting to start unit"; 1783 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1784 1785 /* 1786 * Check for removable media and set 1787 * load/eject flag appropriately. 1788 */ 1789 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1790 le = TRUE; 1791 else 1792 le = FALSE; 1793 1794 scsi_start_stop(&ccb->csio, 1795 /*retries*/1, 1796 camperiphdone, 1797 MSG_SIMPLE_Q_TAG, 1798 /*start*/TRUE, 1799 /*load/eject*/le, 1800 /*immediate*/FALSE, 1801 SSD_FULL_SIZE, 1802 /*timeout*/50000); 1803 break; 1804 } 1805 case SS_TUR: 1806 { 1807 /* 1808 * Send a Test Unit Ready to the device. 1809 * If the 'many' flag is set, we send 120 1810 * test unit ready commands, one every half 1811 * second. Otherwise, we just send one TUR. 1812 * We only want to do this if the retry 1813 * count has not been exhausted. 1814 */ 1815 int retries; 1816 1817 if ((err_action & SSQ_MANY) != 0 && (periph->flags & 1818 CAM_PERIPH_RECOVERY_WAIT_FAILED) == 0) { 1819 periph->flags |= CAM_PERIPH_RECOVERY_WAIT; 1820 *action_string = "Polling device for readiness"; 1821 retries = 120; 1822 } else { 1823 *action_string = "Testing device for readiness"; 1824 retries = 1; 1825 } 1826 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1827 scsi_test_unit_ready(&ccb->csio, 1828 retries, 1829 camperiphdone, 1830 MSG_SIMPLE_Q_TAG, 1831 SSD_FULL_SIZE, 1832 /*timeout*/5000); 1833 1834 /* 1835 * Accomplish our 500ms delay by deferring 1836 * the release of our device queue appropriately. 1837 */ 1838 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1839 *timeout = 500; 1840 break; 1841 } 1842 default: 1843 panic("Unhandled error action %x", err_action); 1844 } 1845 1846 if ((err_action & SS_MASK) >= SS_START) { 1847 /* 1848 * Drop the priority, so that the recovery 1849 * CCB is the first to execute. Freeze the queue 1850 * after this command is sent so that we can 1851 * restore the old csio and have it queued in 1852 * the proper order before we release normal 1853 * transactions to the device. 1854 */ 1855 ccb->ccb_h.pinfo.priority--; 1856 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1857 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1858 error = ERESTART; 1859 *orig = orig_ccb; 1860 } 1861 1862 sense_error_done: 1863 *action = err_action; 1864 } 1865 return (error); 1866 } 1867 1868 /* 1869 * Generic error handler. Peripheral drivers usually filter 1870 * out the errors that they handle in a unique manner, then 1871 * call this function. 1872 */ 1873 int 1874 cam_periph_error(union ccb *ccb, cam_flags camflags, 1875 u_int32_t sense_flags) 1876 { 1877 struct cam_path *newpath; 1878 union ccb *orig_ccb, *scan_ccb; 1879 struct cam_periph *periph; 1880 const char *action_string; 1881 cam_status status; 1882 int frozen, error, openings, devctl_err; 1883 u_int32_t action, relsim_flags, timeout; 1884 1885 action = SSQ_PRINT_SENSE; 1886 periph = xpt_path_periph(ccb->ccb_h.path); 1887 action_string = NULL; 1888 status = ccb->ccb_h.status; 1889 frozen = (status & CAM_DEV_QFRZN) != 0; 1890 status &= CAM_STATUS_MASK; 1891 devctl_err = openings = relsim_flags = timeout = 0; 1892 orig_ccb = ccb; 1893 1894 /* Filter the errors that should be reported via devctl */ 1895 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 1896 case CAM_CMD_TIMEOUT: 1897 case CAM_REQ_ABORTED: 1898 case CAM_REQ_CMP_ERR: 1899 case CAM_REQ_TERMIO: 1900 case CAM_UNREC_HBA_ERROR: 1901 case CAM_DATA_RUN_ERR: 1902 case CAM_SCSI_STATUS_ERROR: 1903 case CAM_ATA_STATUS_ERROR: 1904 case CAM_SMP_STATUS_ERROR: 1905 devctl_err++; 1906 break; 1907 default: 1908 break; 1909 } 1910 1911 switch (status) { 1912 case CAM_REQ_CMP: 1913 error = 0; 1914 action &= ~SSQ_PRINT_SENSE; 1915 break; 1916 case CAM_SCSI_STATUS_ERROR: 1917 error = camperiphscsistatuserror(ccb, &orig_ccb, 1918 camflags, sense_flags, &openings, &relsim_flags, 1919 &timeout, &action, &action_string); 1920 break; 1921 case CAM_AUTOSENSE_FAIL: 1922 error = EIO; /* we have to kill the command */ 1923 break; 1924 case CAM_UA_ABORT: 1925 case CAM_UA_TERMIO: 1926 case CAM_MSG_REJECT_REC: 1927 /* XXX Don't know that these are correct */ 1928 error = EIO; 1929 break; 1930 case CAM_SEL_TIMEOUT: 1931 if ((camflags & CAM_RETRY_SELTO) != 0) { 1932 if (ccb->ccb_h.retry_count > 0 && 1933 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1934 ccb->ccb_h.retry_count--; 1935 error = ERESTART; 1936 1937 /* 1938 * Wait a bit to give the device 1939 * time to recover before we try again. 1940 */ 1941 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1942 timeout = periph_selto_delay; 1943 break; 1944 } 1945 action_string = "Retries exhausted"; 1946 } 1947 /* FALLTHROUGH */ 1948 case CAM_DEV_NOT_THERE: 1949 error = ENXIO; 1950 action = SSQ_LOST; 1951 break; 1952 case CAM_REQ_INVALID: 1953 case CAM_PATH_INVALID: 1954 case CAM_NO_HBA: 1955 case CAM_PROVIDE_FAIL: 1956 case CAM_REQ_TOO_BIG: 1957 case CAM_LUN_INVALID: 1958 case CAM_TID_INVALID: 1959 case CAM_FUNC_NOTAVAIL: 1960 error = EINVAL; 1961 break; 1962 case CAM_SCSI_BUS_RESET: 1963 case CAM_BDR_SENT: 1964 /* 1965 * Commands that repeatedly timeout and cause these 1966 * kinds of error recovery actions, should return 1967 * CAM_CMD_TIMEOUT, which allows us to safely assume 1968 * that this command was an innocent bystander to 1969 * these events and should be unconditionally 1970 * retried. 1971 */ 1972 case CAM_REQUEUE_REQ: 1973 /* Unconditional requeue if device is still there */ 1974 if (periph->flags & CAM_PERIPH_INVALID) { 1975 action_string = "Periph was invalidated"; 1976 error = ENXIO; 1977 } else if (sense_flags & SF_NO_RETRY) { 1978 error = EIO; 1979 action_string = "Retry was blocked"; 1980 } else { 1981 error = ERESTART; 1982 action &= ~SSQ_PRINT_SENSE; 1983 } 1984 break; 1985 case CAM_RESRC_UNAVAIL: 1986 /* Wait a bit for the resource shortage to abate. */ 1987 timeout = periph_noresrc_delay; 1988 /* FALLTHROUGH */ 1989 case CAM_BUSY: 1990 if (timeout == 0) { 1991 /* Wait a bit for the busy condition to abate. */ 1992 timeout = periph_busy_delay; 1993 } 1994 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1995 /* FALLTHROUGH */ 1996 case CAM_ATA_STATUS_ERROR: 1997 case CAM_REQ_CMP_ERR: 1998 case CAM_CMD_TIMEOUT: 1999 case CAM_UNEXP_BUSFREE: 2000 case CAM_UNCOR_PARITY: 2001 case CAM_DATA_RUN_ERR: 2002 default: 2003 if (periph->flags & CAM_PERIPH_INVALID) { 2004 error = ENXIO; 2005 action_string = "Periph was invalidated"; 2006 } else if (ccb->ccb_h.retry_count == 0) { 2007 error = EIO; 2008 action_string = "Retries exhausted"; 2009 } else if (sense_flags & SF_NO_RETRY) { 2010 error = EIO; 2011 action_string = "Retry was blocked"; 2012 } else { 2013 ccb->ccb_h.retry_count--; 2014 error = ERESTART; 2015 } 2016 break; 2017 } 2018 2019 if ((sense_flags & SF_PRINT_ALWAYS) || 2020 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 2021 action |= SSQ_PRINT_SENSE; 2022 else if (sense_flags & SF_NO_PRINT) 2023 action &= ~SSQ_PRINT_SENSE; 2024 if ((action & SSQ_PRINT_SENSE) != 0) 2025 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 2026 if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) { 2027 if (error != ERESTART) { 2028 if (action_string == NULL) 2029 action_string = "Unretryable error"; 2030 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 2031 error, action_string); 2032 } else if (action_string != NULL) 2033 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 2034 else { 2035 xpt_print(ccb->ccb_h.path, 2036 "Retrying command, %d more tries remain\n", 2037 ccb->ccb_h.retry_count); 2038 } 2039 } 2040 2041 if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0)) 2042 cam_periph_devctl_notify(orig_ccb); 2043 2044 if ((action & SSQ_LOST) != 0) { 2045 lun_id_t lun_id; 2046 2047 /* 2048 * For a selection timeout, we consider all of the LUNs on 2049 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 2050 * then we only get rid of the device(s) specified by the 2051 * path in the original CCB. 2052 */ 2053 if (status == CAM_SEL_TIMEOUT) 2054 lun_id = CAM_LUN_WILDCARD; 2055 else 2056 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 2057 2058 /* Should we do more if we can't create the path?? */ 2059 if (xpt_create_path(&newpath, periph, 2060 xpt_path_path_id(ccb->ccb_h.path), 2061 xpt_path_target_id(ccb->ccb_h.path), 2062 lun_id) == CAM_REQ_CMP) { 2063 /* 2064 * Let peripheral drivers know that this 2065 * device has gone away. 2066 */ 2067 xpt_async(AC_LOST_DEVICE, newpath, NULL); 2068 xpt_free_path(newpath); 2069 } 2070 } 2071 2072 /* Broadcast UNIT ATTENTIONs to all periphs. */ 2073 if ((action & SSQ_UA) != 0) 2074 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 2075 2076 /* Rescan target on "Reported LUNs data has changed" */ 2077 if ((action & SSQ_RESCAN) != 0) { 2078 if (xpt_create_path(&newpath, NULL, 2079 xpt_path_path_id(ccb->ccb_h.path), 2080 xpt_path_target_id(ccb->ccb_h.path), 2081 CAM_LUN_WILDCARD) == CAM_REQ_CMP) { 2082 scan_ccb = xpt_alloc_ccb_nowait(); 2083 if (scan_ccb != NULL) { 2084 scan_ccb->ccb_h.path = newpath; 2085 scan_ccb->ccb_h.func_code = XPT_SCAN_TGT; 2086 scan_ccb->crcn.flags = 0; 2087 xpt_rescan(scan_ccb); 2088 } else { 2089 xpt_print(newpath, 2090 "Can't allocate CCB to rescan target\n"); 2091 xpt_free_path(newpath); 2092 } 2093 } 2094 } 2095 2096 /* Attempt a retry */ 2097 if (error == ERESTART || error == 0) { 2098 if (frozen != 0) 2099 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 2100 if (error == ERESTART) 2101 xpt_action(ccb); 2102 if (frozen != 0) 2103 cam_release_devq(ccb->ccb_h.path, 2104 relsim_flags, 2105 openings, 2106 timeout, 2107 /*getcount_only*/0); 2108 } 2109 2110 return (error); 2111 } 2112 2113 #define CAM_PERIPH_DEVD_MSG_SIZE 256 2114 2115 static void 2116 cam_periph_devctl_notify(union ccb *ccb) 2117 { 2118 struct cam_periph *periph; 2119 struct ccb_getdev *cgd; 2120 struct sbuf sb; 2121 int serr, sk, asc, ascq; 2122 char *sbmsg, *type; 2123 2124 sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT); 2125 if (sbmsg == NULL) 2126 return; 2127 2128 sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN); 2129 2130 periph = xpt_path_periph(ccb->ccb_h.path); 2131 sbuf_printf(&sb, "device=%s%d ", periph->periph_name, 2132 periph->unit_number); 2133 2134 sbuf_printf(&sb, "serial=\""); 2135 if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) { 2136 xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path, 2137 CAM_PRIORITY_NORMAL); 2138 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 2139 xpt_action((union ccb *)cgd); 2140 2141 if (cgd->ccb_h.status == CAM_REQ_CMP) 2142 sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len); 2143 xpt_free_ccb((union ccb *)cgd); 2144 } 2145 sbuf_printf(&sb, "\" "); 2146 sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status); 2147 2148 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 2149 case CAM_CMD_TIMEOUT: 2150 sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout); 2151 type = "timeout"; 2152 break; 2153 case CAM_SCSI_STATUS_ERROR: 2154 sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status); 2155 if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq)) 2156 sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ", 2157 serr, sk, asc, ascq); 2158 type = "error"; 2159 break; 2160 case CAM_ATA_STATUS_ERROR: 2161 sbuf_printf(&sb, "RES=\""); 2162 ata_res_sbuf(&ccb->ataio.res, &sb); 2163 sbuf_printf(&sb, "\" "); 2164 type = "error"; 2165 break; 2166 default: 2167 type = "error"; 2168 break; 2169 } 2170 2171 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 2172 sbuf_printf(&sb, "CDB=\""); 2173 scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb); 2174 sbuf_printf(&sb, "\" "); 2175 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 2176 sbuf_printf(&sb, "ACB=\""); 2177 ata_cmd_sbuf(&ccb->ataio.cmd, &sb); 2178 sbuf_printf(&sb, "\" "); 2179 } 2180 2181 if (sbuf_finish(&sb) == 0) 2182 devctl_notify("CAM", "periph", type, sbuf_data(&sb)); 2183 sbuf_delete(&sb); 2184 free(sbmsg, M_CAMPERIPH); 2185 } 2186 2187 /* 2188 * Sysctl to force an invalidation of the drive right now. Can be 2189 * called with CTLFLAG_MPSAFE since we take periph lock. 2190 */ 2191 int 2192 cam_periph_invalidate_sysctl(SYSCTL_HANDLER_ARGS) 2193 { 2194 struct cam_periph *periph; 2195 int error, value; 2196 2197 periph = arg1; 2198 value = 0; 2199 error = sysctl_handle_int(oidp, &value, 0, req); 2200 if (error != 0 || req->newptr == NULL || value != 1) 2201 return (error); 2202 2203 cam_periph_lock(periph); 2204 cam_periph_invalidate(periph); 2205 cam_periph_unlock(periph); 2206 2207 return (0); 2208 } 2209