1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/types.h> 38 #include <sys/malloc.h> 39 #include <sys/kernel.h> 40 #include <sys/bio.h> 41 #include <sys/conf.h> 42 #include <sys/lock.h> 43 #include <sys/mutex.h> 44 #include <sys/buf.h> 45 #include <sys/proc.h> 46 #include <sys/devicestat.h> 47 #include <sys/bus.h> 48 #include <sys/sbuf.h> 49 #include <sys/sysctl.h> 50 #include <vm/vm.h> 51 #include <vm/vm_extern.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_queue.h> 56 #include <cam/cam_xpt_periph.h> 57 #include <cam/cam_periph.h> 58 #include <cam/cam_debug.h> 59 #include <cam/cam_sim.h> 60 61 #include <cam/scsi/scsi_all.h> 62 #include <cam/scsi/scsi_message.h> 63 #include <cam/scsi/scsi_pass.h> 64 65 static u_int camperiphnextunit(struct periph_driver *p_drv, 66 u_int newunit, int wired, 67 path_id_t pathid, target_id_t target, 68 lun_id_t lun); 69 static u_int camperiphunit(struct periph_driver *p_drv, 70 path_id_t pathid, target_id_t target, 71 lun_id_t lun); 72 static void camperiphdone(struct cam_periph *periph, 73 union ccb *done_ccb); 74 static void camperiphfree(struct cam_periph *periph); 75 static int camperiphscsistatuserror(union ccb *ccb, 76 union ccb **orig_ccb, 77 cam_flags camflags, 78 u_int32_t sense_flags, 79 int *openings, 80 u_int32_t *relsim_flags, 81 u_int32_t *timeout, 82 u_int32_t *action, 83 const char **action_string); 84 static int camperiphscsisenseerror(union ccb *ccb, 85 union ccb **orig_ccb, 86 cam_flags camflags, 87 u_int32_t sense_flags, 88 int *openings, 89 u_int32_t *relsim_flags, 90 u_int32_t *timeout, 91 u_int32_t *action, 92 const char **action_string); 93 static void cam_periph_devctl_notify(union ccb *ccb); 94 95 static int nperiph_drivers; 96 static int initialized = 0; 97 struct periph_driver **periph_drivers; 98 99 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 100 101 static int periph_selto_delay = 1000; 102 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 103 static int periph_noresrc_delay = 500; 104 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 105 static int periph_busy_delay = 500; 106 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 107 108 static u_int periph_mapmem_thresh = 65536; 109 SYSCTL_UINT(_kern_cam, OID_AUTO, mapmem_thresh, CTLFLAG_RWTUN, 110 &periph_mapmem_thresh, 0, "Threshold for user-space buffer mapping"); 111 112 void 113 periphdriver_register(void *data) 114 { 115 struct periph_driver *drv = (struct periph_driver *)data; 116 struct periph_driver **newdrivers, **old; 117 int ndrivers; 118 119 again: 120 ndrivers = nperiph_drivers + 2; 121 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 122 M_WAITOK); 123 xpt_lock_buses(); 124 if (ndrivers != nperiph_drivers + 2) { 125 /* 126 * Lost race against itself; go around. 127 */ 128 xpt_unlock_buses(); 129 free(newdrivers, M_CAMPERIPH); 130 goto again; 131 } 132 if (periph_drivers) 133 bcopy(periph_drivers, newdrivers, 134 sizeof(*newdrivers) * nperiph_drivers); 135 newdrivers[nperiph_drivers] = drv; 136 newdrivers[nperiph_drivers + 1] = NULL; 137 old = periph_drivers; 138 periph_drivers = newdrivers; 139 nperiph_drivers++; 140 xpt_unlock_buses(); 141 if (old) 142 free(old, M_CAMPERIPH); 143 /* If driver marked as early or it is late now, initialize it. */ 144 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 145 initialized > 1) 146 (*drv->init)(); 147 } 148 149 int 150 periphdriver_unregister(void *data) 151 { 152 struct periph_driver *drv = (struct periph_driver *)data; 153 int error, n; 154 155 /* If driver marked as early or it is late now, deinitialize it. */ 156 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 157 initialized > 1) { 158 if (drv->deinit == NULL) { 159 printf("CAM periph driver '%s' doesn't have deinit.\n", 160 drv->driver_name); 161 return (EOPNOTSUPP); 162 } 163 error = drv->deinit(); 164 if (error != 0) 165 return (error); 166 } 167 168 xpt_lock_buses(); 169 for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++) 170 ; 171 KASSERT(n < nperiph_drivers, 172 ("Periph driver '%s' was not registered", drv->driver_name)); 173 for (; n + 1 < nperiph_drivers; n++) 174 periph_drivers[n] = periph_drivers[n + 1]; 175 periph_drivers[n + 1] = NULL; 176 nperiph_drivers--; 177 xpt_unlock_buses(); 178 return (0); 179 } 180 181 void 182 periphdriver_init(int level) 183 { 184 int i, early; 185 186 initialized = max(initialized, level); 187 for (i = 0; periph_drivers[i] != NULL; i++) { 188 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 189 if (early == initialized) 190 (*periph_drivers[i]->init)(); 191 } 192 } 193 194 cam_status 195 cam_periph_alloc(periph_ctor_t *periph_ctor, 196 periph_oninv_t *periph_oninvalidate, 197 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 198 char *name, cam_periph_type type, struct cam_path *path, 199 ac_callback_t *ac_callback, ac_code code, void *arg) 200 { 201 struct periph_driver **p_drv; 202 struct cam_sim *sim; 203 struct cam_periph *periph; 204 struct cam_periph *cur_periph; 205 path_id_t path_id; 206 target_id_t target_id; 207 lun_id_t lun_id; 208 cam_status status; 209 u_int init_level; 210 211 init_level = 0; 212 /* 213 * Handle Hot-Plug scenarios. If there is already a peripheral 214 * of our type assigned to this path, we are likely waiting for 215 * final close on an old, invalidated, peripheral. If this is 216 * the case, queue up a deferred call to the peripheral's async 217 * handler. If it looks like a mistaken re-allocation, complain. 218 */ 219 if ((periph = cam_periph_find(path, name)) != NULL) { 220 221 if ((periph->flags & CAM_PERIPH_INVALID) != 0 222 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 223 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 224 periph->deferred_callback = ac_callback; 225 periph->deferred_ac = code; 226 return (CAM_REQ_INPROG); 227 } else { 228 printf("cam_periph_alloc: attempt to re-allocate " 229 "valid device %s%d rejected flags %#x " 230 "refcount %d\n", periph->periph_name, 231 periph->unit_number, periph->flags, 232 periph->refcount); 233 } 234 return (CAM_REQ_INVALID); 235 } 236 237 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 238 M_NOWAIT|M_ZERO); 239 240 if (periph == NULL) 241 return (CAM_RESRC_UNAVAIL); 242 243 init_level++; 244 245 246 sim = xpt_path_sim(path); 247 path_id = xpt_path_path_id(path); 248 target_id = xpt_path_target_id(path); 249 lun_id = xpt_path_lun_id(path); 250 periph->periph_start = periph_start; 251 periph->periph_dtor = periph_dtor; 252 periph->periph_oninval = periph_oninvalidate; 253 periph->type = type; 254 periph->periph_name = name; 255 periph->scheduled_priority = CAM_PRIORITY_NONE; 256 periph->immediate_priority = CAM_PRIORITY_NONE; 257 periph->refcount = 1; /* Dropped by invalidation. */ 258 periph->sim = sim; 259 SLIST_INIT(&periph->ccb_list); 260 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 261 if (status != CAM_REQ_CMP) 262 goto failure; 263 periph->path = path; 264 265 xpt_lock_buses(); 266 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 267 if (strcmp((*p_drv)->driver_name, name) == 0) 268 break; 269 } 270 if (*p_drv == NULL) { 271 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 272 xpt_unlock_buses(); 273 xpt_free_path(periph->path); 274 free(periph, M_CAMPERIPH); 275 return (CAM_REQ_INVALID); 276 } 277 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); 278 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 279 while (cur_periph != NULL 280 && cur_periph->unit_number < periph->unit_number) 281 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 282 if (cur_periph != NULL) { 283 KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list")); 284 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 285 } else { 286 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 287 (*p_drv)->generation++; 288 } 289 xpt_unlock_buses(); 290 291 init_level++; 292 293 status = xpt_add_periph(periph); 294 if (status != CAM_REQ_CMP) 295 goto failure; 296 297 init_level++; 298 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 299 300 status = periph_ctor(periph, arg); 301 302 if (status == CAM_REQ_CMP) 303 init_level++; 304 305 failure: 306 switch (init_level) { 307 case 4: 308 /* Initialized successfully */ 309 break; 310 case 3: 311 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 312 xpt_remove_periph(periph); 313 /* FALLTHROUGH */ 314 case 2: 315 xpt_lock_buses(); 316 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 317 xpt_unlock_buses(); 318 xpt_free_path(periph->path); 319 /* FALLTHROUGH */ 320 case 1: 321 free(periph, M_CAMPERIPH); 322 /* FALLTHROUGH */ 323 case 0: 324 /* No cleanup to perform. */ 325 break; 326 default: 327 panic("%s: Unknown init level", __func__); 328 } 329 return(status); 330 } 331 332 /* 333 * Find a peripheral structure with the specified path, target, lun, 334 * and (optionally) type. If the name is NULL, this function will return 335 * the first peripheral driver that matches the specified path. 336 */ 337 struct cam_periph * 338 cam_periph_find(struct cam_path *path, char *name) 339 { 340 struct periph_driver **p_drv; 341 struct cam_periph *periph; 342 343 xpt_lock_buses(); 344 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 345 346 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 347 continue; 348 349 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 350 if (xpt_path_comp(periph->path, path) == 0) { 351 xpt_unlock_buses(); 352 cam_periph_assert(periph, MA_OWNED); 353 return(periph); 354 } 355 } 356 if (name != NULL) { 357 xpt_unlock_buses(); 358 return(NULL); 359 } 360 } 361 xpt_unlock_buses(); 362 return(NULL); 363 } 364 365 /* 366 * Find peripheral driver instances attached to the specified path. 367 */ 368 int 369 cam_periph_list(struct cam_path *path, struct sbuf *sb) 370 { 371 struct sbuf local_sb; 372 struct periph_driver **p_drv; 373 struct cam_periph *periph; 374 int count; 375 int sbuf_alloc_len; 376 377 sbuf_alloc_len = 16; 378 retry: 379 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 380 count = 0; 381 xpt_lock_buses(); 382 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 383 384 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 385 if (xpt_path_comp(periph->path, path) != 0) 386 continue; 387 388 if (sbuf_len(&local_sb) != 0) 389 sbuf_cat(&local_sb, ","); 390 391 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 392 periph->unit_number); 393 394 if (sbuf_error(&local_sb) == ENOMEM) { 395 sbuf_alloc_len *= 2; 396 xpt_unlock_buses(); 397 sbuf_delete(&local_sb); 398 goto retry; 399 } 400 count++; 401 } 402 } 403 xpt_unlock_buses(); 404 sbuf_finish(&local_sb); 405 sbuf_cpy(sb, sbuf_data(&local_sb)); 406 sbuf_delete(&local_sb); 407 return (count); 408 } 409 410 int 411 cam_periph_acquire(struct cam_periph *periph) 412 { 413 int status; 414 415 if (periph == NULL) 416 return (EINVAL); 417 418 status = ENOENT; 419 xpt_lock_buses(); 420 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 421 periph->refcount++; 422 status = 0; 423 } 424 xpt_unlock_buses(); 425 426 return (status); 427 } 428 429 void 430 cam_periph_doacquire(struct cam_periph *periph) 431 { 432 433 xpt_lock_buses(); 434 KASSERT(periph->refcount >= 1, 435 ("cam_periph_doacquire() with refcount == %d", periph->refcount)); 436 periph->refcount++; 437 xpt_unlock_buses(); 438 } 439 440 void 441 cam_periph_release_locked_buses(struct cam_periph *periph) 442 { 443 444 cam_periph_assert(periph, MA_OWNED); 445 KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); 446 if (--periph->refcount == 0) 447 camperiphfree(periph); 448 } 449 450 void 451 cam_periph_release_locked(struct cam_periph *periph) 452 { 453 454 if (periph == NULL) 455 return; 456 457 xpt_lock_buses(); 458 cam_periph_release_locked_buses(periph); 459 xpt_unlock_buses(); 460 } 461 462 void 463 cam_periph_release(struct cam_periph *periph) 464 { 465 struct mtx *mtx; 466 467 if (periph == NULL) 468 return; 469 470 cam_periph_assert(periph, MA_NOTOWNED); 471 mtx = cam_periph_mtx(periph); 472 mtx_lock(mtx); 473 cam_periph_release_locked(periph); 474 mtx_unlock(mtx); 475 } 476 477 /* 478 * hold/unhold act as mutual exclusion for sections of the code that 479 * need to sleep and want to make sure that other sections that 480 * will interfere are held off. This only protects exclusive sections 481 * from each other. 482 */ 483 int 484 cam_periph_hold(struct cam_periph *periph, int priority) 485 { 486 int error; 487 488 /* 489 * Increment the reference count on the peripheral 490 * while we wait for our lock attempt to succeed 491 * to ensure the peripheral doesn't disappear out 492 * from user us while we sleep. 493 */ 494 495 if (cam_periph_acquire(periph) != 0) 496 return (ENXIO); 497 498 cam_periph_assert(periph, MA_OWNED); 499 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 500 periph->flags |= CAM_PERIPH_LOCK_WANTED; 501 if ((error = cam_periph_sleep(periph, periph, priority, 502 "caplck", 0)) != 0) { 503 cam_periph_release_locked(periph); 504 return (error); 505 } 506 if (periph->flags & CAM_PERIPH_INVALID) { 507 cam_periph_release_locked(periph); 508 return (ENXIO); 509 } 510 } 511 512 periph->flags |= CAM_PERIPH_LOCKED; 513 return (0); 514 } 515 516 void 517 cam_periph_unhold(struct cam_periph *periph) 518 { 519 520 cam_periph_assert(periph, MA_OWNED); 521 522 periph->flags &= ~CAM_PERIPH_LOCKED; 523 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 524 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 525 wakeup(periph); 526 } 527 528 cam_periph_release_locked(periph); 529 } 530 531 /* 532 * Look for the next unit number that is not currently in use for this 533 * peripheral type starting at "newunit". Also exclude unit numbers that 534 * are reserved by for future "hardwiring" unless we already know that this 535 * is a potential wired device. Only assume that the device is "wired" the 536 * first time through the loop since after that we'll be looking at unit 537 * numbers that did not match a wiring entry. 538 */ 539 static u_int 540 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, 541 path_id_t pathid, target_id_t target, lun_id_t lun) 542 { 543 struct cam_periph *periph; 544 char *periph_name; 545 int i, val, dunit, r; 546 const char *dname, *strval; 547 548 periph_name = p_drv->driver_name; 549 for (;;newunit++) { 550 551 for (periph = TAILQ_FIRST(&p_drv->units); 552 periph != NULL && periph->unit_number != newunit; 553 periph = TAILQ_NEXT(periph, unit_links)) 554 ; 555 556 if (periph != NULL && periph->unit_number == newunit) { 557 if (wired != 0) { 558 xpt_print(periph->path, "Duplicate Wired " 559 "Device entry!\n"); 560 xpt_print(periph->path, "Second device (%s " 561 "device at scbus%d target %d lun %d) will " 562 "not be wired\n", periph_name, pathid, 563 target, lun); 564 wired = 0; 565 } 566 continue; 567 } 568 if (wired) 569 break; 570 571 /* 572 * Don't match entries like "da 4" as a wired down 573 * device, but do match entries like "da 4 target 5" 574 * or even "da 4 scbus 1". 575 */ 576 i = 0; 577 dname = periph_name; 578 for (;;) { 579 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 580 if (r != 0) 581 break; 582 /* if no "target" and no specific scbus, skip */ 583 if (resource_int_value(dname, dunit, "target", &val) && 584 (resource_string_value(dname, dunit, "at",&strval)|| 585 strcmp(strval, "scbus") == 0)) 586 continue; 587 if (newunit == dunit) 588 break; 589 } 590 if (r != 0) 591 break; 592 } 593 return (newunit); 594 } 595 596 static u_int 597 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 598 target_id_t target, lun_id_t lun) 599 { 600 u_int unit; 601 int wired, i, val, dunit; 602 const char *dname, *strval; 603 char pathbuf[32], *periph_name; 604 605 periph_name = p_drv->driver_name; 606 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 607 unit = 0; 608 i = 0; 609 dname = periph_name; 610 for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 611 wired = 0) { 612 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 613 if (strcmp(strval, pathbuf) != 0) 614 continue; 615 wired++; 616 } 617 if (resource_int_value(dname, dunit, "target", &val) == 0) { 618 if (val != target) 619 continue; 620 wired++; 621 } 622 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 623 if (val != lun) 624 continue; 625 wired++; 626 } 627 if (wired != 0) { 628 unit = dunit; 629 break; 630 } 631 } 632 633 /* 634 * Either start from 0 looking for the next unit or from 635 * the unit number given in the resource config. This way, 636 * if we have wildcard matches, we don't return the same 637 * unit number twice. 638 */ 639 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 640 641 return (unit); 642 } 643 644 void 645 cam_periph_invalidate(struct cam_periph *periph) 646 { 647 648 cam_periph_assert(periph, MA_OWNED); 649 /* 650 * We only call this routine the first time a peripheral is 651 * invalidated. 652 */ 653 if ((periph->flags & CAM_PERIPH_INVALID) != 0) 654 return; 655 656 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 657 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) { 658 struct sbuf sb; 659 char buffer[160]; 660 661 sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN); 662 xpt_denounce_periph_sbuf(periph, &sb); 663 sbuf_finish(&sb); 664 sbuf_putbuf(&sb); 665 } 666 periph->flags |= CAM_PERIPH_INVALID; 667 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 668 if (periph->periph_oninval != NULL) 669 periph->periph_oninval(periph); 670 cam_periph_release_locked(periph); 671 } 672 673 static void 674 camperiphfree(struct cam_periph *periph) 675 { 676 struct periph_driver **p_drv; 677 struct periph_driver *drv; 678 679 cam_periph_assert(periph, MA_OWNED); 680 KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating", 681 periph->periph_name, periph->unit_number)); 682 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 683 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 684 break; 685 } 686 if (*p_drv == NULL) { 687 printf("camperiphfree: attempt to free non-existant periph\n"); 688 return; 689 } 690 /* 691 * Cache a pointer to the periph_driver structure. If a 692 * periph_driver is added or removed from the array (see 693 * periphdriver_register()) while we drop the toplogy lock 694 * below, p_drv may change. This doesn't protect against this 695 * particular periph_driver going away. That will require full 696 * reference counting in the periph_driver infrastructure. 697 */ 698 drv = *p_drv; 699 700 /* 701 * We need to set this flag before dropping the topology lock, to 702 * let anyone who is traversing the list that this peripheral is 703 * about to be freed, and there will be no more reference count 704 * checks. 705 */ 706 periph->flags |= CAM_PERIPH_FREE; 707 708 /* 709 * The peripheral destructor semantics dictate calling with only the 710 * SIM mutex held. Since it might sleep, it should not be called 711 * with the topology lock held. 712 */ 713 xpt_unlock_buses(); 714 715 /* 716 * We need to call the peripheral destructor prior to removing the 717 * peripheral from the list. Otherwise, we risk running into a 718 * scenario where the peripheral unit number may get reused 719 * (because it has been removed from the list), but some resources 720 * used by the peripheral are still hanging around. In particular, 721 * the devfs nodes used by some peripherals like the pass(4) driver 722 * aren't fully cleaned up until the destructor is run. If the 723 * unit number is reused before the devfs instance is fully gone, 724 * devfs will panic. 725 */ 726 if (periph->periph_dtor != NULL) 727 periph->periph_dtor(periph); 728 729 /* 730 * The peripheral list is protected by the topology lock. 731 */ 732 xpt_lock_buses(); 733 734 TAILQ_REMOVE(&drv->units, periph, unit_links); 735 drv->generation++; 736 737 xpt_remove_periph(periph); 738 739 xpt_unlock_buses(); 740 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) 741 xpt_print(periph->path, "Periph destroyed\n"); 742 else 743 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 744 745 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 746 union ccb ccb; 747 void *arg; 748 749 switch (periph->deferred_ac) { 750 case AC_FOUND_DEVICE: 751 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 752 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 753 xpt_action(&ccb); 754 arg = &ccb; 755 break; 756 case AC_PATH_REGISTERED: 757 xpt_path_inq(&ccb.cpi, periph->path); 758 arg = &ccb; 759 break; 760 default: 761 arg = NULL; 762 break; 763 } 764 periph->deferred_callback(NULL, periph->deferred_ac, 765 periph->path, arg); 766 } 767 xpt_free_path(periph->path); 768 free(periph, M_CAMPERIPH); 769 xpt_lock_buses(); 770 } 771 772 /* 773 * Map user virtual pointers into kernel virtual address space, so we can 774 * access the memory. This is now a generic function that centralizes most 775 * of the sanity checks on the data flags, if any. 776 * This also only works for up to MAXPHYS memory. Since we use 777 * buffers to map stuff in and out, we're limited to the buffer size. 778 */ 779 int 780 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo, 781 u_int maxmap) 782 { 783 int numbufs, i; 784 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 785 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 786 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 787 788 bzero(mapinfo, sizeof(*mapinfo)); 789 if (maxmap == 0) 790 maxmap = DFLTPHYS; /* traditional default */ 791 else if (maxmap > MAXPHYS) 792 maxmap = MAXPHYS; /* for safety */ 793 switch(ccb->ccb_h.func_code) { 794 case XPT_DEV_MATCH: 795 if (ccb->cdm.match_buf_len == 0) { 796 printf("cam_periph_mapmem: invalid match buffer " 797 "length 0\n"); 798 return(EINVAL); 799 } 800 if (ccb->cdm.pattern_buf_len > 0) { 801 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 802 lengths[0] = ccb->cdm.pattern_buf_len; 803 dirs[0] = CAM_DIR_OUT; 804 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 805 lengths[1] = ccb->cdm.match_buf_len; 806 dirs[1] = CAM_DIR_IN; 807 numbufs = 2; 808 } else { 809 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 810 lengths[0] = ccb->cdm.match_buf_len; 811 dirs[0] = CAM_DIR_IN; 812 numbufs = 1; 813 } 814 /* 815 * This request will not go to the hardware, no reason 816 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 817 */ 818 maxmap = MAXPHYS; 819 break; 820 case XPT_SCSI_IO: 821 case XPT_CONT_TARGET_IO: 822 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 823 return(0); 824 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 825 return (EINVAL); 826 data_ptrs[0] = &ccb->csio.data_ptr; 827 lengths[0] = ccb->csio.dxfer_len; 828 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 829 numbufs = 1; 830 break; 831 case XPT_ATA_IO: 832 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 833 return(0); 834 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 835 return (EINVAL); 836 data_ptrs[0] = &ccb->ataio.data_ptr; 837 lengths[0] = ccb->ataio.dxfer_len; 838 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 839 numbufs = 1; 840 break; 841 case XPT_MMC_IO: 842 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 843 return(0); 844 /* Two mappings: one for cmd->data and one for cmd->data->data */ 845 data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data; 846 lengths[0] = sizeof(struct mmc_data *); 847 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 848 data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data; 849 lengths[1] = ccb->mmcio.cmd.data->len; 850 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 851 numbufs = 2; 852 break; 853 case XPT_SMP_IO: 854 data_ptrs[0] = &ccb->smpio.smp_request; 855 lengths[0] = ccb->smpio.smp_request_len; 856 dirs[0] = CAM_DIR_OUT; 857 data_ptrs[1] = &ccb->smpio.smp_response; 858 lengths[1] = ccb->smpio.smp_response_len; 859 dirs[1] = CAM_DIR_IN; 860 numbufs = 2; 861 break; 862 case XPT_NVME_IO: 863 case XPT_NVME_ADMIN: 864 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 865 return (0); 866 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 867 return (EINVAL); 868 data_ptrs[0] = &ccb->nvmeio.data_ptr; 869 lengths[0] = ccb->nvmeio.dxfer_len; 870 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 871 numbufs = 1; 872 break; 873 case XPT_DEV_ADVINFO: 874 if (ccb->cdai.bufsiz == 0) 875 return (0); 876 877 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 878 lengths[0] = ccb->cdai.bufsiz; 879 dirs[0] = CAM_DIR_IN; 880 numbufs = 1; 881 882 /* 883 * This request will not go to the hardware, no reason 884 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 885 */ 886 maxmap = MAXPHYS; 887 break; 888 default: 889 return(EINVAL); 890 break; /* NOTREACHED */ 891 } 892 893 /* 894 * Check the transfer length and permissions first, so we don't 895 * have to unmap any previously mapped buffers. 896 */ 897 for (i = 0; i < numbufs; i++) { 898 899 /* 900 * The userland data pointer passed in may not be page 901 * aligned. vmapbuf() truncates the address to a page 902 * boundary, so if the address isn't page aligned, we'll 903 * need enough space for the given transfer length, plus 904 * whatever extra space is necessary to make it to the page 905 * boundary. 906 */ 907 if ((lengths[i] + 908 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){ 909 printf("cam_periph_mapmem: attempt to map %lu bytes, " 910 "which is greater than %lu\n", 911 (long)(lengths[i] + 912 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)), 913 (u_long)maxmap); 914 return(E2BIG); 915 } 916 } 917 918 /* 919 * This keeps the kernel stack of current thread from getting 920 * swapped. In low-memory situations where the kernel stack might 921 * otherwise get swapped out, this holds it and allows the thread 922 * to make progress and release the kernel mapped pages sooner. 923 * 924 * XXX KDM should I use P_NOSWAP instead? 925 */ 926 PHOLD(curproc); 927 928 for (i = 0; i < numbufs; i++) { 929 930 /* Save the user's data address. */ 931 mapinfo->orig[i] = *data_ptrs[i]; 932 933 /* 934 * For small buffers use malloc+copyin/copyout instead of 935 * mapping to KVA to avoid expensive TLB shootdowns. For 936 * small allocations malloc is backed by UMA, and so much 937 * cheaper on SMP systems. 938 */ 939 if (lengths[i] <= periph_mapmem_thresh && 940 ccb->ccb_h.func_code != XPT_MMC_IO) { 941 *data_ptrs[i] = malloc(lengths[i], M_CAMPERIPH, 942 M_WAITOK); 943 if (dirs[i] != CAM_DIR_IN) { 944 if (copyin(mapinfo->orig[i], *data_ptrs[i], 945 lengths[i]) != 0) { 946 free(*data_ptrs[i], M_CAMPERIPH); 947 *data_ptrs[i] = mapinfo->orig[i]; 948 goto fail; 949 } 950 } else 951 bzero(*data_ptrs[i], lengths[i]); 952 continue; 953 } 954 955 /* 956 * Get the buffer. 957 */ 958 mapinfo->bp[i] = uma_zalloc(pbuf_zone, M_WAITOK); 959 960 /* put our pointer in the data slot */ 961 mapinfo->bp[i]->b_data = *data_ptrs[i]; 962 963 /* set the transfer length, we know it's < MAXPHYS */ 964 mapinfo->bp[i]->b_bufsize = lengths[i]; 965 966 /* set the direction */ 967 mapinfo->bp[i]->b_iocmd = (dirs[i] == CAM_DIR_OUT) ? 968 BIO_WRITE : BIO_READ; 969 970 /* 971 * Map the buffer into kernel memory. 972 * 973 * Note that useracc() alone is not a sufficient test. 974 * vmapbuf() can still fail due to a smaller file mapped 975 * into a larger area of VM, or if userland races against 976 * vmapbuf() after the useracc() check. 977 */ 978 if (vmapbuf(mapinfo->bp[i], 1) < 0) { 979 uma_zfree(pbuf_zone, mapinfo->bp[i]); 980 goto fail; 981 } 982 983 /* set our pointer to the new mapped area */ 984 *data_ptrs[i] = mapinfo->bp[i]->b_data; 985 } 986 987 /* 988 * Now that we've gotten this far, change ownership to the kernel 989 * of the buffers so that we don't run afoul of returning to user 990 * space with locks (on the buffer) held. 991 */ 992 for (i = 0; i < numbufs; i++) { 993 if (mapinfo->bp[i]) 994 BUF_KERNPROC(mapinfo->bp[i]); 995 } 996 997 mapinfo->num_bufs_used = numbufs; 998 return(0); 999 1000 fail: 1001 for (i--; i >= 0; i--) { 1002 if (mapinfo->bp[i]) { 1003 vunmapbuf(mapinfo->bp[i]); 1004 uma_zfree(pbuf_zone, mapinfo->bp[i]); 1005 } else 1006 free(*data_ptrs[i], M_CAMPERIPH); 1007 *data_ptrs[i] = mapinfo->orig[i]; 1008 } 1009 PRELE(curproc); 1010 return(EACCES); 1011 } 1012 1013 /* 1014 * Unmap memory segments mapped into kernel virtual address space by 1015 * cam_periph_mapmem(). 1016 */ 1017 void 1018 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 1019 { 1020 int numbufs, i; 1021 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1022 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 1023 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 1024 1025 if (mapinfo->num_bufs_used <= 0) { 1026 /* nothing to free and the process wasn't held. */ 1027 return; 1028 } 1029 1030 switch (ccb->ccb_h.func_code) { 1031 case XPT_DEV_MATCH: 1032 if (ccb->cdm.pattern_buf_len > 0) { 1033 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1034 lengths[0] = ccb->cdm.pattern_buf_len; 1035 dirs[0] = CAM_DIR_OUT; 1036 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1037 lengths[1] = ccb->cdm.match_buf_len; 1038 dirs[1] = CAM_DIR_IN; 1039 numbufs = 2; 1040 } else { 1041 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1042 lengths[0] = ccb->cdm.match_buf_len; 1043 dirs[0] = CAM_DIR_IN; 1044 numbufs = 1; 1045 } 1046 break; 1047 case XPT_SCSI_IO: 1048 case XPT_CONT_TARGET_IO: 1049 data_ptrs[0] = &ccb->csio.data_ptr; 1050 lengths[0] = ccb->csio.dxfer_len; 1051 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1052 numbufs = 1; 1053 break; 1054 case XPT_ATA_IO: 1055 data_ptrs[0] = &ccb->ataio.data_ptr; 1056 lengths[0] = ccb->ataio.dxfer_len; 1057 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1058 numbufs = 1; 1059 break; 1060 case XPT_MMC_IO: 1061 data_ptrs[0] = (u_int8_t **)&ccb->mmcio.cmd.data; 1062 lengths[0] = sizeof(struct mmc_data *); 1063 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1064 data_ptrs[1] = (u_int8_t **)&ccb->mmcio.cmd.data->data; 1065 lengths[1] = ccb->mmcio.cmd.data->len; 1066 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 1067 numbufs = 2; 1068 break; 1069 case XPT_SMP_IO: 1070 data_ptrs[0] = &ccb->smpio.smp_request; 1071 lengths[0] = ccb->smpio.smp_request_len; 1072 dirs[0] = CAM_DIR_OUT; 1073 data_ptrs[1] = &ccb->smpio.smp_response; 1074 lengths[1] = ccb->smpio.smp_response_len; 1075 dirs[1] = CAM_DIR_IN; 1076 numbufs = 2; 1077 break; 1078 case XPT_NVME_IO: 1079 case XPT_NVME_ADMIN: 1080 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1081 lengths[0] = ccb->nvmeio.dxfer_len; 1082 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1083 numbufs = 1; 1084 break; 1085 case XPT_DEV_ADVINFO: 1086 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1087 lengths[0] = ccb->cdai.bufsiz; 1088 dirs[0] = CAM_DIR_IN; 1089 numbufs = 1; 1090 break; 1091 default: 1092 /* allow ourselves to be swapped once again */ 1093 PRELE(curproc); 1094 return; 1095 break; /* NOTREACHED */ 1096 } 1097 1098 for (i = 0; i < numbufs; i++) { 1099 if (mapinfo->bp[i]) { 1100 /* unmap the buffer */ 1101 vunmapbuf(mapinfo->bp[i]); 1102 1103 /* release the buffer */ 1104 uma_zfree(pbuf_zone, mapinfo->bp[i]); 1105 } else { 1106 if (dirs[i] != CAM_DIR_OUT) { 1107 copyout(*data_ptrs[i], mapinfo->orig[i], 1108 lengths[i]); 1109 } 1110 free(*data_ptrs[i], M_CAMPERIPH); 1111 } 1112 1113 /* Set the user's pointer back to the original value */ 1114 *data_ptrs[i] = mapinfo->orig[i]; 1115 } 1116 1117 /* allow ourselves to be swapped once again */ 1118 PRELE(curproc); 1119 } 1120 1121 int 1122 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 1123 int (*error_routine)(union ccb *ccb, 1124 cam_flags camflags, 1125 u_int32_t sense_flags)) 1126 { 1127 union ccb *ccb; 1128 int error; 1129 int found; 1130 1131 error = found = 0; 1132 1133 switch(cmd){ 1134 case CAMGETPASSTHRU: 1135 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 1136 xpt_setup_ccb(&ccb->ccb_h, 1137 ccb->ccb_h.path, 1138 CAM_PRIORITY_NORMAL); 1139 ccb->ccb_h.func_code = XPT_GDEVLIST; 1140 1141 /* 1142 * Basically, the point of this is that we go through 1143 * getting the list of devices, until we find a passthrough 1144 * device. In the current version of the CAM code, the 1145 * only way to determine what type of device we're dealing 1146 * with is by its name. 1147 */ 1148 while (found == 0) { 1149 ccb->cgdl.index = 0; 1150 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1151 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1152 1153 /* we want the next device in the list */ 1154 xpt_action(ccb); 1155 if (strncmp(ccb->cgdl.periph_name, 1156 "pass", 4) == 0){ 1157 found = 1; 1158 break; 1159 } 1160 } 1161 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1162 (found == 0)) { 1163 ccb->cgdl.periph_name[0] = '\0'; 1164 ccb->cgdl.unit_number = 0; 1165 break; 1166 } 1167 } 1168 1169 /* copy the result back out */ 1170 bcopy(ccb, addr, sizeof(union ccb)); 1171 1172 /* and release the ccb */ 1173 xpt_release_ccb(ccb); 1174 1175 break; 1176 default: 1177 error = ENOTTY; 1178 break; 1179 } 1180 return(error); 1181 } 1182 1183 static void 1184 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb) 1185 { 1186 1187 panic("%s: already done with ccb %p", __func__, done_ccb); 1188 } 1189 1190 static void 1191 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb) 1192 { 1193 1194 /* Caller will release the CCB */ 1195 xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED); 1196 done_ccb->ccb_h.cbfcnp = cam_periph_done_panic; 1197 wakeup(&done_ccb->ccb_h.cbfcnp); 1198 } 1199 1200 static void 1201 cam_periph_ccbwait(union ccb *ccb) 1202 { 1203 1204 if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 1205 while (ccb->ccb_h.cbfcnp != cam_periph_done_panic) 1206 xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, 1207 PRIBIO, "cbwait", 0); 1208 } 1209 KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && 1210 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG, 1211 ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, " 1212 "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code, 1213 ccb->ccb_h.status, ccb->ccb_h.pinfo.index)); 1214 } 1215 1216 /* 1217 * Dispatch a CCB and wait for it to complete. If the CCB has set a 1218 * callback function (ccb->ccb_h.cbfcnp), it will be overwritten and lost. 1219 */ 1220 int 1221 cam_periph_runccb(union ccb *ccb, 1222 int (*error_routine)(union ccb *ccb, 1223 cam_flags camflags, 1224 u_int32_t sense_flags), 1225 cam_flags camflags, u_int32_t sense_flags, 1226 struct devstat *ds) 1227 { 1228 struct bintime *starttime; 1229 struct bintime ltime; 1230 int error; 1231 bool must_poll; 1232 uint32_t timeout = 1; 1233 1234 starttime = NULL; 1235 xpt_path_assert(ccb->ccb_h.path, MA_OWNED); 1236 KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0, 1237 ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb, 1238 ccb->ccb_h.func_code, ccb->ccb_h.flags)); 1239 1240 /* 1241 * If the user has supplied a stats structure, and if we understand 1242 * this particular type of ccb, record the transaction start. 1243 */ 1244 if (ds != NULL && 1245 (ccb->ccb_h.func_code == XPT_SCSI_IO || 1246 ccb->ccb_h.func_code == XPT_ATA_IO || 1247 ccb->ccb_h.func_code == XPT_NVME_IO)) { 1248 starttime = <ime; 1249 binuptime(starttime); 1250 devstat_start_transaction(ds, starttime); 1251 } 1252 1253 /* 1254 * We must poll the I/O while we're dumping. The scheduler is normally 1255 * stopped for dumping, except when we call doadump from ddb. While the 1256 * scheduler is running in this case, we still need to poll the I/O to 1257 * avoid sleeping waiting for the ccb to complete. 1258 * 1259 * A panic triggered dump stops the scheduler, any callback from the 1260 * shutdown_post_sync event will run with the scheduler stopped, but 1261 * before we're officially dumping. To avoid hanging in adashutdown 1262 * initiated commands (or other similar situations), we have to test for 1263 * either SCHEDULER_STOPPED() here as well. 1264 * 1265 * To avoid locking problems, dumping/polling callers must call 1266 * without a periph lock held. 1267 */ 1268 must_poll = dumping || SCHEDULER_STOPPED(); 1269 ccb->ccb_h.cbfcnp = cam_periph_done; 1270 1271 /* 1272 * If we're polling, then we need to ensure that we have ample resources 1273 * in the periph. cam_periph_error can reschedule the ccb by calling 1274 * xpt_action and returning ERESTART, so we have to effect the polling 1275 * in the do loop below. 1276 */ 1277 if (must_poll) { 1278 timeout = xpt_poll_setup(ccb); 1279 } 1280 1281 if (timeout == 0) { 1282 ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 1283 error = EBUSY; 1284 } else { 1285 xpt_action(ccb); 1286 do { 1287 if (must_poll) { 1288 xpt_pollwait(ccb, timeout); 1289 timeout = ccb->ccb_h.timeout * 10; 1290 } else { 1291 cam_periph_ccbwait(ccb); 1292 } 1293 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1294 error = 0; 1295 else if (error_routine != NULL) { 1296 ccb->ccb_h.cbfcnp = cam_periph_done; 1297 error = (*error_routine)(ccb, camflags, sense_flags); 1298 } else 1299 error = 0; 1300 } while (error == ERESTART); 1301 } 1302 1303 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1304 cam_release_devq(ccb->ccb_h.path, 1305 /* relsim_flags */0, 1306 /* openings */0, 1307 /* timeout */0, 1308 /* getcount_only */ FALSE); 1309 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1310 } 1311 1312 if (ds != NULL) { 1313 uint32_t bytes; 1314 devstat_tag_type tag; 1315 bool valid = true; 1316 1317 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1318 bytes = ccb->csio.dxfer_len - ccb->csio.resid; 1319 tag = (devstat_tag_type)(ccb->csio.tag_action & 0x3); 1320 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1321 bytes = ccb->ataio.dxfer_len - ccb->ataio.resid; 1322 tag = (devstat_tag_type)0; 1323 } else if (ccb->ccb_h.func_code == XPT_NVME_IO) { 1324 bytes = ccb->nvmeio.dxfer_len; /* NB: resid no possible */ 1325 tag = (devstat_tag_type)0; 1326 } else { 1327 valid = false; 1328 } 1329 if (valid) 1330 devstat_end_transaction(ds, bytes, tag, 1331 ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? 1332 DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1333 DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime); 1334 } 1335 1336 return(error); 1337 } 1338 1339 void 1340 cam_freeze_devq(struct cam_path *path) 1341 { 1342 struct ccb_hdr ccb_h; 1343 1344 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n")); 1345 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 1346 ccb_h.func_code = XPT_NOOP; 1347 ccb_h.flags = CAM_DEV_QFREEZE; 1348 xpt_action((union ccb *)&ccb_h); 1349 } 1350 1351 u_int32_t 1352 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 1353 u_int32_t openings, u_int32_t arg, 1354 int getcount_only) 1355 { 1356 struct ccb_relsim crs; 1357 1358 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n", 1359 relsim_flags, openings, arg, getcount_only)); 1360 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1361 crs.ccb_h.func_code = XPT_REL_SIMQ; 1362 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1363 crs.release_flags = relsim_flags; 1364 crs.openings = openings; 1365 crs.release_timeout = arg; 1366 xpt_action((union ccb *)&crs); 1367 return (crs.qfrozen_cnt); 1368 } 1369 1370 #define saved_ccb_ptr ppriv_ptr0 1371 static void 1372 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1373 { 1374 union ccb *saved_ccb; 1375 cam_status status; 1376 struct scsi_start_stop_unit *scsi_cmd; 1377 int error = 0, error_code, sense_key, asc, ascq; 1378 1379 scsi_cmd = (struct scsi_start_stop_unit *) 1380 &done_ccb->csio.cdb_io.cdb_bytes; 1381 status = done_ccb->ccb_h.status; 1382 1383 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1384 if (scsi_extract_sense_ccb(done_ccb, 1385 &error_code, &sense_key, &asc, &ascq)) { 1386 /* 1387 * If the error is "invalid field in CDB", 1388 * and the load/eject flag is set, turn the 1389 * flag off and try again. This is just in 1390 * case the drive in question barfs on the 1391 * load eject flag. The CAM code should set 1392 * the load/eject flag by default for 1393 * removable media. 1394 */ 1395 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1396 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1397 (asc == 0x24) && (ascq == 0x00)) { 1398 scsi_cmd->how &= ~SSS_LOEJ; 1399 if (status & CAM_DEV_QFRZN) { 1400 cam_release_devq(done_ccb->ccb_h.path, 1401 0, 0, 0, 0); 1402 done_ccb->ccb_h.status &= 1403 ~CAM_DEV_QFRZN; 1404 } 1405 xpt_action(done_ccb); 1406 goto out; 1407 } 1408 } 1409 error = cam_periph_error(done_ccb, 0, 1410 SF_RETRY_UA | SF_NO_PRINT); 1411 if (error == ERESTART) 1412 goto out; 1413 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1414 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1415 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1416 } 1417 } else { 1418 /* 1419 * If we have successfully taken a device from the not 1420 * ready to ready state, re-scan the device and re-get 1421 * the inquiry information. Many devices (mostly disks) 1422 * don't properly report their inquiry information unless 1423 * they are spun up. 1424 */ 1425 if (scsi_cmd->opcode == START_STOP_UNIT) 1426 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1427 } 1428 1429 /* 1430 * After recovery action(s) completed, return to the original CCB. 1431 * If the recovery CCB has failed, considering its own possible 1432 * retries and recovery, assume we are back in state where we have 1433 * been originally, but without recovery hopes left. In such case, 1434 * after the final attempt below, we cancel any further retries, 1435 * blocking by that also any new recovery attempts for this CCB, 1436 * and the result will be the final one returned to the CCB owher. 1437 */ 1438 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1439 bcopy(saved_ccb, done_ccb, sizeof(*done_ccb)); 1440 xpt_free_ccb(saved_ccb); 1441 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1442 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1443 if (error != 0) 1444 done_ccb->ccb_h.retry_count = 0; 1445 xpt_action(done_ccb); 1446 1447 out: 1448 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1449 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1450 } 1451 1452 /* 1453 * Generic Async Event handler. Peripheral drivers usually 1454 * filter out the events that require personal attention, 1455 * and leave the rest to this function. 1456 */ 1457 void 1458 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1459 struct cam_path *path, void *arg) 1460 { 1461 switch (code) { 1462 case AC_LOST_DEVICE: 1463 cam_periph_invalidate(periph); 1464 break; 1465 default: 1466 break; 1467 } 1468 } 1469 1470 void 1471 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1472 { 1473 struct ccb_getdevstats cgds; 1474 1475 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1476 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1477 xpt_action((union ccb *)&cgds); 1478 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1479 } 1480 1481 void 1482 cam_periph_freeze_after_event(struct cam_periph *periph, 1483 struct timeval* event_time, u_int duration_ms) 1484 { 1485 struct timeval delta; 1486 struct timeval duration_tv; 1487 1488 if (!timevalisset(event_time)) 1489 return; 1490 1491 microtime(&delta); 1492 timevalsub(&delta, event_time); 1493 duration_tv.tv_sec = duration_ms / 1000; 1494 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1495 if (timevalcmp(&delta, &duration_tv, <)) { 1496 timevalsub(&duration_tv, &delta); 1497 1498 duration_ms = duration_tv.tv_sec * 1000; 1499 duration_ms += duration_tv.tv_usec / 1000; 1500 cam_freeze_devq(periph->path); 1501 cam_release_devq(periph->path, 1502 RELSIM_RELEASE_AFTER_TIMEOUT, 1503 /*reduction*/0, 1504 /*timeout*/duration_ms, 1505 /*getcount_only*/0); 1506 } 1507 1508 } 1509 1510 static int 1511 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1512 cam_flags camflags, u_int32_t sense_flags, 1513 int *openings, u_int32_t *relsim_flags, 1514 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1515 { 1516 struct cam_periph *periph; 1517 int error; 1518 1519 switch (ccb->csio.scsi_status) { 1520 case SCSI_STATUS_OK: 1521 case SCSI_STATUS_COND_MET: 1522 case SCSI_STATUS_INTERMED: 1523 case SCSI_STATUS_INTERMED_COND_MET: 1524 error = 0; 1525 break; 1526 case SCSI_STATUS_CMD_TERMINATED: 1527 case SCSI_STATUS_CHECK_COND: 1528 error = camperiphscsisenseerror(ccb, orig_ccb, 1529 camflags, 1530 sense_flags, 1531 openings, 1532 relsim_flags, 1533 timeout, 1534 action, 1535 action_string); 1536 break; 1537 case SCSI_STATUS_QUEUE_FULL: 1538 { 1539 /* no decrement */ 1540 struct ccb_getdevstats cgds; 1541 1542 /* 1543 * First off, find out what the current 1544 * transaction counts are. 1545 */ 1546 xpt_setup_ccb(&cgds.ccb_h, 1547 ccb->ccb_h.path, 1548 CAM_PRIORITY_NORMAL); 1549 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1550 xpt_action((union ccb *)&cgds); 1551 1552 /* 1553 * If we were the only transaction active, treat 1554 * the QUEUE FULL as if it were a BUSY condition. 1555 */ 1556 if (cgds.dev_active != 0) { 1557 int total_openings; 1558 1559 /* 1560 * Reduce the number of openings to 1561 * be 1 less than the amount it took 1562 * to get a queue full bounded by the 1563 * minimum allowed tag count for this 1564 * device. 1565 */ 1566 total_openings = cgds.dev_active + cgds.dev_openings; 1567 *openings = cgds.dev_active; 1568 if (*openings < cgds.mintags) 1569 *openings = cgds.mintags; 1570 if (*openings < total_openings) 1571 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1572 else { 1573 /* 1574 * Some devices report queue full for 1575 * temporary resource shortages. For 1576 * this reason, we allow a minimum 1577 * tag count to be entered via a 1578 * quirk entry to prevent the queue 1579 * count on these devices from falling 1580 * to a pessimisticly low value. We 1581 * still wait for the next successful 1582 * completion, however, before queueing 1583 * more transactions to the device. 1584 */ 1585 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1586 } 1587 *timeout = 0; 1588 error = ERESTART; 1589 *action &= ~SSQ_PRINT_SENSE; 1590 break; 1591 } 1592 /* FALLTHROUGH */ 1593 } 1594 case SCSI_STATUS_BUSY: 1595 /* 1596 * Restart the queue after either another 1597 * command completes or a 1 second timeout. 1598 */ 1599 periph = xpt_path_periph(ccb->ccb_h.path); 1600 if (periph->flags & CAM_PERIPH_INVALID) { 1601 error = EIO; 1602 *action_string = "Periph was invalidated"; 1603 } else if ((sense_flags & SF_RETRY_BUSY) != 0 || 1604 ccb->ccb_h.retry_count > 0) { 1605 if ((sense_flags & SF_RETRY_BUSY) == 0) 1606 ccb->ccb_h.retry_count--; 1607 error = ERESTART; 1608 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1609 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1610 *timeout = 1000; 1611 } else { 1612 error = EIO; 1613 *action_string = "Retries exhausted"; 1614 } 1615 break; 1616 case SCSI_STATUS_RESERV_CONFLICT: 1617 default: 1618 error = EIO; 1619 break; 1620 } 1621 return (error); 1622 } 1623 1624 static int 1625 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1626 cam_flags camflags, u_int32_t sense_flags, 1627 int *openings, u_int32_t *relsim_flags, 1628 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1629 { 1630 struct cam_periph *periph; 1631 union ccb *orig_ccb = ccb; 1632 int error, recoveryccb; 1633 1634 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1635 if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL) 1636 biotrack(ccb->csio.bio, __func__); 1637 #endif 1638 1639 periph = xpt_path_periph(ccb->ccb_h.path); 1640 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1641 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1642 /* 1643 * If error recovery is already in progress, don't attempt 1644 * to process this error, but requeue it unconditionally 1645 * and attempt to process it once error recovery has 1646 * completed. This failed command is probably related to 1647 * the error that caused the currently active error recovery 1648 * action so our current recovery efforts should also 1649 * address this command. Be aware that the error recovery 1650 * code assumes that only one recovery action is in progress 1651 * on a particular peripheral instance at any given time 1652 * (e.g. only one saved CCB for error recovery) so it is 1653 * imperitive that we don't violate this assumption. 1654 */ 1655 error = ERESTART; 1656 *action &= ~SSQ_PRINT_SENSE; 1657 } else { 1658 scsi_sense_action err_action; 1659 struct ccb_getdev cgd; 1660 1661 /* 1662 * Grab the inquiry data for this device. 1663 */ 1664 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1665 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1666 xpt_action((union ccb *)&cgd); 1667 1668 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1669 sense_flags); 1670 error = err_action & SS_ERRMASK; 1671 1672 /* 1673 * Do not autostart sequential access devices 1674 * to avoid unexpected tape loading. 1675 */ 1676 if ((err_action & SS_MASK) == SS_START && 1677 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1678 *action_string = "Will not autostart a " 1679 "sequential access device"; 1680 goto sense_error_done; 1681 } 1682 1683 /* 1684 * Avoid recovery recursion if recovery action is the same. 1685 */ 1686 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1687 if (((err_action & SS_MASK) == SS_START && 1688 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1689 ((err_action & SS_MASK) == SS_TUR && 1690 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1691 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1692 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1693 *timeout = 500; 1694 } 1695 } 1696 1697 /* 1698 * If the recovery action will consume a retry, 1699 * make sure we actually have retries available. 1700 */ 1701 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1702 if (ccb->ccb_h.retry_count > 0 && 1703 (periph->flags & CAM_PERIPH_INVALID) == 0) 1704 ccb->ccb_h.retry_count--; 1705 else { 1706 *action_string = "Retries exhausted"; 1707 goto sense_error_done; 1708 } 1709 } 1710 1711 if ((err_action & SS_MASK) >= SS_START) { 1712 /* 1713 * Do common portions of commands that 1714 * use recovery CCBs. 1715 */ 1716 orig_ccb = xpt_alloc_ccb_nowait(); 1717 if (orig_ccb == NULL) { 1718 *action_string = "Can't allocate recovery CCB"; 1719 goto sense_error_done; 1720 } 1721 /* 1722 * Clear freeze flag for original request here, as 1723 * this freeze will be dropped as part of ERESTART. 1724 */ 1725 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1726 bcopy(ccb, orig_ccb, sizeof(*orig_ccb)); 1727 } 1728 1729 switch (err_action & SS_MASK) { 1730 case SS_NOP: 1731 *action_string = "No recovery action needed"; 1732 error = 0; 1733 break; 1734 case SS_RETRY: 1735 *action_string = "Retrying command (per sense data)"; 1736 error = ERESTART; 1737 break; 1738 case SS_FAIL: 1739 *action_string = "Unretryable error"; 1740 break; 1741 case SS_START: 1742 { 1743 int le; 1744 1745 /* 1746 * Send a start unit command to the device, and 1747 * then retry the command. 1748 */ 1749 *action_string = "Attempting to start unit"; 1750 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1751 1752 /* 1753 * Check for removable media and set 1754 * load/eject flag appropriately. 1755 */ 1756 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1757 le = TRUE; 1758 else 1759 le = FALSE; 1760 1761 scsi_start_stop(&ccb->csio, 1762 /*retries*/1, 1763 camperiphdone, 1764 MSG_SIMPLE_Q_TAG, 1765 /*start*/TRUE, 1766 /*load/eject*/le, 1767 /*immediate*/FALSE, 1768 SSD_FULL_SIZE, 1769 /*timeout*/50000); 1770 break; 1771 } 1772 case SS_TUR: 1773 { 1774 /* 1775 * Send a Test Unit Ready to the device. 1776 * If the 'many' flag is set, we send 120 1777 * test unit ready commands, one every half 1778 * second. Otherwise, we just send one TUR. 1779 * We only want to do this if the retry 1780 * count has not been exhausted. 1781 */ 1782 int retries; 1783 1784 if ((err_action & SSQ_MANY) != 0) { 1785 *action_string = "Polling device for readiness"; 1786 retries = 120; 1787 } else { 1788 *action_string = "Testing device for readiness"; 1789 retries = 1; 1790 } 1791 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1792 scsi_test_unit_ready(&ccb->csio, 1793 retries, 1794 camperiphdone, 1795 MSG_SIMPLE_Q_TAG, 1796 SSD_FULL_SIZE, 1797 /*timeout*/5000); 1798 1799 /* 1800 * Accomplish our 500ms delay by deferring 1801 * the release of our device queue appropriately. 1802 */ 1803 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1804 *timeout = 500; 1805 break; 1806 } 1807 default: 1808 panic("Unhandled error action %x", err_action); 1809 } 1810 1811 if ((err_action & SS_MASK) >= SS_START) { 1812 /* 1813 * Drop the priority, so that the recovery 1814 * CCB is the first to execute. Freeze the queue 1815 * after this command is sent so that we can 1816 * restore the old csio and have it queued in 1817 * the proper order before we release normal 1818 * transactions to the device. 1819 */ 1820 ccb->ccb_h.pinfo.priority--; 1821 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1822 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1823 error = ERESTART; 1824 *orig = orig_ccb; 1825 } 1826 1827 sense_error_done: 1828 *action = err_action; 1829 } 1830 return (error); 1831 } 1832 1833 /* 1834 * Generic error handler. Peripheral drivers usually filter 1835 * out the errors that they handle in a unique manner, then 1836 * call this function. 1837 */ 1838 int 1839 cam_periph_error(union ccb *ccb, cam_flags camflags, 1840 u_int32_t sense_flags) 1841 { 1842 struct cam_path *newpath; 1843 union ccb *orig_ccb, *scan_ccb; 1844 struct cam_periph *periph; 1845 const char *action_string; 1846 cam_status status; 1847 int frozen, error, openings, devctl_err; 1848 u_int32_t action, relsim_flags, timeout; 1849 1850 action = SSQ_PRINT_SENSE; 1851 periph = xpt_path_periph(ccb->ccb_h.path); 1852 action_string = NULL; 1853 status = ccb->ccb_h.status; 1854 frozen = (status & CAM_DEV_QFRZN) != 0; 1855 status &= CAM_STATUS_MASK; 1856 devctl_err = openings = relsim_flags = timeout = 0; 1857 orig_ccb = ccb; 1858 1859 /* Filter the errors that should be reported via devctl */ 1860 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 1861 case CAM_CMD_TIMEOUT: 1862 case CAM_REQ_ABORTED: 1863 case CAM_REQ_CMP_ERR: 1864 case CAM_REQ_TERMIO: 1865 case CAM_UNREC_HBA_ERROR: 1866 case CAM_DATA_RUN_ERR: 1867 case CAM_SCSI_STATUS_ERROR: 1868 case CAM_ATA_STATUS_ERROR: 1869 case CAM_SMP_STATUS_ERROR: 1870 devctl_err++; 1871 break; 1872 default: 1873 break; 1874 } 1875 1876 switch (status) { 1877 case CAM_REQ_CMP: 1878 error = 0; 1879 action &= ~SSQ_PRINT_SENSE; 1880 break; 1881 case CAM_SCSI_STATUS_ERROR: 1882 error = camperiphscsistatuserror(ccb, &orig_ccb, 1883 camflags, sense_flags, &openings, &relsim_flags, 1884 &timeout, &action, &action_string); 1885 break; 1886 case CAM_AUTOSENSE_FAIL: 1887 error = EIO; /* we have to kill the command */ 1888 break; 1889 case CAM_UA_ABORT: 1890 case CAM_UA_TERMIO: 1891 case CAM_MSG_REJECT_REC: 1892 /* XXX Don't know that these are correct */ 1893 error = EIO; 1894 break; 1895 case CAM_SEL_TIMEOUT: 1896 if ((camflags & CAM_RETRY_SELTO) != 0) { 1897 if (ccb->ccb_h.retry_count > 0 && 1898 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1899 ccb->ccb_h.retry_count--; 1900 error = ERESTART; 1901 1902 /* 1903 * Wait a bit to give the device 1904 * time to recover before we try again. 1905 */ 1906 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1907 timeout = periph_selto_delay; 1908 break; 1909 } 1910 action_string = "Retries exhausted"; 1911 } 1912 /* FALLTHROUGH */ 1913 case CAM_DEV_NOT_THERE: 1914 error = ENXIO; 1915 action = SSQ_LOST; 1916 break; 1917 case CAM_REQ_INVALID: 1918 case CAM_PATH_INVALID: 1919 case CAM_NO_HBA: 1920 case CAM_PROVIDE_FAIL: 1921 case CAM_REQ_TOO_BIG: 1922 case CAM_LUN_INVALID: 1923 case CAM_TID_INVALID: 1924 case CAM_FUNC_NOTAVAIL: 1925 error = EINVAL; 1926 break; 1927 case CAM_SCSI_BUS_RESET: 1928 case CAM_BDR_SENT: 1929 /* 1930 * Commands that repeatedly timeout and cause these 1931 * kinds of error recovery actions, should return 1932 * CAM_CMD_TIMEOUT, which allows us to safely assume 1933 * that this command was an innocent bystander to 1934 * these events and should be unconditionally 1935 * retried. 1936 */ 1937 case CAM_REQUEUE_REQ: 1938 /* Unconditional requeue if device is still there */ 1939 if (periph->flags & CAM_PERIPH_INVALID) { 1940 action_string = "Periph was invalidated"; 1941 error = EIO; 1942 } else if (sense_flags & SF_NO_RETRY) { 1943 error = EIO; 1944 action_string = "Retry was blocked"; 1945 } else { 1946 error = ERESTART; 1947 action &= ~SSQ_PRINT_SENSE; 1948 } 1949 break; 1950 case CAM_RESRC_UNAVAIL: 1951 /* Wait a bit for the resource shortage to abate. */ 1952 timeout = periph_noresrc_delay; 1953 /* FALLTHROUGH */ 1954 case CAM_BUSY: 1955 if (timeout == 0) { 1956 /* Wait a bit for the busy condition to abate. */ 1957 timeout = periph_busy_delay; 1958 } 1959 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1960 /* FALLTHROUGH */ 1961 case CAM_ATA_STATUS_ERROR: 1962 case CAM_REQ_CMP_ERR: 1963 case CAM_CMD_TIMEOUT: 1964 case CAM_UNEXP_BUSFREE: 1965 case CAM_UNCOR_PARITY: 1966 case CAM_DATA_RUN_ERR: 1967 default: 1968 if (periph->flags & CAM_PERIPH_INVALID) { 1969 error = EIO; 1970 action_string = "Periph was invalidated"; 1971 } else if (ccb->ccb_h.retry_count == 0) { 1972 error = EIO; 1973 action_string = "Retries exhausted"; 1974 } else if (sense_flags & SF_NO_RETRY) { 1975 error = EIO; 1976 action_string = "Retry was blocked"; 1977 } else { 1978 ccb->ccb_h.retry_count--; 1979 error = ERESTART; 1980 } 1981 break; 1982 } 1983 1984 if ((sense_flags & SF_PRINT_ALWAYS) || 1985 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 1986 action |= SSQ_PRINT_SENSE; 1987 else if (sense_flags & SF_NO_PRINT) 1988 action &= ~SSQ_PRINT_SENSE; 1989 if ((action & SSQ_PRINT_SENSE) != 0) 1990 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 1991 if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) { 1992 if (error != ERESTART) { 1993 if (action_string == NULL) 1994 action_string = "Unretryable error"; 1995 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 1996 error, action_string); 1997 } else if (action_string != NULL) 1998 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 1999 else { 2000 xpt_print(ccb->ccb_h.path, 2001 "Retrying command, %d more tries remain\n", 2002 ccb->ccb_h.retry_count); 2003 } 2004 } 2005 2006 if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0)) 2007 cam_periph_devctl_notify(orig_ccb); 2008 2009 if ((action & SSQ_LOST) != 0) { 2010 lun_id_t lun_id; 2011 2012 /* 2013 * For a selection timeout, we consider all of the LUNs on 2014 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 2015 * then we only get rid of the device(s) specified by the 2016 * path in the original CCB. 2017 */ 2018 if (status == CAM_SEL_TIMEOUT) 2019 lun_id = CAM_LUN_WILDCARD; 2020 else 2021 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 2022 2023 /* Should we do more if we can't create the path?? */ 2024 if (xpt_create_path(&newpath, periph, 2025 xpt_path_path_id(ccb->ccb_h.path), 2026 xpt_path_target_id(ccb->ccb_h.path), 2027 lun_id) == CAM_REQ_CMP) { 2028 2029 /* 2030 * Let peripheral drivers know that this 2031 * device has gone away. 2032 */ 2033 xpt_async(AC_LOST_DEVICE, newpath, NULL); 2034 xpt_free_path(newpath); 2035 } 2036 } 2037 2038 /* Broadcast UNIT ATTENTIONs to all periphs. */ 2039 if ((action & SSQ_UA) != 0) 2040 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 2041 2042 /* Rescan target on "Reported LUNs data has changed" */ 2043 if ((action & SSQ_RESCAN) != 0) { 2044 if (xpt_create_path(&newpath, NULL, 2045 xpt_path_path_id(ccb->ccb_h.path), 2046 xpt_path_target_id(ccb->ccb_h.path), 2047 CAM_LUN_WILDCARD) == CAM_REQ_CMP) { 2048 2049 scan_ccb = xpt_alloc_ccb_nowait(); 2050 if (scan_ccb != NULL) { 2051 scan_ccb->ccb_h.path = newpath; 2052 scan_ccb->ccb_h.func_code = XPT_SCAN_TGT; 2053 scan_ccb->crcn.flags = 0; 2054 xpt_rescan(scan_ccb); 2055 } else { 2056 xpt_print(newpath, 2057 "Can't allocate CCB to rescan target\n"); 2058 xpt_free_path(newpath); 2059 } 2060 } 2061 } 2062 2063 /* Attempt a retry */ 2064 if (error == ERESTART || error == 0) { 2065 if (frozen != 0) 2066 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 2067 if (error == ERESTART) 2068 xpt_action(ccb); 2069 if (frozen != 0) 2070 cam_release_devq(ccb->ccb_h.path, 2071 relsim_flags, 2072 openings, 2073 timeout, 2074 /*getcount_only*/0); 2075 } 2076 2077 return (error); 2078 } 2079 2080 #define CAM_PERIPH_DEVD_MSG_SIZE 256 2081 2082 static void 2083 cam_periph_devctl_notify(union ccb *ccb) 2084 { 2085 struct cam_periph *periph; 2086 struct ccb_getdev *cgd; 2087 struct sbuf sb; 2088 int serr, sk, asc, ascq; 2089 char *sbmsg, *type; 2090 2091 sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT); 2092 if (sbmsg == NULL) 2093 return; 2094 2095 sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN); 2096 2097 periph = xpt_path_periph(ccb->ccb_h.path); 2098 sbuf_printf(&sb, "device=%s%d ", periph->periph_name, 2099 periph->unit_number); 2100 2101 sbuf_printf(&sb, "serial=\""); 2102 if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) { 2103 xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path, 2104 CAM_PRIORITY_NORMAL); 2105 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 2106 xpt_action((union ccb *)cgd); 2107 2108 if (cgd->ccb_h.status == CAM_REQ_CMP) 2109 sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len); 2110 xpt_free_ccb((union ccb *)cgd); 2111 } 2112 sbuf_printf(&sb, "\" "); 2113 sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status); 2114 2115 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 2116 case CAM_CMD_TIMEOUT: 2117 sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout); 2118 type = "timeout"; 2119 break; 2120 case CAM_SCSI_STATUS_ERROR: 2121 sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status); 2122 if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq)) 2123 sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ", 2124 serr, sk, asc, ascq); 2125 type = "error"; 2126 break; 2127 case CAM_ATA_STATUS_ERROR: 2128 sbuf_printf(&sb, "RES=\""); 2129 ata_res_sbuf(&ccb->ataio.res, &sb); 2130 sbuf_printf(&sb, "\" "); 2131 type = "error"; 2132 break; 2133 default: 2134 type = "error"; 2135 break; 2136 } 2137 2138 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 2139 sbuf_printf(&sb, "CDB=\""); 2140 scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb); 2141 sbuf_printf(&sb, "\" "); 2142 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 2143 sbuf_printf(&sb, "ACB=\""); 2144 ata_cmd_sbuf(&ccb->ataio.cmd, &sb); 2145 sbuf_printf(&sb, "\" "); 2146 } 2147 2148 if (sbuf_finish(&sb) == 0) 2149 devctl_notify("CAM", "periph", type, sbuf_data(&sb)); 2150 sbuf_delete(&sb); 2151 free(sbmsg, M_CAMPERIPH); 2152 } 2153 2154 /* 2155 * Sysctl to force an invalidation of the drive right now. Can be 2156 * called with CTLFLAG_MPSAFE since we take periph lock. 2157 */ 2158 int 2159 cam_periph_invalidate_sysctl(SYSCTL_HANDLER_ARGS) 2160 { 2161 struct cam_periph *periph; 2162 int error, value; 2163 2164 periph = arg1; 2165 value = 0; 2166 error = sysctl_handle_int(oidp, &value, 0, req); 2167 if (error != 0 || req->newptr == NULL || value != 1) 2168 return (error); 2169 2170 cam_periph_lock(periph); 2171 cam_periph_invalidate(periph); 2172 cam_periph_unlock(periph); 2173 2174 return (0); 2175 } 2176