1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/types.h> 38 #include <sys/malloc.h> 39 #include <sys/kernel.h> 40 #include <sys/bio.h> 41 #include <sys/conf.h> 42 #include <sys/devctl.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/buf.h> 46 #include <sys/proc.h> 47 #include <sys/devicestat.h> 48 #include <sys/sbuf.h> 49 #include <sys/sysctl.h> 50 #include <vm/vm.h> 51 #include <vm/vm_extern.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_queue.h> 56 #include <cam/cam_xpt_periph.h> 57 #include <cam/cam_xpt_internal.h> 58 #include <cam/cam_periph.h> 59 #include <cam/cam_debug.h> 60 #include <cam/cam_sim.h> 61 62 #include <cam/scsi/scsi_all.h> 63 #include <cam/scsi/scsi_message.h> 64 #include <cam/scsi/scsi_pass.h> 65 66 static u_int camperiphnextunit(struct periph_driver *p_drv, 67 u_int newunit, bool wired, 68 path_id_t pathid, target_id_t target, 69 lun_id_t lun); 70 static u_int camperiphunit(struct periph_driver *p_drv, 71 path_id_t pathid, target_id_t target, 72 lun_id_t lun, 73 const char *sn); 74 static void camperiphdone(struct cam_periph *periph, 75 union ccb *done_ccb); 76 static void camperiphfree(struct cam_periph *periph); 77 static int camperiphscsistatuserror(union ccb *ccb, 78 union ccb **orig_ccb, 79 cam_flags camflags, 80 u_int32_t sense_flags, 81 int *openings, 82 u_int32_t *relsim_flags, 83 u_int32_t *timeout, 84 u_int32_t *action, 85 const char **action_string); 86 static int camperiphscsisenseerror(union ccb *ccb, 87 union ccb **orig_ccb, 88 cam_flags camflags, 89 u_int32_t sense_flags, 90 int *openings, 91 u_int32_t *relsim_flags, 92 u_int32_t *timeout, 93 u_int32_t *action, 94 const char **action_string); 95 static void cam_periph_devctl_notify(union ccb *ccb); 96 97 static int nperiph_drivers; 98 static int initialized = 0; 99 struct periph_driver **periph_drivers; 100 101 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 102 103 static int periph_selto_delay = 1000; 104 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 105 static int periph_noresrc_delay = 500; 106 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 107 static int periph_busy_delay = 500; 108 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 109 110 static u_int periph_mapmem_thresh = 65536; 111 SYSCTL_UINT(_kern_cam, OID_AUTO, mapmem_thresh, CTLFLAG_RWTUN, 112 &periph_mapmem_thresh, 0, "Threshold for user-space buffer mapping"); 113 114 void 115 periphdriver_register(void *data) 116 { 117 struct periph_driver *drv = (struct periph_driver *)data; 118 struct periph_driver **newdrivers, **old; 119 int ndrivers; 120 121 again: 122 ndrivers = nperiph_drivers + 2; 123 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 124 M_WAITOK); 125 xpt_lock_buses(); 126 if (ndrivers != nperiph_drivers + 2) { 127 /* 128 * Lost race against itself; go around. 129 */ 130 xpt_unlock_buses(); 131 free(newdrivers, M_CAMPERIPH); 132 goto again; 133 } 134 if (periph_drivers) 135 bcopy(periph_drivers, newdrivers, 136 sizeof(*newdrivers) * nperiph_drivers); 137 newdrivers[nperiph_drivers] = drv; 138 newdrivers[nperiph_drivers + 1] = NULL; 139 old = periph_drivers; 140 periph_drivers = newdrivers; 141 nperiph_drivers++; 142 xpt_unlock_buses(); 143 if (old) 144 free(old, M_CAMPERIPH); 145 /* If driver marked as early or it is late now, initialize it. */ 146 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 147 initialized > 1) 148 (*drv->init)(); 149 } 150 151 int 152 periphdriver_unregister(void *data) 153 { 154 struct periph_driver *drv = (struct periph_driver *)data; 155 int error, n; 156 157 /* If driver marked as early or it is late now, deinitialize it. */ 158 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 159 initialized > 1) { 160 if (drv->deinit == NULL) { 161 printf("CAM periph driver '%s' doesn't have deinit.\n", 162 drv->driver_name); 163 return (EOPNOTSUPP); 164 } 165 error = drv->deinit(); 166 if (error != 0) 167 return (error); 168 } 169 170 xpt_lock_buses(); 171 for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++) 172 ; 173 KASSERT(n < nperiph_drivers, 174 ("Periph driver '%s' was not registered", drv->driver_name)); 175 for (; n + 1 < nperiph_drivers; n++) 176 periph_drivers[n] = periph_drivers[n + 1]; 177 periph_drivers[n + 1] = NULL; 178 nperiph_drivers--; 179 xpt_unlock_buses(); 180 return (0); 181 } 182 183 void 184 periphdriver_init(int level) 185 { 186 int i, early; 187 188 initialized = max(initialized, level); 189 for (i = 0; periph_drivers[i] != NULL; i++) { 190 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 191 if (early == initialized) 192 (*periph_drivers[i]->init)(); 193 } 194 } 195 196 cam_status 197 cam_periph_alloc(periph_ctor_t *periph_ctor, 198 periph_oninv_t *periph_oninvalidate, 199 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 200 char *name, cam_periph_type type, struct cam_path *path, 201 ac_callback_t *ac_callback, ac_code code, void *arg) 202 { 203 struct periph_driver **p_drv; 204 struct cam_sim *sim; 205 struct cam_periph *periph; 206 struct cam_periph *cur_periph; 207 path_id_t path_id; 208 target_id_t target_id; 209 lun_id_t lun_id; 210 cam_status status; 211 u_int init_level; 212 213 init_level = 0; 214 /* 215 * Handle Hot-Plug scenarios. If there is already a peripheral 216 * of our type assigned to this path, we are likely waiting for 217 * final close on an old, invalidated, peripheral. If this is 218 * the case, queue up a deferred call to the peripheral's async 219 * handler. If it looks like a mistaken re-allocation, complain. 220 */ 221 if ((periph = cam_periph_find(path, name)) != NULL) { 222 if ((periph->flags & CAM_PERIPH_INVALID) != 0 223 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 224 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 225 periph->deferred_callback = ac_callback; 226 periph->deferred_ac = code; 227 return (CAM_REQ_INPROG); 228 } else { 229 printf("cam_periph_alloc: attempt to re-allocate " 230 "valid device %s%d rejected flags %#x " 231 "refcount %d\n", periph->periph_name, 232 periph->unit_number, periph->flags, 233 periph->refcount); 234 } 235 return (CAM_REQ_INVALID); 236 } 237 238 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 239 M_NOWAIT|M_ZERO); 240 241 if (periph == NULL) 242 return (CAM_RESRC_UNAVAIL); 243 244 init_level++; 245 246 sim = xpt_path_sim(path); 247 path_id = xpt_path_path_id(path); 248 target_id = xpt_path_target_id(path); 249 lun_id = xpt_path_lun_id(path); 250 periph->periph_start = periph_start; 251 periph->periph_dtor = periph_dtor; 252 periph->periph_oninval = periph_oninvalidate; 253 periph->type = type; 254 periph->periph_name = name; 255 periph->scheduled_priority = CAM_PRIORITY_NONE; 256 periph->immediate_priority = CAM_PRIORITY_NONE; 257 periph->refcount = 1; /* Dropped by invalidation. */ 258 periph->sim = sim; 259 SLIST_INIT(&periph->ccb_list); 260 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 261 if (status != CAM_REQ_CMP) 262 goto failure; 263 periph->path = path; 264 265 xpt_lock_buses(); 266 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 267 if (strcmp((*p_drv)->driver_name, name) == 0) 268 break; 269 } 270 if (*p_drv == NULL) { 271 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 272 xpt_unlock_buses(); 273 xpt_free_path(periph->path); 274 free(periph, M_CAMPERIPH); 275 return (CAM_REQ_INVALID); 276 } 277 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id, 278 path->device->serial_num); 279 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 280 while (cur_periph != NULL 281 && cur_periph->unit_number < periph->unit_number) 282 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 283 if (cur_periph != NULL) { 284 KASSERT(cur_periph->unit_number != periph->unit_number, 285 ("duplicate units on periph list")); 286 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 287 } else { 288 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 289 (*p_drv)->generation++; 290 } 291 xpt_unlock_buses(); 292 293 init_level++; 294 295 status = xpt_add_periph(periph); 296 if (status != CAM_REQ_CMP) 297 goto failure; 298 299 init_level++; 300 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 301 302 status = periph_ctor(periph, arg); 303 304 if (status == CAM_REQ_CMP) 305 init_level++; 306 307 failure: 308 switch (init_level) { 309 case 4: 310 /* Initialized successfully */ 311 break; 312 case 3: 313 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 314 xpt_remove_periph(periph); 315 /* FALLTHROUGH */ 316 case 2: 317 xpt_lock_buses(); 318 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 319 xpt_unlock_buses(); 320 xpt_free_path(periph->path); 321 /* FALLTHROUGH */ 322 case 1: 323 free(periph, M_CAMPERIPH); 324 /* FALLTHROUGH */ 325 case 0: 326 /* No cleanup to perform. */ 327 break; 328 default: 329 panic("%s: Unknown init level", __func__); 330 } 331 return(status); 332 } 333 334 /* 335 * Find a peripheral structure with the specified path, target, lun, 336 * and (optionally) type. If the name is NULL, this function will return 337 * the first peripheral driver that matches the specified path. 338 */ 339 struct cam_periph * 340 cam_periph_find(struct cam_path *path, char *name) 341 { 342 struct periph_driver **p_drv; 343 struct cam_periph *periph; 344 345 xpt_lock_buses(); 346 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 347 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 348 continue; 349 350 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 351 if (xpt_path_comp(periph->path, path) == 0) { 352 xpt_unlock_buses(); 353 cam_periph_assert(periph, MA_OWNED); 354 return(periph); 355 } 356 } 357 if (name != NULL) { 358 xpt_unlock_buses(); 359 return(NULL); 360 } 361 } 362 xpt_unlock_buses(); 363 return(NULL); 364 } 365 366 /* 367 * Find peripheral driver instances attached to the specified path. 368 */ 369 int 370 cam_periph_list(struct cam_path *path, struct sbuf *sb) 371 { 372 struct sbuf local_sb; 373 struct periph_driver **p_drv; 374 struct cam_periph *periph; 375 int count; 376 int sbuf_alloc_len; 377 378 sbuf_alloc_len = 16; 379 retry: 380 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 381 count = 0; 382 xpt_lock_buses(); 383 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 384 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 385 if (xpt_path_comp(periph->path, path) != 0) 386 continue; 387 388 if (sbuf_len(&local_sb) != 0) 389 sbuf_cat(&local_sb, ","); 390 391 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 392 periph->unit_number); 393 394 if (sbuf_error(&local_sb) == ENOMEM) { 395 sbuf_alloc_len *= 2; 396 xpt_unlock_buses(); 397 sbuf_delete(&local_sb); 398 goto retry; 399 } 400 count++; 401 } 402 } 403 xpt_unlock_buses(); 404 sbuf_finish(&local_sb); 405 if (sbuf_len(sb) != 0) 406 sbuf_cat(sb, ","); 407 sbuf_cat(sb, sbuf_data(&local_sb)); 408 sbuf_delete(&local_sb); 409 return (count); 410 } 411 412 int 413 cam_periph_acquire(struct cam_periph *periph) 414 { 415 int status; 416 417 if (periph == NULL) 418 return (EINVAL); 419 420 status = ENOENT; 421 xpt_lock_buses(); 422 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 423 periph->refcount++; 424 status = 0; 425 } 426 xpt_unlock_buses(); 427 428 return (status); 429 } 430 431 void 432 cam_periph_doacquire(struct cam_periph *periph) 433 { 434 435 xpt_lock_buses(); 436 KASSERT(periph->refcount >= 1, 437 ("cam_periph_doacquire() with refcount == %d", periph->refcount)); 438 periph->refcount++; 439 xpt_unlock_buses(); 440 } 441 442 void 443 cam_periph_release_locked_buses(struct cam_periph *periph) 444 { 445 446 cam_periph_assert(periph, MA_OWNED); 447 KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); 448 if (--periph->refcount == 0) 449 camperiphfree(periph); 450 } 451 452 void 453 cam_periph_release_locked(struct cam_periph *periph) 454 { 455 456 if (periph == NULL) 457 return; 458 459 xpt_lock_buses(); 460 cam_periph_release_locked_buses(periph); 461 xpt_unlock_buses(); 462 } 463 464 void 465 cam_periph_release(struct cam_periph *periph) 466 { 467 struct mtx *mtx; 468 469 if (periph == NULL) 470 return; 471 472 cam_periph_assert(periph, MA_NOTOWNED); 473 mtx = cam_periph_mtx(periph); 474 mtx_lock(mtx); 475 cam_periph_release_locked(periph); 476 mtx_unlock(mtx); 477 } 478 479 /* 480 * hold/unhold act as mutual exclusion for sections of the code that 481 * need to sleep and want to make sure that other sections that 482 * will interfere are held off. This only protects exclusive sections 483 * from each other. 484 */ 485 int 486 cam_periph_hold(struct cam_periph *periph, int priority) 487 { 488 int error; 489 490 /* 491 * Increment the reference count on the peripheral 492 * while we wait for our lock attempt to succeed 493 * to ensure the peripheral doesn't disappear out 494 * from user us while we sleep. 495 */ 496 497 if (cam_periph_acquire(periph) != 0) 498 return (ENXIO); 499 500 cam_periph_assert(periph, MA_OWNED); 501 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 502 periph->flags |= CAM_PERIPH_LOCK_WANTED; 503 if ((error = cam_periph_sleep(periph, periph, priority, 504 "caplck", 0)) != 0) { 505 cam_periph_release_locked(periph); 506 return (error); 507 } 508 if (periph->flags & CAM_PERIPH_INVALID) { 509 cam_periph_release_locked(periph); 510 return (ENXIO); 511 } 512 } 513 514 periph->flags |= CAM_PERIPH_LOCKED; 515 return (0); 516 } 517 518 void 519 cam_periph_unhold(struct cam_periph *periph) 520 { 521 522 cam_periph_assert(periph, MA_OWNED); 523 524 periph->flags &= ~CAM_PERIPH_LOCKED; 525 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 526 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 527 wakeup(periph); 528 } 529 530 cam_periph_release_locked(periph); 531 } 532 533 /* 534 * Look for the next unit number that is not currently in use for this 535 * peripheral type starting at "newunit". Also exclude unit numbers that 536 * are reserved by for future "hardwiring" unless we already know that this 537 * is a potential wired device. Only assume that the device is "wired" the 538 * first time through the loop since after that we'll be looking at unit 539 * numbers that did not match a wiring entry. 540 */ 541 static u_int 542 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, bool wired, 543 path_id_t pathid, target_id_t target, lun_id_t lun) 544 { 545 struct cam_periph *periph; 546 char *periph_name; 547 int i, val, dunit, r; 548 const char *dname, *strval; 549 550 periph_name = p_drv->driver_name; 551 for (;;newunit++) { 552 for (periph = TAILQ_FIRST(&p_drv->units); 553 periph != NULL && periph->unit_number != newunit; 554 periph = TAILQ_NEXT(periph, unit_links)) 555 ; 556 557 if (periph != NULL && periph->unit_number == newunit) { 558 if (wired) { 559 xpt_print(periph->path, "Duplicate Wired " 560 "Device entry!\n"); 561 xpt_print(periph->path, "Second device (%s " 562 "device at scbus%d target %d lun %d) will " 563 "not be wired\n", periph_name, pathid, 564 target, lun); 565 wired = false; 566 } 567 continue; 568 } 569 if (wired) 570 break; 571 572 /* 573 * Don't allow the mere presence of any attributes of a device 574 * means that it is for a wired down entry. Instead, insist that 575 * one of the matching criteria from camperiphunit be present 576 * for the device. 577 */ 578 i = 0; 579 dname = periph_name; 580 for (;;) { 581 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 582 if (r != 0) 583 break; 584 585 if (newunit != dunit) 586 continue; 587 if (resource_string_value(dname, dunit, "sn", &strval) == 0 || 588 resource_int_value(dname, dunit, "lun", &val) == 0 || 589 resource_int_value(dname, dunit, "target", &val) == 0 || 590 resource_string_value(dname, dunit, "at", &strval) == 0) 591 break; 592 } 593 if (r != 0) 594 break; 595 } 596 return (newunit); 597 } 598 599 static u_int 600 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 601 target_id_t target, lun_id_t lun, const char *sn) 602 { 603 bool wired = false; 604 u_int unit; 605 int i, val, dunit; 606 const char *dname, *strval; 607 char pathbuf[32], *periph_name; 608 609 periph_name = p_drv->driver_name; 610 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 611 unit = 0; 612 i = 0; 613 dname = periph_name; 614 while (resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0) { 615 wired = false; 616 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 617 if (strcmp(strval, pathbuf) != 0) 618 continue; 619 wired = true; 620 } 621 if (resource_int_value(dname, dunit, "target", &val) == 0) { 622 if (val != target) 623 continue; 624 wired = true; 625 } 626 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 627 if (val != lun) 628 continue; 629 wired = true; 630 } 631 if (resource_string_value(dname, dunit, "sn", &strval) == 0) { 632 if (sn == NULL || strcmp(strval, sn) != 0) 633 continue; 634 wired = true; 635 } 636 if (wired) { 637 unit = dunit; 638 break; 639 } 640 } 641 642 /* 643 * Either start from 0 looking for the next unit or from 644 * the unit number given in the resource config. This way, 645 * if we have wildcard matches, we don't return the same 646 * unit number twice. 647 */ 648 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 649 650 return (unit); 651 } 652 653 void 654 cam_periph_invalidate(struct cam_periph *periph) 655 { 656 657 cam_periph_assert(periph, MA_OWNED); 658 /* 659 * We only tear down the device the first time a peripheral is 660 * invalidated. 661 */ 662 if ((periph->flags & CAM_PERIPH_INVALID) != 0) 663 return; 664 665 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 666 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) { 667 struct sbuf sb; 668 char buffer[160]; 669 670 sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN); 671 xpt_denounce_periph_sbuf(periph, &sb); 672 sbuf_finish(&sb); 673 sbuf_putbuf(&sb); 674 } 675 periph->flags |= CAM_PERIPH_INVALID; 676 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 677 if (periph->periph_oninval != NULL) 678 periph->periph_oninval(periph); 679 cam_periph_release_locked(periph); 680 } 681 682 static void 683 camperiphfree(struct cam_periph *periph) 684 { 685 struct periph_driver **p_drv; 686 struct periph_driver *drv; 687 688 cam_periph_assert(periph, MA_OWNED); 689 KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating", 690 periph->periph_name, periph->unit_number)); 691 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 692 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 693 break; 694 } 695 if (*p_drv == NULL) { 696 printf("camperiphfree: attempt to free non-existant periph\n"); 697 return; 698 } 699 /* 700 * Cache a pointer to the periph_driver structure. If a 701 * periph_driver is added or removed from the array (see 702 * periphdriver_register()) while we drop the toplogy lock 703 * below, p_drv may change. This doesn't protect against this 704 * particular periph_driver going away. That will require full 705 * reference counting in the periph_driver infrastructure. 706 */ 707 drv = *p_drv; 708 709 /* 710 * We need to set this flag before dropping the topology lock, to 711 * let anyone who is traversing the list that this peripheral is 712 * about to be freed, and there will be no more reference count 713 * checks. 714 */ 715 periph->flags |= CAM_PERIPH_FREE; 716 717 /* 718 * The peripheral destructor semantics dictate calling with only the 719 * SIM mutex held. Since it might sleep, it should not be called 720 * with the topology lock held. 721 */ 722 xpt_unlock_buses(); 723 724 /* 725 * We need to call the peripheral destructor prior to removing the 726 * peripheral from the list. Otherwise, we risk running into a 727 * scenario where the peripheral unit number may get reused 728 * (because it has been removed from the list), but some resources 729 * used by the peripheral are still hanging around. In particular, 730 * the devfs nodes used by some peripherals like the pass(4) driver 731 * aren't fully cleaned up until the destructor is run. If the 732 * unit number is reused before the devfs instance is fully gone, 733 * devfs will panic. 734 */ 735 if (periph->periph_dtor != NULL) 736 periph->periph_dtor(periph); 737 738 /* 739 * The peripheral list is protected by the topology lock. We have to 740 * remove the periph from the drv list before we call deferred_ac. The 741 * AC_FOUND_DEVICE callback won't create a new periph if it's still there. 742 */ 743 xpt_lock_buses(); 744 745 TAILQ_REMOVE(&drv->units, periph, unit_links); 746 drv->generation++; 747 748 xpt_remove_periph(periph); 749 750 xpt_unlock_buses(); 751 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) 752 xpt_print(periph->path, "Periph destroyed\n"); 753 else 754 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 755 756 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 757 union ccb ccb; 758 void *arg; 759 760 memset(&ccb, 0, sizeof(ccb)); 761 switch (periph->deferred_ac) { 762 case AC_FOUND_DEVICE: 763 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 764 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 765 xpt_action(&ccb); 766 arg = &ccb; 767 break; 768 case AC_PATH_REGISTERED: 769 xpt_path_inq(&ccb.cpi, periph->path); 770 arg = &ccb; 771 break; 772 default: 773 arg = NULL; 774 break; 775 } 776 periph->deferred_callback(NULL, periph->deferred_ac, 777 periph->path, arg); 778 } 779 xpt_free_path(periph->path); 780 free(periph, M_CAMPERIPH); 781 xpt_lock_buses(); 782 } 783 784 /* 785 * Map user virtual pointers into kernel virtual address space, so we can 786 * access the memory. This is now a generic function that centralizes most 787 * of the sanity checks on the data flags, if any. 788 * This also only works for up to maxphys memory. Since we use 789 * buffers to map stuff in and out, we're limited to the buffer size. 790 */ 791 int 792 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo, 793 u_int maxmap) 794 { 795 int numbufs, i; 796 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 797 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 798 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 799 800 bzero(mapinfo, sizeof(*mapinfo)); 801 if (maxmap == 0) 802 maxmap = DFLTPHYS; /* traditional default */ 803 else if (maxmap > maxphys) 804 maxmap = maxphys; /* for safety */ 805 switch(ccb->ccb_h.func_code) { 806 case XPT_DEV_MATCH: 807 if (ccb->cdm.match_buf_len == 0) { 808 printf("cam_periph_mapmem: invalid match buffer " 809 "length 0\n"); 810 return(EINVAL); 811 } 812 if (ccb->cdm.pattern_buf_len > 0) { 813 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 814 lengths[0] = ccb->cdm.pattern_buf_len; 815 dirs[0] = CAM_DIR_OUT; 816 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 817 lengths[1] = ccb->cdm.match_buf_len; 818 dirs[1] = CAM_DIR_IN; 819 numbufs = 2; 820 } else { 821 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 822 lengths[0] = ccb->cdm.match_buf_len; 823 dirs[0] = CAM_DIR_IN; 824 numbufs = 1; 825 } 826 /* 827 * This request will not go to the hardware, no reason 828 * to be so strict. vmapbuf() is able to map up to maxphys. 829 */ 830 maxmap = maxphys; 831 break; 832 case XPT_SCSI_IO: 833 case XPT_CONT_TARGET_IO: 834 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 835 return(0); 836 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 837 return (EINVAL); 838 data_ptrs[0] = &ccb->csio.data_ptr; 839 lengths[0] = ccb->csio.dxfer_len; 840 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 841 numbufs = 1; 842 break; 843 case XPT_ATA_IO: 844 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 845 return(0); 846 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 847 return (EINVAL); 848 data_ptrs[0] = &ccb->ataio.data_ptr; 849 lengths[0] = ccb->ataio.dxfer_len; 850 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 851 numbufs = 1; 852 break; 853 case XPT_MMC_IO: 854 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 855 return(0); 856 /* Two mappings: one for cmd->data and one for cmd->data->data */ 857 data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data; 858 lengths[0] = sizeof(struct mmc_data *); 859 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 860 data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data; 861 lengths[1] = ccb->mmcio.cmd.data->len; 862 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 863 numbufs = 2; 864 break; 865 case XPT_SMP_IO: 866 data_ptrs[0] = &ccb->smpio.smp_request; 867 lengths[0] = ccb->smpio.smp_request_len; 868 dirs[0] = CAM_DIR_OUT; 869 data_ptrs[1] = &ccb->smpio.smp_response; 870 lengths[1] = ccb->smpio.smp_response_len; 871 dirs[1] = CAM_DIR_IN; 872 numbufs = 2; 873 break; 874 case XPT_NVME_IO: 875 case XPT_NVME_ADMIN: 876 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 877 return (0); 878 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 879 return (EINVAL); 880 data_ptrs[0] = &ccb->nvmeio.data_ptr; 881 lengths[0] = ccb->nvmeio.dxfer_len; 882 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 883 numbufs = 1; 884 break; 885 case XPT_DEV_ADVINFO: 886 if (ccb->cdai.bufsiz == 0) 887 return (0); 888 889 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 890 lengths[0] = ccb->cdai.bufsiz; 891 dirs[0] = CAM_DIR_IN; 892 numbufs = 1; 893 894 /* 895 * This request will not go to the hardware, no reason 896 * to be so strict. vmapbuf() is able to map up to maxphys. 897 */ 898 maxmap = maxphys; 899 break; 900 default: 901 return(EINVAL); 902 break; /* NOTREACHED */ 903 } 904 905 /* 906 * Check the transfer length and permissions first, so we don't 907 * have to unmap any previously mapped buffers. 908 */ 909 for (i = 0; i < numbufs; i++) { 910 if (lengths[i] > maxmap) { 911 printf("cam_periph_mapmem: attempt to map %lu bytes, " 912 "which is greater than %lu\n", 913 (long)(lengths[i]), (u_long)maxmap); 914 return (E2BIG); 915 } 916 } 917 918 /* 919 * This keeps the kernel stack of current thread from getting 920 * swapped. In low-memory situations where the kernel stack might 921 * otherwise get swapped out, this holds it and allows the thread 922 * to make progress and release the kernel mapped pages sooner. 923 * 924 * XXX KDM should I use P_NOSWAP instead? 925 */ 926 PHOLD(curproc); 927 928 for (i = 0; i < numbufs; i++) { 929 /* Save the user's data address. */ 930 mapinfo->orig[i] = *data_ptrs[i]; 931 932 /* 933 * For small buffers use malloc+copyin/copyout instead of 934 * mapping to KVA to avoid expensive TLB shootdowns. For 935 * small allocations malloc is backed by UMA, and so much 936 * cheaper on SMP systems. 937 */ 938 if (lengths[i] <= periph_mapmem_thresh && 939 ccb->ccb_h.func_code != XPT_MMC_IO) { 940 *data_ptrs[i] = malloc(lengths[i], M_CAMPERIPH, 941 M_WAITOK); 942 if (dirs[i] != CAM_DIR_IN) { 943 if (copyin(mapinfo->orig[i], *data_ptrs[i], 944 lengths[i]) != 0) { 945 free(*data_ptrs[i], M_CAMPERIPH); 946 *data_ptrs[i] = mapinfo->orig[i]; 947 goto fail; 948 } 949 } else 950 bzero(*data_ptrs[i], lengths[i]); 951 continue; 952 } 953 954 /* 955 * Get the buffer. 956 */ 957 mapinfo->bp[i] = uma_zalloc(pbuf_zone, M_WAITOK); 958 959 /* set the direction */ 960 mapinfo->bp[i]->b_iocmd = (dirs[i] == CAM_DIR_OUT) ? 961 BIO_WRITE : BIO_READ; 962 963 /* Map the buffer into kernel memory. */ 964 if (vmapbuf(mapinfo->bp[i], *data_ptrs[i], lengths[i], 1) < 0) { 965 uma_zfree(pbuf_zone, mapinfo->bp[i]); 966 goto fail; 967 } 968 969 /* set our pointer to the new mapped area */ 970 *data_ptrs[i] = mapinfo->bp[i]->b_data; 971 } 972 973 /* 974 * Now that we've gotten this far, change ownership to the kernel 975 * of the buffers so that we don't run afoul of returning to user 976 * space with locks (on the buffer) held. 977 */ 978 for (i = 0; i < numbufs; i++) { 979 if (mapinfo->bp[i]) 980 BUF_KERNPROC(mapinfo->bp[i]); 981 } 982 983 mapinfo->num_bufs_used = numbufs; 984 return(0); 985 986 fail: 987 for (i--; i >= 0; i--) { 988 if (mapinfo->bp[i]) { 989 vunmapbuf(mapinfo->bp[i]); 990 uma_zfree(pbuf_zone, mapinfo->bp[i]); 991 } else 992 free(*data_ptrs[i], M_CAMPERIPH); 993 *data_ptrs[i] = mapinfo->orig[i]; 994 } 995 PRELE(curproc); 996 return(EACCES); 997 } 998 999 /* 1000 * Unmap memory segments mapped into kernel virtual address space by 1001 * cam_periph_mapmem(). 1002 */ 1003 void 1004 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 1005 { 1006 int numbufs, i; 1007 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1008 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 1009 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 1010 1011 if (mapinfo->num_bufs_used <= 0) { 1012 /* nothing to free and the process wasn't held. */ 1013 return; 1014 } 1015 1016 switch (ccb->ccb_h.func_code) { 1017 case XPT_DEV_MATCH: 1018 if (ccb->cdm.pattern_buf_len > 0) { 1019 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1020 lengths[0] = ccb->cdm.pattern_buf_len; 1021 dirs[0] = CAM_DIR_OUT; 1022 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1023 lengths[1] = ccb->cdm.match_buf_len; 1024 dirs[1] = CAM_DIR_IN; 1025 numbufs = 2; 1026 } else { 1027 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1028 lengths[0] = ccb->cdm.match_buf_len; 1029 dirs[0] = CAM_DIR_IN; 1030 numbufs = 1; 1031 } 1032 break; 1033 case XPT_SCSI_IO: 1034 case XPT_CONT_TARGET_IO: 1035 data_ptrs[0] = &ccb->csio.data_ptr; 1036 lengths[0] = ccb->csio.dxfer_len; 1037 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1038 numbufs = 1; 1039 break; 1040 case XPT_ATA_IO: 1041 data_ptrs[0] = &ccb->ataio.data_ptr; 1042 lengths[0] = ccb->ataio.dxfer_len; 1043 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1044 numbufs = 1; 1045 break; 1046 case XPT_MMC_IO: 1047 data_ptrs[0] = (u_int8_t **)&ccb->mmcio.cmd.data; 1048 lengths[0] = sizeof(struct mmc_data *); 1049 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1050 data_ptrs[1] = (u_int8_t **)&ccb->mmcio.cmd.data->data; 1051 lengths[1] = ccb->mmcio.cmd.data->len; 1052 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 1053 numbufs = 2; 1054 break; 1055 case XPT_SMP_IO: 1056 data_ptrs[0] = &ccb->smpio.smp_request; 1057 lengths[0] = ccb->smpio.smp_request_len; 1058 dirs[0] = CAM_DIR_OUT; 1059 data_ptrs[1] = &ccb->smpio.smp_response; 1060 lengths[1] = ccb->smpio.smp_response_len; 1061 dirs[1] = CAM_DIR_IN; 1062 numbufs = 2; 1063 break; 1064 case XPT_NVME_IO: 1065 case XPT_NVME_ADMIN: 1066 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1067 lengths[0] = ccb->nvmeio.dxfer_len; 1068 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1069 numbufs = 1; 1070 break; 1071 case XPT_DEV_ADVINFO: 1072 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1073 lengths[0] = ccb->cdai.bufsiz; 1074 dirs[0] = CAM_DIR_IN; 1075 numbufs = 1; 1076 break; 1077 default: 1078 /* allow ourselves to be swapped once again */ 1079 PRELE(curproc); 1080 return; 1081 break; /* NOTREACHED */ 1082 } 1083 1084 for (i = 0; i < numbufs; i++) { 1085 if (mapinfo->bp[i]) { 1086 /* unmap the buffer */ 1087 vunmapbuf(mapinfo->bp[i]); 1088 1089 /* release the buffer */ 1090 uma_zfree(pbuf_zone, mapinfo->bp[i]); 1091 } else { 1092 if (dirs[i] != CAM_DIR_OUT) { 1093 copyout(*data_ptrs[i], mapinfo->orig[i], 1094 lengths[i]); 1095 } 1096 free(*data_ptrs[i], M_CAMPERIPH); 1097 } 1098 1099 /* Set the user's pointer back to the original value */ 1100 *data_ptrs[i] = mapinfo->orig[i]; 1101 } 1102 1103 /* allow ourselves to be swapped once again */ 1104 PRELE(curproc); 1105 } 1106 1107 int 1108 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 1109 int (*error_routine)(union ccb *ccb, 1110 cam_flags camflags, 1111 u_int32_t sense_flags)) 1112 { 1113 union ccb *ccb; 1114 int error; 1115 int found; 1116 1117 error = found = 0; 1118 1119 switch(cmd){ 1120 case CAMGETPASSTHRU: 1121 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 1122 xpt_setup_ccb(&ccb->ccb_h, 1123 ccb->ccb_h.path, 1124 CAM_PRIORITY_NORMAL); 1125 ccb->ccb_h.func_code = XPT_GDEVLIST; 1126 1127 /* 1128 * Basically, the point of this is that we go through 1129 * getting the list of devices, until we find a passthrough 1130 * device. In the current version of the CAM code, the 1131 * only way to determine what type of device we're dealing 1132 * with is by its name. 1133 */ 1134 while (found == 0) { 1135 ccb->cgdl.index = 0; 1136 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1137 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1138 /* we want the next device in the list */ 1139 xpt_action(ccb); 1140 if (strncmp(ccb->cgdl.periph_name, 1141 "pass", 4) == 0){ 1142 found = 1; 1143 break; 1144 } 1145 } 1146 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1147 (found == 0)) { 1148 ccb->cgdl.periph_name[0] = '\0'; 1149 ccb->cgdl.unit_number = 0; 1150 break; 1151 } 1152 } 1153 1154 /* copy the result back out */ 1155 bcopy(ccb, addr, sizeof(union ccb)); 1156 1157 /* and release the ccb */ 1158 xpt_release_ccb(ccb); 1159 1160 break; 1161 default: 1162 error = ENOTTY; 1163 break; 1164 } 1165 return(error); 1166 } 1167 1168 static void 1169 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb) 1170 { 1171 1172 panic("%s: already done with ccb %p", __func__, done_ccb); 1173 } 1174 1175 static void 1176 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb) 1177 { 1178 1179 /* Caller will release the CCB */ 1180 xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED); 1181 done_ccb->ccb_h.cbfcnp = cam_periph_done_panic; 1182 wakeup(&done_ccb->ccb_h.cbfcnp); 1183 } 1184 1185 static void 1186 cam_periph_ccbwait(union ccb *ccb) 1187 { 1188 1189 if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 1190 while (ccb->ccb_h.cbfcnp != cam_periph_done_panic) 1191 xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, 1192 PRIBIO, "cbwait", 0); 1193 } 1194 KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && 1195 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG, 1196 ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, " 1197 "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code, 1198 ccb->ccb_h.status, ccb->ccb_h.pinfo.index)); 1199 } 1200 1201 /* 1202 * Dispatch a CCB and wait for it to complete. If the CCB has set a 1203 * callback function (ccb->ccb_h.cbfcnp), it will be overwritten and lost. 1204 */ 1205 int 1206 cam_periph_runccb(union ccb *ccb, 1207 int (*error_routine)(union ccb *ccb, 1208 cam_flags camflags, 1209 u_int32_t sense_flags), 1210 cam_flags camflags, u_int32_t sense_flags, 1211 struct devstat *ds) 1212 { 1213 struct bintime *starttime; 1214 struct bintime ltime; 1215 int error; 1216 bool must_poll; 1217 uint32_t timeout = 1; 1218 1219 starttime = NULL; 1220 xpt_path_assert(ccb->ccb_h.path, MA_OWNED); 1221 KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0, 1222 ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb, 1223 ccb->ccb_h.func_code, ccb->ccb_h.flags)); 1224 1225 /* 1226 * If the user has supplied a stats structure, and if we understand 1227 * this particular type of ccb, record the transaction start. 1228 */ 1229 if (ds != NULL && 1230 (ccb->ccb_h.func_code == XPT_SCSI_IO || 1231 ccb->ccb_h.func_code == XPT_ATA_IO || 1232 ccb->ccb_h.func_code == XPT_NVME_IO)) { 1233 starttime = <ime; 1234 binuptime(starttime); 1235 devstat_start_transaction(ds, starttime); 1236 } 1237 1238 /* 1239 * We must poll the I/O while we're dumping. The scheduler is normally 1240 * stopped for dumping, except when we call doadump from ddb. While the 1241 * scheduler is running in this case, we still need to poll the I/O to 1242 * avoid sleeping waiting for the ccb to complete. 1243 * 1244 * A panic triggered dump stops the scheduler, any callback from the 1245 * shutdown_post_sync event will run with the scheduler stopped, but 1246 * before we're officially dumping. To avoid hanging in adashutdown 1247 * initiated commands (or other similar situations), we have to test for 1248 * either SCHEDULER_STOPPED() here as well. 1249 * 1250 * To avoid locking problems, dumping/polling callers must call 1251 * without a periph lock held. 1252 */ 1253 must_poll = dumping || SCHEDULER_STOPPED(); 1254 ccb->ccb_h.cbfcnp = cam_periph_done; 1255 1256 /* 1257 * If we're polling, then we need to ensure that we have ample resources 1258 * in the periph. cam_periph_error can reschedule the ccb by calling 1259 * xpt_action and returning ERESTART, so we have to effect the polling 1260 * in the do loop below. 1261 */ 1262 if (must_poll) { 1263 if (cam_sim_pollable(ccb->ccb_h.path->bus->sim)) 1264 timeout = xpt_poll_setup(ccb); 1265 else 1266 timeout = 0; 1267 } 1268 1269 if (timeout == 0) { 1270 ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 1271 error = EBUSY; 1272 } else { 1273 xpt_action(ccb); 1274 do { 1275 if (must_poll) { 1276 xpt_pollwait(ccb, timeout); 1277 timeout = ccb->ccb_h.timeout * 10; 1278 } else { 1279 cam_periph_ccbwait(ccb); 1280 } 1281 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1282 error = 0; 1283 else if (error_routine != NULL) { 1284 ccb->ccb_h.cbfcnp = cam_periph_done; 1285 error = (*error_routine)(ccb, camflags, sense_flags); 1286 } else 1287 error = 0; 1288 } while (error == ERESTART); 1289 } 1290 1291 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1292 cam_release_devq(ccb->ccb_h.path, 1293 /* relsim_flags */0, 1294 /* openings */0, 1295 /* timeout */0, 1296 /* getcount_only */ FALSE); 1297 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1298 } 1299 1300 if (ds != NULL) { 1301 uint32_t bytes; 1302 devstat_tag_type tag; 1303 bool valid = true; 1304 1305 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1306 bytes = ccb->csio.dxfer_len - ccb->csio.resid; 1307 tag = (devstat_tag_type)(ccb->csio.tag_action & 0x3); 1308 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1309 bytes = ccb->ataio.dxfer_len - ccb->ataio.resid; 1310 tag = (devstat_tag_type)0; 1311 } else if (ccb->ccb_h.func_code == XPT_NVME_IO) { 1312 bytes = ccb->nvmeio.dxfer_len; /* NB: resid no possible */ 1313 tag = (devstat_tag_type)0; 1314 } else { 1315 valid = false; 1316 } 1317 if (valid) 1318 devstat_end_transaction(ds, bytes, tag, 1319 ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? 1320 DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1321 DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime); 1322 } 1323 1324 return(error); 1325 } 1326 1327 void 1328 cam_freeze_devq(struct cam_path *path) 1329 { 1330 struct ccb_hdr ccb_h; 1331 1332 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n")); 1333 memset(&ccb_h, 0, sizeof(ccb_h)); 1334 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 1335 ccb_h.func_code = XPT_NOOP; 1336 ccb_h.flags = CAM_DEV_QFREEZE; 1337 xpt_action((union ccb *)&ccb_h); 1338 } 1339 1340 u_int32_t 1341 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 1342 u_int32_t openings, u_int32_t arg, 1343 int getcount_only) 1344 { 1345 struct ccb_relsim crs; 1346 1347 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n", 1348 relsim_flags, openings, arg, getcount_only)); 1349 memset(&crs, 0, sizeof(crs)); 1350 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1351 crs.ccb_h.func_code = XPT_REL_SIMQ; 1352 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1353 crs.release_flags = relsim_flags; 1354 crs.openings = openings; 1355 crs.release_timeout = arg; 1356 xpt_action((union ccb *)&crs); 1357 return (crs.qfrozen_cnt); 1358 } 1359 1360 #define saved_ccb_ptr ppriv_ptr0 1361 static void 1362 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1363 { 1364 union ccb *saved_ccb; 1365 cam_status status; 1366 struct scsi_start_stop_unit *scsi_cmd; 1367 int error = 0, error_code, sense_key, asc, ascq; 1368 u_int16_t done_flags; 1369 1370 scsi_cmd = (struct scsi_start_stop_unit *) 1371 &done_ccb->csio.cdb_io.cdb_bytes; 1372 status = done_ccb->ccb_h.status; 1373 1374 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1375 if (scsi_extract_sense_ccb(done_ccb, 1376 &error_code, &sense_key, &asc, &ascq)) { 1377 /* 1378 * If the error is "invalid field in CDB", 1379 * and the load/eject flag is set, turn the 1380 * flag off and try again. This is just in 1381 * case the drive in question barfs on the 1382 * load eject flag. The CAM code should set 1383 * the load/eject flag by default for 1384 * removable media. 1385 */ 1386 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1387 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1388 (asc == 0x24) && (ascq == 0x00)) { 1389 scsi_cmd->how &= ~SSS_LOEJ; 1390 if (status & CAM_DEV_QFRZN) { 1391 cam_release_devq(done_ccb->ccb_h.path, 1392 0, 0, 0, 0); 1393 done_ccb->ccb_h.status &= 1394 ~CAM_DEV_QFRZN; 1395 } 1396 xpt_action(done_ccb); 1397 goto out; 1398 } 1399 } 1400 error = cam_periph_error(done_ccb, 0, 1401 SF_RETRY_UA | SF_NO_PRINT); 1402 if (error == ERESTART) 1403 goto out; 1404 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1405 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1406 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1407 } 1408 } else { 1409 /* 1410 * If we have successfully taken a device from the not 1411 * ready to ready state, re-scan the device and re-get 1412 * the inquiry information. Many devices (mostly disks) 1413 * don't properly report their inquiry information unless 1414 * they are spun up. 1415 */ 1416 if (scsi_cmd->opcode == START_STOP_UNIT) 1417 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1418 } 1419 1420 /* If we tried long wait and still failed, remember that. */ 1421 if ((periph->flags & CAM_PERIPH_RECOVERY_WAIT) && 1422 (done_ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY)) { 1423 periph->flags &= ~CAM_PERIPH_RECOVERY_WAIT; 1424 if (error != 0 && done_ccb->ccb_h.retry_count == 0) 1425 periph->flags |= CAM_PERIPH_RECOVERY_WAIT_FAILED; 1426 } 1427 1428 /* 1429 * After recovery action(s) completed, return to the original CCB. 1430 * If the recovery CCB has failed, considering its own possible 1431 * retries and recovery, assume we are back in state where we have 1432 * been originally, but without recovery hopes left. In such case, 1433 * after the final attempt below, we cancel any further retries, 1434 * blocking by that also any new recovery attempts for this CCB, 1435 * and the result will be the final one returned to the CCB owher. 1436 */ 1437 1438 /* 1439 * Copy the CCB back, preserving the alloc_flags field. Things 1440 * will crash horribly if the CCBs are not of the same size. 1441 */ 1442 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1443 KASSERT(saved_ccb->ccb_h.func_code == XPT_SCSI_IO, 1444 ("%s: saved_ccb func_code %#x != XPT_SCSI_IO", 1445 __func__, saved_ccb->ccb_h.func_code)); 1446 KASSERT(done_ccb->ccb_h.func_code == XPT_SCSI_IO, 1447 ("%s: done_ccb func_code %#x != XPT_SCSI_IO", 1448 __func__, done_ccb->ccb_h.func_code)); 1449 done_flags = done_ccb->ccb_h.alloc_flags; 1450 bcopy(saved_ccb, done_ccb, sizeof(struct ccb_scsiio)); 1451 done_ccb->ccb_h.alloc_flags = done_flags; 1452 xpt_free_ccb(saved_ccb); 1453 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1454 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1455 if (error != 0) 1456 done_ccb->ccb_h.retry_count = 0; 1457 xpt_action(done_ccb); 1458 1459 out: 1460 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1461 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1462 } 1463 1464 /* 1465 * Generic Async Event handler. Peripheral drivers usually 1466 * filter out the events that require personal attention, 1467 * and leave the rest to this function. 1468 */ 1469 void 1470 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1471 struct cam_path *path, void *arg) 1472 { 1473 switch (code) { 1474 case AC_LOST_DEVICE: 1475 cam_periph_invalidate(periph); 1476 break; 1477 default: 1478 break; 1479 } 1480 } 1481 1482 void 1483 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1484 { 1485 struct ccb_getdevstats cgds; 1486 1487 memset(&cgds, 0, sizeof(cgds)); 1488 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1489 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1490 xpt_action((union ccb *)&cgds); 1491 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1492 } 1493 1494 void 1495 cam_periph_freeze_after_event(struct cam_periph *periph, 1496 struct timeval* event_time, u_int duration_ms) 1497 { 1498 struct timeval delta; 1499 struct timeval duration_tv; 1500 1501 if (!timevalisset(event_time)) 1502 return; 1503 1504 microtime(&delta); 1505 timevalsub(&delta, event_time); 1506 duration_tv.tv_sec = duration_ms / 1000; 1507 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1508 if (timevalcmp(&delta, &duration_tv, <)) { 1509 timevalsub(&duration_tv, &delta); 1510 1511 duration_ms = duration_tv.tv_sec * 1000; 1512 duration_ms += duration_tv.tv_usec / 1000; 1513 cam_freeze_devq(periph->path); 1514 cam_release_devq(periph->path, 1515 RELSIM_RELEASE_AFTER_TIMEOUT, 1516 /*reduction*/0, 1517 /*timeout*/duration_ms, 1518 /*getcount_only*/0); 1519 } 1520 1521 } 1522 1523 static int 1524 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1525 cam_flags camflags, u_int32_t sense_flags, 1526 int *openings, u_int32_t *relsim_flags, 1527 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1528 { 1529 struct cam_periph *periph; 1530 int error; 1531 1532 switch (ccb->csio.scsi_status) { 1533 case SCSI_STATUS_OK: 1534 case SCSI_STATUS_COND_MET: 1535 case SCSI_STATUS_INTERMED: 1536 case SCSI_STATUS_INTERMED_COND_MET: 1537 error = 0; 1538 break; 1539 case SCSI_STATUS_CMD_TERMINATED: 1540 case SCSI_STATUS_CHECK_COND: 1541 error = camperiphscsisenseerror(ccb, orig_ccb, 1542 camflags, 1543 sense_flags, 1544 openings, 1545 relsim_flags, 1546 timeout, 1547 action, 1548 action_string); 1549 break; 1550 case SCSI_STATUS_QUEUE_FULL: 1551 { 1552 /* no decrement */ 1553 struct ccb_getdevstats cgds; 1554 1555 /* 1556 * First off, find out what the current 1557 * transaction counts are. 1558 */ 1559 memset(&cgds, 0, sizeof(cgds)); 1560 xpt_setup_ccb(&cgds.ccb_h, 1561 ccb->ccb_h.path, 1562 CAM_PRIORITY_NORMAL); 1563 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1564 xpt_action((union ccb *)&cgds); 1565 1566 /* 1567 * If we were the only transaction active, treat 1568 * the QUEUE FULL as if it were a BUSY condition. 1569 */ 1570 if (cgds.dev_active != 0) { 1571 int total_openings; 1572 1573 /* 1574 * Reduce the number of openings to 1575 * be 1 less than the amount it took 1576 * to get a queue full bounded by the 1577 * minimum allowed tag count for this 1578 * device. 1579 */ 1580 total_openings = cgds.dev_active + cgds.dev_openings; 1581 *openings = cgds.dev_active; 1582 if (*openings < cgds.mintags) 1583 *openings = cgds.mintags; 1584 if (*openings < total_openings) 1585 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1586 else { 1587 /* 1588 * Some devices report queue full for 1589 * temporary resource shortages. For 1590 * this reason, we allow a minimum 1591 * tag count to be entered via a 1592 * quirk entry to prevent the queue 1593 * count on these devices from falling 1594 * to a pessimisticly low value. We 1595 * still wait for the next successful 1596 * completion, however, before queueing 1597 * more transactions to the device. 1598 */ 1599 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1600 } 1601 *timeout = 0; 1602 error = ERESTART; 1603 *action &= ~SSQ_PRINT_SENSE; 1604 break; 1605 } 1606 /* FALLTHROUGH */ 1607 } 1608 case SCSI_STATUS_BUSY: 1609 /* 1610 * Restart the queue after either another 1611 * command completes or a 1 second timeout. 1612 */ 1613 periph = xpt_path_periph(ccb->ccb_h.path); 1614 if (periph->flags & CAM_PERIPH_INVALID) { 1615 error = EIO; 1616 *action_string = "Periph was invalidated"; 1617 } else if ((sense_flags & SF_RETRY_BUSY) != 0 || 1618 ccb->ccb_h.retry_count > 0) { 1619 if ((sense_flags & SF_RETRY_BUSY) == 0) 1620 ccb->ccb_h.retry_count--; 1621 error = ERESTART; 1622 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1623 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1624 *timeout = 1000; 1625 } else { 1626 error = EIO; 1627 *action_string = "Retries exhausted"; 1628 } 1629 break; 1630 case SCSI_STATUS_RESERV_CONFLICT: 1631 default: 1632 error = EIO; 1633 break; 1634 } 1635 return (error); 1636 } 1637 1638 static int 1639 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1640 cam_flags camflags, u_int32_t sense_flags, 1641 int *openings, u_int32_t *relsim_flags, 1642 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1643 { 1644 struct cam_periph *periph; 1645 union ccb *orig_ccb = ccb; 1646 int error, recoveryccb; 1647 u_int16_t flags; 1648 1649 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1650 if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL) 1651 biotrack(ccb->csio.bio, __func__); 1652 #endif 1653 1654 periph = xpt_path_periph(ccb->ccb_h.path); 1655 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1656 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1657 /* 1658 * If error recovery is already in progress, don't attempt 1659 * to process this error, but requeue it unconditionally 1660 * and attempt to process it once error recovery has 1661 * completed. This failed command is probably related to 1662 * the error that caused the currently active error recovery 1663 * action so our current recovery efforts should also 1664 * address this command. Be aware that the error recovery 1665 * code assumes that only one recovery action is in progress 1666 * on a particular peripheral instance at any given time 1667 * (e.g. only one saved CCB for error recovery) so it is 1668 * imperitive that we don't violate this assumption. 1669 */ 1670 error = ERESTART; 1671 *action &= ~SSQ_PRINT_SENSE; 1672 } else { 1673 scsi_sense_action err_action; 1674 struct ccb_getdev cgd; 1675 1676 /* 1677 * Grab the inquiry data for this device. 1678 */ 1679 memset(&cgd, 0, sizeof(cgd)); 1680 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1681 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1682 xpt_action((union ccb *)&cgd); 1683 1684 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1685 sense_flags); 1686 error = err_action & SS_ERRMASK; 1687 1688 /* 1689 * Do not autostart sequential access devices 1690 * to avoid unexpected tape loading. 1691 */ 1692 if ((err_action & SS_MASK) == SS_START && 1693 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1694 *action_string = "Will not autostart a " 1695 "sequential access device"; 1696 goto sense_error_done; 1697 } 1698 1699 /* 1700 * Avoid recovery recursion if recovery action is the same. 1701 */ 1702 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1703 if (((err_action & SS_MASK) == SS_START && 1704 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1705 ((err_action & SS_MASK) == SS_TUR && 1706 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1707 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1708 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1709 *timeout = 500; 1710 } 1711 } 1712 1713 /* 1714 * If the recovery action will consume a retry, 1715 * make sure we actually have retries available. 1716 */ 1717 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1718 if (ccb->ccb_h.retry_count > 0 && 1719 (periph->flags & CAM_PERIPH_INVALID) == 0) 1720 ccb->ccb_h.retry_count--; 1721 else { 1722 *action_string = "Retries exhausted"; 1723 goto sense_error_done; 1724 } 1725 } 1726 1727 if ((err_action & SS_MASK) >= SS_START) { 1728 /* 1729 * Do common portions of commands that 1730 * use recovery CCBs. 1731 */ 1732 orig_ccb = xpt_alloc_ccb_nowait(); 1733 if (orig_ccb == NULL) { 1734 *action_string = "Can't allocate recovery CCB"; 1735 goto sense_error_done; 1736 } 1737 /* 1738 * Clear freeze flag for original request here, as 1739 * this freeze will be dropped as part of ERESTART. 1740 */ 1741 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1742 1743 KASSERT(ccb->ccb_h.func_code == XPT_SCSI_IO, 1744 ("%s: ccb func_code %#x != XPT_SCSI_IO", 1745 __func__, ccb->ccb_h.func_code)); 1746 flags = orig_ccb->ccb_h.alloc_flags; 1747 bcopy(ccb, orig_ccb, sizeof(struct ccb_scsiio)); 1748 orig_ccb->ccb_h.alloc_flags = flags; 1749 } 1750 1751 switch (err_action & SS_MASK) { 1752 case SS_NOP: 1753 *action_string = "No recovery action needed"; 1754 error = 0; 1755 break; 1756 case SS_RETRY: 1757 *action_string = "Retrying command (per sense data)"; 1758 error = ERESTART; 1759 break; 1760 case SS_FAIL: 1761 *action_string = "Unretryable error"; 1762 break; 1763 case SS_START: 1764 { 1765 int le; 1766 1767 /* 1768 * Send a start unit command to the device, and 1769 * then retry the command. 1770 */ 1771 *action_string = "Attempting to start unit"; 1772 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1773 1774 /* 1775 * Check for removable media and set 1776 * load/eject flag appropriately. 1777 */ 1778 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1779 le = TRUE; 1780 else 1781 le = FALSE; 1782 1783 scsi_start_stop(&ccb->csio, 1784 /*retries*/1, 1785 camperiphdone, 1786 MSG_SIMPLE_Q_TAG, 1787 /*start*/TRUE, 1788 /*load/eject*/le, 1789 /*immediate*/FALSE, 1790 SSD_FULL_SIZE, 1791 /*timeout*/50000); 1792 break; 1793 } 1794 case SS_TUR: 1795 { 1796 /* 1797 * Send a Test Unit Ready to the device. 1798 * If the 'many' flag is set, we send 120 1799 * test unit ready commands, one every half 1800 * second. Otherwise, we just send one TUR. 1801 * We only want to do this if the retry 1802 * count has not been exhausted. 1803 */ 1804 int retries; 1805 1806 if ((err_action & SSQ_MANY) != 0 && (periph->flags & 1807 CAM_PERIPH_RECOVERY_WAIT_FAILED) == 0) { 1808 periph->flags |= CAM_PERIPH_RECOVERY_WAIT; 1809 *action_string = "Polling device for readiness"; 1810 retries = 120; 1811 } else { 1812 *action_string = "Testing device for readiness"; 1813 retries = 1; 1814 } 1815 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1816 scsi_test_unit_ready(&ccb->csio, 1817 retries, 1818 camperiphdone, 1819 MSG_SIMPLE_Q_TAG, 1820 SSD_FULL_SIZE, 1821 /*timeout*/5000); 1822 1823 /* 1824 * Accomplish our 500ms delay by deferring 1825 * the release of our device queue appropriately. 1826 */ 1827 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1828 *timeout = 500; 1829 break; 1830 } 1831 default: 1832 panic("Unhandled error action %x", err_action); 1833 } 1834 1835 if ((err_action & SS_MASK) >= SS_START) { 1836 /* 1837 * Drop the priority, so that the recovery 1838 * CCB is the first to execute. Freeze the queue 1839 * after this command is sent so that we can 1840 * restore the old csio and have it queued in 1841 * the proper order before we release normal 1842 * transactions to the device. 1843 */ 1844 ccb->ccb_h.pinfo.priority--; 1845 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1846 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1847 error = ERESTART; 1848 *orig = orig_ccb; 1849 } 1850 1851 sense_error_done: 1852 *action = err_action; 1853 } 1854 return (error); 1855 } 1856 1857 /* 1858 * Generic error handler. Peripheral drivers usually filter 1859 * out the errors that they handle in a unique manner, then 1860 * call this function. 1861 */ 1862 int 1863 cam_periph_error(union ccb *ccb, cam_flags camflags, 1864 u_int32_t sense_flags) 1865 { 1866 struct cam_path *newpath; 1867 union ccb *orig_ccb, *scan_ccb; 1868 struct cam_periph *periph; 1869 const char *action_string; 1870 cam_status status; 1871 int frozen, error, openings, devctl_err; 1872 u_int32_t action, relsim_flags, timeout; 1873 1874 action = SSQ_PRINT_SENSE; 1875 periph = xpt_path_periph(ccb->ccb_h.path); 1876 action_string = NULL; 1877 status = ccb->ccb_h.status; 1878 frozen = (status & CAM_DEV_QFRZN) != 0; 1879 status &= CAM_STATUS_MASK; 1880 devctl_err = openings = relsim_flags = timeout = 0; 1881 orig_ccb = ccb; 1882 1883 /* Filter the errors that should be reported via devctl */ 1884 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 1885 case CAM_CMD_TIMEOUT: 1886 case CAM_REQ_ABORTED: 1887 case CAM_REQ_CMP_ERR: 1888 case CAM_REQ_TERMIO: 1889 case CAM_UNREC_HBA_ERROR: 1890 case CAM_DATA_RUN_ERR: 1891 case CAM_SCSI_STATUS_ERROR: 1892 case CAM_ATA_STATUS_ERROR: 1893 case CAM_SMP_STATUS_ERROR: 1894 devctl_err++; 1895 break; 1896 default: 1897 break; 1898 } 1899 1900 switch (status) { 1901 case CAM_REQ_CMP: 1902 error = 0; 1903 action &= ~SSQ_PRINT_SENSE; 1904 break; 1905 case CAM_SCSI_STATUS_ERROR: 1906 error = camperiphscsistatuserror(ccb, &orig_ccb, 1907 camflags, sense_flags, &openings, &relsim_flags, 1908 &timeout, &action, &action_string); 1909 break; 1910 case CAM_AUTOSENSE_FAIL: 1911 error = EIO; /* we have to kill the command */ 1912 break; 1913 case CAM_UA_ABORT: 1914 case CAM_UA_TERMIO: 1915 case CAM_MSG_REJECT_REC: 1916 /* XXX Don't know that these are correct */ 1917 error = EIO; 1918 break; 1919 case CAM_SEL_TIMEOUT: 1920 if ((camflags & CAM_RETRY_SELTO) != 0) { 1921 if (ccb->ccb_h.retry_count > 0 && 1922 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1923 ccb->ccb_h.retry_count--; 1924 error = ERESTART; 1925 1926 /* 1927 * Wait a bit to give the device 1928 * time to recover before we try again. 1929 */ 1930 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1931 timeout = periph_selto_delay; 1932 break; 1933 } 1934 action_string = "Retries exhausted"; 1935 } 1936 /* FALLTHROUGH */ 1937 case CAM_DEV_NOT_THERE: 1938 error = ENXIO; 1939 action = SSQ_LOST; 1940 break; 1941 case CAM_REQ_INVALID: 1942 case CAM_PATH_INVALID: 1943 case CAM_NO_HBA: 1944 case CAM_PROVIDE_FAIL: 1945 case CAM_REQ_TOO_BIG: 1946 case CAM_LUN_INVALID: 1947 case CAM_TID_INVALID: 1948 case CAM_FUNC_NOTAVAIL: 1949 error = EINVAL; 1950 break; 1951 case CAM_SCSI_BUS_RESET: 1952 case CAM_BDR_SENT: 1953 /* 1954 * Commands that repeatedly timeout and cause these 1955 * kinds of error recovery actions, should return 1956 * CAM_CMD_TIMEOUT, which allows us to safely assume 1957 * that this command was an innocent bystander to 1958 * these events and should be unconditionally 1959 * retried. 1960 */ 1961 case CAM_REQUEUE_REQ: 1962 /* Unconditional requeue if device is still there */ 1963 if (periph->flags & CAM_PERIPH_INVALID) { 1964 action_string = "Periph was invalidated"; 1965 error = EIO; 1966 } else if (sense_flags & SF_NO_RETRY) { 1967 error = EIO; 1968 action_string = "Retry was blocked"; 1969 } else { 1970 error = ERESTART; 1971 action &= ~SSQ_PRINT_SENSE; 1972 } 1973 break; 1974 case CAM_RESRC_UNAVAIL: 1975 /* Wait a bit for the resource shortage to abate. */ 1976 timeout = periph_noresrc_delay; 1977 /* FALLTHROUGH */ 1978 case CAM_BUSY: 1979 if (timeout == 0) { 1980 /* Wait a bit for the busy condition to abate. */ 1981 timeout = periph_busy_delay; 1982 } 1983 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1984 /* FALLTHROUGH */ 1985 case CAM_ATA_STATUS_ERROR: 1986 case CAM_REQ_CMP_ERR: 1987 case CAM_CMD_TIMEOUT: 1988 case CAM_UNEXP_BUSFREE: 1989 case CAM_UNCOR_PARITY: 1990 case CAM_DATA_RUN_ERR: 1991 default: 1992 if (periph->flags & CAM_PERIPH_INVALID) { 1993 error = EIO; 1994 action_string = "Periph was invalidated"; 1995 } else if (ccb->ccb_h.retry_count == 0) { 1996 error = EIO; 1997 action_string = "Retries exhausted"; 1998 } else if (sense_flags & SF_NO_RETRY) { 1999 error = EIO; 2000 action_string = "Retry was blocked"; 2001 } else { 2002 ccb->ccb_h.retry_count--; 2003 error = ERESTART; 2004 } 2005 break; 2006 } 2007 2008 if ((sense_flags & SF_PRINT_ALWAYS) || 2009 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 2010 action |= SSQ_PRINT_SENSE; 2011 else if (sense_flags & SF_NO_PRINT) 2012 action &= ~SSQ_PRINT_SENSE; 2013 if ((action & SSQ_PRINT_SENSE) != 0) 2014 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 2015 if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) { 2016 if (error != ERESTART) { 2017 if (action_string == NULL) 2018 action_string = "Unretryable error"; 2019 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 2020 error, action_string); 2021 } else if (action_string != NULL) 2022 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 2023 else { 2024 xpt_print(ccb->ccb_h.path, 2025 "Retrying command, %d more tries remain\n", 2026 ccb->ccb_h.retry_count); 2027 } 2028 } 2029 2030 if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0)) 2031 cam_periph_devctl_notify(orig_ccb); 2032 2033 if ((action & SSQ_LOST) != 0) { 2034 lun_id_t lun_id; 2035 2036 /* 2037 * For a selection timeout, we consider all of the LUNs on 2038 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 2039 * then we only get rid of the device(s) specified by the 2040 * path in the original CCB. 2041 */ 2042 if (status == CAM_SEL_TIMEOUT) 2043 lun_id = CAM_LUN_WILDCARD; 2044 else 2045 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 2046 2047 /* Should we do more if we can't create the path?? */ 2048 if (xpt_create_path(&newpath, periph, 2049 xpt_path_path_id(ccb->ccb_h.path), 2050 xpt_path_target_id(ccb->ccb_h.path), 2051 lun_id) == CAM_REQ_CMP) { 2052 /* 2053 * Let peripheral drivers know that this 2054 * device has gone away. 2055 */ 2056 xpt_async(AC_LOST_DEVICE, newpath, NULL); 2057 xpt_free_path(newpath); 2058 } 2059 } 2060 2061 /* Broadcast UNIT ATTENTIONs to all periphs. */ 2062 if ((action & SSQ_UA) != 0) 2063 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 2064 2065 /* Rescan target on "Reported LUNs data has changed" */ 2066 if ((action & SSQ_RESCAN) != 0) { 2067 if (xpt_create_path(&newpath, NULL, 2068 xpt_path_path_id(ccb->ccb_h.path), 2069 xpt_path_target_id(ccb->ccb_h.path), 2070 CAM_LUN_WILDCARD) == CAM_REQ_CMP) { 2071 scan_ccb = xpt_alloc_ccb_nowait(); 2072 if (scan_ccb != NULL) { 2073 scan_ccb->ccb_h.path = newpath; 2074 scan_ccb->ccb_h.func_code = XPT_SCAN_TGT; 2075 scan_ccb->crcn.flags = 0; 2076 xpt_rescan(scan_ccb); 2077 } else { 2078 xpt_print(newpath, 2079 "Can't allocate CCB to rescan target\n"); 2080 xpt_free_path(newpath); 2081 } 2082 } 2083 } 2084 2085 /* Attempt a retry */ 2086 if (error == ERESTART || error == 0) { 2087 if (frozen != 0) 2088 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 2089 if (error == ERESTART) 2090 xpt_action(ccb); 2091 if (frozen != 0) 2092 cam_release_devq(ccb->ccb_h.path, 2093 relsim_flags, 2094 openings, 2095 timeout, 2096 /*getcount_only*/0); 2097 } 2098 2099 return (error); 2100 } 2101 2102 #define CAM_PERIPH_DEVD_MSG_SIZE 256 2103 2104 static void 2105 cam_periph_devctl_notify(union ccb *ccb) 2106 { 2107 struct cam_periph *periph; 2108 struct ccb_getdev *cgd; 2109 struct sbuf sb; 2110 int serr, sk, asc, ascq; 2111 char *sbmsg, *type; 2112 2113 sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT); 2114 if (sbmsg == NULL) 2115 return; 2116 2117 sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN); 2118 2119 periph = xpt_path_periph(ccb->ccb_h.path); 2120 sbuf_printf(&sb, "device=%s%d ", periph->periph_name, 2121 periph->unit_number); 2122 2123 sbuf_printf(&sb, "serial=\""); 2124 if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) { 2125 xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path, 2126 CAM_PRIORITY_NORMAL); 2127 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 2128 xpt_action((union ccb *)cgd); 2129 2130 if (cgd->ccb_h.status == CAM_REQ_CMP) 2131 sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len); 2132 xpt_free_ccb((union ccb *)cgd); 2133 } 2134 sbuf_printf(&sb, "\" "); 2135 sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status); 2136 2137 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 2138 case CAM_CMD_TIMEOUT: 2139 sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout); 2140 type = "timeout"; 2141 break; 2142 case CAM_SCSI_STATUS_ERROR: 2143 sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status); 2144 if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq)) 2145 sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ", 2146 serr, sk, asc, ascq); 2147 type = "error"; 2148 break; 2149 case CAM_ATA_STATUS_ERROR: 2150 sbuf_printf(&sb, "RES=\""); 2151 ata_res_sbuf(&ccb->ataio.res, &sb); 2152 sbuf_printf(&sb, "\" "); 2153 type = "error"; 2154 break; 2155 default: 2156 type = "error"; 2157 break; 2158 } 2159 2160 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 2161 sbuf_printf(&sb, "CDB=\""); 2162 scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb); 2163 sbuf_printf(&sb, "\" "); 2164 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 2165 sbuf_printf(&sb, "ACB=\""); 2166 ata_cmd_sbuf(&ccb->ataio.cmd, &sb); 2167 sbuf_printf(&sb, "\" "); 2168 } 2169 2170 if (sbuf_finish(&sb) == 0) 2171 devctl_notify("CAM", "periph", type, sbuf_data(&sb)); 2172 sbuf_delete(&sb); 2173 free(sbmsg, M_CAMPERIPH); 2174 } 2175 2176 /* 2177 * Sysctl to force an invalidation of the drive right now. Can be 2178 * called with CTLFLAG_MPSAFE since we take periph lock. 2179 */ 2180 int 2181 cam_periph_invalidate_sysctl(SYSCTL_HANDLER_ARGS) 2182 { 2183 struct cam_periph *periph; 2184 int error, value; 2185 2186 periph = arg1; 2187 value = 0; 2188 error = sysctl_handle_int(oidp, &value, 0, req); 2189 if (error != 0 || req->newptr == NULL || value != 1) 2190 return (error); 2191 2192 cam_periph_lock(periph); 2193 cam_periph_invalidate(periph); 2194 cam_periph_unlock(periph); 2195 2196 return (0); 2197 } 2198