1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * Copyright (c) 1997, 1998 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/types.h> 36 #include <sys/malloc.h> 37 #include <sys/kernel.h> 38 #include <sys/bio.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/buf.h> 42 #include <sys/proc.h> 43 #include <sys/devicestat.h> 44 #include <sys/bus.h> 45 #include <sys/sbuf.h> 46 #include <vm/vm.h> 47 #include <vm/vm_extern.h> 48 49 #include <cam/cam.h> 50 #include <cam/cam_ccb.h> 51 #include <cam/cam_queue.h> 52 #include <cam/cam_xpt_periph.h> 53 #include <cam/cam_periph.h> 54 #include <cam/cam_debug.h> 55 #include <cam/cam_sim.h> 56 57 #include <cam/scsi/scsi_all.h> 58 #include <cam/scsi/scsi_message.h> 59 #include <cam/scsi/scsi_pass.h> 60 61 static u_int camperiphnextunit(struct periph_driver *p_drv, 62 u_int newunit, int wired, 63 path_id_t pathid, target_id_t target, 64 lun_id_t lun); 65 static u_int camperiphunit(struct periph_driver *p_drv, 66 path_id_t pathid, target_id_t target, 67 lun_id_t lun); 68 static void camperiphdone(struct cam_periph *periph, 69 union ccb *done_ccb); 70 static void camperiphfree(struct cam_periph *periph); 71 static int camperiphscsistatuserror(union ccb *ccb, 72 union ccb **orig_ccb, 73 cam_flags camflags, 74 u_int32_t sense_flags, 75 int *openings, 76 u_int32_t *relsim_flags, 77 u_int32_t *timeout, 78 u_int32_t *action, 79 const char **action_string); 80 static int camperiphscsisenseerror(union ccb *ccb, 81 union ccb **orig_ccb, 82 cam_flags camflags, 83 u_int32_t sense_flags, 84 int *openings, 85 u_int32_t *relsim_flags, 86 u_int32_t *timeout, 87 u_int32_t *action, 88 const char **action_string); 89 90 static int nperiph_drivers; 91 static int initialized = 0; 92 struct periph_driver **periph_drivers; 93 94 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 95 96 static int periph_selto_delay = 1000; 97 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 98 static int periph_noresrc_delay = 500; 99 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 100 static int periph_busy_delay = 500; 101 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 102 103 104 void 105 periphdriver_register(void *data) 106 { 107 struct periph_driver *drv = (struct periph_driver *)data; 108 struct periph_driver **newdrivers, **old; 109 int ndrivers; 110 111 ndrivers = nperiph_drivers + 2; 112 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 113 M_WAITOK); 114 if (periph_drivers) 115 bcopy(periph_drivers, newdrivers, 116 sizeof(*newdrivers) * nperiph_drivers); 117 newdrivers[nperiph_drivers] = drv; 118 newdrivers[nperiph_drivers + 1] = NULL; 119 old = periph_drivers; 120 periph_drivers = newdrivers; 121 if (old) 122 free(old, M_CAMPERIPH); 123 nperiph_drivers++; 124 /* If driver marked as early or it is late now, initialize it. */ 125 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 126 initialized > 1) 127 (*drv->init)(); 128 } 129 130 void 131 periphdriver_init(int level) 132 { 133 int i, early; 134 135 initialized = max(initialized, level); 136 for (i = 0; periph_drivers[i] != NULL; i++) { 137 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 138 if (early == initialized) 139 (*periph_drivers[i]->init)(); 140 } 141 } 142 143 cam_status 144 cam_periph_alloc(periph_ctor_t *periph_ctor, 145 periph_oninv_t *periph_oninvalidate, 146 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 147 char *name, cam_periph_type type, struct cam_path *path, 148 ac_callback_t *ac_callback, ac_code code, void *arg) 149 { 150 struct periph_driver **p_drv; 151 struct cam_sim *sim; 152 struct cam_periph *periph; 153 struct cam_periph *cur_periph; 154 path_id_t path_id; 155 target_id_t target_id; 156 lun_id_t lun_id; 157 cam_status status; 158 u_int init_level; 159 160 init_level = 0; 161 /* 162 * Handle Hot-Plug scenarios. If there is already a peripheral 163 * of our type assigned to this path, we are likely waiting for 164 * final close on an old, invalidated, peripheral. If this is 165 * the case, queue up a deferred call to the peripheral's async 166 * handler. If it looks like a mistaken re-allocation, complain. 167 */ 168 if ((periph = cam_periph_find(path, name)) != NULL) { 169 170 if ((periph->flags & CAM_PERIPH_INVALID) != 0 171 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 172 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 173 periph->deferred_callback = ac_callback; 174 periph->deferred_ac = code; 175 return (CAM_REQ_INPROG); 176 } else { 177 printf("cam_periph_alloc: attempt to re-allocate " 178 "valid device %s%d rejected flags %#x " 179 "refcount %d\n", periph->periph_name, 180 periph->unit_number, periph->flags, 181 periph->refcount); 182 } 183 return (CAM_REQ_INVALID); 184 } 185 186 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 187 M_NOWAIT|M_ZERO); 188 189 if (periph == NULL) 190 return (CAM_RESRC_UNAVAIL); 191 192 init_level++; 193 194 195 sim = xpt_path_sim(path); 196 path_id = xpt_path_path_id(path); 197 target_id = xpt_path_target_id(path); 198 lun_id = xpt_path_lun_id(path); 199 periph->periph_start = periph_start; 200 periph->periph_dtor = periph_dtor; 201 periph->periph_oninval = periph_oninvalidate; 202 periph->type = type; 203 periph->periph_name = name; 204 periph->scheduled_priority = CAM_PRIORITY_NONE; 205 periph->immediate_priority = CAM_PRIORITY_NONE; 206 periph->refcount = 1; /* Dropped by invalidation. */ 207 periph->sim = sim; 208 SLIST_INIT(&periph->ccb_list); 209 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 210 if (status != CAM_REQ_CMP) 211 goto failure; 212 periph->path = path; 213 214 xpt_lock_buses(); 215 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 216 if (strcmp((*p_drv)->driver_name, name) == 0) 217 break; 218 } 219 if (*p_drv == NULL) { 220 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 221 xpt_unlock_buses(); 222 xpt_free_path(periph->path); 223 free(periph, M_CAMPERIPH); 224 return (CAM_REQ_INVALID); 225 } 226 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); 227 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 228 while (cur_periph != NULL 229 && cur_periph->unit_number < periph->unit_number) 230 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 231 if (cur_periph != NULL) { 232 KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list")); 233 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 234 } else { 235 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 236 (*p_drv)->generation++; 237 } 238 xpt_unlock_buses(); 239 240 init_level++; 241 242 status = xpt_add_periph(periph); 243 if (status != CAM_REQ_CMP) 244 goto failure; 245 246 init_level++; 247 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 248 249 status = periph_ctor(periph, arg); 250 251 if (status == CAM_REQ_CMP) 252 init_level++; 253 254 failure: 255 switch (init_level) { 256 case 4: 257 /* Initialized successfully */ 258 break; 259 case 3: 260 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 261 xpt_remove_periph(periph); 262 /* FALLTHROUGH */ 263 case 2: 264 xpt_lock_buses(); 265 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 266 xpt_unlock_buses(); 267 xpt_free_path(periph->path); 268 /* FALLTHROUGH */ 269 case 1: 270 free(periph, M_CAMPERIPH); 271 /* FALLTHROUGH */ 272 case 0: 273 /* No cleanup to perform. */ 274 break; 275 default: 276 panic("%s: Unknown init level", __func__); 277 } 278 return(status); 279 } 280 281 /* 282 * Find a peripheral structure with the specified path, target, lun, 283 * and (optionally) type. If the name is NULL, this function will return 284 * the first peripheral driver that matches the specified path. 285 */ 286 struct cam_periph * 287 cam_periph_find(struct cam_path *path, char *name) 288 { 289 struct periph_driver **p_drv; 290 struct cam_periph *periph; 291 292 xpt_lock_buses(); 293 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 294 295 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 296 continue; 297 298 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 299 if (xpt_path_comp(periph->path, path) == 0) { 300 xpt_unlock_buses(); 301 cam_periph_assert(periph, MA_OWNED); 302 return(periph); 303 } 304 } 305 if (name != NULL) { 306 xpt_unlock_buses(); 307 return(NULL); 308 } 309 } 310 xpt_unlock_buses(); 311 return(NULL); 312 } 313 314 /* 315 * Find peripheral driver instances attached to the specified path. 316 */ 317 int 318 cam_periph_list(struct cam_path *path, struct sbuf *sb) 319 { 320 struct sbuf local_sb; 321 struct periph_driver **p_drv; 322 struct cam_periph *periph; 323 int count; 324 int sbuf_alloc_len; 325 326 sbuf_alloc_len = 16; 327 retry: 328 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 329 count = 0; 330 xpt_lock_buses(); 331 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 332 333 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 334 if (xpt_path_comp(periph->path, path) != 0) 335 continue; 336 337 if (sbuf_len(&local_sb) != 0) 338 sbuf_cat(&local_sb, ","); 339 340 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 341 periph->unit_number); 342 343 if (sbuf_error(&local_sb) == ENOMEM) { 344 sbuf_alloc_len *= 2; 345 xpt_unlock_buses(); 346 sbuf_delete(&local_sb); 347 goto retry; 348 } 349 count++; 350 } 351 } 352 xpt_unlock_buses(); 353 sbuf_finish(&local_sb); 354 sbuf_cpy(sb, sbuf_data(&local_sb)); 355 sbuf_delete(&local_sb); 356 return (count); 357 } 358 359 cam_status 360 cam_periph_acquire(struct cam_periph *periph) 361 { 362 cam_status status; 363 364 status = CAM_REQ_CMP_ERR; 365 if (periph == NULL) 366 return (status); 367 368 xpt_lock_buses(); 369 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 370 periph->refcount++; 371 status = CAM_REQ_CMP; 372 } 373 xpt_unlock_buses(); 374 375 return (status); 376 } 377 378 void 379 cam_periph_doacquire(struct cam_periph *periph) 380 { 381 382 xpt_lock_buses(); 383 KASSERT(periph->refcount >= 1, 384 ("cam_periph_doacquire() with refcount == %d", periph->refcount)); 385 periph->refcount++; 386 xpt_unlock_buses(); 387 } 388 389 void 390 cam_periph_release_locked_buses(struct cam_periph *periph) 391 { 392 393 cam_periph_assert(periph, MA_OWNED); 394 KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); 395 if (--periph->refcount == 0) 396 camperiphfree(periph); 397 } 398 399 void 400 cam_periph_release_locked(struct cam_periph *periph) 401 { 402 403 if (periph == NULL) 404 return; 405 406 xpt_lock_buses(); 407 cam_periph_release_locked_buses(periph); 408 xpt_unlock_buses(); 409 } 410 411 void 412 cam_periph_release(struct cam_periph *periph) 413 { 414 struct mtx *mtx; 415 416 if (periph == NULL) 417 return; 418 419 cam_periph_assert(periph, MA_NOTOWNED); 420 mtx = cam_periph_mtx(periph); 421 mtx_lock(mtx); 422 cam_periph_release_locked(periph); 423 mtx_unlock(mtx); 424 } 425 426 int 427 cam_periph_hold(struct cam_periph *periph, int priority) 428 { 429 int error; 430 431 /* 432 * Increment the reference count on the peripheral 433 * while we wait for our lock attempt to succeed 434 * to ensure the peripheral doesn't disappear out 435 * from user us while we sleep. 436 */ 437 438 if (cam_periph_acquire(periph) != CAM_REQ_CMP) 439 return (ENXIO); 440 441 cam_periph_assert(periph, MA_OWNED); 442 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 443 periph->flags |= CAM_PERIPH_LOCK_WANTED; 444 if ((error = cam_periph_sleep(periph, periph, priority, 445 "caplck", 0)) != 0) { 446 cam_periph_release_locked(periph); 447 return (error); 448 } 449 if (periph->flags & CAM_PERIPH_INVALID) { 450 cam_periph_release_locked(periph); 451 return (ENXIO); 452 } 453 } 454 455 periph->flags |= CAM_PERIPH_LOCKED; 456 return (0); 457 } 458 459 void 460 cam_periph_unhold(struct cam_periph *periph) 461 { 462 463 cam_periph_assert(periph, MA_OWNED); 464 465 periph->flags &= ~CAM_PERIPH_LOCKED; 466 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 467 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 468 wakeup(periph); 469 } 470 471 cam_periph_release_locked(periph); 472 } 473 474 /* 475 * Look for the next unit number that is not currently in use for this 476 * peripheral type starting at "newunit". Also exclude unit numbers that 477 * are reserved by for future "hardwiring" unless we already know that this 478 * is a potential wired device. Only assume that the device is "wired" the 479 * first time through the loop since after that we'll be looking at unit 480 * numbers that did not match a wiring entry. 481 */ 482 static u_int 483 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, 484 path_id_t pathid, target_id_t target, lun_id_t lun) 485 { 486 struct cam_periph *periph; 487 char *periph_name; 488 int i, val, dunit, r; 489 const char *dname, *strval; 490 491 periph_name = p_drv->driver_name; 492 for (;;newunit++) { 493 494 for (periph = TAILQ_FIRST(&p_drv->units); 495 periph != NULL && periph->unit_number != newunit; 496 periph = TAILQ_NEXT(periph, unit_links)) 497 ; 498 499 if (periph != NULL && periph->unit_number == newunit) { 500 if (wired != 0) { 501 xpt_print(periph->path, "Duplicate Wired " 502 "Device entry!\n"); 503 xpt_print(periph->path, "Second device (%s " 504 "device at scbus%d target %d lun %d) will " 505 "not be wired\n", periph_name, pathid, 506 target, lun); 507 wired = 0; 508 } 509 continue; 510 } 511 if (wired) 512 break; 513 514 /* 515 * Don't match entries like "da 4" as a wired down 516 * device, but do match entries like "da 4 target 5" 517 * or even "da 4 scbus 1". 518 */ 519 i = 0; 520 dname = periph_name; 521 for (;;) { 522 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 523 if (r != 0) 524 break; 525 /* if no "target" and no specific scbus, skip */ 526 if (resource_int_value(dname, dunit, "target", &val) && 527 (resource_string_value(dname, dunit, "at",&strval)|| 528 strcmp(strval, "scbus") == 0)) 529 continue; 530 if (newunit == dunit) 531 break; 532 } 533 if (r != 0) 534 break; 535 } 536 return (newunit); 537 } 538 539 static u_int 540 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 541 target_id_t target, lun_id_t lun) 542 { 543 u_int unit; 544 int wired, i, val, dunit; 545 const char *dname, *strval; 546 char pathbuf[32], *periph_name; 547 548 periph_name = p_drv->driver_name; 549 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 550 unit = 0; 551 i = 0; 552 dname = periph_name; 553 for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 554 wired = 0) { 555 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 556 if (strcmp(strval, pathbuf) != 0) 557 continue; 558 wired++; 559 } 560 if (resource_int_value(dname, dunit, "target", &val) == 0) { 561 if (val != target) 562 continue; 563 wired++; 564 } 565 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 566 if (val != lun) 567 continue; 568 wired++; 569 } 570 if (wired != 0) { 571 unit = dunit; 572 break; 573 } 574 } 575 576 /* 577 * Either start from 0 looking for the next unit or from 578 * the unit number given in the resource config. This way, 579 * if we have wildcard matches, we don't return the same 580 * unit number twice. 581 */ 582 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 583 584 return (unit); 585 } 586 587 void 588 cam_periph_invalidate(struct cam_periph *periph) 589 { 590 591 cam_periph_assert(periph, MA_OWNED); 592 /* 593 * We only call this routine the first time a peripheral is 594 * invalidated. 595 */ 596 if ((periph->flags & CAM_PERIPH_INVALID) != 0) 597 return; 598 599 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 600 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) 601 xpt_denounce_periph(periph); 602 periph->flags |= CAM_PERIPH_INVALID; 603 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 604 if (periph->periph_oninval != NULL) 605 periph->periph_oninval(periph); 606 cam_periph_release_locked(periph); 607 } 608 609 static void 610 camperiphfree(struct cam_periph *periph) 611 { 612 struct periph_driver **p_drv; 613 614 cam_periph_assert(periph, MA_OWNED); 615 KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating", 616 periph->periph_name, periph->unit_number)); 617 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 618 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 619 break; 620 } 621 if (*p_drv == NULL) { 622 printf("camperiphfree: attempt to free non-existant periph\n"); 623 return; 624 } 625 626 /* 627 * We need to set this flag before dropping the topology lock, to 628 * let anyone who is traversing the list that this peripheral is 629 * about to be freed, and there will be no more reference count 630 * checks. 631 */ 632 periph->flags |= CAM_PERIPH_FREE; 633 634 /* 635 * The peripheral destructor semantics dictate calling with only the 636 * SIM mutex held. Since it might sleep, it should not be called 637 * with the topology lock held. 638 */ 639 xpt_unlock_buses(); 640 641 /* 642 * We need to call the peripheral destructor prior to removing the 643 * peripheral from the list. Otherwise, we risk running into a 644 * scenario where the peripheral unit number may get reused 645 * (because it has been removed from the list), but some resources 646 * used by the peripheral are still hanging around. In particular, 647 * the devfs nodes used by some peripherals like the pass(4) driver 648 * aren't fully cleaned up until the destructor is run. If the 649 * unit number is reused before the devfs instance is fully gone, 650 * devfs will panic. 651 */ 652 if (periph->periph_dtor != NULL) 653 periph->periph_dtor(periph); 654 655 /* 656 * The peripheral list is protected by the topology lock. 657 */ 658 xpt_lock_buses(); 659 660 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 661 (*p_drv)->generation++; 662 663 xpt_remove_periph(periph); 664 665 xpt_unlock_buses(); 666 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) 667 xpt_print(periph->path, "Periph destroyed\n"); 668 else 669 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 670 671 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 672 union ccb ccb; 673 void *arg; 674 675 switch (periph->deferred_ac) { 676 case AC_FOUND_DEVICE: 677 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 678 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 679 xpt_action(&ccb); 680 arg = &ccb; 681 break; 682 case AC_PATH_REGISTERED: 683 ccb.ccb_h.func_code = XPT_PATH_INQ; 684 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 685 xpt_action(&ccb); 686 arg = &ccb; 687 break; 688 default: 689 arg = NULL; 690 break; 691 } 692 periph->deferred_callback(NULL, periph->deferred_ac, 693 periph->path, arg); 694 } 695 xpt_free_path(periph->path); 696 free(periph, M_CAMPERIPH); 697 xpt_lock_buses(); 698 } 699 700 /* 701 * Map user virtual pointers into kernel virtual address space, so we can 702 * access the memory. This is now a generic function that centralizes most 703 * of the sanity checks on the data flags, if any. 704 * This also only works for up to MAXPHYS memory. Since we use 705 * buffers to map stuff in and out, we're limited to the buffer size. 706 */ 707 int 708 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 709 { 710 int numbufs, i, j; 711 int flags[CAM_PERIPH_MAXMAPS]; 712 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 713 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 714 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 715 /* Some controllers may not be able to handle more data. */ 716 size_t maxmap = DFLTPHYS; 717 718 switch(ccb->ccb_h.func_code) { 719 case XPT_DEV_MATCH: 720 if (ccb->cdm.match_buf_len == 0) { 721 printf("cam_periph_mapmem: invalid match buffer " 722 "length 0\n"); 723 return(EINVAL); 724 } 725 if (ccb->cdm.pattern_buf_len > 0) { 726 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 727 lengths[0] = ccb->cdm.pattern_buf_len; 728 dirs[0] = CAM_DIR_OUT; 729 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 730 lengths[1] = ccb->cdm.match_buf_len; 731 dirs[1] = CAM_DIR_IN; 732 numbufs = 2; 733 } else { 734 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 735 lengths[0] = ccb->cdm.match_buf_len; 736 dirs[0] = CAM_DIR_IN; 737 numbufs = 1; 738 } 739 /* 740 * This request will not go to the hardware, no reason 741 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 742 */ 743 maxmap = MAXPHYS; 744 break; 745 case XPT_SCSI_IO: 746 case XPT_CONT_TARGET_IO: 747 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 748 return(0); 749 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 750 return (EINVAL); 751 data_ptrs[0] = &ccb->csio.data_ptr; 752 lengths[0] = ccb->csio.dxfer_len; 753 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 754 numbufs = 1; 755 break; 756 case XPT_ATA_IO: 757 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 758 return(0); 759 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 760 return (EINVAL); 761 data_ptrs[0] = &ccb->ataio.data_ptr; 762 lengths[0] = ccb->ataio.dxfer_len; 763 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 764 numbufs = 1; 765 break; 766 case XPT_SMP_IO: 767 data_ptrs[0] = &ccb->smpio.smp_request; 768 lengths[0] = ccb->smpio.smp_request_len; 769 dirs[0] = CAM_DIR_OUT; 770 data_ptrs[1] = &ccb->smpio.smp_response; 771 lengths[1] = ccb->smpio.smp_response_len; 772 dirs[1] = CAM_DIR_IN; 773 numbufs = 2; 774 break; 775 case XPT_DEV_ADVINFO: 776 if (ccb->cdai.bufsiz == 0) 777 return (0); 778 779 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 780 lengths[0] = ccb->cdai.bufsiz; 781 dirs[0] = CAM_DIR_IN; 782 numbufs = 1; 783 784 /* 785 * This request will not go to the hardware, no reason 786 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 787 */ 788 maxmap = MAXPHYS; 789 break; 790 default: 791 return(EINVAL); 792 break; /* NOTREACHED */ 793 } 794 795 /* 796 * Check the transfer length and permissions first, so we don't 797 * have to unmap any previously mapped buffers. 798 */ 799 for (i = 0; i < numbufs; i++) { 800 801 flags[i] = 0; 802 803 /* 804 * The userland data pointer passed in may not be page 805 * aligned. vmapbuf() truncates the address to a page 806 * boundary, so if the address isn't page aligned, we'll 807 * need enough space for the given transfer length, plus 808 * whatever extra space is necessary to make it to the page 809 * boundary. 810 */ 811 if ((lengths[i] + 812 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){ 813 printf("cam_periph_mapmem: attempt to map %lu bytes, " 814 "which is greater than %lu\n", 815 (long)(lengths[i] + 816 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)), 817 (u_long)maxmap); 818 return(E2BIG); 819 } 820 821 if (dirs[i] & CAM_DIR_OUT) { 822 flags[i] = BIO_WRITE; 823 } 824 825 if (dirs[i] & CAM_DIR_IN) { 826 flags[i] = BIO_READ; 827 } 828 829 } 830 831 /* 832 * This keeps the the kernel stack of current thread from getting 833 * swapped. In low-memory situations where the kernel stack might 834 * otherwise get swapped out, this holds it and allows the thread 835 * to make progress and release the kernel mapped pages sooner. 836 * 837 * XXX KDM should I use P_NOSWAP instead? 838 */ 839 PHOLD(curproc); 840 841 for (i = 0; i < numbufs; i++) { 842 /* 843 * Get the buffer. 844 */ 845 mapinfo->bp[i] = getpbuf(NULL); 846 847 /* save the buffer's data address */ 848 mapinfo->bp[i]->b_saveaddr = mapinfo->bp[i]->b_data; 849 850 /* put our pointer in the data slot */ 851 mapinfo->bp[i]->b_data = *data_ptrs[i]; 852 853 /* set the transfer length, we know it's < MAXPHYS */ 854 mapinfo->bp[i]->b_bufsize = lengths[i]; 855 856 /* set the direction */ 857 mapinfo->bp[i]->b_iocmd = flags[i]; 858 859 /* 860 * Map the buffer into kernel memory. 861 * 862 * Note that useracc() alone is not a sufficient test. 863 * vmapbuf() can still fail due to a smaller file mapped 864 * into a larger area of VM, or if userland races against 865 * vmapbuf() after the useracc() check. 866 */ 867 if (vmapbuf(mapinfo->bp[i], 1) < 0) { 868 for (j = 0; j < i; ++j) { 869 *data_ptrs[j] = mapinfo->bp[j]->b_saveaddr; 870 vunmapbuf(mapinfo->bp[j]); 871 relpbuf(mapinfo->bp[j], NULL); 872 } 873 relpbuf(mapinfo->bp[i], NULL); 874 PRELE(curproc); 875 return(EACCES); 876 } 877 878 /* set our pointer to the new mapped area */ 879 *data_ptrs[i] = mapinfo->bp[i]->b_data; 880 881 mapinfo->num_bufs_used++; 882 } 883 884 /* 885 * Now that we've gotten this far, change ownership to the kernel 886 * of the buffers so that we don't run afoul of returning to user 887 * space with locks (on the buffer) held. 888 */ 889 for (i = 0; i < numbufs; i++) { 890 BUF_KERNPROC(mapinfo->bp[i]); 891 } 892 893 894 return(0); 895 } 896 897 /* 898 * Unmap memory segments mapped into kernel virtual address space by 899 * cam_periph_mapmem(). 900 */ 901 void 902 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 903 { 904 int numbufs, i; 905 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 906 907 if (mapinfo->num_bufs_used <= 0) { 908 /* nothing to free and the process wasn't held. */ 909 return; 910 } 911 912 switch (ccb->ccb_h.func_code) { 913 case XPT_DEV_MATCH: 914 numbufs = min(mapinfo->num_bufs_used, 2); 915 916 if (numbufs == 1) { 917 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 918 } else { 919 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 920 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 921 } 922 break; 923 case XPT_SCSI_IO: 924 case XPT_CONT_TARGET_IO: 925 data_ptrs[0] = &ccb->csio.data_ptr; 926 numbufs = min(mapinfo->num_bufs_used, 1); 927 break; 928 case XPT_ATA_IO: 929 data_ptrs[0] = &ccb->ataio.data_ptr; 930 numbufs = min(mapinfo->num_bufs_used, 1); 931 break; 932 case XPT_SMP_IO: 933 numbufs = min(mapinfo->num_bufs_used, 2); 934 data_ptrs[0] = &ccb->smpio.smp_request; 935 data_ptrs[1] = &ccb->smpio.smp_response; 936 break; 937 case XPT_DEV_ADVINFO: 938 numbufs = min(mapinfo->num_bufs_used, 1); 939 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 940 break; 941 default: 942 /* allow ourselves to be swapped once again */ 943 PRELE(curproc); 944 return; 945 break; /* NOTREACHED */ 946 } 947 948 for (i = 0; i < numbufs; i++) { 949 /* Set the user's pointer back to the original value */ 950 *data_ptrs[i] = mapinfo->bp[i]->b_saveaddr; 951 952 /* unmap the buffer */ 953 vunmapbuf(mapinfo->bp[i]); 954 955 /* release the buffer */ 956 relpbuf(mapinfo->bp[i], NULL); 957 } 958 959 /* allow ourselves to be swapped once again */ 960 PRELE(curproc); 961 } 962 963 void 964 cam_periph_ccbwait(union ccb *ccb) 965 { 966 967 if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX) 968 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)) 969 xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, PRIBIO, 970 "cbwait", 0); 971 } 972 973 int 974 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 975 int (*error_routine)(union ccb *ccb, 976 cam_flags camflags, 977 u_int32_t sense_flags)) 978 { 979 union ccb *ccb; 980 int error; 981 int found; 982 983 error = found = 0; 984 985 switch(cmd){ 986 case CAMGETPASSTHRU: 987 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 988 xpt_setup_ccb(&ccb->ccb_h, 989 ccb->ccb_h.path, 990 CAM_PRIORITY_NORMAL); 991 ccb->ccb_h.func_code = XPT_GDEVLIST; 992 993 /* 994 * Basically, the point of this is that we go through 995 * getting the list of devices, until we find a passthrough 996 * device. In the current version of the CAM code, the 997 * only way to determine what type of device we're dealing 998 * with is by its name. 999 */ 1000 while (found == 0) { 1001 ccb->cgdl.index = 0; 1002 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1003 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1004 1005 /* we want the next device in the list */ 1006 xpt_action(ccb); 1007 if (strncmp(ccb->cgdl.periph_name, 1008 "pass", 4) == 0){ 1009 found = 1; 1010 break; 1011 } 1012 } 1013 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1014 (found == 0)) { 1015 ccb->cgdl.periph_name[0] = '\0'; 1016 ccb->cgdl.unit_number = 0; 1017 break; 1018 } 1019 } 1020 1021 /* copy the result back out */ 1022 bcopy(ccb, addr, sizeof(union ccb)); 1023 1024 /* and release the ccb */ 1025 xpt_release_ccb(ccb); 1026 1027 break; 1028 default: 1029 error = ENOTTY; 1030 break; 1031 } 1032 return(error); 1033 } 1034 1035 static void 1036 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb) 1037 { 1038 1039 /* Caller will release the CCB */ 1040 wakeup(&done_ccb->ccb_h.cbfcnp); 1041 } 1042 1043 int 1044 cam_periph_runccb(union ccb *ccb, 1045 int (*error_routine)(union ccb *ccb, 1046 cam_flags camflags, 1047 u_int32_t sense_flags), 1048 cam_flags camflags, u_int32_t sense_flags, 1049 struct devstat *ds) 1050 { 1051 int error; 1052 1053 xpt_path_assert(ccb->ccb_h.path, MA_OWNED); 1054 1055 /* 1056 * If the user has supplied a stats structure, and if we understand 1057 * this particular type of ccb, record the transaction start. 1058 */ 1059 if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO || 1060 ccb->ccb_h.func_code == XPT_ATA_IO)) 1061 devstat_start_transaction(ds, NULL); 1062 1063 ccb->ccb_h.cbfcnp = cam_periph_done; 1064 xpt_action(ccb); 1065 1066 do { 1067 cam_periph_ccbwait(ccb); 1068 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1069 error = 0; 1070 else if (error_routine != NULL) 1071 error = (*error_routine)(ccb, camflags, sense_flags); 1072 else 1073 error = 0; 1074 1075 } while (error == ERESTART); 1076 1077 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1078 cam_release_devq(ccb->ccb_h.path, 1079 /* relsim_flags */0, 1080 /* openings */0, 1081 /* timeout */0, 1082 /* getcount_only */ FALSE); 1083 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1084 } 1085 1086 if (ds != NULL) { 1087 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1088 devstat_end_transaction(ds, 1089 ccb->csio.dxfer_len, 1090 ccb->csio.tag_action & 0x3, 1091 ((ccb->ccb_h.flags & CAM_DIR_MASK) == 1092 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 1093 (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1094 DEVSTAT_WRITE : 1095 DEVSTAT_READ, NULL, NULL); 1096 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1097 devstat_end_transaction(ds, 1098 ccb->ataio.dxfer_len, 1099 ccb->ataio.tag_action & 0x3, 1100 ((ccb->ccb_h.flags & CAM_DIR_MASK) == 1101 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 1102 (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1103 DEVSTAT_WRITE : 1104 DEVSTAT_READ, NULL, NULL); 1105 } 1106 } 1107 1108 return(error); 1109 } 1110 1111 void 1112 cam_freeze_devq(struct cam_path *path) 1113 { 1114 struct ccb_hdr ccb_h; 1115 1116 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n")); 1117 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 1118 ccb_h.func_code = XPT_NOOP; 1119 ccb_h.flags = CAM_DEV_QFREEZE; 1120 xpt_action((union ccb *)&ccb_h); 1121 } 1122 1123 u_int32_t 1124 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 1125 u_int32_t openings, u_int32_t arg, 1126 int getcount_only) 1127 { 1128 struct ccb_relsim crs; 1129 1130 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n", 1131 relsim_flags, openings, arg, getcount_only)); 1132 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1133 crs.ccb_h.func_code = XPT_REL_SIMQ; 1134 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1135 crs.release_flags = relsim_flags; 1136 crs.openings = openings; 1137 crs.release_timeout = arg; 1138 xpt_action((union ccb *)&crs); 1139 return (crs.qfrozen_cnt); 1140 } 1141 1142 #define saved_ccb_ptr ppriv_ptr0 1143 static void 1144 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1145 { 1146 union ccb *saved_ccb; 1147 cam_status status; 1148 struct scsi_start_stop_unit *scsi_cmd; 1149 int error_code, sense_key, asc, ascq; 1150 1151 scsi_cmd = (struct scsi_start_stop_unit *) 1152 &done_ccb->csio.cdb_io.cdb_bytes; 1153 status = done_ccb->ccb_h.status; 1154 1155 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1156 if (scsi_extract_sense_ccb(done_ccb, 1157 &error_code, &sense_key, &asc, &ascq)) { 1158 /* 1159 * If the error is "invalid field in CDB", 1160 * and the load/eject flag is set, turn the 1161 * flag off and try again. This is just in 1162 * case the drive in question barfs on the 1163 * load eject flag. The CAM code should set 1164 * the load/eject flag by default for 1165 * removable media. 1166 */ 1167 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1168 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1169 (asc == 0x24) && (ascq == 0x00)) { 1170 scsi_cmd->how &= ~SSS_LOEJ; 1171 if (status & CAM_DEV_QFRZN) { 1172 cam_release_devq(done_ccb->ccb_h.path, 1173 0, 0, 0, 0); 1174 done_ccb->ccb_h.status &= 1175 ~CAM_DEV_QFRZN; 1176 } 1177 xpt_action(done_ccb); 1178 goto out; 1179 } 1180 } 1181 if (cam_periph_error(done_ccb, 1182 0, SF_RETRY_UA | SF_NO_PRINT, NULL) == ERESTART) 1183 goto out; 1184 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1185 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1186 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1187 } 1188 } else { 1189 /* 1190 * If we have successfully taken a device from the not 1191 * ready to ready state, re-scan the device and re-get 1192 * the inquiry information. Many devices (mostly disks) 1193 * don't properly report their inquiry information unless 1194 * they are spun up. 1195 */ 1196 if (scsi_cmd->opcode == START_STOP_UNIT) 1197 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1198 } 1199 1200 /* 1201 * Perform the final retry with the original CCB so that final 1202 * error processing is performed by the owner of the CCB. 1203 */ 1204 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1205 bcopy(saved_ccb, done_ccb, sizeof(*done_ccb)); 1206 xpt_free_ccb(saved_ccb); 1207 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1208 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1209 xpt_action(done_ccb); 1210 1211 out: 1212 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1213 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1214 } 1215 1216 /* 1217 * Generic Async Event handler. Peripheral drivers usually 1218 * filter out the events that require personal attention, 1219 * and leave the rest to this function. 1220 */ 1221 void 1222 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1223 struct cam_path *path, void *arg) 1224 { 1225 switch (code) { 1226 case AC_LOST_DEVICE: 1227 cam_periph_invalidate(periph); 1228 break; 1229 default: 1230 break; 1231 } 1232 } 1233 1234 void 1235 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1236 { 1237 struct ccb_getdevstats cgds; 1238 1239 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1240 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1241 xpt_action((union ccb *)&cgds); 1242 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1243 } 1244 1245 void 1246 cam_periph_freeze_after_event(struct cam_periph *periph, 1247 struct timeval* event_time, u_int duration_ms) 1248 { 1249 struct timeval delta; 1250 struct timeval duration_tv; 1251 1252 if (!timevalisset(event_time)) 1253 return; 1254 1255 microtime(&delta); 1256 timevalsub(&delta, event_time); 1257 duration_tv.tv_sec = duration_ms / 1000; 1258 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1259 if (timevalcmp(&delta, &duration_tv, <)) { 1260 timevalsub(&duration_tv, &delta); 1261 1262 duration_ms = duration_tv.tv_sec * 1000; 1263 duration_ms += duration_tv.tv_usec / 1000; 1264 cam_freeze_devq(periph->path); 1265 cam_release_devq(periph->path, 1266 RELSIM_RELEASE_AFTER_TIMEOUT, 1267 /*reduction*/0, 1268 /*timeout*/duration_ms, 1269 /*getcount_only*/0); 1270 } 1271 1272 } 1273 1274 static int 1275 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1276 cam_flags camflags, u_int32_t sense_flags, 1277 int *openings, u_int32_t *relsim_flags, 1278 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1279 { 1280 int error; 1281 1282 switch (ccb->csio.scsi_status) { 1283 case SCSI_STATUS_OK: 1284 case SCSI_STATUS_COND_MET: 1285 case SCSI_STATUS_INTERMED: 1286 case SCSI_STATUS_INTERMED_COND_MET: 1287 error = 0; 1288 break; 1289 case SCSI_STATUS_CMD_TERMINATED: 1290 case SCSI_STATUS_CHECK_COND: 1291 error = camperiphscsisenseerror(ccb, orig_ccb, 1292 camflags, 1293 sense_flags, 1294 openings, 1295 relsim_flags, 1296 timeout, 1297 action, 1298 action_string); 1299 break; 1300 case SCSI_STATUS_QUEUE_FULL: 1301 { 1302 /* no decrement */ 1303 struct ccb_getdevstats cgds; 1304 1305 /* 1306 * First off, find out what the current 1307 * transaction counts are. 1308 */ 1309 xpt_setup_ccb(&cgds.ccb_h, 1310 ccb->ccb_h.path, 1311 CAM_PRIORITY_NORMAL); 1312 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1313 xpt_action((union ccb *)&cgds); 1314 1315 /* 1316 * If we were the only transaction active, treat 1317 * the QUEUE FULL as if it were a BUSY condition. 1318 */ 1319 if (cgds.dev_active != 0) { 1320 int total_openings; 1321 1322 /* 1323 * Reduce the number of openings to 1324 * be 1 less than the amount it took 1325 * to get a queue full bounded by the 1326 * minimum allowed tag count for this 1327 * device. 1328 */ 1329 total_openings = cgds.dev_active + cgds.dev_openings; 1330 *openings = cgds.dev_active; 1331 if (*openings < cgds.mintags) 1332 *openings = cgds.mintags; 1333 if (*openings < total_openings) 1334 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1335 else { 1336 /* 1337 * Some devices report queue full for 1338 * temporary resource shortages. For 1339 * this reason, we allow a minimum 1340 * tag count to be entered via a 1341 * quirk entry to prevent the queue 1342 * count on these devices from falling 1343 * to a pessimisticly low value. We 1344 * still wait for the next successful 1345 * completion, however, before queueing 1346 * more transactions to the device. 1347 */ 1348 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1349 } 1350 *timeout = 0; 1351 error = ERESTART; 1352 *action &= ~SSQ_PRINT_SENSE; 1353 break; 1354 } 1355 /* FALLTHROUGH */ 1356 } 1357 case SCSI_STATUS_BUSY: 1358 /* 1359 * Restart the queue after either another 1360 * command completes or a 1 second timeout. 1361 */ 1362 if (ccb->ccb_h.retry_count > 0) { 1363 ccb->ccb_h.retry_count--; 1364 error = ERESTART; 1365 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1366 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1367 *timeout = 1000; 1368 } else { 1369 error = EIO; 1370 } 1371 break; 1372 case SCSI_STATUS_RESERV_CONFLICT: 1373 default: 1374 error = EIO; 1375 break; 1376 } 1377 return (error); 1378 } 1379 1380 static int 1381 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1382 cam_flags camflags, u_int32_t sense_flags, 1383 int *openings, u_int32_t *relsim_flags, 1384 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1385 { 1386 struct cam_periph *periph; 1387 union ccb *orig_ccb = ccb; 1388 int error, recoveryccb; 1389 1390 periph = xpt_path_periph(ccb->ccb_h.path); 1391 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1392 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1393 /* 1394 * If error recovery is already in progress, don't attempt 1395 * to process this error, but requeue it unconditionally 1396 * and attempt to process it once error recovery has 1397 * completed. This failed command is probably related to 1398 * the error that caused the currently active error recovery 1399 * action so our current recovery efforts should also 1400 * address this command. Be aware that the error recovery 1401 * code assumes that only one recovery action is in progress 1402 * on a particular peripheral instance at any given time 1403 * (e.g. only one saved CCB for error recovery) so it is 1404 * imperitive that we don't violate this assumption. 1405 */ 1406 error = ERESTART; 1407 *action &= ~SSQ_PRINT_SENSE; 1408 } else { 1409 scsi_sense_action err_action; 1410 struct ccb_getdev cgd; 1411 1412 /* 1413 * Grab the inquiry data for this device. 1414 */ 1415 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1416 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1417 xpt_action((union ccb *)&cgd); 1418 1419 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1420 sense_flags); 1421 error = err_action & SS_ERRMASK; 1422 1423 /* 1424 * Do not autostart sequential access devices 1425 * to avoid unexpected tape loading. 1426 */ 1427 if ((err_action & SS_MASK) == SS_START && 1428 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1429 *action_string = "Will not autostart a " 1430 "sequential access device"; 1431 goto sense_error_done; 1432 } 1433 1434 /* 1435 * Avoid recovery recursion if recovery action is the same. 1436 */ 1437 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1438 if (((err_action & SS_MASK) == SS_START && 1439 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1440 ((err_action & SS_MASK) == SS_TUR && 1441 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1442 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1443 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1444 *timeout = 500; 1445 } 1446 } 1447 1448 /* 1449 * If the recovery action will consume a retry, 1450 * make sure we actually have retries available. 1451 */ 1452 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1453 if (ccb->ccb_h.retry_count > 0 && 1454 (periph->flags & CAM_PERIPH_INVALID) == 0) 1455 ccb->ccb_h.retry_count--; 1456 else { 1457 *action_string = "Retries exhausted"; 1458 goto sense_error_done; 1459 } 1460 } 1461 1462 if ((err_action & SS_MASK) >= SS_START) { 1463 /* 1464 * Do common portions of commands that 1465 * use recovery CCBs. 1466 */ 1467 orig_ccb = xpt_alloc_ccb_nowait(); 1468 if (orig_ccb == NULL) { 1469 *action_string = "Can't allocate recovery CCB"; 1470 goto sense_error_done; 1471 } 1472 /* 1473 * Clear freeze flag for original request here, as 1474 * this freeze will be dropped as part of ERESTART. 1475 */ 1476 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1477 bcopy(ccb, orig_ccb, sizeof(*orig_ccb)); 1478 } 1479 1480 switch (err_action & SS_MASK) { 1481 case SS_NOP: 1482 *action_string = "No recovery action needed"; 1483 error = 0; 1484 break; 1485 case SS_RETRY: 1486 *action_string = "Retrying command (per sense data)"; 1487 error = ERESTART; 1488 break; 1489 case SS_FAIL: 1490 *action_string = "Unretryable error"; 1491 break; 1492 case SS_START: 1493 { 1494 int le; 1495 1496 /* 1497 * Send a start unit command to the device, and 1498 * then retry the command. 1499 */ 1500 *action_string = "Attempting to start unit"; 1501 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1502 1503 /* 1504 * Check for removable media and set 1505 * load/eject flag appropriately. 1506 */ 1507 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1508 le = TRUE; 1509 else 1510 le = FALSE; 1511 1512 scsi_start_stop(&ccb->csio, 1513 /*retries*/1, 1514 camperiphdone, 1515 MSG_SIMPLE_Q_TAG, 1516 /*start*/TRUE, 1517 /*load/eject*/le, 1518 /*immediate*/FALSE, 1519 SSD_FULL_SIZE, 1520 /*timeout*/50000); 1521 break; 1522 } 1523 case SS_TUR: 1524 { 1525 /* 1526 * Send a Test Unit Ready to the device. 1527 * If the 'many' flag is set, we send 120 1528 * test unit ready commands, one every half 1529 * second. Otherwise, we just send one TUR. 1530 * We only want to do this if the retry 1531 * count has not been exhausted. 1532 */ 1533 int retries; 1534 1535 if ((err_action & SSQ_MANY) != 0) { 1536 *action_string = "Polling device for readiness"; 1537 retries = 120; 1538 } else { 1539 *action_string = "Testing device for readiness"; 1540 retries = 1; 1541 } 1542 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1543 scsi_test_unit_ready(&ccb->csio, 1544 retries, 1545 camperiphdone, 1546 MSG_SIMPLE_Q_TAG, 1547 SSD_FULL_SIZE, 1548 /*timeout*/5000); 1549 1550 /* 1551 * Accomplish our 500ms delay by deferring 1552 * the release of our device queue appropriately. 1553 */ 1554 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1555 *timeout = 500; 1556 break; 1557 } 1558 default: 1559 panic("Unhandled error action %x", err_action); 1560 } 1561 1562 if ((err_action & SS_MASK) >= SS_START) { 1563 /* 1564 * Drop the priority, so that the recovery 1565 * CCB is the first to execute. Freeze the queue 1566 * after this command is sent so that we can 1567 * restore the old csio and have it queued in 1568 * the proper order before we release normal 1569 * transactions to the device. 1570 */ 1571 ccb->ccb_h.pinfo.priority--; 1572 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1573 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1574 error = ERESTART; 1575 *orig = orig_ccb; 1576 } 1577 1578 sense_error_done: 1579 *action = err_action; 1580 } 1581 return (error); 1582 } 1583 1584 /* 1585 * Generic error handler. Peripheral drivers usually filter 1586 * out the errors that they handle in a unique mannor, then 1587 * call this function. 1588 */ 1589 int 1590 cam_periph_error(union ccb *ccb, cam_flags camflags, 1591 u_int32_t sense_flags, union ccb *save_ccb) 1592 { 1593 struct cam_path *newpath; 1594 union ccb *orig_ccb, *scan_ccb; 1595 struct cam_periph *periph; 1596 const char *action_string; 1597 cam_status status; 1598 int frozen, error, openings; 1599 u_int32_t action, relsim_flags, timeout; 1600 1601 action = SSQ_PRINT_SENSE; 1602 periph = xpt_path_periph(ccb->ccb_h.path); 1603 action_string = NULL; 1604 status = ccb->ccb_h.status; 1605 frozen = (status & CAM_DEV_QFRZN) != 0; 1606 status &= CAM_STATUS_MASK; 1607 openings = relsim_flags = timeout = 0; 1608 orig_ccb = ccb; 1609 1610 switch (status) { 1611 case CAM_REQ_CMP: 1612 error = 0; 1613 action &= ~SSQ_PRINT_SENSE; 1614 break; 1615 case CAM_SCSI_STATUS_ERROR: 1616 error = camperiphscsistatuserror(ccb, &orig_ccb, 1617 camflags, sense_flags, &openings, &relsim_flags, 1618 &timeout, &action, &action_string); 1619 break; 1620 case CAM_AUTOSENSE_FAIL: 1621 error = EIO; /* we have to kill the command */ 1622 break; 1623 case CAM_UA_ABORT: 1624 case CAM_UA_TERMIO: 1625 case CAM_MSG_REJECT_REC: 1626 /* XXX Don't know that these are correct */ 1627 error = EIO; 1628 break; 1629 case CAM_SEL_TIMEOUT: 1630 if ((camflags & CAM_RETRY_SELTO) != 0) { 1631 if (ccb->ccb_h.retry_count > 0 && 1632 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1633 ccb->ccb_h.retry_count--; 1634 error = ERESTART; 1635 1636 /* 1637 * Wait a bit to give the device 1638 * time to recover before we try again. 1639 */ 1640 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1641 timeout = periph_selto_delay; 1642 break; 1643 } 1644 action_string = "Retries exhausted"; 1645 } 1646 /* FALLTHROUGH */ 1647 case CAM_DEV_NOT_THERE: 1648 error = ENXIO; 1649 action = SSQ_LOST; 1650 break; 1651 case CAM_REQ_INVALID: 1652 case CAM_PATH_INVALID: 1653 case CAM_NO_HBA: 1654 case CAM_PROVIDE_FAIL: 1655 case CAM_REQ_TOO_BIG: 1656 case CAM_LUN_INVALID: 1657 case CAM_TID_INVALID: 1658 case CAM_FUNC_NOTAVAIL: 1659 error = EINVAL; 1660 break; 1661 case CAM_SCSI_BUS_RESET: 1662 case CAM_BDR_SENT: 1663 /* 1664 * Commands that repeatedly timeout and cause these 1665 * kinds of error recovery actions, should return 1666 * CAM_CMD_TIMEOUT, which allows us to safely assume 1667 * that this command was an innocent bystander to 1668 * these events and should be unconditionally 1669 * retried. 1670 */ 1671 case CAM_REQUEUE_REQ: 1672 /* Unconditional requeue if device is still there */ 1673 if (periph->flags & CAM_PERIPH_INVALID) { 1674 action_string = "Periph was invalidated"; 1675 error = EIO; 1676 } else if (sense_flags & SF_NO_RETRY) { 1677 error = EIO; 1678 action_string = "Retry was blocked"; 1679 } else { 1680 error = ERESTART; 1681 action &= ~SSQ_PRINT_SENSE; 1682 } 1683 break; 1684 case CAM_RESRC_UNAVAIL: 1685 /* Wait a bit for the resource shortage to abate. */ 1686 timeout = periph_noresrc_delay; 1687 /* FALLTHROUGH */ 1688 case CAM_BUSY: 1689 if (timeout == 0) { 1690 /* Wait a bit for the busy condition to abate. */ 1691 timeout = periph_busy_delay; 1692 } 1693 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1694 /* FALLTHROUGH */ 1695 case CAM_ATA_STATUS_ERROR: 1696 case CAM_REQ_CMP_ERR: 1697 case CAM_CMD_TIMEOUT: 1698 case CAM_UNEXP_BUSFREE: 1699 case CAM_UNCOR_PARITY: 1700 case CAM_DATA_RUN_ERR: 1701 default: 1702 if (periph->flags & CAM_PERIPH_INVALID) { 1703 error = EIO; 1704 action_string = "Periph was invalidated"; 1705 } else if (ccb->ccb_h.retry_count == 0) { 1706 error = EIO; 1707 action_string = "Retries exhausted"; 1708 } else if (sense_flags & SF_NO_RETRY) { 1709 error = EIO; 1710 action_string = "Retry was blocked"; 1711 } else { 1712 ccb->ccb_h.retry_count--; 1713 error = ERESTART; 1714 } 1715 break; 1716 } 1717 1718 if ((sense_flags & SF_PRINT_ALWAYS) || 1719 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 1720 action |= SSQ_PRINT_SENSE; 1721 else if (sense_flags & SF_NO_PRINT) 1722 action &= ~SSQ_PRINT_SENSE; 1723 if ((action & SSQ_PRINT_SENSE) != 0) 1724 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 1725 if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) { 1726 if (error != ERESTART) { 1727 if (action_string == NULL) 1728 action_string = "Unretryable error"; 1729 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 1730 error, action_string); 1731 } else if (action_string != NULL) 1732 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 1733 else 1734 xpt_print(ccb->ccb_h.path, "Retrying command\n"); 1735 } 1736 1737 if ((action & SSQ_LOST) != 0) { 1738 lun_id_t lun_id; 1739 1740 /* 1741 * For a selection timeout, we consider all of the LUNs on 1742 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 1743 * then we only get rid of the device(s) specified by the 1744 * path in the original CCB. 1745 */ 1746 if (status == CAM_SEL_TIMEOUT) 1747 lun_id = CAM_LUN_WILDCARD; 1748 else 1749 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 1750 1751 /* Should we do more if we can't create the path?? */ 1752 if (xpt_create_path(&newpath, periph, 1753 xpt_path_path_id(ccb->ccb_h.path), 1754 xpt_path_target_id(ccb->ccb_h.path), 1755 lun_id) == CAM_REQ_CMP) { 1756 1757 /* 1758 * Let peripheral drivers know that this 1759 * device has gone away. 1760 */ 1761 xpt_async(AC_LOST_DEVICE, newpath, NULL); 1762 xpt_free_path(newpath); 1763 } 1764 } 1765 1766 /* Broadcast UNIT ATTENTIONs to all periphs. */ 1767 if ((action & SSQ_UA) != 0) 1768 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 1769 1770 /* Rescan target on "Reported LUNs data has changed" */ 1771 if ((action & SSQ_RESCAN) != 0) { 1772 if (xpt_create_path(&newpath, NULL, 1773 xpt_path_path_id(ccb->ccb_h.path), 1774 xpt_path_target_id(ccb->ccb_h.path), 1775 CAM_LUN_WILDCARD) == CAM_REQ_CMP) { 1776 1777 scan_ccb = xpt_alloc_ccb_nowait(); 1778 if (scan_ccb != NULL) { 1779 scan_ccb->ccb_h.path = newpath; 1780 scan_ccb->ccb_h.func_code = XPT_SCAN_TGT; 1781 scan_ccb->crcn.flags = 0; 1782 xpt_rescan(scan_ccb); 1783 } else { 1784 xpt_print(newpath, 1785 "Can't allocate CCB to rescan target\n"); 1786 xpt_free_path(newpath); 1787 } 1788 } 1789 } 1790 1791 /* Attempt a retry */ 1792 if (error == ERESTART || error == 0) { 1793 if (frozen != 0) 1794 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1795 if (error == ERESTART) 1796 xpt_action(ccb); 1797 if (frozen != 0) 1798 cam_release_devq(ccb->ccb_h.path, 1799 relsim_flags, 1800 openings, 1801 timeout, 1802 /*getcount_only*/0); 1803 } 1804 1805 return (error); 1806 } 1807