1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause 5 * 6 * Copyright (c) 1997, 1998 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/types.h> 35 #include <sys/malloc.h> 36 #include <sys/kernel.h> 37 #include <sys/bio.h> 38 #include <sys/conf.h> 39 #include <sys/devctl.h> 40 #include <sys/lock.h> 41 #include <sys/mutex.h> 42 #include <sys/buf.h> 43 #include <sys/proc.h> 44 #include <sys/devicestat.h> 45 #include <sys/sbuf.h> 46 #include <sys/sysctl.h> 47 #include <vm/vm.h> 48 #include <vm/vm_extern.h> 49 50 #include <cam/cam.h> 51 #include <cam/cam_ccb.h> 52 #include <cam/cam_compat.h> 53 #include <cam/cam_queue.h> 54 #include <cam/cam_xpt_periph.h> 55 #include <cam/cam_xpt_internal.h> 56 #include <cam/cam_periph.h> 57 #include <cam/cam_debug.h> 58 #include <cam/cam_sim.h> 59 60 #include <cam/scsi/scsi_all.h> 61 #include <cam/scsi/scsi_message.h> 62 #include <cam/scsi/scsi_pass.h> 63 64 static u_int camperiphnextunit(struct periph_driver *p_drv, 65 u_int newunit, bool wired, 66 path_id_t pathid, target_id_t target, 67 lun_id_t lun); 68 static u_int camperiphunit(struct periph_driver *p_drv, 69 path_id_t pathid, target_id_t target, 70 lun_id_t lun, 71 const char *sn); 72 static void camperiphdone(struct cam_periph *periph, 73 union ccb *done_ccb); 74 static void camperiphfree(struct cam_periph *periph); 75 static int camperiphscsistatuserror(union ccb *ccb, 76 union ccb **orig_ccb, 77 cam_flags camflags, 78 uint32_t sense_flags, 79 int *openings, 80 uint32_t *relsim_flags, 81 uint32_t *timeout, 82 uint32_t *action, 83 const char **action_string); 84 static int camperiphscsisenseerror(union ccb *ccb, 85 union ccb **orig_ccb, 86 cam_flags camflags, 87 uint32_t sense_flags, 88 int *openings, 89 uint32_t *relsim_flags, 90 uint32_t *timeout, 91 uint32_t *action, 92 const char **action_string); 93 static void cam_periph_devctl_notify(union ccb *ccb); 94 95 static int nperiph_drivers; 96 static int initialized = 0; 97 struct periph_driver **periph_drivers; 98 99 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 100 101 static int periph_selto_delay = 1000; 102 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 103 static int periph_noresrc_delay = 500; 104 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 105 static int periph_busy_delay = 500; 106 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 107 108 static u_int periph_mapmem_thresh = 65536; 109 SYSCTL_UINT(_kern_cam, OID_AUTO, mapmem_thresh, CTLFLAG_RWTUN, 110 &periph_mapmem_thresh, 0, "Threshold for user-space buffer mapping"); 111 112 void 113 periphdriver_register(void *data) 114 { 115 struct periph_driver *drv = (struct periph_driver *)data; 116 struct periph_driver **newdrivers, **old; 117 int ndrivers; 118 119 again: 120 ndrivers = nperiph_drivers + 2; 121 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 122 M_WAITOK); 123 xpt_lock_buses(); 124 if (ndrivers != nperiph_drivers + 2) { 125 /* 126 * Lost race against itself; go around. 127 */ 128 xpt_unlock_buses(); 129 free(newdrivers, M_CAMPERIPH); 130 goto again; 131 } 132 if (periph_drivers) 133 bcopy(periph_drivers, newdrivers, 134 sizeof(*newdrivers) * nperiph_drivers); 135 newdrivers[nperiph_drivers] = drv; 136 newdrivers[nperiph_drivers + 1] = NULL; 137 old = periph_drivers; 138 periph_drivers = newdrivers; 139 nperiph_drivers++; 140 xpt_unlock_buses(); 141 if (old) 142 free(old, M_CAMPERIPH); 143 /* If driver marked as early or it is late now, initialize it. */ 144 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 145 initialized > 1) 146 (*drv->init)(); 147 } 148 149 int 150 periphdriver_unregister(void *data) 151 { 152 struct periph_driver *drv = (struct periph_driver *)data; 153 int error, n; 154 155 /* If driver marked as early or it is late now, deinitialize it. */ 156 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 157 initialized > 1) { 158 if (drv->deinit == NULL) { 159 printf("CAM periph driver '%s' doesn't have deinit.\n", 160 drv->driver_name); 161 return (EOPNOTSUPP); 162 } 163 error = drv->deinit(); 164 if (error != 0) 165 return (error); 166 } 167 168 xpt_lock_buses(); 169 for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++) 170 ; 171 KASSERT(n < nperiph_drivers, 172 ("Periph driver '%s' was not registered", drv->driver_name)); 173 for (; n + 1 < nperiph_drivers; n++) 174 periph_drivers[n] = periph_drivers[n + 1]; 175 periph_drivers[n + 1] = NULL; 176 nperiph_drivers--; 177 xpt_unlock_buses(); 178 return (0); 179 } 180 181 void 182 periphdriver_init(int level) 183 { 184 int i, early; 185 186 initialized = max(initialized, level); 187 for (i = 0; periph_drivers[i] != NULL; i++) { 188 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 189 if (early == initialized) 190 (*periph_drivers[i]->init)(); 191 } 192 } 193 194 cam_status 195 cam_periph_alloc(periph_ctor_t *periph_ctor, 196 periph_oninv_t *periph_oninvalidate, 197 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 198 char *name, cam_periph_type type, struct cam_path *path, 199 ac_callback_t *ac_callback, ac_code code, void *arg) 200 { 201 struct periph_driver **p_drv; 202 struct cam_sim *sim; 203 struct cam_periph *periph; 204 struct cam_periph *cur_periph; 205 path_id_t path_id; 206 target_id_t target_id; 207 lun_id_t lun_id; 208 cam_status status; 209 u_int init_level; 210 211 init_level = 0; 212 /* 213 * Handle Hot-Plug scenarios. If there is already a peripheral 214 * of our type assigned to this path, we are likely waiting for 215 * final close on an old, invalidated, peripheral. If this is 216 * the case, queue up a deferred call to the peripheral's async 217 * handler. If it looks like a mistaken re-allocation, complain. 218 */ 219 if ((periph = cam_periph_find(path, name)) != NULL) { 220 if ((periph->flags & CAM_PERIPH_INVALID) != 0 221 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 222 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 223 periph->deferred_callback = ac_callback; 224 periph->deferred_ac = code; 225 return (CAM_REQ_INPROG); 226 } else { 227 printf("cam_periph_alloc: attempt to re-allocate " 228 "valid device %s%d rejected flags %#x " 229 "refcount %d\n", periph->periph_name, 230 periph->unit_number, periph->flags, 231 periph->refcount); 232 } 233 return (CAM_REQ_INVALID); 234 } 235 236 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 237 M_NOWAIT|M_ZERO); 238 239 if (periph == NULL) 240 return (CAM_RESRC_UNAVAIL); 241 242 init_level++; 243 244 sim = xpt_path_sim(path); 245 path_id = xpt_path_path_id(path); 246 target_id = xpt_path_target_id(path); 247 lun_id = xpt_path_lun_id(path); 248 periph->periph_start = periph_start; 249 periph->periph_dtor = periph_dtor; 250 periph->periph_oninval = periph_oninvalidate; 251 periph->type = type; 252 periph->periph_name = name; 253 periph->scheduled_priority = CAM_PRIORITY_NONE; 254 periph->immediate_priority = CAM_PRIORITY_NONE; 255 periph->refcount = 1; /* Dropped by invalidation. */ 256 periph->sim = sim; 257 SLIST_INIT(&periph->ccb_list); 258 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 259 if (status != CAM_REQ_CMP) 260 goto failure; 261 periph->path = path; 262 263 xpt_lock_buses(); 264 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 265 if (strcmp((*p_drv)->driver_name, name) == 0) 266 break; 267 } 268 if (*p_drv == NULL) { 269 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 270 xpt_unlock_buses(); 271 xpt_free_path(periph->path); 272 free(periph, M_CAMPERIPH); 273 return (CAM_REQ_INVALID); 274 } 275 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id, 276 path->device->serial_num); 277 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 278 while (cur_periph != NULL 279 && cur_periph->unit_number < periph->unit_number) 280 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 281 if (cur_periph != NULL) { 282 KASSERT(cur_periph->unit_number != periph->unit_number, 283 ("duplicate units on periph list")); 284 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 285 } else { 286 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 287 (*p_drv)->generation++; 288 } 289 xpt_unlock_buses(); 290 291 init_level++; 292 293 status = xpt_add_periph(periph); 294 if (status != CAM_REQ_CMP) 295 goto failure; 296 297 init_level++; 298 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 299 300 status = periph_ctor(periph, arg); 301 302 if (status == CAM_REQ_CMP) 303 init_level++; 304 305 failure: 306 switch (init_level) { 307 case 4: 308 /* Initialized successfully */ 309 break; 310 case 3: 311 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 312 xpt_remove_periph(periph); 313 /* FALLTHROUGH */ 314 case 2: 315 xpt_lock_buses(); 316 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 317 xpt_unlock_buses(); 318 xpt_free_path(periph->path); 319 /* FALLTHROUGH */ 320 case 1: 321 free(periph, M_CAMPERIPH); 322 /* FALLTHROUGH */ 323 case 0: 324 /* No cleanup to perform. */ 325 break; 326 default: 327 panic("%s: Unknown init level", __func__); 328 } 329 return(status); 330 } 331 332 /* 333 * Find a peripheral structure with the specified path, target, lun, 334 * and (optionally) type. If the name is NULL, this function will return 335 * the first peripheral driver that matches the specified path. 336 */ 337 struct cam_periph * 338 cam_periph_find(struct cam_path *path, char *name) 339 { 340 struct periph_driver **p_drv; 341 struct cam_periph *periph; 342 343 xpt_lock_buses(); 344 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 345 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 346 continue; 347 348 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 349 if (xpt_path_comp(periph->path, path) == 0) { 350 xpt_unlock_buses(); 351 cam_periph_assert(periph, MA_OWNED); 352 return(periph); 353 } 354 } 355 if (name != NULL) { 356 xpt_unlock_buses(); 357 return(NULL); 358 } 359 } 360 xpt_unlock_buses(); 361 return(NULL); 362 } 363 364 /* 365 * Find peripheral driver instances attached to the specified path. 366 */ 367 int 368 cam_periph_list(struct cam_path *path, struct sbuf *sb) 369 { 370 struct sbuf local_sb; 371 struct periph_driver **p_drv; 372 struct cam_periph *periph; 373 int count; 374 int sbuf_alloc_len; 375 376 sbuf_alloc_len = 16; 377 retry: 378 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 379 count = 0; 380 xpt_lock_buses(); 381 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 382 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 383 if (xpt_path_comp(periph->path, path) != 0) 384 continue; 385 386 if (sbuf_len(&local_sb) != 0) 387 sbuf_cat(&local_sb, ","); 388 389 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 390 periph->unit_number); 391 392 if (sbuf_error(&local_sb) == ENOMEM) { 393 sbuf_alloc_len *= 2; 394 xpt_unlock_buses(); 395 sbuf_delete(&local_sb); 396 goto retry; 397 } 398 count++; 399 } 400 } 401 xpt_unlock_buses(); 402 sbuf_finish(&local_sb); 403 if (sbuf_len(sb) != 0) 404 sbuf_cat(sb, ","); 405 sbuf_cat(sb, sbuf_data(&local_sb)); 406 sbuf_delete(&local_sb); 407 return (count); 408 } 409 410 int 411 cam_periph_acquire(struct cam_periph *periph) 412 { 413 int status; 414 415 if (periph == NULL) 416 return (EINVAL); 417 418 status = ENOENT; 419 xpt_lock_buses(); 420 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 421 periph->refcount++; 422 status = 0; 423 } 424 xpt_unlock_buses(); 425 426 return (status); 427 } 428 429 void 430 cam_periph_doacquire(struct cam_periph *periph) 431 { 432 433 xpt_lock_buses(); 434 KASSERT(periph->refcount >= 1, 435 ("cam_periph_doacquire() with refcount == %d", periph->refcount)); 436 periph->refcount++; 437 xpt_unlock_buses(); 438 } 439 440 void 441 cam_periph_release_locked_buses(struct cam_periph *periph) 442 { 443 444 cam_periph_assert(periph, MA_OWNED); 445 KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); 446 if (--periph->refcount == 0) 447 camperiphfree(periph); 448 } 449 450 void 451 cam_periph_release_locked(struct cam_periph *periph) 452 { 453 454 if (periph == NULL) 455 return; 456 457 xpt_lock_buses(); 458 cam_periph_release_locked_buses(periph); 459 xpt_unlock_buses(); 460 } 461 462 void 463 cam_periph_release(struct cam_periph *periph) 464 { 465 struct mtx *mtx; 466 467 if (periph == NULL) 468 return; 469 470 cam_periph_assert(periph, MA_NOTOWNED); 471 mtx = cam_periph_mtx(periph); 472 mtx_lock(mtx); 473 cam_periph_release_locked(periph); 474 mtx_unlock(mtx); 475 } 476 477 /* 478 * hold/unhold act as mutual exclusion for sections of the code that 479 * need to sleep and want to make sure that other sections that 480 * will interfere are held off. This only protects exclusive sections 481 * from each other. 482 */ 483 int 484 cam_periph_hold(struct cam_periph *periph, int priority) 485 { 486 int error; 487 488 /* 489 * Increment the reference count on the peripheral 490 * while we wait for our lock attempt to succeed 491 * to ensure the peripheral doesn't disappear out 492 * from user us while we sleep. 493 */ 494 495 if (cam_periph_acquire(periph) != 0) 496 return (ENXIO); 497 498 cam_periph_assert(periph, MA_OWNED); 499 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 500 periph->flags |= CAM_PERIPH_LOCK_WANTED; 501 if ((error = cam_periph_sleep(periph, periph, priority, 502 "caplck", 0)) != 0) { 503 cam_periph_release_locked(periph); 504 return (error); 505 } 506 if (periph->flags & CAM_PERIPH_INVALID) { 507 cam_periph_release_locked(periph); 508 return (ENXIO); 509 } 510 } 511 512 periph->flags |= CAM_PERIPH_LOCKED; 513 return (0); 514 } 515 516 void 517 cam_periph_unhold(struct cam_periph *periph) 518 { 519 520 cam_periph_assert(periph, MA_OWNED); 521 522 periph->flags &= ~CAM_PERIPH_LOCKED; 523 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 524 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 525 wakeup(periph); 526 } 527 528 cam_periph_release_locked(periph); 529 } 530 531 void 532 cam_periph_hold_boot(struct cam_periph *periph) 533 { 534 535 root_mount_hold_token(periph->periph_name, &periph->periph_rootmount); 536 } 537 538 void 539 cam_periph_release_boot(struct cam_periph *periph) 540 { 541 542 root_mount_rel(&periph->periph_rootmount); 543 } 544 545 /* 546 * Look for the next unit number that is not currently in use for this 547 * peripheral type starting at "newunit". Also exclude unit numbers that 548 * are reserved by for future "hardwiring" unless we already know that this 549 * is a potential wired device. Only assume that the device is "wired" the 550 * first time through the loop since after that we'll be looking at unit 551 * numbers that did not match a wiring entry. 552 */ 553 static u_int 554 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, bool wired, 555 path_id_t pathid, target_id_t target, lun_id_t lun) 556 { 557 struct cam_periph *periph; 558 char *periph_name; 559 int i, val, dunit, r; 560 const char *dname, *strval; 561 562 periph_name = p_drv->driver_name; 563 for (;;newunit++) { 564 for (periph = TAILQ_FIRST(&p_drv->units); 565 periph != NULL && periph->unit_number != newunit; 566 periph = TAILQ_NEXT(periph, unit_links)) 567 ; 568 569 if (periph != NULL && periph->unit_number == newunit) { 570 if (wired) { 571 xpt_print(periph->path, "Duplicate Wired " 572 "Device entry!\n"); 573 xpt_print(periph->path, "Second device (%s " 574 "device at scbus%d target %d lun %d) will " 575 "not be wired\n", periph_name, pathid, 576 target, lun); 577 wired = false; 578 } 579 continue; 580 } 581 if (wired) 582 break; 583 584 /* 585 * Don't allow the mere presence of any attributes of a device 586 * means that it is for a wired down entry. Instead, insist that 587 * one of the matching criteria from camperiphunit be present 588 * for the device. 589 */ 590 i = 0; 591 dname = periph_name; 592 for (;;) { 593 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 594 if (r != 0) 595 break; 596 597 if (newunit != dunit) 598 continue; 599 if (resource_string_value(dname, dunit, "sn", &strval) == 0 || 600 resource_int_value(dname, dunit, "lun", &val) == 0 || 601 resource_int_value(dname, dunit, "target", &val) == 0 || 602 resource_string_value(dname, dunit, "at", &strval) == 0) 603 break; 604 } 605 if (r != 0) 606 break; 607 } 608 return (newunit); 609 } 610 611 static u_int 612 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 613 target_id_t target, lun_id_t lun, const char *sn) 614 { 615 bool wired = false; 616 u_int unit; 617 int i, val, dunit; 618 const char *dname, *strval; 619 char pathbuf[32], *periph_name; 620 621 periph_name = p_drv->driver_name; 622 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 623 unit = 0; 624 i = 0; 625 dname = periph_name; 626 627 for (wired = false; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 628 wired = false) { 629 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 630 if (strcmp(strval, pathbuf) != 0) 631 continue; 632 wired = true; 633 } 634 if (resource_int_value(dname, dunit, "target", &val) == 0) { 635 if (val != target) 636 continue; 637 wired = true; 638 } 639 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 640 if (val != lun) 641 continue; 642 wired = true; 643 } 644 if (resource_string_value(dname, dunit, "sn", &strval) == 0) { 645 if (sn == NULL || strcmp(strval, sn) != 0) 646 continue; 647 wired = true; 648 } 649 if (wired) { 650 unit = dunit; 651 break; 652 } 653 } 654 655 /* 656 * Either start from 0 looking for the next unit or from 657 * the unit number given in the resource config. This way, 658 * if we have wildcard matches, we don't return the same 659 * unit number twice. 660 */ 661 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 662 663 return (unit); 664 } 665 666 void 667 cam_periph_invalidate(struct cam_periph *periph) 668 { 669 670 cam_periph_assert(periph, MA_OWNED); 671 /* 672 * We only tear down the device the first time a peripheral is 673 * invalidated. 674 */ 675 if ((periph->flags & CAM_PERIPH_INVALID) != 0) 676 return; 677 678 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 679 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) { 680 struct sbuf sb; 681 char buffer[160]; 682 683 sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN); 684 xpt_denounce_periph_sbuf(periph, &sb); 685 sbuf_finish(&sb); 686 sbuf_putbuf(&sb); 687 } 688 periph->flags |= CAM_PERIPH_INVALID; 689 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 690 if (periph->periph_oninval != NULL) 691 periph->periph_oninval(periph); 692 cam_periph_release_locked(periph); 693 } 694 695 static void 696 camperiphfree(struct cam_periph *periph) 697 { 698 struct periph_driver **p_drv; 699 struct periph_driver *drv; 700 701 cam_periph_assert(periph, MA_OWNED); 702 KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating", 703 periph->periph_name, periph->unit_number)); 704 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 705 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 706 break; 707 } 708 if (*p_drv == NULL) { 709 printf("camperiphfree: attempt to free non-existant periph\n"); 710 return; 711 } 712 /* 713 * Cache a pointer to the periph_driver structure. If a 714 * periph_driver is added or removed from the array (see 715 * periphdriver_register()) while we drop the toplogy lock 716 * below, p_drv may change. This doesn't protect against this 717 * particular periph_driver going away. That will require full 718 * reference counting in the periph_driver infrastructure. 719 */ 720 drv = *p_drv; 721 722 /* 723 * We need to set this flag before dropping the topology lock, to 724 * let anyone who is traversing the list that this peripheral is 725 * about to be freed, and there will be no more reference count 726 * checks. 727 */ 728 periph->flags |= CAM_PERIPH_FREE; 729 730 /* 731 * The peripheral destructor semantics dictate calling with only the 732 * SIM mutex held. Since it might sleep, it should not be called 733 * with the topology lock held. 734 */ 735 xpt_unlock_buses(); 736 737 /* 738 * We need to call the peripheral destructor prior to removing the 739 * peripheral from the list. Otherwise, we risk running into a 740 * scenario where the peripheral unit number may get reused 741 * (because it has been removed from the list), but some resources 742 * used by the peripheral are still hanging around. In particular, 743 * the devfs nodes used by some peripherals like the pass(4) driver 744 * aren't fully cleaned up until the destructor is run. If the 745 * unit number is reused before the devfs instance is fully gone, 746 * devfs will panic. 747 */ 748 if (periph->periph_dtor != NULL) 749 periph->periph_dtor(periph); 750 751 /* 752 * The peripheral list is protected by the topology lock. We have to 753 * remove the periph from the drv list before we call deferred_ac. The 754 * AC_FOUND_DEVICE callback won't create a new periph if it's still there. 755 */ 756 xpt_lock_buses(); 757 758 TAILQ_REMOVE(&drv->units, periph, unit_links); 759 drv->generation++; 760 761 xpt_remove_periph(periph); 762 763 xpt_unlock_buses(); 764 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) 765 xpt_print(periph->path, "Periph destroyed\n"); 766 else 767 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 768 769 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 770 switch (periph->deferred_ac) { 771 case AC_FOUND_DEVICE: { 772 struct ccb_getdev cgd; 773 774 xpt_gdev_type(&cgd, periph->path); 775 periph->deferred_callback(NULL, periph->deferred_ac, 776 periph->path, &cgd); 777 break; 778 } 779 case AC_PATH_REGISTERED: { 780 struct ccb_pathinq cpi; 781 782 xpt_path_inq(&cpi, periph->path); 783 periph->deferred_callback(NULL, periph->deferred_ac, 784 periph->path, &cpi); 785 break; 786 } 787 default: 788 periph->deferred_callback(NULL, periph->deferred_ac, 789 periph->path, NULL); 790 break; 791 } 792 } 793 xpt_free_path(periph->path); 794 free(periph, M_CAMPERIPH); 795 xpt_lock_buses(); 796 } 797 798 /* 799 * Map user virtual pointers into kernel virtual address space, so we can 800 * access the memory. This is now a generic function that centralizes most 801 * of the sanity checks on the data flags, if any. 802 * This also only works for up to maxphys memory. Since we use 803 * buffers to map stuff in and out, we're limited to the buffer size. 804 */ 805 int 806 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo, 807 u_int maxmap) 808 { 809 int numbufs, i; 810 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 811 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 812 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 813 814 bzero(mapinfo, sizeof(*mapinfo)); 815 if (maxmap == 0) 816 maxmap = DFLTPHYS; /* traditional default */ 817 else if (maxmap > maxphys) 818 maxmap = maxphys; /* for safety */ 819 switch(ccb->ccb_h.func_code) { 820 case XPT_DEV_MATCH: 821 if (ccb->cdm.match_buf_len == 0) { 822 printf("cam_periph_mapmem: invalid match buffer " 823 "length 0\n"); 824 return(EINVAL); 825 } 826 if (ccb->cdm.pattern_buf_len > 0) { 827 data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns; 828 lengths[0] = ccb->cdm.pattern_buf_len; 829 dirs[0] = CAM_DIR_OUT; 830 data_ptrs[1] = (uint8_t **)&ccb->cdm.matches; 831 lengths[1] = ccb->cdm.match_buf_len; 832 dirs[1] = CAM_DIR_IN; 833 numbufs = 2; 834 } else { 835 data_ptrs[0] = (uint8_t **)&ccb->cdm.matches; 836 lengths[0] = ccb->cdm.match_buf_len; 837 dirs[0] = CAM_DIR_IN; 838 numbufs = 1; 839 } 840 /* 841 * This request will not go to the hardware, no reason 842 * to be so strict. vmapbuf() is able to map up to maxphys. 843 */ 844 maxmap = maxphys; 845 break; 846 case XPT_SCSI_IO: 847 case XPT_CONT_TARGET_IO: 848 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 849 return(0); 850 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 851 return (EINVAL); 852 data_ptrs[0] = &ccb->csio.data_ptr; 853 lengths[0] = ccb->csio.dxfer_len; 854 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 855 numbufs = 1; 856 break; 857 case XPT_ATA_IO: 858 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 859 return(0); 860 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 861 return (EINVAL); 862 data_ptrs[0] = &ccb->ataio.data_ptr; 863 lengths[0] = ccb->ataio.dxfer_len; 864 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 865 numbufs = 1; 866 break; 867 case XPT_MMC_IO: 868 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 869 return(0); 870 /* Two mappings: one for cmd->data and one for cmd->data->data */ 871 data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data; 872 lengths[0] = sizeof(struct mmc_data *); 873 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 874 data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data; 875 lengths[1] = ccb->mmcio.cmd.data->len; 876 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 877 numbufs = 2; 878 break; 879 case XPT_SMP_IO: 880 data_ptrs[0] = &ccb->smpio.smp_request; 881 lengths[0] = ccb->smpio.smp_request_len; 882 dirs[0] = CAM_DIR_OUT; 883 data_ptrs[1] = &ccb->smpio.smp_response; 884 lengths[1] = ccb->smpio.smp_response_len; 885 dirs[1] = CAM_DIR_IN; 886 numbufs = 2; 887 break; 888 case XPT_NVME_IO: 889 case XPT_NVME_ADMIN: 890 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 891 return (0); 892 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 893 return (EINVAL); 894 data_ptrs[0] = &ccb->nvmeio.data_ptr; 895 lengths[0] = ccb->nvmeio.dxfer_len; 896 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 897 numbufs = 1; 898 break; 899 case XPT_DEV_ADVINFO: 900 if (ccb->cdai.bufsiz == 0) 901 return (0); 902 903 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 904 lengths[0] = ccb->cdai.bufsiz; 905 dirs[0] = CAM_DIR_IN; 906 numbufs = 1; 907 908 /* 909 * This request will not go to the hardware, no reason 910 * to be so strict. vmapbuf() is able to map up to maxphys. 911 */ 912 maxmap = maxphys; 913 break; 914 default: 915 return(EINVAL); 916 break; /* NOTREACHED */ 917 } 918 919 /* 920 * Check the transfer length and permissions first, so we don't 921 * have to unmap any previously mapped buffers. 922 */ 923 for (i = 0; i < numbufs; i++) { 924 if (lengths[i] > maxmap) { 925 printf("cam_periph_mapmem: attempt to map %lu bytes, " 926 "which is greater than %lu\n", 927 (long)(lengths[i]), (u_long)maxmap); 928 return (E2BIG); 929 } 930 } 931 932 for (i = 0; i < numbufs; i++) { 933 /* Save the user's data address. */ 934 mapinfo->orig[i] = *data_ptrs[i]; 935 936 /* 937 * For small buffers use malloc+copyin/copyout instead of 938 * mapping to KVA to avoid expensive TLB shootdowns. For 939 * small allocations malloc is backed by UMA, and so much 940 * cheaper on SMP systems. 941 */ 942 if (lengths[i] <= periph_mapmem_thresh && 943 ccb->ccb_h.func_code != XPT_MMC_IO) { 944 *data_ptrs[i] = malloc(lengths[i], M_CAMPERIPH, 945 M_WAITOK); 946 if (dirs[i] != CAM_DIR_IN) { 947 if (copyin(mapinfo->orig[i], *data_ptrs[i], 948 lengths[i]) != 0) { 949 free(*data_ptrs[i], M_CAMPERIPH); 950 *data_ptrs[i] = mapinfo->orig[i]; 951 goto fail; 952 } 953 } else 954 bzero(*data_ptrs[i], lengths[i]); 955 continue; 956 } 957 958 /* 959 * Get the buffer. 960 */ 961 mapinfo->bp[i] = uma_zalloc(pbuf_zone, M_WAITOK); 962 963 /* set the direction */ 964 mapinfo->bp[i]->b_iocmd = (dirs[i] == CAM_DIR_OUT) ? 965 BIO_WRITE : BIO_READ; 966 967 /* Map the buffer into kernel memory. */ 968 if (vmapbuf(mapinfo->bp[i], *data_ptrs[i], lengths[i], 1) < 0) { 969 uma_zfree(pbuf_zone, mapinfo->bp[i]); 970 goto fail; 971 } 972 973 /* set our pointer to the new mapped area */ 974 *data_ptrs[i] = mapinfo->bp[i]->b_data; 975 } 976 977 /* 978 * Now that we've gotten this far, change ownership to the kernel 979 * of the buffers so that we don't run afoul of returning to user 980 * space with locks (on the buffer) held. 981 */ 982 for (i = 0; i < numbufs; i++) { 983 if (mapinfo->bp[i]) 984 BUF_KERNPROC(mapinfo->bp[i]); 985 } 986 987 mapinfo->num_bufs_used = numbufs; 988 return(0); 989 990 fail: 991 for (i--; i >= 0; i--) { 992 if (mapinfo->bp[i]) { 993 vunmapbuf(mapinfo->bp[i]); 994 uma_zfree(pbuf_zone, mapinfo->bp[i]); 995 } else 996 free(*data_ptrs[i], M_CAMPERIPH); 997 *data_ptrs[i] = mapinfo->orig[i]; 998 } 999 return(EACCES); 1000 } 1001 1002 /* 1003 * Unmap memory segments mapped into kernel virtual address space by 1004 * cam_periph_mapmem(). 1005 */ 1006 int 1007 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 1008 { 1009 int error, numbufs, i; 1010 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1011 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 1012 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 1013 1014 if (mapinfo->num_bufs_used <= 0) { 1015 /* nothing to free and the process wasn't held. */ 1016 return (0); 1017 } 1018 1019 switch (ccb->ccb_h.func_code) { 1020 case XPT_DEV_MATCH: 1021 if (ccb->cdm.pattern_buf_len > 0) { 1022 data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns; 1023 lengths[0] = ccb->cdm.pattern_buf_len; 1024 dirs[0] = CAM_DIR_OUT; 1025 data_ptrs[1] = (uint8_t **)&ccb->cdm.matches; 1026 lengths[1] = ccb->cdm.match_buf_len; 1027 dirs[1] = CAM_DIR_IN; 1028 numbufs = 2; 1029 } else { 1030 data_ptrs[0] = (uint8_t **)&ccb->cdm.matches; 1031 lengths[0] = ccb->cdm.match_buf_len; 1032 dirs[0] = CAM_DIR_IN; 1033 numbufs = 1; 1034 } 1035 break; 1036 case XPT_SCSI_IO: 1037 case XPT_CONT_TARGET_IO: 1038 data_ptrs[0] = &ccb->csio.data_ptr; 1039 lengths[0] = ccb->csio.dxfer_len; 1040 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1041 numbufs = 1; 1042 break; 1043 case XPT_ATA_IO: 1044 data_ptrs[0] = &ccb->ataio.data_ptr; 1045 lengths[0] = ccb->ataio.dxfer_len; 1046 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1047 numbufs = 1; 1048 break; 1049 case XPT_MMC_IO: 1050 data_ptrs[0] = (uint8_t **)&ccb->mmcio.cmd.data; 1051 lengths[0] = sizeof(struct mmc_data *); 1052 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1053 data_ptrs[1] = (uint8_t **)&ccb->mmcio.cmd.data->data; 1054 lengths[1] = ccb->mmcio.cmd.data->len; 1055 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 1056 numbufs = 2; 1057 break; 1058 case XPT_SMP_IO: 1059 data_ptrs[0] = &ccb->smpio.smp_request; 1060 lengths[0] = ccb->smpio.smp_request_len; 1061 dirs[0] = CAM_DIR_OUT; 1062 data_ptrs[1] = &ccb->smpio.smp_response; 1063 lengths[1] = ccb->smpio.smp_response_len; 1064 dirs[1] = CAM_DIR_IN; 1065 numbufs = 2; 1066 break; 1067 case XPT_NVME_IO: 1068 case XPT_NVME_ADMIN: 1069 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1070 lengths[0] = ccb->nvmeio.dxfer_len; 1071 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1072 numbufs = 1; 1073 break; 1074 case XPT_DEV_ADVINFO: 1075 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1076 lengths[0] = ccb->cdai.bufsiz; 1077 dirs[0] = CAM_DIR_IN; 1078 numbufs = 1; 1079 break; 1080 default: 1081 numbufs = 0; 1082 break; 1083 } 1084 1085 error = 0; 1086 for (i = 0; i < numbufs; i++) { 1087 if (mapinfo->bp[i]) { 1088 /* unmap the buffer */ 1089 vunmapbuf(mapinfo->bp[i]); 1090 1091 /* release the buffer */ 1092 uma_zfree(pbuf_zone, mapinfo->bp[i]); 1093 } else { 1094 if (dirs[i] != CAM_DIR_OUT) { 1095 int error1; 1096 1097 error1 = copyout(*data_ptrs[i], mapinfo->orig[i], 1098 lengths[i]); 1099 if (error == 0) 1100 error = error1; 1101 } 1102 free(*data_ptrs[i], M_CAMPERIPH); 1103 } 1104 1105 /* Set the user's pointer back to the original value */ 1106 *data_ptrs[i] = mapinfo->orig[i]; 1107 } 1108 1109 return (error); 1110 } 1111 1112 int 1113 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 1114 int (*error_routine)(union ccb *ccb, 1115 cam_flags camflags, 1116 uint32_t sense_flags)) 1117 { 1118 union ccb *ccb; 1119 int error; 1120 int found; 1121 1122 error = found = 0; 1123 1124 switch(cmd){ 1125 case CAMGETPASSTHRU_0x19: 1126 case CAMGETPASSTHRU: 1127 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 1128 xpt_setup_ccb(&ccb->ccb_h, 1129 ccb->ccb_h.path, 1130 CAM_PRIORITY_NORMAL); 1131 ccb->ccb_h.func_code = XPT_GDEVLIST; 1132 1133 /* 1134 * Basically, the point of this is that we go through 1135 * getting the list of devices, until we find a passthrough 1136 * device. In the current version of the CAM code, the 1137 * only way to determine what type of device we're dealing 1138 * with is by its name. 1139 */ 1140 while (found == 0) { 1141 ccb->cgdl.index = 0; 1142 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1143 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1144 /* we want the next device in the list */ 1145 xpt_action(ccb); 1146 if (strncmp(ccb->cgdl.periph_name, 1147 "pass", 4) == 0){ 1148 found = 1; 1149 break; 1150 } 1151 } 1152 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1153 (found == 0)) { 1154 ccb->cgdl.periph_name[0] = '\0'; 1155 ccb->cgdl.unit_number = 0; 1156 break; 1157 } 1158 } 1159 1160 /* copy the result back out */ 1161 bcopy(ccb, addr, sizeof(union ccb)); 1162 1163 /* and release the ccb */ 1164 xpt_release_ccb(ccb); 1165 1166 break; 1167 default: 1168 error = ENOTTY; 1169 break; 1170 } 1171 return(error); 1172 } 1173 1174 static void 1175 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb) 1176 { 1177 1178 panic("%s: already done with ccb %p", __func__, done_ccb); 1179 } 1180 1181 static void 1182 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb) 1183 { 1184 1185 /* Caller will release the CCB */ 1186 xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED); 1187 done_ccb->ccb_h.cbfcnp = cam_periph_done_panic; 1188 wakeup(&done_ccb->ccb_h.cbfcnp); 1189 } 1190 1191 static void 1192 cam_periph_ccbwait(union ccb *ccb) 1193 { 1194 1195 if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 1196 while (ccb->ccb_h.cbfcnp != cam_periph_done_panic) 1197 xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, 1198 PRIBIO, "cbwait", 0); 1199 } 1200 KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && 1201 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG, 1202 ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, " 1203 "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code, 1204 ccb->ccb_h.status, ccb->ccb_h.pinfo.index)); 1205 } 1206 1207 /* 1208 * Dispatch a CCB and wait for it to complete. If the CCB has set a 1209 * callback function (ccb->ccb_h.cbfcnp), it will be overwritten and lost. 1210 */ 1211 int 1212 cam_periph_runccb(union ccb *ccb, 1213 int (*error_routine)(union ccb *ccb, 1214 cam_flags camflags, 1215 uint32_t sense_flags), 1216 cam_flags camflags, uint32_t sense_flags, 1217 struct devstat *ds) 1218 { 1219 struct bintime *starttime; 1220 struct bintime ltime; 1221 int error; 1222 bool must_poll; 1223 uint32_t timeout = 1; 1224 1225 starttime = NULL; 1226 xpt_path_assert(ccb->ccb_h.path, MA_OWNED); 1227 KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0, 1228 ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb, 1229 ccb->ccb_h.func_code, ccb->ccb_h.flags)); 1230 1231 /* 1232 * If the user has supplied a stats structure, and if we understand 1233 * this particular type of ccb, record the transaction start. 1234 */ 1235 if (ds != NULL && 1236 (ccb->ccb_h.func_code == XPT_SCSI_IO || 1237 ccb->ccb_h.func_code == XPT_ATA_IO || 1238 ccb->ccb_h.func_code == XPT_NVME_IO)) { 1239 starttime = <ime; 1240 binuptime(starttime); 1241 devstat_start_transaction(ds, starttime); 1242 } 1243 1244 /* 1245 * We must poll the I/O while we're dumping. The scheduler is normally 1246 * stopped for dumping, except when we call doadump from ddb. While the 1247 * scheduler is running in this case, we still need to poll the I/O to 1248 * avoid sleeping waiting for the ccb to complete. 1249 * 1250 * A panic triggered dump stops the scheduler, any callback from the 1251 * shutdown_post_sync event will run with the scheduler stopped, but 1252 * before we're officially dumping. To avoid hanging in adashutdown 1253 * initiated commands (or other similar situations), we have to test for 1254 * either dumping or SCHEDULER_STOPPED() here. 1255 * 1256 * To avoid locking problems, dumping/polling callers must call 1257 * without a periph lock held. 1258 */ 1259 must_poll = dumping || SCHEDULER_STOPPED(); 1260 ccb->ccb_h.cbfcnp = cam_periph_done; 1261 1262 /* 1263 * If we're polling, then we need to ensure that we have ample resources 1264 * in the periph. cam_periph_error can reschedule the ccb by calling 1265 * xpt_action and returning ERESTART, so we have to effect the polling 1266 * in the do loop below. 1267 */ 1268 if (must_poll) { 1269 if (cam_sim_pollable(ccb->ccb_h.path->bus->sim)) 1270 timeout = xpt_poll_setup(ccb); 1271 else 1272 timeout = 0; 1273 } 1274 1275 if (timeout == 0) { 1276 ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 1277 error = EBUSY; 1278 } else { 1279 xpt_action(ccb); 1280 do { 1281 if (must_poll) { 1282 xpt_pollwait(ccb, timeout); 1283 timeout = ccb->ccb_h.timeout * 10; 1284 } else { 1285 cam_periph_ccbwait(ccb); 1286 } 1287 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1288 error = 0; 1289 else if (error_routine != NULL) { 1290 /* 1291 * cbfcnp is modified by cam_periph_ccbwait so 1292 * reset it before we call the error routine 1293 * which may call xpt_done. 1294 */ 1295 ccb->ccb_h.cbfcnp = cam_periph_done; 1296 error = (*error_routine)(ccb, camflags, sense_flags); 1297 } else 1298 error = 0; 1299 } while (error == ERESTART); 1300 } 1301 1302 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1303 cam_release_devq(ccb->ccb_h.path, 1304 /* relsim_flags */0, 1305 /* openings */0, 1306 /* timeout */0, 1307 /* getcount_only */ FALSE); 1308 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1309 } 1310 1311 if (ds != NULL) { 1312 uint32_t bytes; 1313 devstat_tag_type tag; 1314 bool valid = true; 1315 1316 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1317 bytes = ccb->csio.dxfer_len - ccb->csio.resid; 1318 tag = (devstat_tag_type)(ccb->csio.tag_action & 0x3); 1319 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1320 bytes = ccb->ataio.dxfer_len - ccb->ataio.resid; 1321 tag = (devstat_tag_type)0; 1322 } else if (ccb->ccb_h.func_code == XPT_NVME_IO) { 1323 bytes = ccb->nvmeio.dxfer_len; /* NB: resid no possible */ 1324 tag = (devstat_tag_type)0; 1325 } else { 1326 valid = false; 1327 } 1328 if (valid) 1329 devstat_end_transaction(ds, bytes, tag, 1330 ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? 1331 DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1332 DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime); 1333 } 1334 1335 return(error); 1336 } 1337 1338 void 1339 cam_freeze_devq(struct cam_path *path) 1340 { 1341 struct ccb_hdr ccb_h; 1342 1343 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n")); 1344 memset(&ccb_h, 0, sizeof(ccb_h)); 1345 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 1346 ccb_h.func_code = XPT_NOOP; 1347 ccb_h.flags = CAM_DEV_QFREEZE; 1348 xpt_action((union ccb *)&ccb_h); 1349 } 1350 1351 uint32_t 1352 cam_release_devq(struct cam_path *path, uint32_t relsim_flags, 1353 uint32_t openings, uint32_t arg, 1354 int getcount_only) 1355 { 1356 struct ccb_relsim crs; 1357 1358 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n", 1359 relsim_flags, openings, arg, getcount_only)); 1360 memset(&crs, 0, sizeof(crs)); 1361 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1362 crs.ccb_h.func_code = XPT_REL_SIMQ; 1363 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1364 crs.release_flags = relsim_flags; 1365 crs.openings = openings; 1366 crs.release_timeout = arg; 1367 xpt_action((union ccb *)&crs); 1368 return (crs.qfrozen_cnt); 1369 } 1370 1371 #define saved_ccb_ptr ppriv_ptr0 1372 static void 1373 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1374 { 1375 union ccb *saved_ccb; 1376 cam_status status; 1377 struct scsi_start_stop_unit *scsi_cmd; 1378 int error = 0, error_code, sense_key, asc, ascq; 1379 uint16_t done_flags; 1380 1381 scsi_cmd = (struct scsi_start_stop_unit *) 1382 &done_ccb->csio.cdb_io.cdb_bytes; 1383 status = done_ccb->ccb_h.status; 1384 1385 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1386 if (scsi_extract_sense_ccb(done_ccb, 1387 &error_code, &sense_key, &asc, &ascq)) { 1388 /* 1389 * If the error is "invalid field in CDB", 1390 * and the load/eject flag is set, turn the 1391 * flag off and try again. This is just in 1392 * case the drive in question barfs on the 1393 * load eject flag. The CAM code should set 1394 * the load/eject flag by default for 1395 * removable media. 1396 */ 1397 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1398 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1399 (asc == 0x24) && (ascq == 0x00)) { 1400 scsi_cmd->how &= ~SSS_LOEJ; 1401 if (status & CAM_DEV_QFRZN) { 1402 cam_release_devq(done_ccb->ccb_h.path, 1403 0, 0, 0, 0); 1404 done_ccb->ccb_h.status &= 1405 ~CAM_DEV_QFRZN; 1406 } 1407 xpt_action(done_ccb); 1408 goto out; 1409 } 1410 } 1411 error = cam_periph_error(done_ccb, 0, 1412 SF_RETRY_UA | SF_NO_PRINT); 1413 if (error == ERESTART) 1414 goto out; 1415 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1416 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1417 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1418 } 1419 } else { 1420 /* 1421 * If we have successfully taken a device from the not 1422 * ready to ready state, re-scan the device and re-get 1423 * the inquiry information. Many devices (mostly disks) 1424 * don't properly report their inquiry information unless 1425 * they are spun up. 1426 */ 1427 if (scsi_cmd->opcode == START_STOP_UNIT) 1428 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1429 } 1430 1431 /* If we tried long wait and still failed, remember that. */ 1432 if ((periph->flags & CAM_PERIPH_RECOVERY_WAIT) && 1433 (done_ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY)) { 1434 periph->flags &= ~CAM_PERIPH_RECOVERY_WAIT; 1435 if (error != 0 && done_ccb->ccb_h.retry_count == 0) 1436 periph->flags |= CAM_PERIPH_RECOVERY_WAIT_FAILED; 1437 } 1438 1439 /* 1440 * After recovery action(s) completed, return to the original CCB. 1441 * If the recovery CCB has failed, considering its own possible 1442 * retries and recovery, assume we are back in state where we have 1443 * been originally, but without recovery hopes left. In such case, 1444 * after the final attempt below, we cancel any further retries, 1445 * blocking by that also any new recovery attempts for this CCB, 1446 * and the result will be the final one returned to the CCB owher. 1447 */ 1448 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1449 KASSERT(saved_ccb->ccb_h.func_code == XPT_SCSI_IO, 1450 ("%s: saved_ccb func_code %#x != XPT_SCSI_IO", 1451 __func__, saved_ccb->ccb_h.func_code)); 1452 KASSERT(done_ccb->ccb_h.func_code == XPT_SCSI_IO, 1453 ("%s: done_ccb func_code %#x != XPT_SCSI_IO", 1454 __func__, done_ccb->ccb_h.func_code)); 1455 saved_ccb->ccb_h.periph_links = done_ccb->ccb_h.periph_links; 1456 done_flags = done_ccb->ccb_h.alloc_flags; 1457 bcopy(saved_ccb, done_ccb, sizeof(struct ccb_scsiio)); 1458 done_ccb->ccb_h.alloc_flags = done_flags; 1459 xpt_free_ccb(saved_ccb); 1460 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1461 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1462 if (error != 0) 1463 done_ccb->ccb_h.retry_count = 0; 1464 xpt_action(done_ccb); 1465 1466 out: 1467 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1468 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1469 } 1470 1471 /* 1472 * Generic Async Event handler. Peripheral drivers usually 1473 * filter out the events that require personal attention, 1474 * and leave the rest to this function. 1475 */ 1476 void 1477 cam_periph_async(struct cam_periph *periph, uint32_t code, 1478 struct cam_path *path, void *arg) 1479 { 1480 switch (code) { 1481 case AC_LOST_DEVICE: 1482 cam_periph_invalidate(periph); 1483 break; 1484 default: 1485 break; 1486 } 1487 } 1488 1489 void 1490 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1491 { 1492 struct ccb_getdevstats cgds; 1493 1494 memset(&cgds, 0, sizeof(cgds)); 1495 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1496 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1497 xpt_action((union ccb *)&cgds); 1498 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1499 } 1500 1501 void 1502 cam_periph_freeze_after_event(struct cam_periph *periph, 1503 struct timeval* event_time, u_int duration_ms) 1504 { 1505 struct timeval delta; 1506 struct timeval duration_tv; 1507 1508 if (!timevalisset(event_time)) 1509 return; 1510 1511 microtime(&delta); 1512 timevalsub(&delta, event_time); 1513 duration_tv.tv_sec = duration_ms / 1000; 1514 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1515 if (timevalcmp(&delta, &duration_tv, <)) { 1516 timevalsub(&duration_tv, &delta); 1517 1518 duration_ms = duration_tv.tv_sec * 1000; 1519 duration_ms += duration_tv.tv_usec / 1000; 1520 cam_freeze_devq(periph->path); 1521 cam_release_devq(periph->path, 1522 RELSIM_RELEASE_AFTER_TIMEOUT, 1523 /*reduction*/0, 1524 /*timeout*/duration_ms, 1525 /*getcount_only*/0); 1526 } 1527 1528 } 1529 1530 static int 1531 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1532 cam_flags camflags, uint32_t sense_flags, 1533 int *openings, uint32_t *relsim_flags, 1534 uint32_t *timeout, uint32_t *action, const char **action_string) 1535 { 1536 struct cam_periph *periph; 1537 int error; 1538 1539 switch (ccb->csio.scsi_status) { 1540 case SCSI_STATUS_OK: 1541 case SCSI_STATUS_COND_MET: 1542 case SCSI_STATUS_INTERMED: 1543 case SCSI_STATUS_INTERMED_COND_MET: 1544 error = 0; 1545 break; 1546 case SCSI_STATUS_CMD_TERMINATED: 1547 case SCSI_STATUS_CHECK_COND: 1548 error = camperiphscsisenseerror(ccb, orig_ccb, 1549 camflags, 1550 sense_flags, 1551 openings, 1552 relsim_flags, 1553 timeout, 1554 action, 1555 action_string); 1556 break; 1557 case SCSI_STATUS_QUEUE_FULL: 1558 { 1559 /* no decrement */ 1560 struct ccb_getdevstats cgds; 1561 1562 /* 1563 * First off, find out what the current 1564 * transaction counts are. 1565 */ 1566 memset(&cgds, 0, sizeof(cgds)); 1567 xpt_setup_ccb(&cgds.ccb_h, 1568 ccb->ccb_h.path, 1569 CAM_PRIORITY_NORMAL); 1570 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1571 xpt_action((union ccb *)&cgds); 1572 1573 /* 1574 * If we were the only transaction active, treat 1575 * the QUEUE FULL as if it were a BUSY condition. 1576 */ 1577 if (cgds.dev_active != 0) { 1578 int total_openings; 1579 1580 /* 1581 * Reduce the number of openings to 1582 * be 1 less than the amount it took 1583 * to get a queue full bounded by the 1584 * minimum allowed tag count for this 1585 * device. 1586 */ 1587 total_openings = cgds.dev_active + cgds.dev_openings; 1588 *openings = cgds.dev_active; 1589 if (*openings < cgds.mintags) 1590 *openings = cgds.mintags; 1591 if (*openings < total_openings) 1592 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1593 else { 1594 /* 1595 * Some devices report queue full for 1596 * temporary resource shortages. For 1597 * this reason, we allow a minimum 1598 * tag count to be entered via a 1599 * quirk entry to prevent the queue 1600 * count on these devices from falling 1601 * to a pessimisticly low value. We 1602 * still wait for the next successful 1603 * completion, however, before queueing 1604 * more transactions to the device. 1605 */ 1606 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1607 } 1608 *timeout = 0; 1609 error = ERESTART; 1610 *action &= ~SSQ_PRINT_SENSE; 1611 break; 1612 } 1613 /* FALLTHROUGH */ 1614 } 1615 case SCSI_STATUS_BUSY: 1616 /* 1617 * Restart the queue after either another 1618 * command completes or a 1 second timeout. 1619 */ 1620 periph = xpt_path_periph(ccb->ccb_h.path); 1621 if (periph->flags & CAM_PERIPH_INVALID) { 1622 error = ENXIO; 1623 *action_string = "Periph was invalidated"; 1624 } else if ((sense_flags & SF_RETRY_BUSY) != 0 || 1625 ccb->ccb_h.retry_count > 0) { 1626 if ((sense_flags & SF_RETRY_BUSY) == 0) 1627 ccb->ccb_h.retry_count--; 1628 error = ERESTART; 1629 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1630 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1631 *timeout = 1000; 1632 } else { 1633 error = EIO; 1634 *action_string = "Retries exhausted"; 1635 } 1636 break; 1637 case SCSI_STATUS_RESERV_CONFLICT: 1638 default: 1639 error = EIO; 1640 break; 1641 } 1642 return (error); 1643 } 1644 1645 static int 1646 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1647 cam_flags camflags, uint32_t sense_flags, 1648 int *openings, uint32_t *relsim_flags, 1649 uint32_t *timeout, uint32_t *action, const char **action_string) 1650 { 1651 struct cam_periph *periph; 1652 union ccb *orig_ccb = ccb; 1653 int error, recoveryccb; 1654 uint16_t flags; 1655 1656 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1657 if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL) 1658 biotrack(ccb->csio.bio, __func__); 1659 #endif 1660 1661 periph = xpt_path_periph(ccb->ccb_h.path); 1662 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1663 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1664 /* 1665 * If error recovery is already in progress, don't attempt 1666 * to process this error, but requeue it unconditionally 1667 * and attempt to process it once error recovery has 1668 * completed. This failed command is probably related to 1669 * the error that caused the currently active error recovery 1670 * action so our current recovery efforts should also 1671 * address this command. Be aware that the error recovery 1672 * code assumes that only one recovery action is in progress 1673 * on a particular peripheral instance at any given time 1674 * (e.g. only one saved CCB for error recovery) so it is 1675 * imperitive that we don't violate this assumption. 1676 */ 1677 error = ERESTART; 1678 *action &= ~SSQ_PRINT_SENSE; 1679 } else { 1680 scsi_sense_action err_action; 1681 struct ccb_getdev cgd; 1682 1683 /* 1684 * Grab the inquiry data for this device. 1685 */ 1686 xpt_gdev_type(&cgd, ccb->ccb_h.path); 1687 1688 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1689 sense_flags); 1690 error = err_action & SS_ERRMASK; 1691 1692 /* 1693 * Do not autostart sequential access devices 1694 * to avoid unexpected tape loading. 1695 */ 1696 if ((err_action & SS_MASK) == SS_START && 1697 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1698 *action_string = "Will not autostart a " 1699 "sequential access device"; 1700 goto sense_error_done; 1701 } 1702 1703 /* 1704 * Avoid recovery recursion if recovery action is the same. 1705 */ 1706 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1707 if (((err_action & SS_MASK) == SS_START && 1708 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1709 ((err_action & SS_MASK) == SS_TUR && 1710 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1711 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1712 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1713 *timeout = 500; 1714 } 1715 } 1716 1717 /* 1718 * If the recovery action will consume a retry, 1719 * make sure we actually have retries available. 1720 */ 1721 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1722 if (ccb->ccb_h.retry_count > 0 && 1723 (periph->flags & CAM_PERIPH_INVALID) == 0) 1724 ccb->ccb_h.retry_count--; 1725 else { 1726 *action_string = "Retries exhausted"; 1727 goto sense_error_done; 1728 } 1729 } 1730 1731 if ((err_action & SS_MASK) >= SS_START) { 1732 /* 1733 * Do common portions of commands that 1734 * use recovery CCBs. 1735 */ 1736 orig_ccb = xpt_alloc_ccb_nowait(); 1737 if (orig_ccb == NULL) { 1738 *action_string = "Can't allocate recovery CCB"; 1739 goto sense_error_done; 1740 } 1741 /* 1742 * Clear freeze flag for original request here, as 1743 * this freeze will be dropped as part of ERESTART. 1744 */ 1745 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1746 1747 KASSERT(ccb->ccb_h.func_code == XPT_SCSI_IO, 1748 ("%s: ccb func_code %#x != XPT_SCSI_IO", 1749 __func__, ccb->ccb_h.func_code)); 1750 flags = orig_ccb->ccb_h.alloc_flags; 1751 bcopy(ccb, orig_ccb, sizeof(struct ccb_scsiio)); 1752 orig_ccb->ccb_h.alloc_flags = flags; 1753 } 1754 1755 switch (err_action & SS_MASK) { 1756 case SS_NOP: 1757 *action_string = "No recovery action needed"; 1758 error = 0; 1759 break; 1760 case SS_RETRY: 1761 *action_string = "Retrying command (per sense data)"; 1762 error = ERESTART; 1763 break; 1764 case SS_FAIL: 1765 *action_string = "Unretryable error"; 1766 break; 1767 case SS_START: 1768 { 1769 int le; 1770 1771 /* 1772 * Send a start unit command to the device, and 1773 * then retry the command. 1774 */ 1775 *action_string = "Attempting to start unit"; 1776 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1777 1778 /* 1779 * Check for removable media and set 1780 * load/eject flag appropriately. 1781 */ 1782 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1783 le = TRUE; 1784 else 1785 le = FALSE; 1786 1787 scsi_start_stop(&ccb->csio, 1788 /*retries*/1, 1789 camperiphdone, 1790 MSG_SIMPLE_Q_TAG, 1791 /*start*/TRUE, 1792 /*load/eject*/le, 1793 /*immediate*/FALSE, 1794 SSD_FULL_SIZE, 1795 /*timeout*/50000); 1796 break; 1797 } 1798 case SS_TUR: 1799 { 1800 /* 1801 * Send a Test Unit Ready to the device. 1802 * If the 'many' flag is set, we send 120 1803 * test unit ready commands, one every half 1804 * second. Otherwise, we just send one TUR. 1805 * We only want to do this if the retry 1806 * count has not been exhausted. 1807 */ 1808 int retries; 1809 1810 if ((err_action & SSQ_MANY) != 0 && (periph->flags & 1811 CAM_PERIPH_RECOVERY_WAIT_FAILED) == 0) { 1812 periph->flags |= CAM_PERIPH_RECOVERY_WAIT; 1813 *action_string = "Polling device for readiness"; 1814 retries = 120; 1815 } else { 1816 *action_string = "Testing device for readiness"; 1817 retries = 1; 1818 } 1819 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1820 scsi_test_unit_ready(&ccb->csio, 1821 retries, 1822 camperiphdone, 1823 MSG_SIMPLE_Q_TAG, 1824 SSD_FULL_SIZE, 1825 /*timeout*/5000); 1826 1827 /* 1828 * Accomplish our 500ms delay by deferring 1829 * the release of our device queue appropriately. 1830 */ 1831 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1832 *timeout = 500; 1833 break; 1834 } 1835 default: 1836 panic("Unhandled error action %x", err_action); 1837 } 1838 1839 if ((err_action & SS_MASK) >= SS_START) { 1840 /* 1841 * Drop the priority, so that the recovery 1842 * CCB is the first to execute. Freeze the queue 1843 * after this command is sent so that we can 1844 * restore the old csio and have it queued in 1845 * the proper order before we release normal 1846 * transactions to the device. 1847 */ 1848 ccb->ccb_h.pinfo.priority--; 1849 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1850 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1851 error = ERESTART; 1852 *orig = orig_ccb; 1853 } 1854 1855 sense_error_done: 1856 *action = err_action; 1857 } 1858 return (error); 1859 } 1860 1861 /* 1862 * Generic error handler. Peripheral drivers usually filter 1863 * out the errors that they handle in a unique manner, then 1864 * call this function. 1865 */ 1866 int 1867 cam_periph_error(union ccb *ccb, cam_flags camflags, 1868 uint32_t sense_flags) 1869 { 1870 struct cam_path *newpath; 1871 union ccb *orig_ccb, *scan_ccb; 1872 struct cam_periph *periph; 1873 const char *action_string; 1874 cam_status status; 1875 bool frozen; 1876 int error, openings, devctl_err; 1877 uint32_t action, relsim_flags, timeout; 1878 1879 action = SSQ_PRINT_SENSE; 1880 periph = xpt_path_periph(ccb->ccb_h.path); 1881 action_string = NULL; 1882 status = ccb->ccb_h.status; 1883 frozen = (status & CAM_DEV_QFRZN) != 0; 1884 status &= CAM_STATUS_MASK; 1885 devctl_err = openings = relsim_flags = timeout = 0; 1886 orig_ccb = ccb; 1887 1888 /* Filter the errors that should be reported via devctl */ 1889 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 1890 case CAM_CMD_TIMEOUT: 1891 case CAM_REQ_ABORTED: 1892 case CAM_REQ_CMP_ERR: 1893 case CAM_REQ_TERMIO: 1894 case CAM_UNREC_HBA_ERROR: 1895 case CAM_DATA_RUN_ERR: 1896 case CAM_SCSI_STATUS_ERROR: 1897 case CAM_ATA_STATUS_ERROR: 1898 case CAM_SMP_STATUS_ERROR: 1899 case CAM_DEV_NOT_THERE: 1900 case CAM_NVME_STATUS_ERROR: 1901 devctl_err++; 1902 break; 1903 default: 1904 break; 1905 } 1906 1907 switch (status) { 1908 case CAM_REQ_CMP: 1909 error = 0; 1910 action &= ~SSQ_PRINT_SENSE; 1911 break; 1912 case CAM_SCSI_STATUS_ERROR: 1913 error = camperiphscsistatuserror(ccb, &orig_ccb, 1914 camflags, sense_flags, &openings, &relsim_flags, 1915 &timeout, &action, &action_string); 1916 break; 1917 case CAM_AUTOSENSE_FAIL: 1918 error = EIO; /* we have to kill the command */ 1919 break; 1920 case CAM_UA_ABORT: 1921 case CAM_UA_TERMIO: 1922 case CAM_MSG_REJECT_REC: 1923 /* XXX Don't know that these are correct */ 1924 error = EIO; 1925 break; 1926 case CAM_SEL_TIMEOUT: 1927 if ((camflags & CAM_RETRY_SELTO) != 0) { 1928 if (ccb->ccb_h.retry_count > 0 && 1929 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1930 ccb->ccb_h.retry_count--; 1931 error = ERESTART; 1932 1933 /* 1934 * Wait a bit to give the device 1935 * time to recover before we try again. 1936 */ 1937 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1938 timeout = periph_selto_delay; 1939 break; 1940 } 1941 action_string = "Retries exhausted"; 1942 } 1943 /* FALLTHROUGH */ 1944 case CAM_DEV_NOT_THERE: 1945 error = ENXIO; 1946 action = SSQ_LOST; 1947 break; 1948 case CAM_REQ_INVALID: 1949 case CAM_PATH_INVALID: 1950 case CAM_NO_HBA: 1951 case CAM_PROVIDE_FAIL: 1952 case CAM_REQ_TOO_BIG: 1953 case CAM_LUN_INVALID: 1954 case CAM_TID_INVALID: 1955 case CAM_FUNC_NOTAVAIL: 1956 error = EINVAL; 1957 break; 1958 case CAM_SCSI_BUS_RESET: 1959 case CAM_BDR_SENT: 1960 /* 1961 * Commands that repeatedly timeout and cause these 1962 * kinds of error recovery actions, should return 1963 * CAM_CMD_TIMEOUT, which allows us to safely assume 1964 * that this command was an innocent bystander to 1965 * these events and should be unconditionally 1966 * retried. 1967 */ 1968 case CAM_REQUEUE_REQ: 1969 /* Unconditional requeue if device is still there */ 1970 if (periph->flags & CAM_PERIPH_INVALID) { 1971 action_string = "Periph was invalidated"; 1972 error = ENXIO; 1973 } else if (sense_flags & SF_NO_RETRY) { 1974 error = EIO; 1975 action_string = "Retry was blocked"; 1976 } else { 1977 error = ERESTART; 1978 action &= ~SSQ_PRINT_SENSE; 1979 } 1980 break; 1981 case CAM_RESRC_UNAVAIL: 1982 /* Wait a bit for the resource shortage to abate. */ 1983 timeout = periph_noresrc_delay; 1984 /* FALLTHROUGH */ 1985 case CAM_BUSY: 1986 if (timeout == 0) { 1987 /* Wait a bit for the busy condition to abate. */ 1988 timeout = periph_busy_delay; 1989 } 1990 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1991 /* FALLTHROUGH */ 1992 case CAM_ATA_STATUS_ERROR: 1993 case CAM_NVME_STATUS_ERROR: 1994 case CAM_SMP_STATUS_ERROR: 1995 case CAM_REQ_CMP_ERR: 1996 case CAM_CMD_TIMEOUT: 1997 case CAM_UNEXP_BUSFREE: 1998 case CAM_UNCOR_PARITY: 1999 case CAM_DATA_RUN_ERR: 2000 default: 2001 if (periph->flags & CAM_PERIPH_INVALID) { 2002 error = ENXIO; 2003 action_string = "Periph was invalidated"; 2004 } else if (ccb->ccb_h.retry_count == 0) { 2005 error = EIO; 2006 action_string = "Retries exhausted"; 2007 } else if (sense_flags & SF_NO_RETRY) { 2008 error = EIO; 2009 action_string = "Retry was blocked"; 2010 } else { 2011 ccb->ccb_h.retry_count--; 2012 error = ERESTART; 2013 } 2014 break; 2015 } 2016 2017 if ((sense_flags & SF_PRINT_ALWAYS) || 2018 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 2019 action |= SSQ_PRINT_SENSE; 2020 else if (sense_flags & SF_NO_PRINT) 2021 action &= ~SSQ_PRINT_SENSE; 2022 if ((action & SSQ_PRINT_SENSE) != 0) 2023 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 2024 if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) { 2025 if (error != ERESTART) { 2026 if (action_string == NULL) 2027 action_string = "Unretryable error"; 2028 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 2029 error, action_string); 2030 } else if (action_string != NULL) 2031 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 2032 else { 2033 xpt_print(ccb->ccb_h.path, 2034 "Retrying command, %d more tries remain\n", 2035 ccb->ccb_h.retry_count); 2036 } 2037 } 2038 2039 if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0)) 2040 cam_periph_devctl_notify(orig_ccb); 2041 2042 if ((action & SSQ_LOST) != 0) { 2043 lun_id_t lun_id; 2044 2045 /* 2046 * For a selection timeout, we consider all of the LUNs on 2047 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 2048 * then we only get rid of the device(s) specified by the 2049 * path in the original CCB. 2050 */ 2051 if (status == CAM_SEL_TIMEOUT) 2052 lun_id = CAM_LUN_WILDCARD; 2053 else 2054 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 2055 2056 /* Should we do more if we can't create the path?? */ 2057 if (xpt_create_path(&newpath, periph, 2058 xpt_path_path_id(ccb->ccb_h.path), 2059 xpt_path_target_id(ccb->ccb_h.path), 2060 lun_id) == CAM_REQ_CMP) { 2061 /* 2062 * Let peripheral drivers know that this 2063 * device has gone away. 2064 */ 2065 xpt_async(AC_LOST_DEVICE, newpath, NULL); 2066 xpt_free_path(newpath); 2067 } 2068 } 2069 2070 /* Broadcast UNIT ATTENTIONs to all periphs. */ 2071 if ((action & SSQ_UA) != 0) 2072 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 2073 2074 /* Rescan target on "Reported LUNs data has changed" */ 2075 if ((action & SSQ_RESCAN) != 0) { 2076 if (xpt_create_path(&newpath, NULL, 2077 xpt_path_path_id(ccb->ccb_h.path), 2078 xpt_path_target_id(ccb->ccb_h.path), 2079 CAM_LUN_WILDCARD) == CAM_REQ_CMP) { 2080 scan_ccb = xpt_alloc_ccb_nowait(); 2081 if (scan_ccb != NULL) { 2082 scan_ccb->ccb_h.path = newpath; 2083 scan_ccb->ccb_h.func_code = XPT_SCAN_TGT; 2084 scan_ccb->crcn.flags = 0; 2085 xpt_rescan(scan_ccb); 2086 } else { 2087 xpt_print(newpath, 2088 "Can't allocate CCB to rescan target\n"); 2089 xpt_free_path(newpath); 2090 } 2091 } 2092 } 2093 2094 /* Attempt a retry */ 2095 if (error == ERESTART || error == 0) { 2096 if (frozen) 2097 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 2098 if (error == ERESTART) 2099 xpt_action(ccb); 2100 if (frozen) 2101 cam_release_devq(ccb->ccb_h.path, 2102 relsim_flags, 2103 openings, 2104 timeout, 2105 /*getcount_only*/0); 2106 } 2107 2108 return (error); 2109 } 2110 2111 #define CAM_PERIPH_DEVD_MSG_SIZE 256 2112 2113 static void 2114 cam_periph_devctl_notify(union ccb *ccb) 2115 { 2116 struct cam_periph *periph; 2117 struct ccb_getdev *cgd; 2118 struct sbuf sb; 2119 int serr, sk, asc, ascq; 2120 char *sbmsg, *type; 2121 2122 sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT); 2123 if (sbmsg == NULL) 2124 return; 2125 2126 sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN); 2127 2128 periph = xpt_path_periph(ccb->ccb_h.path); 2129 sbuf_printf(&sb, "device=%s%d ", periph->periph_name, 2130 periph->unit_number); 2131 2132 sbuf_cat(&sb, "serial=\""); 2133 if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) { 2134 xpt_gdev_type(cgd, ccb->ccb_h.path); 2135 if (cgd->ccb_h.status == CAM_REQ_CMP) 2136 sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len); 2137 xpt_free_ccb((union ccb *)cgd); 2138 } 2139 sbuf_cat(&sb, "\" "); 2140 sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status); 2141 2142 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 2143 case CAM_CMD_TIMEOUT: 2144 sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout); 2145 type = "timeout"; 2146 break; 2147 case CAM_SCSI_STATUS_ERROR: 2148 sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status); 2149 if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq)) 2150 sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ", 2151 serr, sk, asc, ascq); 2152 type = "error"; 2153 break; 2154 case CAM_ATA_STATUS_ERROR: 2155 sbuf_cat(&sb, "RES=\""); 2156 ata_res_sbuf(&ccb->ataio.res, &sb); 2157 sbuf_cat(&sb, "\" "); 2158 type = "error"; 2159 break; 2160 case CAM_NVME_STATUS_ERROR: 2161 { 2162 struct ccb_nvmeio *n = &ccb->nvmeio; 2163 2164 sbuf_printf(&sb, "sct=\"%02x\" sc=\"%02x\" cdw0=\"%08x\" ", 2165 NVME_STATUS_GET_SCT(n->cpl.status), 2166 NVME_STATUS_GET_SC(n->cpl.status), n->cpl.cdw0); 2167 type = "error"; 2168 break; 2169 } 2170 default: 2171 type = "error"; 2172 break; 2173 } 2174 2175 2176 switch (ccb->ccb_h.func_code) { 2177 case XPT_SCSI_IO: 2178 sbuf_cat(&sb, "CDB=\""); 2179 scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb); 2180 sbuf_cat(&sb, "\" "); 2181 break; 2182 case XPT_ATA_IO: 2183 sbuf_cat(&sb, "ACB=\""); 2184 ata_cmd_sbuf(&ccb->ataio.cmd, &sb); 2185 sbuf_cat(&sb, "\" "); 2186 break; 2187 case XPT_NVME_IO: 2188 case XPT_NVME_ADMIN: 2189 { 2190 struct ccb_nvmeio *n = &ccb->nvmeio; 2191 struct nvme_command *cmd = &n->cmd; 2192 2193 // XXX Likely should be nvme_cmd_sbuf 2194 sbuf_printf(&sb, "opc=\"%02x\" fuse=\"%02x\" cid=\"%04x\" " 2195 "nsid=\"%08x\" cdw10=\"%08x\" cdw11=\"%08x\" cdw12=\"%08x\" " 2196 "cdw13=\"%08x\" cdw14=\"%08x\" cdw15=\"%08x\" ", 2197 cmd->opc, cmd->fuse, cmd->cid, cmd->nsid, cmd->cdw10, 2198 cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14, cmd->cdw15); 2199 break; 2200 } 2201 default: 2202 break; 2203 } 2204 2205 if (sbuf_finish(&sb) == 0) 2206 devctl_notify("CAM", "periph", type, sbuf_data(&sb)); 2207 sbuf_delete(&sb); 2208 free(sbmsg, M_CAMPERIPH); 2209 } 2210 2211 /* 2212 * Sysctl to force an invalidation of the drive right now. Can be 2213 * called with CTLFLAG_MPSAFE since we take periph lock. 2214 */ 2215 int 2216 cam_periph_invalidate_sysctl(SYSCTL_HANDLER_ARGS) 2217 { 2218 struct cam_periph *periph; 2219 int error, value; 2220 2221 periph = arg1; 2222 value = 0; 2223 error = sysctl_handle_int(oidp, &value, 0, req); 2224 if (error != 0 || req->newptr == NULL || value != 1) 2225 return (error); 2226 2227 cam_periph_lock(periph); 2228 cam_periph_invalidate(periph); 2229 cam_periph_unlock(periph); 2230 2231 return (0); 2232 } 2233