xref: /freebsd/sys/cam/cam_periph.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /*-
2  * Common functions for CAM "type" (peripheral) drivers.
3  *
4  * Copyright (c) 1997, 1998 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/types.h>
36 #include <sys/malloc.h>
37 #include <sys/kernel.h>
38 #include <sys/linker_set.h>
39 #include <sys/bio.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/buf.h>
43 #include <sys/proc.h>
44 #include <sys/devicestat.h>
45 #include <sys/bus.h>
46 #include <vm/vm.h>
47 #include <vm/vm_extern.h>
48 
49 #include <cam/cam.h>
50 #include <cam/cam_ccb.h>
51 #include <cam/cam_xpt_periph.h>
52 #include <cam/cam_periph.h>
53 #include <cam/cam_debug.h>
54 #include <cam/cam_sim.h>
55 
56 #include <cam/scsi/scsi_all.h>
57 #include <cam/scsi/scsi_message.h>
58 #include <cam/scsi/scsi_pass.h>
59 
60 static	u_int		camperiphnextunit(struct periph_driver *p_drv,
61 					  u_int newunit, int wired,
62 					  path_id_t pathid, target_id_t target,
63 					  lun_id_t lun);
64 static	u_int		camperiphunit(struct periph_driver *p_drv,
65 				      path_id_t pathid, target_id_t target,
66 				      lun_id_t lun);
67 static	void		camperiphdone(struct cam_periph *periph,
68 					union ccb *done_ccb);
69 static  void		camperiphfree(struct cam_periph *periph);
70 static int		camperiphscsistatuserror(union ccb *ccb,
71 						 cam_flags camflags,
72 						 u_int32_t sense_flags,
73 						 union ccb *save_ccb,
74 						 int *openings,
75 						 u_int32_t *relsim_flags,
76 						 u_int32_t *timeout);
77 static	int		camperiphscsisenseerror(union ccb *ccb,
78 					        cam_flags camflags,
79 					        u_int32_t sense_flags,
80 					        union ccb *save_ccb,
81 					        int *openings,
82 					        u_int32_t *relsim_flags,
83 					        u_int32_t *timeout);
84 
85 static int nperiph_drivers;
86 struct periph_driver **periph_drivers;
87 
88 MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
89 
90 static int periph_selto_delay = 1000;
91 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
92 static int periph_noresrc_delay = 500;
93 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
94 static int periph_busy_delay = 500;
95 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
96 
97 
98 void
99 periphdriver_register(void *data)
100 {
101 	struct periph_driver **newdrivers, **old;
102 	int ndrivers;
103 
104 	ndrivers = nperiph_drivers + 2;
105 	newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
106 			    M_WAITOK);
107 	if (periph_drivers)
108 		bcopy(periph_drivers, newdrivers,
109 		      sizeof(*newdrivers) * nperiph_drivers);
110 	newdrivers[nperiph_drivers] = (struct periph_driver *)data;
111 	newdrivers[nperiph_drivers + 1] = NULL;
112 	old = periph_drivers;
113 	periph_drivers = newdrivers;
114 	if (old)
115 		free(old, M_CAMPERIPH);
116 	nperiph_drivers++;
117 }
118 
119 cam_status
120 cam_periph_alloc(periph_ctor_t *periph_ctor,
121 		 periph_oninv_t *periph_oninvalidate,
122 		 periph_dtor_t *periph_dtor, periph_start_t *periph_start,
123 		 char *name, cam_periph_type type, struct cam_path *path,
124 		 ac_callback_t *ac_callback, ac_code code, void *arg)
125 {
126 	struct		periph_driver **p_drv;
127 	struct		cam_sim *sim;
128 	struct		cam_periph *periph;
129 	struct		cam_periph *cur_periph;
130 	path_id_t	path_id;
131 	target_id_t	target_id;
132 	lun_id_t	lun_id;
133 	cam_status	status;
134 	u_int		init_level;
135 
136 	init_level = 0;
137 	/*
138 	 * Handle Hot-Plug scenarios.  If there is already a peripheral
139 	 * of our type assigned to this path, we are likely waiting for
140 	 * final close on an old, invalidated, peripheral.  If this is
141 	 * the case, queue up a deferred call to the peripheral's async
142 	 * handler.  If it looks like a mistaken re-allocation, complain.
143 	 */
144 	if ((periph = cam_periph_find(path, name)) != NULL) {
145 
146 		if ((periph->flags & CAM_PERIPH_INVALID) != 0
147 		 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
148 			periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
149 			periph->deferred_callback = ac_callback;
150 			periph->deferred_ac = code;
151 			return (CAM_REQ_INPROG);
152 		} else {
153 			printf("cam_periph_alloc: attempt to re-allocate "
154 			       "valid device %s%d rejected\n",
155 			       periph->periph_name, periph->unit_number);
156 		}
157 		return (CAM_REQ_INVALID);
158 	}
159 
160 	periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH,
161 					     M_NOWAIT);
162 
163 	if (periph == NULL)
164 		return (CAM_RESRC_UNAVAIL);
165 
166 	init_level++;
167 
168 	xpt_lock_buses();
169 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
170 		if (strcmp((*p_drv)->driver_name, name) == 0)
171 			break;
172 	}
173 	xpt_unlock_buses();
174 
175 	sim = xpt_path_sim(path);
176 	path_id = xpt_path_path_id(path);
177 	target_id = xpt_path_target_id(path);
178 	lun_id = xpt_path_lun_id(path);
179 	bzero(periph, sizeof(*periph));
180 	cam_init_pinfo(&periph->pinfo);
181 	periph->periph_start = periph_start;
182 	periph->periph_dtor = periph_dtor;
183 	periph->periph_oninval = periph_oninvalidate;
184 	periph->type = type;
185 	periph->periph_name = name;
186 	periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id);
187 	periph->immediate_priority = CAM_PRIORITY_NONE;
188 	periph->refcount = 0;
189 	periph->sim = sim;
190 	SLIST_INIT(&periph->ccb_list);
191 	status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
192 	if (status != CAM_REQ_CMP)
193 		goto failure;
194 
195 	periph->path = path;
196 	init_level++;
197 
198 	status = xpt_add_periph(periph);
199 
200 	if (status != CAM_REQ_CMP)
201 		goto failure;
202 
203 	cur_periph = TAILQ_FIRST(&(*p_drv)->units);
204 	while (cur_periph != NULL
205 	    && cur_periph->unit_number < periph->unit_number)
206 		cur_periph = TAILQ_NEXT(cur_periph, unit_links);
207 
208 	if (cur_periph != NULL)
209 		TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
210 	else {
211 		TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
212 		(*p_drv)->generation++;
213 	}
214 
215 	init_level++;
216 
217 	status = periph_ctor(periph, arg);
218 
219 	if (status == CAM_REQ_CMP)
220 		init_level++;
221 
222 failure:
223 	switch (init_level) {
224 	case 4:
225 		/* Initialized successfully */
226 		break;
227 	case 3:
228 		TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
229 		xpt_remove_periph(periph);
230 		/* FALLTHROUGH */
231 	case 2:
232 		xpt_free_path(periph->path);
233 		/* FALLTHROUGH */
234 	case 1:
235 		free(periph, M_CAMPERIPH);
236 		/* FALLTHROUGH */
237 	case 0:
238 		/* No cleanup to perform. */
239 		break;
240 	default:
241 		panic("cam_periph_alloc: Unkown init level");
242 	}
243 	return(status);
244 }
245 
246 /*
247  * Find a peripheral structure with the specified path, target, lun,
248  * and (optionally) type.  If the name is NULL, this function will return
249  * the first peripheral driver that matches the specified path.
250  */
251 struct cam_periph *
252 cam_periph_find(struct cam_path *path, char *name)
253 {
254 	struct periph_driver **p_drv;
255 	struct cam_periph *periph;
256 
257 	xpt_lock_buses();
258 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
259 
260 		if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
261 			continue;
262 
263 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
264 			if (xpt_path_comp(periph->path, path) == 0) {
265 				xpt_unlock_buses();
266 				return(periph);
267 			}
268 		}
269 		if (name != NULL) {
270 			xpt_unlock_buses();
271 			return(NULL);
272 		}
273 	}
274 	xpt_unlock_buses();
275 	return(NULL);
276 }
277 
278 cam_status
279 cam_periph_acquire(struct cam_periph *periph)
280 {
281 
282 	if (periph == NULL)
283 		return(CAM_REQ_CMP_ERR);
284 
285 	xpt_lock_buses();
286 	periph->refcount++;
287 	xpt_unlock_buses();
288 
289 	return(CAM_REQ_CMP);
290 }
291 
292 void
293 cam_periph_release(struct cam_periph *periph)
294 {
295 
296 	if (periph == NULL)
297 		return;
298 
299 	xpt_lock_buses();
300 	if ((--periph->refcount == 0)
301 	 && (periph->flags & CAM_PERIPH_INVALID)) {
302 		camperiphfree(periph);
303 	}
304 	xpt_unlock_buses();
305 
306 }
307 
308 int
309 cam_periph_hold(struct cam_periph *periph, int priority)
310 {
311 	struct mtx *mtx;
312 	int error;
313 
314 	mtx_assert(periph->sim->mtx, MA_OWNED);
315 
316 	/*
317 	 * Increment the reference count on the peripheral
318 	 * while we wait for our lock attempt to succeed
319 	 * to ensure the peripheral doesn't disappear out
320 	 * from user us while we sleep.
321 	 */
322 
323 	if (cam_periph_acquire(periph) != CAM_REQ_CMP)
324 		return (ENXIO);
325 
326 	mtx = periph->sim->mtx;
327 	if (mtx == &Giant)
328 		mtx = NULL;
329 
330 	while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
331 		periph->flags |= CAM_PERIPH_LOCK_WANTED;
332 		if ((error = msleep(periph, mtx, priority, "caplck", 0)) != 0) {
333 			cam_periph_release(periph);
334 			return (error);
335 		}
336 	}
337 
338 	periph->flags |= CAM_PERIPH_LOCKED;
339 	return (0);
340 }
341 
342 void
343 cam_periph_unhold(struct cam_periph *periph)
344 {
345 
346 	mtx_assert(periph->sim->mtx, MA_OWNED);
347 
348 	periph->flags &= ~CAM_PERIPH_LOCKED;
349 	if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
350 		periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
351 		wakeup(periph);
352 	}
353 
354 	cam_periph_release(periph);
355 }
356 
357 /*
358  * Look for the next unit number that is not currently in use for this
359  * peripheral type starting at "newunit".  Also exclude unit numbers that
360  * are reserved by for future "hardwiring" unless we already know that this
361  * is a potential wired device.  Only assume that the device is "wired" the
362  * first time through the loop since after that we'll be looking at unit
363  * numbers that did not match a wiring entry.
364  */
365 static u_int
366 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
367 		  path_id_t pathid, target_id_t target, lun_id_t lun)
368 {
369 	struct	cam_periph *periph;
370 	char	*periph_name;
371 	int	i, val, dunit, r;
372 	const char *dname, *strval;
373 
374 	periph_name = p_drv->driver_name;
375 	for (;;newunit++) {
376 
377 		for (periph = TAILQ_FIRST(&p_drv->units);
378 		     periph != NULL && periph->unit_number != newunit;
379 		     periph = TAILQ_NEXT(periph, unit_links))
380 			;
381 
382 		if (periph != NULL && periph->unit_number == newunit) {
383 			if (wired != 0) {
384 				xpt_print(periph->path, "Duplicate Wired "
385 				    "Device entry!\n");
386 				xpt_print(periph->path, "Second device (%s "
387 				    "device at scbus%d target %d lun %d) will "
388 				    "not be wired\n", periph_name, pathid,
389 				    target, lun);
390 				wired = 0;
391 			}
392 			continue;
393 		}
394 		if (wired)
395 			break;
396 
397 		/*
398 		 * Don't match entries like "da 4" as a wired down
399 		 * device, but do match entries like "da 4 target 5"
400 		 * or even "da 4 scbus 1".
401 		 */
402 		i = 0;
403 		dname = periph_name;
404 		for (;;) {
405 			r = resource_find_dev(&i, dname, &dunit, NULL, NULL);
406 			if (r != 0)
407 				break;
408 			/* if no "target" and no specific scbus, skip */
409 			if (resource_int_value(dname, dunit, "target", &val) &&
410 			    (resource_string_value(dname, dunit, "at",&strval)||
411 			     strcmp(strval, "scbus") == 0))
412 				continue;
413 			if (newunit == dunit)
414 				break;
415 		}
416 		if (r != 0)
417 			break;
418 	}
419 	return (newunit);
420 }
421 
422 static u_int
423 camperiphunit(struct periph_driver *p_drv, path_id_t pathid,
424 	      target_id_t target, lun_id_t lun)
425 {
426 	u_int	unit;
427 	int	wired, i, val, dunit;
428 	const char *dname, *strval;
429 	char	pathbuf[32], *periph_name;
430 
431 	periph_name = p_drv->driver_name;
432 	snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
433 	unit = 0;
434 	i = 0;
435 	dname = periph_name;
436 	for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0;
437 	     wired = 0) {
438 		if (resource_string_value(dname, dunit, "at", &strval) == 0) {
439 			if (strcmp(strval, pathbuf) != 0)
440 				continue;
441 			wired++;
442 		}
443 		if (resource_int_value(dname, dunit, "target", &val) == 0) {
444 			if (val != target)
445 				continue;
446 			wired++;
447 		}
448 		if (resource_int_value(dname, dunit, "lun", &val) == 0) {
449 			if (val != lun)
450 				continue;
451 			wired++;
452 		}
453 		if (wired != 0) {
454 			unit = dunit;
455 			break;
456 		}
457 	}
458 
459 	/*
460 	 * Either start from 0 looking for the next unit or from
461 	 * the unit number given in the resource config.  This way,
462 	 * if we have wildcard matches, we don't return the same
463 	 * unit number twice.
464 	 */
465 	unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun);
466 
467 	return (unit);
468 }
469 
470 void
471 cam_periph_invalidate(struct cam_periph *periph)
472 {
473 
474 	/*
475 	 * We only call this routine the first time a peripheral is
476 	 * invalidated.
477 	 */
478 	if (((periph->flags & CAM_PERIPH_INVALID) == 0)
479 	 && (periph->periph_oninval != NULL))
480 		periph->periph_oninval(periph);
481 
482 	periph->flags |= CAM_PERIPH_INVALID;
483 	periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
484 
485 	xpt_lock_buses();
486 	if (periph->refcount == 0)
487 		camperiphfree(periph);
488 	else if (periph->refcount < 0)
489 		printf("cam_invalidate_periph: refcount < 0!!\n");
490 	xpt_unlock_buses();
491 }
492 
493 static void
494 camperiphfree(struct cam_periph *periph)
495 {
496 	struct periph_driver **p_drv;
497 
498 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
499 		if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
500 			break;
501 	}
502 	if (*p_drv == NULL) {
503 		printf("camperiphfree: attempt to free non-existant periph\n");
504 		return;
505 	}
506 
507 	TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
508 	(*p_drv)->generation++;
509 	xpt_unlock_buses();
510 
511 	if (periph->periph_dtor != NULL)
512 		periph->periph_dtor(periph);
513 	xpt_remove_periph(periph);
514 
515 	if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
516 		union ccb ccb;
517 		void *arg;
518 
519 		switch (periph->deferred_ac) {
520 		case AC_FOUND_DEVICE:
521 			ccb.ccb_h.func_code = XPT_GDEV_TYPE;
522 			xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1);
523 			xpt_action(&ccb);
524 			arg = &ccb;
525 			break;
526 		case AC_PATH_REGISTERED:
527 			ccb.ccb_h.func_code = XPT_PATH_INQ;
528 			xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1);
529 			xpt_action(&ccb);
530 			arg = &ccb;
531 			break;
532 		default:
533 			arg = NULL;
534 			break;
535 		}
536 		periph->deferred_callback(NULL, periph->deferred_ac,
537 					  periph->path, arg);
538 	}
539 	xpt_free_path(periph->path);
540 	free(periph, M_CAMPERIPH);
541 	xpt_lock_buses();
542 }
543 
544 /*
545  * Map user virtual pointers into kernel virtual address space, so we can
546  * access the memory.  This won't work on physical pointers, for now it's
547  * up to the caller to check for that.  (XXX KDM -- should we do that here
548  * instead?)  This also only works for up to MAXPHYS memory.  Since we use
549  * buffers to map stuff in and out, we're limited to the buffer size.
550  */
551 int
552 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
553 {
554 	int numbufs, i, j;
555 	int flags[CAM_PERIPH_MAXMAPS];
556 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
557 	u_int32_t lengths[CAM_PERIPH_MAXMAPS];
558 	u_int32_t dirs[CAM_PERIPH_MAXMAPS];
559 
560 	switch(ccb->ccb_h.func_code) {
561 	case XPT_DEV_MATCH:
562 		if (ccb->cdm.match_buf_len == 0) {
563 			printf("cam_periph_mapmem: invalid match buffer "
564 			       "length 0\n");
565 			return(EINVAL);
566 		}
567 		if (ccb->cdm.pattern_buf_len > 0) {
568 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
569 			lengths[0] = ccb->cdm.pattern_buf_len;
570 			dirs[0] = CAM_DIR_OUT;
571 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
572 			lengths[1] = ccb->cdm.match_buf_len;
573 			dirs[1] = CAM_DIR_IN;
574 			numbufs = 2;
575 		} else {
576 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
577 			lengths[0] = ccb->cdm.match_buf_len;
578 			dirs[0] = CAM_DIR_IN;
579 			numbufs = 1;
580 		}
581 		break;
582 	case XPT_SCSI_IO:
583 	case XPT_CONT_TARGET_IO:
584 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
585 			return(0);
586 
587 		data_ptrs[0] = &ccb->csio.data_ptr;
588 		lengths[0] = ccb->csio.dxfer_len;
589 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
590 		numbufs = 1;
591 		break;
592 	default:
593 		return(EINVAL);
594 		break; /* NOTREACHED */
595 	}
596 
597 	/*
598 	 * Check the transfer length and permissions first, so we don't
599 	 * have to unmap any previously mapped buffers.
600 	 */
601 	for (i = 0; i < numbufs; i++) {
602 
603 		flags[i] = 0;
604 
605 		/*
606 		 * The userland data pointer passed in may not be page
607 		 * aligned.  vmapbuf() truncates the address to a page
608 		 * boundary, so if the address isn't page aligned, we'll
609 		 * need enough space for the given transfer length, plus
610 		 * whatever extra space is necessary to make it to the page
611 		 * boundary.
612 		 */
613 		if ((lengths[i] +
614 		    (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > DFLTPHYS){
615 			printf("cam_periph_mapmem: attempt to map %lu bytes, "
616 			       "which is greater than DFLTPHYS(%d)\n",
617 			       (long)(lengths[i] +
618 			       (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)),
619 			       DFLTPHYS);
620 			return(E2BIG);
621 		}
622 
623 		if (dirs[i] & CAM_DIR_OUT) {
624 			flags[i] = BIO_WRITE;
625 		}
626 
627 		if (dirs[i] & CAM_DIR_IN) {
628 			flags[i] = BIO_READ;
629 		}
630 
631 	}
632 
633 	/* this keeps the current process from getting swapped */
634 	/*
635 	 * XXX KDM should I use P_NOSWAP instead?
636 	 */
637 	PHOLD(curproc);
638 
639 	for (i = 0; i < numbufs; i++) {
640 		/*
641 		 * Get the buffer.
642 		 */
643 		mapinfo->bp[i] = getpbuf(NULL);
644 
645 		/* save the buffer's data address */
646 		mapinfo->bp[i]->b_saveaddr = mapinfo->bp[i]->b_data;
647 
648 		/* put our pointer in the data slot */
649 		mapinfo->bp[i]->b_data = *data_ptrs[i];
650 
651 		/* set the transfer length, we know it's < DFLTPHYS */
652 		mapinfo->bp[i]->b_bufsize = lengths[i];
653 
654 		/* set the direction */
655 		mapinfo->bp[i]->b_iocmd = flags[i];
656 
657 		/*
658 		 * Map the buffer into kernel memory.
659 		 *
660 		 * Note that useracc() alone is not a  sufficient test.
661 		 * vmapbuf() can still fail due to a smaller file mapped
662 		 * into a larger area of VM, or if userland races against
663 		 * vmapbuf() after the useracc() check.
664 		 */
665 		if (vmapbuf(mapinfo->bp[i]) < 0) {
666 			for (j = 0; j < i; ++j) {
667 				*data_ptrs[j] = mapinfo->bp[j]->b_saveaddr;
668 				vunmapbuf(mapinfo->bp[j]);
669 				relpbuf(mapinfo->bp[j], NULL);
670 			}
671 			relpbuf(mapinfo->bp[i], NULL);
672 			PRELE(curproc);
673 			return(EACCES);
674 		}
675 
676 		/* set our pointer to the new mapped area */
677 		*data_ptrs[i] = mapinfo->bp[i]->b_data;
678 
679 		mapinfo->num_bufs_used++;
680 	}
681 
682 	/*
683 	 * Now that we've gotten this far, change ownership to the kernel
684 	 * of the buffers so that we don't run afoul of returning to user
685 	 * space with locks (on the buffer) held.
686 	 */
687 	for (i = 0; i < numbufs; i++) {
688 		BUF_KERNPROC(mapinfo->bp[i]);
689 	}
690 
691 
692 	return(0);
693 }
694 
695 /*
696  * Unmap memory segments mapped into kernel virtual address space by
697  * cam_periph_mapmem().
698  */
699 void
700 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
701 {
702 	int numbufs, i;
703 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
704 
705 	if (mapinfo->num_bufs_used <= 0) {
706 		/* allow ourselves to be swapped once again */
707 		PRELE(curproc);
708 		return;
709 	}
710 
711 	switch (ccb->ccb_h.func_code) {
712 	case XPT_DEV_MATCH:
713 		numbufs = min(mapinfo->num_bufs_used, 2);
714 
715 		if (numbufs == 1) {
716 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
717 		} else {
718 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
719 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
720 		}
721 		break;
722 	case XPT_SCSI_IO:
723 	case XPT_CONT_TARGET_IO:
724 		data_ptrs[0] = &ccb->csio.data_ptr;
725 		numbufs = min(mapinfo->num_bufs_used, 1);
726 		break;
727 	default:
728 		/* allow ourselves to be swapped once again */
729 		PRELE(curproc);
730 		return;
731 		break; /* NOTREACHED */
732 	}
733 
734 	for (i = 0; i < numbufs; i++) {
735 		/* Set the user's pointer back to the original value */
736 		*data_ptrs[i] = mapinfo->bp[i]->b_saveaddr;
737 
738 		/* unmap the buffer */
739 		vunmapbuf(mapinfo->bp[i]);
740 
741 		/* release the buffer */
742 		relpbuf(mapinfo->bp[i], NULL);
743 	}
744 
745 	/* allow ourselves to be swapped once again */
746 	PRELE(curproc);
747 }
748 
749 union ccb *
750 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
751 {
752 	struct ccb_hdr *ccb_h;
753 	struct mtx *mtx;
754 
755 	mtx_assert(periph->sim->mtx, MA_OWNED);
756 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n"));
757 
758 	while (SLIST_FIRST(&periph->ccb_list) == NULL) {
759 		if (periph->immediate_priority > priority)
760 			periph->immediate_priority = priority;
761 		xpt_schedule(periph, priority);
762 		if ((SLIST_FIRST(&periph->ccb_list) != NULL)
763 		 && (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority))
764 			break;
765 		mtx_assert(periph->sim->mtx, MA_OWNED);
766 		if (periph->sim->mtx == &Giant)
767 			mtx = NULL;
768 		else
769 			mtx = periph->sim->mtx;
770 		msleep(&periph->ccb_list, mtx, PRIBIO, "cgticb", 0);
771 	}
772 
773 	ccb_h = SLIST_FIRST(&periph->ccb_list);
774 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
775 	return ((union ccb *)ccb_h);
776 }
777 
778 void
779 cam_periph_ccbwait(union ccb *ccb)
780 {
781 	struct mtx *mtx;
782 	struct cam_sim *sim;
783 
784 	sim = xpt_path_sim(ccb->ccb_h.path);
785 	if (sim->mtx == &Giant)
786 		mtx = NULL;
787 	else
788 		mtx = sim->mtx;
789 	if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX)
790 	 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG))
791 		msleep(&ccb->ccb_h.cbfcnp, mtx, PRIBIO, "cbwait", 0);
792 }
793 
794 int
795 cam_periph_ioctl(struct cam_periph *periph, int cmd, caddr_t addr,
796 		 int (*error_routine)(union ccb *ccb,
797 				      cam_flags camflags,
798 				      u_int32_t sense_flags))
799 {
800 	union ccb 	     *ccb;
801 	int 		     error;
802 	int		     found;
803 
804 	error = found = 0;
805 
806 	switch(cmd){
807 	case CAMGETPASSTHRU:
808 		ccb = cam_periph_getccb(periph, /* priority */ 1);
809 		xpt_setup_ccb(&ccb->ccb_h,
810 			      ccb->ccb_h.path,
811 			      /*priority*/1);
812 		ccb->ccb_h.func_code = XPT_GDEVLIST;
813 
814 		/*
815 		 * Basically, the point of this is that we go through
816 		 * getting the list of devices, until we find a passthrough
817 		 * device.  In the current version of the CAM code, the
818 		 * only way to determine what type of device we're dealing
819 		 * with is by its name.
820 		 */
821 		while (found == 0) {
822 			ccb->cgdl.index = 0;
823 			ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
824 			while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
825 
826 				/* we want the next device in the list */
827 				xpt_action(ccb);
828 				if (strncmp(ccb->cgdl.periph_name,
829 				    "pass", 4) == 0){
830 					found = 1;
831 					break;
832 				}
833 			}
834 			if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
835 			    (found == 0)) {
836 				ccb->cgdl.periph_name[0] = '\0';
837 				ccb->cgdl.unit_number = 0;
838 				break;
839 			}
840 		}
841 
842 		/* copy the result back out */
843 		bcopy(ccb, addr, sizeof(union ccb));
844 
845 		/* and release the ccb */
846 		xpt_release_ccb(ccb);
847 
848 		break;
849 	default:
850 		error = ENOTTY;
851 		break;
852 	}
853 	return(error);
854 }
855 
856 int
857 cam_periph_runccb(union ccb *ccb,
858 		  int (*error_routine)(union ccb *ccb,
859 				       cam_flags camflags,
860 				       u_int32_t sense_flags),
861 		  cam_flags camflags, u_int32_t sense_flags,
862 		  struct devstat *ds)
863 {
864 	struct cam_sim *sim;
865 	int error;
866 
867 	error = 0;
868 	sim = xpt_path_sim(ccb->ccb_h.path);
869 	mtx_assert(sim->mtx, MA_OWNED);
870 
871 	/*
872 	 * If the user has supplied a stats structure, and if we understand
873 	 * this particular type of ccb, record the transaction start.
874 	 */
875 	if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
876 		devstat_start_transaction(ds, NULL);
877 
878 	xpt_action(ccb);
879 
880 	do {
881 		cam_periph_ccbwait(ccb);
882 		if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
883 			error = 0;
884 		else if (error_routine != NULL)
885 			error = (*error_routine)(ccb, camflags, sense_flags);
886 		else
887 			error = 0;
888 
889 	} while (error == ERESTART);
890 
891 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
892 		cam_release_devq(ccb->ccb_h.path,
893 				 /* relsim_flags */0,
894 				 /* openings */0,
895 				 /* timeout */0,
896 				 /* getcount_only */ FALSE);
897 
898 	if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
899 		devstat_end_transaction(ds,
900 					ccb->csio.dxfer_len,
901 					ccb->csio.tag_action & 0xf,
902 					((ccb->ccb_h.flags & CAM_DIR_MASK) ==
903 					CAM_DIR_NONE) ?  DEVSTAT_NO_DATA :
904 					(ccb->ccb_h.flags & CAM_DIR_OUT) ?
905 					DEVSTAT_WRITE :
906 					DEVSTAT_READ, NULL, NULL);
907 
908 	return(error);
909 }
910 
911 void
912 cam_freeze_devq(struct cam_path *path)
913 {
914 	struct ccb_hdr ccb_h;
915 
916 	xpt_setup_ccb(&ccb_h, path, /*priority*/1);
917 	ccb_h.func_code = XPT_NOOP;
918 	ccb_h.flags = CAM_DEV_QFREEZE;
919 	xpt_action((union ccb *)&ccb_h);
920 }
921 
922 u_int32_t
923 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
924 		 u_int32_t openings, u_int32_t timeout,
925 		 int getcount_only)
926 {
927 	struct ccb_relsim crs;
928 
929 	xpt_setup_ccb(&crs.ccb_h, path,
930 		      /*priority*/1);
931 	crs.ccb_h.func_code = XPT_REL_SIMQ;
932 	crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
933 	crs.release_flags = relsim_flags;
934 	crs.openings = openings;
935 	crs.release_timeout = timeout;
936 	xpt_action((union ccb *)&crs);
937 	return (crs.qfrozen_cnt);
938 }
939 
940 #define saved_ccb_ptr ppriv_ptr0
941 static void
942 camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
943 {
944 	union ccb      *saved_ccb;
945 	cam_status	status;
946 	int		frozen;
947 	int		sense;
948 	struct scsi_start_stop_unit *scsi_cmd;
949 	u_int32_t	relsim_flags, timeout;
950 	u_int32_t	qfrozen_cnt;
951 	int		xpt_done_ccb;
952 
953 	xpt_done_ccb = FALSE;
954 	status = done_ccb->ccb_h.status;
955 	frozen = (status & CAM_DEV_QFRZN) != 0;
956 	sense  = (status & CAM_AUTOSNS_VALID) != 0;
957 	status &= CAM_STATUS_MASK;
958 
959 	timeout = 0;
960 	relsim_flags = 0;
961 	saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
962 
963 	/*
964 	 * Unfreeze the queue once if it is already frozen..
965 	 */
966 	if (frozen != 0) {
967 		qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
968 					      /*relsim_flags*/0,
969 					      /*openings*/0,
970 					      /*timeout*/0,
971 					      /*getcount_only*/0);
972 	}
973 
974 	switch (status) {
975 	case CAM_REQ_CMP:
976 	{
977 		/*
978 		 * If we have successfully taken a device from the not
979 		 * ready to ready state, re-scan the device and re-get
980 		 * the inquiry information.  Many devices (mostly disks)
981 		 * don't properly report their inquiry information unless
982 		 * they are spun up.
983 		 *
984 		 * If we manually retrieved sense into a CCB and got
985 		 * something other than "NO SENSE" send the updated CCB
986 		 * back to the client via xpt_done() to be processed via
987 		 * the error recovery code again.
988 		 */
989 		if (done_ccb->ccb_h.func_code == XPT_SCSI_IO) {
990 			scsi_cmd = (struct scsi_start_stop_unit *)
991 					&done_ccb->csio.cdb_io.cdb_bytes;
992 
993 		 	if (scsi_cmd->opcode == START_STOP_UNIT)
994 				xpt_async(AC_INQ_CHANGED,
995 					  done_ccb->ccb_h.path, NULL);
996 			if (scsi_cmd->opcode == REQUEST_SENSE) {
997 				u_int sense_key;
998 
999 				sense_key = saved_ccb->csio.sense_data.flags;
1000 				sense_key &= SSD_KEY;
1001 				if (sense_key != SSD_KEY_NO_SENSE) {
1002 					saved_ccb->ccb_h.status |=
1003 					    CAM_AUTOSNS_VALID;
1004 #if 0
1005 					xpt_print(saved_ccb->ccb_h.path,
1006 					    "Recovered Sense\n");
1007 					scsi_sense_print(&saved_ccb->csio);
1008 					cam_error_print(saved_ccb, CAM_ESF_ALL,
1009 							CAM_EPF_ALL);
1010 #endif
1011 					xpt_done_ccb = TRUE;
1012 				}
1013 			}
1014 		}
1015 		bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
1016 		      sizeof(union ccb));
1017 
1018 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1019 
1020 		if (xpt_done_ccb == FALSE)
1021 			xpt_action(done_ccb);
1022 
1023 		break;
1024 	}
1025 	case CAM_SCSI_STATUS_ERROR:
1026 		scsi_cmd = (struct scsi_start_stop_unit *)
1027 				&done_ccb->csio.cdb_io.cdb_bytes;
1028 		if (sense != 0) {
1029 			struct ccb_getdev cgd;
1030 			struct scsi_sense_data *sense;
1031 			int    error_code, sense_key, asc, ascq;
1032 			scsi_sense_action err_action;
1033 
1034 			sense = &done_ccb->csio.sense_data;
1035 			scsi_extract_sense(sense, &error_code,
1036 					   &sense_key, &asc, &ascq);
1037 
1038 			/*
1039 			 * Grab the inquiry data for this device.
1040 			 */
1041 			xpt_setup_ccb(&cgd.ccb_h, done_ccb->ccb_h.path,
1042 				      /*priority*/ 1);
1043 			cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1044 			xpt_action((union ccb *)&cgd);
1045 			err_action = scsi_error_action(&done_ccb->csio,
1046 						       &cgd.inq_data, 0);
1047 
1048 			/*
1049 	 		 * If the error is "invalid field in CDB",
1050 			 * and the load/eject flag is set, turn the
1051 			 * flag off and try again.  This is just in
1052 			 * case the drive in question barfs on the
1053 			 * load eject flag.  The CAM code should set
1054 			 * the load/eject flag by default for
1055 			 * removable media.
1056 			 */
1057 
1058 			/* XXX KDM
1059 			 * Should we check to see what the specific
1060 			 * scsi status is??  Or does it not matter
1061 			 * since we already know that there was an
1062 			 * error, and we know what the specific
1063 			 * error code was, and we know what the
1064 			 * opcode is..
1065 			 */
1066 			if ((scsi_cmd->opcode == START_STOP_UNIT) &&
1067 			    ((scsi_cmd->how & SSS_LOEJ) != 0) &&
1068 			     (asc == 0x24) && (ascq == 0x00) &&
1069 			     (done_ccb->ccb_h.retry_count > 0)) {
1070 
1071 				scsi_cmd->how &= ~SSS_LOEJ;
1072 
1073 				xpt_action(done_ccb);
1074 
1075 			} else if ((done_ccb->ccb_h.retry_count > 1)
1076 				&& ((err_action & SS_MASK) != SS_FAIL)) {
1077 
1078 				/*
1079 				 * In this case, the error recovery
1080 				 * command failed, but we've got
1081 				 * some retries left on it.  Give
1082 				 * it another try unless this is an
1083 				 * unretryable error.
1084 				 */
1085 
1086 				/* set the timeout to .5 sec */
1087 				relsim_flags =
1088 					RELSIM_RELEASE_AFTER_TIMEOUT;
1089 				timeout = 500;
1090 
1091 				xpt_action(done_ccb);
1092 
1093 				break;
1094 
1095 			} else {
1096 				/*
1097 				 * Perform the final retry with the original
1098 				 * CCB so that final error processing is
1099 				 * performed by the owner of the CCB.
1100 				 */
1101 				bcopy(done_ccb->ccb_h.saved_ccb_ptr,
1102 				      done_ccb, sizeof(union ccb));
1103 
1104 				periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1105 
1106 				xpt_action(done_ccb);
1107 			}
1108 		} else {
1109 			/*
1110 			 * Eh??  The command failed, but we don't
1111 			 * have any sense.  What's up with that?
1112 			 * Fire the CCB again to return it to the
1113 			 * caller.
1114 			 */
1115 			bcopy(done_ccb->ccb_h.saved_ccb_ptr,
1116 			      done_ccb, sizeof(union ccb));
1117 
1118 			periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1119 
1120 			xpt_action(done_ccb);
1121 
1122 		}
1123 		break;
1124 	default:
1125 		bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
1126 		      sizeof(union ccb));
1127 
1128 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1129 
1130 		xpt_action(done_ccb);
1131 
1132 		break;
1133 	}
1134 
1135 	/* decrement the retry count */
1136 	/*
1137 	 * XXX This isn't appropriate in all cases.  Restructure,
1138 	 *     so that the retry count is only decremented on an
1139 	 *     actual retry.  Remeber that the orignal ccb had its
1140 	 *     retry count dropped before entering recovery, so
1141 	 *     doing it again is a bug.
1142 	 */
1143 	if (done_ccb->ccb_h.retry_count > 0)
1144 		done_ccb->ccb_h.retry_count--;
1145 
1146 	qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
1147 				      /*relsim_flags*/relsim_flags,
1148 				      /*openings*/0,
1149 				      /*timeout*/timeout,
1150 				      /*getcount_only*/0);
1151 	if (xpt_done_ccb == TRUE)
1152 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
1153 }
1154 
1155 /*
1156  * Generic Async Event handler.  Peripheral drivers usually
1157  * filter out the events that require personal attention,
1158  * and leave the rest to this function.
1159  */
1160 void
1161 cam_periph_async(struct cam_periph *periph, u_int32_t code,
1162 		 struct cam_path *path, void *arg)
1163 {
1164 	switch (code) {
1165 	case AC_LOST_DEVICE:
1166 		cam_periph_invalidate(periph);
1167 		break;
1168 	case AC_SENT_BDR:
1169 	case AC_BUS_RESET:
1170 	{
1171 		cam_periph_bus_settle(periph, scsi_delay);
1172 		break;
1173 	}
1174 	default:
1175 		break;
1176 	}
1177 }
1178 
1179 void
1180 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
1181 {
1182 	struct ccb_getdevstats cgds;
1183 
1184 	xpt_setup_ccb(&cgds.ccb_h, periph->path, /*priority*/1);
1185 	cgds.ccb_h.func_code = XPT_GDEV_STATS;
1186 	xpt_action((union ccb *)&cgds);
1187 	cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
1188 }
1189 
1190 void
1191 cam_periph_freeze_after_event(struct cam_periph *periph,
1192 			      struct timeval* event_time, u_int duration_ms)
1193 {
1194 	struct timeval delta;
1195 	struct timeval duration_tv;
1196 
1197 	microtime(&delta);
1198 	timevalsub(&delta, event_time);
1199 	duration_tv.tv_sec = duration_ms / 1000;
1200 	duration_tv.tv_usec = (duration_ms % 1000) * 1000;
1201 	if (timevalcmp(&delta, &duration_tv, <)) {
1202 		timevalsub(&duration_tv, &delta);
1203 
1204 		duration_ms = duration_tv.tv_sec * 1000;
1205 		duration_ms += duration_tv.tv_usec / 1000;
1206 		cam_freeze_devq(periph->path);
1207 		cam_release_devq(periph->path,
1208 				RELSIM_RELEASE_AFTER_TIMEOUT,
1209 				/*reduction*/0,
1210 				/*timeout*/duration_ms,
1211 				/*getcount_only*/0);
1212 	}
1213 
1214 }
1215 
1216 static int
1217 camperiphscsistatuserror(union ccb *ccb, cam_flags camflags,
1218 			 u_int32_t sense_flags, union ccb *save_ccb,
1219 			 int *openings, u_int32_t *relsim_flags,
1220 			 u_int32_t *timeout)
1221 {
1222 	int error;
1223 
1224 	switch (ccb->csio.scsi_status) {
1225 	case SCSI_STATUS_OK:
1226 	case SCSI_STATUS_COND_MET:
1227 	case SCSI_STATUS_INTERMED:
1228 	case SCSI_STATUS_INTERMED_COND_MET:
1229 		error = 0;
1230 		break;
1231 	case SCSI_STATUS_CMD_TERMINATED:
1232 	case SCSI_STATUS_CHECK_COND:
1233 		error = camperiphscsisenseerror(ccb,
1234 					        camflags,
1235 					        sense_flags,
1236 					        save_ccb,
1237 					        openings,
1238 					        relsim_flags,
1239 					        timeout);
1240 		break;
1241 	case SCSI_STATUS_QUEUE_FULL:
1242 	{
1243 		/* no decrement */
1244 		struct ccb_getdevstats cgds;
1245 
1246 		/*
1247 		 * First off, find out what the current
1248 		 * transaction counts are.
1249 		 */
1250 		xpt_setup_ccb(&cgds.ccb_h,
1251 			      ccb->ccb_h.path,
1252 			      /*priority*/1);
1253 		cgds.ccb_h.func_code = XPT_GDEV_STATS;
1254 		xpt_action((union ccb *)&cgds);
1255 
1256 		/*
1257 		 * If we were the only transaction active, treat
1258 		 * the QUEUE FULL as if it were a BUSY condition.
1259 		 */
1260 		if (cgds.dev_active != 0) {
1261 			int total_openings;
1262 
1263 			/*
1264 		 	 * Reduce the number of openings to
1265 			 * be 1 less than the amount it took
1266 			 * to get a queue full bounded by the
1267 			 * minimum allowed tag count for this
1268 			 * device.
1269 		 	 */
1270 			total_openings = cgds.dev_active + cgds.dev_openings;
1271 			*openings = cgds.dev_active;
1272 			if (*openings < cgds.mintags)
1273 				*openings = cgds.mintags;
1274 			if (*openings < total_openings)
1275 				*relsim_flags = RELSIM_ADJUST_OPENINGS;
1276 			else {
1277 				/*
1278 				 * Some devices report queue full for
1279 				 * temporary resource shortages.  For
1280 				 * this reason, we allow a minimum
1281 				 * tag count to be entered via a
1282 				 * quirk entry to prevent the queue
1283 				 * count on these devices from falling
1284 				 * to a pessimisticly low value.  We
1285 				 * still wait for the next successful
1286 				 * completion, however, before queueing
1287 				 * more transactions to the device.
1288 				 */
1289 				*relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
1290 			}
1291 			*timeout = 0;
1292 			error = ERESTART;
1293 			if (bootverbose) {
1294 				xpt_print(ccb->ccb_h.path, "Queue Full\n");
1295 			}
1296 			break;
1297 		}
1298 		/* FALLTHROUGH */
1299 	}
1300 	case SCSI_STATUS_BUSY:
1301 		/*
1302 		 * Restart the queue after either another
1303 		 * command completes or a 1 second timeout.
1304 		 */
1305 		if (bootverbose) {
1306 			xpt_print(ccb->ccb_h.path, "Device Busy\n");
1307 		}
1308 	 	if (ccb->ccb_h.retry_count > 0) {
1309 	 		ccb->ccb_h.retry_count--;
1310 			error = ERESTART;
1311 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
1312 				      | RELSIM_RELEASE_AFTER_CMDCMPLT;
1313 			*timeout = 1000;
1314 		} else {
1315 			error = EIO;
1316 		}
1317 		break;
1318 	case SCSI_STATUS_RESERV_CONFLICT:
1319 		xpt_print(ccb->ccb_h.path, "Reservation Conflict\n");
1320 		error = EIO;
1321 		break;
1322 	default:
1323 		xpt_print(ccb->ccb_h.path, "SCSI Status 0x%x\n",
1324 		    ccb->csio.scsi_status);
1325 		error = EIO;
1326 		break;
1327 	}
1328 	return (error);
1329 }
1330 
1331 static int
1332 camperiphscsisenseerror(union ccb *ccb, cam_flags camflags,
1333 			u_int32_t sense_flags, union ccb *save_ccb,
1334 		       int *openings, u_int32_t *relsim_flags,
1335 		       u_int32_t *timeout)
1336 {
1337 	struct cam_periph *periph;
1338 	int error;
1339 
1340 	periph = xpt_path_periph(ccb->ccb_h.path);
1341 	if (periph->flags & CAM_PERIPH_RECOVERY_INPROG) {
1342 
1343 		/*
1344 		 * If error recovery is already in progress, don't attempt
1345 		 * to process this error, but requeue it unconditionally
1346 		 * and attempt to process it once error recovery has
1347 		 * completed.  This failed command is probably related to
1348 		 * the error that caused the currently active error recovery
1349 		 * action so our  current recovery efforts should also
1350 		 * address this command.  Be aware that the error recovery
1351 		 * code assumes that only one recovery action is in progress
1352 		 * on a particular peripheral instance at any given time
1353 		 * (e.g. only one saved CCB for error recovery) so it is
1354 		 * imperitive that we don't violate this assumption.
1355 		 */
1356 		error = ERESTART;
1357 	} else {
1358 		scsi_sense_action err_action;
1359 		struct ccb_getdev cgd;
1360 		const char *action_string;
1361 		union ccb* print_ccb;
1362 
1363 		/* A description of the error recovery action performed */
1364 		action_string = NULL;
1365 
1366 		/*
1367 		 * The location of the orignal ccb
1368 		 * for sense printing purposes.
1369 		 */
1370 		print_ccb = ccb;
1371 
1372 		/*
1373 		 * Grab the inquiry data for this device.
1374 		 */
1375 		xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, /*priority*/ 1);
1376 		cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1377 		xpt_action((union ccb *)&cgd);
1378 
1379 		if ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)
1380 			err_action = scsi_error_action(&ccb->csio,
1381 						       &cgd.inq_data,
1382 						       sense_flags);
1383 		else if ((ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0)
1384 			err_action = SS_REQSENSE;
1385 		else
1386 			err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
1387 
1388 		error = err_action & SS_ERRMASK;
1389 
1390 		/*
1391 		 * If the recovery action will consume a retry,
1392 		 * make sure we actually have retries available.
1393 		 */
1394 		if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
1395 		 	if (ccb->ccb_h.retry_count > 0)
1396 		 		ccb->ccb_h.retry_count--;
1397 			else {
1398 				action_string = "Retries Exhausted";
1399 				goto sense_error_done;
1400 			}
1401 		}
1402 
1403 		if ((err_action & SS_MASK) >= SS_START) {
1404 			/*
1405 			 * Do common portions of commands that
1406 			 * use recovery CCBs.
1407 			 */
1408 			if (save_ccb == NULL) {
1409 				action_string = "No recovery CCB supplied";
1410 				goto sense_error_done;
1411 			}
1412 			bcopy(ccb, save_ccb, sizeof(*save_ccb));
1413 			print_ccb = save_ccb;
1414 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1415 		}
1416 
1417 		switch (err_action & SS_MASK) {
1418 		case SS_NOP:
1419 			action_string = "No Recovery Action Needed";
1420 			error = 0;
1421 			break;
1422 		case SS_RETRY:
1423 			action_string = "Retrying Command (per Sense Data)";
1424 			error = ERESTART;
1425 			break;
1426 		case SS_FAIL:
1427 			action_string = "Unretryable error";
1428 			break;
1429 		case SS_START:
1430 		{
1431 			int le;
1432 
1433 			/*
1434 			 * Send a start unit command to the device, and
1435 			 * then retry the command.
1436 			 */
1437 			action_string = "Attempting to Start Unit";
1438 
1439 			/*
1440 			 * Check for removable media and set
1441 			 * load/eject flag appropriately.
1442 			 */
1443 			if (SID_IS_REMOVABLE(&cgd.inq_data))
1444 				le = TRUE;
1445 			else
1446 				le = FALSE;
1447 
1448 			scsi_start_stop(&ccb->csio,
1449 					/*retries*/1,
1450 					camperiphdone,
1451 					MSG_SIMPLE_Q_TAG,
1452 					/*start*/TRUE,
1453 					/*load/eject*/le,
1454 					/*immediate*/FALSE,
1455 					SSD_FULL_SIZE,
1456 					/*timeout*/50000);
1457 			break;
1458 		}
1459 		case SS_TUR:
1460 		{
1461 			/*
1462 			 * Send a Test Unit Ready to the device.
1463 			 * If the 'many' flag is set, we send 120
1464 			 * test unit ready commands, one every half
1465 			 * second.  Otherwise, we just send one TUR.
1466 			 * We only want to do this if the retry
1467 			 * count has not been exhausted.
1468 			 */
1469 			int retries;
1470 
1471 			if ((err_action & SSQ_MANY) != 0) {
1472 				action_string = "Polling device for readiness";
1473 				retries = 120;
1474 			} else {
1475 				action_string = "Testing device for readiness";
1476 				retries = 1;
1477 			}
1478 			scsi_test_unit_ready(&ccb->csio,
1479 					     retries,
1480 					     camperiphdone,
1481 					     MSG_SIMPLE_Q_TAG,
1482 					     SSD_FULL_SIZE,
1483 					     /*timeout*/5000);
1484 
1485 			/*
1486 			 * Accomplish our 500ms delay by deferring
1487 			 * the release of our device queue appropriately.
1488 			 */
1489 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1490 			*timeout = 500;
1491 			break;
1492 		}
1493 		case SS_REQSENSE:
1494 		{
1495 			/*
1496 			 * Send a Request Sense to the device.  We
1497 			 * assume that we are in a contingent allegiance
1498 			 * condition so we do not tag this request.
1499 			 */
1500 			scsi_request_sense(&ccb->csio, /*retries*/1,
1501 					   camperiphdone,
1502 					   &save_ccb->csio.sense_data,
1503 					   sizeof(save_ccb->csio.sense_data),
1504 					   CAM_TAG_ACTION_NONE,
1505 					   /*sense_len*/SSD_FULL_SIZE,
1506 					   /*timeout*/5000);
1507 			break;
1508 		}
1509 		default:
1510 			panic("Unhandled error action %x", err_action);
1511 		}
1512 
1513 		if ((err_action & SS_MASK) >= SS_START) {
1514 			/*
1515 			 * Drop the priority to 0 so that the recovery
1516 			 * CCB is the first to execute.  Freeze the queue
1517 			 * after this command is sent so that we can
1518 			 * restore the old csio and have it queued in
1519 			 * the proper order before we release normal
1520 			 * transactions to the device.
1521 			 */
1522 			ccb->ccb_h.pinfo.priority = 0;
1523 			ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1524 			ccb->ccb_h.saved_ccb_ptr = save_ccb;
1525 			error = ERESTART;
1526 		}
1527 
1528 sense_error_done:
1529 		if ((err_action & SSQ_PRINT_SENSE) != 0
1530 		 && (ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0) {
1531 			cam_error_print(print_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
1532 			xpt_print_path(ccb->ccb_h.path);
1533 			if (bootverbose)
1534 				scsi_sense_print(&print_ccb->csio);
1535 			printf("%s\n", action_string);
1536 		}
1537 	}
1538 	return (error);
1539 }
1540 
1541 /*
1542  * Generic error handler.  Peripheral drivers usually filter
1543  * out the errors that they handle in a unique mannor, then
1544  * call this function.
1545  */
1546 int
1547 cam_periph_error(union ccb *ccb, cam_flags camflags,
1548 		 u_int32_t sense_flags, union ccb *save_ccb)
1549 {
1550 	const char *action_string;
1551 	cam_status  status;
1552 	int	    frozen;
1553 	int	    error, printed = 0;
1554 	int         openings;
1555 	u_int32_t   relsim_flags;
1556 	u_int32_t   timeout = 0;
1557 
1558 	action_string = NULL;
1559 	status = ccb->ccb_h.status;
1560 	frozen = (status & CAM_DEV_QFRZN) != 0;
1561 	status &= CAM_STATUS_MASK;
1562 	openings = relsim_flags = 0;
1563 
1564 	switch (status) {
1565 	case CAM_REQ_CMP:
1566 		error = 0;
1567 		break;
1568 	case CAM_SCSI_STATUS_ERROR:
1569 		error = camperiphscsistatuserror(ccb,
1570 						 camflags,
1571 						 sense_flags,
1572 						 save_ccb,
1573 						 &openings,
1574 						 &relsim_flags,
1575 						 &timeout);
1576 		break;
1577 	case CAM_AUTOSENSE_FAIL:
1578 		xpt_print(ccb->ccb_h.path, "AutoSense Failed\n");
1579 		error = EIO;	/* we have to kill the command */
1580 		break;
1581 	case CAM_REQ_CMP_ERR:
1582 		if (bootverbose && printed == 0) {
1583 			xpt_print(ccb->ccb_h.path,
1584 			    "Request completed with CAM_REQ_CMP_ERR\n");
1585 			printed++;
1586 		}
1587 		/* FALLTHROUGH */
1588 	case CAM_CMD_TIMEOUT:
1589 		if (bootverbose && printed == 0) {
1590 			xpt_print(ccb->ccb_h.path, "Command timed out\n");
1591 			printed++;
1592 		}
1593 		/* FALLTHROUGH */
1594 	case CAM_UNEXP_BUSFREE:
1595 		if (bootverbose && printed == 0) {
1596 			xpt_print(ccb->ccb_h.path, "Unexpected Bus Free\n");
1597 			printed++;
1598 		}
1599 		/* FALLTHROUGH */
1600 	case CAM_UNCOR_PARITY:
1601 		if (bootverbose && printed == 0) {
1602 			xpt_print(ccb->ccb_h.path,
1603 			    "Uncorrected Parity Error\n");
1604 			printed++;
1605 		}
1606 		/* FALLTHROUGH */
1607 	case CAM_DATA_RUN_ERR:
1608 		if (bootverbose && printed == 0) {
1609 			xpt_print(ccb->ccb_h.path, "Data Overrun\n");
1610 			printed++;
1611 		}
1612 		error = EIO;	/* we have to kill the command */
1613 		/* decrement the number of retries */
1614 		if (ccb->ccb_h.retry_count > 0) {
1615 			ccb->ccb_h.retry_count--;
1616 			error = ERESTART;
1617 		} else {
1618 			action_string = "Retries Exausted";
1619 			error = EIO;
1620 		}
1621 		break;
1622 	case CAM_UA_ABORT:
1623 	case CAM_UA_TERMIO:
1624 	case CAM_MSG_REJECT_REC:
1625 		/* XXX Don't know that these are correct */
1626 		error = EIO;
1627 		break;
1628 	case CAM_SEL_TIMEOUT:
1629 	{
1630 		struct cam_path *newpath;
1631 
1632 		if ((camflags & CAM_RETRY_SELTO) != 0) {
1633 			if (ccb->ccb_h.retry_count > 0) {
1634 
1635 				ccb->ccb_h.retry_count--;
1636 				error = ERESTART;
1637 				if (bootverbose && printed == 0) {
1638 					xpt_print(ccb->ccb_h.path,
1639 					    "Selection Timeout\n");
1640 					printed++;
1641 				}
1642 
1643 				/*
1644 				 * Wait a bit to give the device
1645 				 * time to recover before we try again.
1646 				 */
1647 				relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1648 				timeout = periph_selto_delay;
1649 				break;
1650 			}
1651 		}
1652 		error = ENXIO;
1653 		/* Should we do more if we can't create the path?? */
1654 		if (xpt_create_path(&newpath, xpt_path_periph(ccb->ccb_h.path),
1655 				    xpt_path_path_id(ccb->ccb_h.path),
1656 				    xpt_path_target_id(ccb->ccb_h.path),
1657 				    CAM_LUN_WILDCARD) != CAM_REQ_CMP)
1658 			break;
1659 
1660 		/*
1661 		 * Let peripheral drivers know that this device has gone
1662 		 * away.
1663 		 */
1664 		xpt_async(AC_LOST_DEVICE, newpath, NULL);
1665 		xpt_free_path(newpath);
1666 		break;
1667 	}
1668 	case CAM_REQ_INVALID:
1669 	case CAM_PATH_INVALID:
1670 	case CAM_DEV_NOT_THERE:
1671 	case CAM_NO_HBA:
1672 	case CAM_PROVIDE_FAIL:
1673 	case CAM_REQ_TOO_BIG:
1674 	case CAM_LUN_INVALID:
1675 	case CAM_TID_INVALID:
1676 		error = EINVAL;
1677 		break;
1678 	case CAM_SCSI_BUS_RESET:
1679 	case CAM_BDR_SENT:
1680 		/*
1681 		 * Commands that repeatedly timeout and cause these
1682 		 * kinds of error recovery actions, should return
1683 		 * CAM_CMD_TIMEOUT, which allows us to safely assume
1684 		 * that this command was an innocent bystander to
1685 		 * these events and should be unconditionally
1686 		 * retried.
1687 		 */
1688 		if (bootverbose && printed == 0) {
1689 			xpt_print_path(ccb->ccb_h.path);
1690 			if (status == CAM_BDR_SENT)
1691 				printf("Bus Device Reset sent\n");
1692 			else
1693 				printf("Bus Reset issued\n");
1694 			printed++;
1695 		}
1696 		/* FALLTHROUGH */
1697 	case CAM_REQUEUE_REQ:
1698 		/* Unconditional requeue */
1699 		error = ERESTART;
1700 		if (bootverbose && printed == 0) {
1701 			xpt_print(ccb->ccb_h.path, "Request Requeued\n");
1702 			printed++;
1703 		}
1704 		break;
1705 	case CAM_RESRC_UNAVAIL:
1706 		/* Wait a bit for the resource shortage to abate. */
1707 		timeout = periph_noresrc_delay;
1708 		/* FALLTHROUGH */
1709 	case CAM_BUSY:
1710 		if (timeout == 0) {
1711 			/* Wait a bit for the busy condition to abate. */
1712 			timeout = periph_busy_delay;
1713 		}
1714 		relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1715 		/* FALLTHROUGH */
1716 	default:
1717 		/* decrement the number of retries */
1718 		if (ccb->ccb_h.retry_count > 0) {
1719 			ccb->ccb_h.retry_count--;
1720 			error = ERESTART;
1721 			if (bootverbose && printed == 0) {
1722 				xpt_print(ccb->ccb_h.path, "CAM Status 0x%x\n",
1723 				    status);
1724 				printed++;
1725 			}
1726 		} else {
1727 			error = EIO;
1728 			action_string = "Retries Exhausted";
1729 		}
1730 		break;
1731 	}
1732 
1733 	/* Attempt a retry */
1734 	if (error == ERESTART || error == 0) {
1735 		if (frozen != 0)
1736 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1737 
1738 		if (error == ERESTART) {
1739 			action_string = "Retrying Command";
1740 			xpt_action(ccb);
1741 		}
1742 
1743 		if (frozen != 0)
1744 			cam_release_devq(ccb->ccb_h.path,
1745 					 relsim_flags,
1746 					 openings,
1747 					 timeout,
1748 					 /*getcount_only*/0);
1749 	}
1750 
1751 	/*
1752 	 * If we have and error and are booting verbosely, whine
1753 	 * *unless* this was a non-retryable selection timeout.
1754 	 */
1755 	if (error != 0 && bootverbose &&
1756 	    !(status == CAM_SEL_TIMEOUT && (camflags & CAM_RETRY_SELTO) == 0)) {
1757 
1758 
1759 		if (action_string == NULL)
1760 			action_string = "Unretryable Error";
1761 		if (error != ERESTART) {
1762 			xpt_print(ccb->ccb_h.path, "error %d\n", error);
1763 		}
1764 		xpt_print(ccb->ccb_h.path, "%s\n", action_string);
1765 	}
1766 
1767 	return (error);
1768 }
1769