1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * Copyright (c) 1997, 1998 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/types.h> 36 #include <sys/malloc.h> 37 #include <sys/kernel.h> 38 #include <sys/bio.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/buf.h> 42 #include <sys/proc.h> 43 #include <sys/devicestat.h> 44 #include <sys/bus.h> 45 #include <sys/sbuf.h> 46 #include <vm/vm.h> 47 #include <vm/vm_extern.h> 48 49 #include <cam/cam.h> 50 #include <cam/cam_ccb.h> 51 #include <cam/cam_queue.h> 52 #include <cam/cam_xpt_periph.h> 53 #include <cam/cam_periph.h> 54 #include <cam/cam_debug.h> 55 #include <cam/cam_sim.h> 56 57 #include <cam/scsi/scsi_all.h> 58 #include <cam/scsi/scsi_message.h> 59 #include <cam/scsi/scsi_pass.h> 60 61 static u_int camperiphnextunit(struct periph_driver *p_drv, 62 u_int newunit, int wired, 63 path_id_t pathid, target_id_t target, 64 lun_id_t lun); 65 static u_int camperiphunit(struct periph_driver *p_drv, 66 path_id_t pathid, target_id_t target, 67 lun_id_t lun); 68 static void camperiphdone(struct cam_periph *periph, 69 union ccb *done_ccb); 70 static void camperiphfree(struct cam_periph *periph); 71 static int camperiphscsistatuserror(union ccb *ccb, 72 union ccb **orig_ccb, 73 cam_flags camflags, 74 u_int32_t sense_flags, 75 int *openings, 76 u_int32_t *relsim_flags, 77 u_int32_t *timeout, 78 u_int32_t *action, 79 const char **action_string); 80 static int camperiphscsisenseerror(union ccb *ccb, 81 union ccb **orig_ccb, 82 cam_flags camflags, 83 u_int32_t sense_flags, 84 int *openings, 85 u_int32_t *relsim_flags, 86 u_int32_t *timeout, 87 u_int32_t *action, 88 const char **action_string); 89 static void cam_periph_devctl_notify(union ccb *ccb); 90 91 static int nperiph_drivers; 92 static int initialized = 0; 93 struct periph_driver **periph_drivers; 94 95 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 96 97 static int periph_selto_delay = 1000; 98 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 99 static int periph_noresrc_delay = 500; 100 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 101 static int periph_busy_delay = 500; 102 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 103 104 105 void 106 periphdriver_register(void *data) 107 { 108 struct periph_driver *drv = (struct periph_driver *)data; 109 struct periph_driver **newdrivers, **old; 110 int ndrivers; 111 112 again: 113 ndrivers = nperiph_drivers + 2; 114 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 115 M_WAITOK); 116 xpt_lock_buses(); 117 if (ndrivers != nperiph_drivers + 2) { 118 /* 119 * Lost race against itself; go around. 120 */ 121 xpt_unlock_buses(); 122 free(newdrivers, M_CAMPERIPH); 123 goto again; 124 } 125 if (periph_drivers) 126 bcopy(periph_drivers, newdrivers, 127 sizeof(*newdrivers) * nperiph_drivers); 128 newdrivers[nperiph_drivers] = drv; 129 newdrivers[nperiph_drivers + 1] = NULL; 130 old = periph_drivers; 131 periph_drivers = newdrivers; 132 nperiph_drivers++; 133 xpt_unlock_buses(); 134 if (old) 135 free(old, M_CAMPERIPH); 136 /* If driver marked as early or it is late now, initialize it. */ 137 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 138 initialized > 1) 139 (*drv->init)(); 140 } 141 142 int 143 periphdriver_unregister(void *data) 144 { 145 struct periph_driver *drv = (struct periph_driver *)data; 146 int error, n; 147 148 /* If driver marked as early or it is late now, deinitialize it. */ 149 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 150 initialized > 1) { 151 if (drv->deinit == NULL) { 152 printf("CAM periph driver '%s' doesn't have deinit.\n", 153 drv->driver_name); 154 return (EOPNOTSUPP); 155 } 156 error = drv->deinit(); 157 if (error != 0) 158 return (error); 159 } 160 161 xpt_lock_buses(); 162 for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++) 163 ; 164 KASSERT(n < nperiph_drivers, 165 ("Periph driver '%s' was not registered", drv->driver_name)); 166 for (; n + 1 < nperiph_drivers; n++) 167 periph_drivers[n] = periph_drivers[n + 1]; 168 periph_drivers[n + 1] = NULL; 169 nperiph_drivers--; 170 xpt_unlock_buses(); 171 return (0); 172 } 173 174 void 175 periphdriver_init(int level) 176 { 177 int i, early; 178 179 initialized = max(initialized, level); 180 for (i = 0; periph_drivers[i] != NULL; i++) { 181 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 182 if (early == initialized) 183 (*periph_drivers[i]->init)(); 184 } 185 } 186 187 cam_status 188 cam_periph_alloc(periph_ctor_t *periph_ctor, 189 periph_oninv_t *periph_oninvalidate, 190 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 191 char *name, cam_periph_type type, struct cam_path *path, 192 ac_callback_t *ac_callback, ac_code code, void *arg) 193 { 194 struct periph_driver **p_drv; 195 struct cam_sim *sim; 196 struct cam_periph *periph; 197 struct cam_periph *cur_periph; 198 path_id_t path_id; 199 target_id_t target_id; 200 lun_id_t lun_id; 201 cam_status status; 202 u_int init_level; 203 204 init_level = 0; 205 /* 206 * Handle Hot-Plug scenarios. If there is already a peripheral 207 * of our type assigned to this path, we are likely waiting for 208 * final close on an old, invalidated, peripheral. If this is 209 * the case, queue up a deferred call to the peripheral's async 210 * handler. If it looks like a mistaken re-allocation, complain. 211 */ 212 if ((periph = cam_periph_find(path, name)) != NULL) { 213 214 if ((periph->flags & CAM_PERIPH_INVALID) != 0 215 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 216 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 217 periph->deferred_callback = ac_callback; 218 periph->deferred_ac = code; 219 return (CAM_REQ_INPROG); 220 } else { 221 printf("cam_periph_alloc: attempt to re-allocate " 222 "valid device %s%d rejected flags %#x " 223 "refcount %d\n", periph->periph_name, 224 periph->unit_number, periph->flags, 225 periph->refcount); 226 } 227 return (CAM_REQ_INVALID); 228 } 229 230 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 231 M_NOWAIT|M_ZERO); 232 233 if (periph == NULL) 234 return (CAM_RESRC_UNAVAIL); 235 236 init_level++; 237 238 239 sim = xpt_path_sim(path); 240 path_id = xpt_path_path_id(path); 241 target_id = xpt_path_target_id(path); 242 lun_id = xpt_path_lun_id(path); 243 periph->periph_start = periph_start; 244 periph->periph_dtor = periph_dtor; 245 periph->periph_oninval = periph_oninvalidate; 246 periph->type = type; 247 periph->periph_name = name; 248 periph->scheduled_priority = CAM_PRIORITY_NONE; 249 periph->immediate_priority = CAM_PRIORITY_NONE; 250 periph->refcount = 1; /* Dropped by invalidation. */ 251 periph->sim = sim; 252 SLIST_INIT(&periph->ccb_list); 253 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 254 if (status != CAM_REQ_CMP) 255 goto failure; 256 periph->path = path; 257 258 xpt_lock_buses(); 259 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 260 if (strcmp((*p_drv)->driver_name, name) == 0) 261 break; 262 } 263 if (*p_drv == NULL) { 264 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 265 xpt_unlock_buses(); 266 xpt_free_path(periph->path); 267 free(periph, M_CAMPERIPH); 268 return (CAM_REQ_INVALID); 269 } 270 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); 271 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 272 while (cur_periph != NULL 273 && cur_periph->unit_number < periph->unit_number) 274 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 275 if (cur_periph != NULL) { 276 KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list")); 277 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 278 } else { 279 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 280 (*p_drv)->generation++; 281 } 282 xpt_unlock_buses(); 283 284 init_level++; 285 286 status = xpt_add_periph(periph); 287 if (status != CAM_REQ_CMP) 288 goto failure; 289 290 init_level++; 291 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 292 293 status = periph_ctor(periph, arg); 294 295 if (status == CAM_REQ_CMP) 296 init_level++; 297 298 failure: 299 switch (init_level) { 300 case 4: 301 /* Initialized successfully */ 302 break; 303 case 3: 304 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 305 xpt_remove_periph(periph); 306 /* FALLTHROUGH */ 307 case 2: 308 xpt_lock_buses(); 309 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 310 xpt_unlock_buses(); 311 xpt_free_path(periph->path); 312 /* FALLTHROUGH */ 313 case 1: 314 free(periph, M_CAMPERIPH); 315 /* FALLTHROUGH */ 316 case 0: 317 /* No cleanup to perform. */ 318 break; 319 default: 320 panic("%s: Unknown init level", __func__); 321 } 322 return(status); 323 } 324 325 /* 326 * Find a peripheral structure with the specified path, target, lun, 327 * and (optionally) type. If the name is NULL, this function will return 328 * the first peripheral driver that matches the specified path. 329 */ 330 struct cam_periph * 331 cam_periph_find(struct cam_path *path, char *name) 332 { 333 struct periph_driver **p_drv; 334 struct cam_periph *periph; 335 336 xpt_lock_buses(); 337 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 338 339 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 340 continue; 341 342 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 343 if (xpt_path_comp(periph->path, path) == 0) { 344 xpt_unlock_buses(); 345 cam_periph_assert(periph, MA_OWNED); 346 return(periph); 347 } 348 } 349 if (name != NULL) { 350 xpt_unlock_buses(); 351 return(NULL); 352 } 353 } 354 xpt_unlock_buses(); 355 return(NULL); 356 } 357 358 /* 359 * Find peripheral driver instances attached to the specified path. 360 */ 361 int 362 cam_periph_list(struct cam_path *path, struct sbuf *sb) 363 { 364 struct sbuf local_sb; 365 struct periph_driver **p_drv; 366 struct cam_periph *periph; 367 int count; 368 int sbuf_alloc_len; 369 370 sbuf_alloc_len = 16; 371 retry: 372 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 373 count = 0; 374 xpt_lock_buses(); 375 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 376 377 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 378 if (xpt_path_comp(periph->path, path) != 0) 379 continue; 380 381 if (sbuf_len(&local_sb) != 0) 382 sbuf_cat(&local_sb, ","); 383 384 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 385 periph->unit_number); 386 387 if (sbuf_error(&local_sb) == ENOMEM) { 388 sbuf_alloc_len *= 2; 389 xpt_unlock_buses(); 390 sbuf_delete(&local_sb); 391 goto retry; 392 } 393 count++; 394 } 395 } 396 xpt_unlock_buses(); 397 sbuf_finish(&local_sb); 398 sbuf_cpy(sb, sbuf_data(&local_sb)); 399 sbuf_delete(&local_sb); 400 return (count); 401 } 402 403 cam_status 404 cam_periph_acquire(struct cam_periph *periph) 405 { 406 cam_status status; 407 408 status = CAM_REQ_CMP_ERR; 409 if (periph == NULL) 410 return (status); 411 412 xpt_lock_buses(); 413 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 414 periph->refcount++; 415 status = CAM_REQ_CMP; 416 } 417 xpt_unlock_buses(); 418 419 return (status); 420 } 421 422 void 423 cam_periph_doacquire(struct cam_periph *periph) 424 { 425 426 xpt_lock_buses(); 427 KASSERT(periph->refcount >= 1, 428 ("cam_periph_doacquire() with refcount == %d", periph->refcount)); 429 periph->refcount++; 430 xpt_unlock_buses(); 431 } 432 433 void 434 cam_periph_release_locked_buses(struct cam_periph *periph) 435 { 436 437 cam_periph_assert(periph, MA_OWNED); 438 KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); 439 if (--periph->refcount == 0) 440 camperiphfree(periph); 441 } 442 443 void 444 cam_periph_release_locked(struct cam_periph *periph) 445 { 446 447 if (periph == NULL) 448 return; 449 450 xpt_lock_buses(); 451 cam_periph_release_locked_buses(periph); 452 xpt_unlock_buses(); 453 } 454 455 void 456 cam_periph_release(struct cam_periph *periph) 457 { 458 struct mtx *mtx; 459 460 if (periph == NULL) 461 return; 462 463 cam_periph_assert(periph, MA_NOTOWNED); 464 mtx = cam_periph_mtx(periph); 465 mtx_lock(mtx); 466 cam_periph_release_locked(periph); 467 mtx_unlock(mtx); 468 } 469 470 int 471 cam_periph_hold(struct cam_periph *periph, int priority) 472 { 473 int error; 474 475 /* 476 * Increment the reference count on the peripheral 477 * while we wait for our lock attempt to succeed 478 * to ensure the peripheral doesn't disappear out 479 * from user us while we sleep. 480 */ 481 482 if (cam_periph_acquire(periph) != CAM_REQ_CMP) 483 return (ENXIO); 484 485 cam_periph_assert(periph, MA_OWNED); 486 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 487 periph->flags |= CAM_PERIPH_LOCK_WANTED; 488 if ((error = cam_periph_sleep(periph, periph, priority, 489 "caplck", 0)) != 0) { 490 cam_periph_release_locked(periph); 491 return (error); 492 } 493 if (periph->flags & CAM_PERIPH_INVALID) { 494 cam_periph_release_locked(periph); 495 return (ENXIO); 496 } 497 } 498 499 periph->flags |= CAM_PERIPH_LOCKED; 500 return (0); 501 } 502 503 void 504 cam_periph_unhold(struct cam_periph *periph) 505 { 506 507 cam_periph_assert(periph, MA_OWNED); 508 509 periph->flags &= ~CAM_PERIPH_LOCKED; 510 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 511 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 512 wakeup(periph); 513 } 514 515 cam_periph_release_locked(periph); 516 } 517 518 /* 519 * Look for the next unit number that is not currently in use for this 520 * peripheral type starting at "newunit". Also exclude unit numbers that 521 * are reserved by for future "hardwiring" unless we already know that this 522 * is a potential wired device. Only assume that the device is "wired" the 523 * first time through the loop since after that we'll be looking at unit 524 * numbers that did not match a wiring entry. 525 */ 526 static u_int 527 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, 528 path_id_t pathid, target_id_t target, lun_id_t lun) 529 { 530 struct cam_periph *periph; 531 char *periph_name; 532 int i, val, dunit, r; 533 const char *dname, *strval; 534 535 periph_name = p_drv->driver_name; 536 for (;;newunit++) { 537 538 for (periph = TAILQ_FIRST(&p_drv->units); 539 periph != NULL && periph->unit_number != newunit; 540 periph = TAILQ_NEXT(periph, unit_links)) 541 ; 542 543 if (periph != NULL && periph->unit_number == newunit) { 544 if (wired != 0) { 545 xpt_print(periph->path, "Duplicate Wired " 546 "Device entry!\n"); 547 xpt_print(periph->path, "Second device (%s " 548 "device at scbus%d target %d lun %d) will " 549 "not be wired\n", periph_name, pathid, 550 target, lun); 551 wired = 0; 552 } 553 continue; 554 } 555 if (wired) 556 break; 557 558 /* 559 * Don't match entries like "da 4" as a wired down 560 * device, but do match entries like "da 4 target 5" 561 * or even "da 4 scbus 1". 562 */ 563 i = 0; 564 dname = periph_name; 565 for (;;) { 566 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 567 if (r != 0) 568 break; 569 /* if no "target" and no specific scbus, skip */ 570 if (resource_int_value(dname, dunit, "target", &val) && 571 (resource_string_value(dname, dunit, "at",&strval)|| 572 strcmp(strval, "scbus") == 0)) 573 continue; 574 if (newunit == dunit) 575 break; 576 } 577 if (r != 0) 578 break; 579 } 580 return (newunit); 581 } 582 583 static u_int 584 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 585 target_id_t target, lun_id_t lun) 586 { 587 u_int unit; 588 int wired, i, val, dunit; 589 const char *dname, *strval; 590 char pathbuf[32], *periph_name; 591 592 periph_name = p_drv->driver_name; 593 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 594 unit = 0; 595 i = 0; 596 dname = periph_name; 597 for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 598 wired = 0) { 599 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 600 if (strcmp(strval, pathbuf) != 0) 601 continue; 602 wired++; 603 } 604 if (resource_int_value(dname, dunit, "target", &val) == 0) { 605 if (val != target) 606 continue; 607 wired++; 608 } 609 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 610 if (val != lun) 611 continue; 612 wired++; 613 } 614 if (wired != 0) { 615 unit = dunit; 616 break; 617 } 618 } 619 620 /* 621 * Either start from 0 looking for the next unit or from 622 * the unit number given in the resource config. This way, 623 * if we have wildcard matches, we don't return the same 624 * unit number twice. 625 */ 626 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 627 628 return (unit); 629 } 630 631 void 632 cam_periph_invalidate(struct cam_periph *periph) 633 { 634 635 cam_periph_assert(periph, MA_OWNED); 636 /* 637 * We only call this routine the first time a peripheral is 638 * invalidated. 639 */ 640 if ((periph->flags & CAM_PERIPH_INVALID) != 0) 641 return; 642 643 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 644 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) { 645 struct sbuf sb; 646 char buffer[160]; 647 648 sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN); 649 xpt_denounce_periph_sbuf(periph, &sb); 650 sbuf_finish(&sb); 651 sbuf_putbuf(&sb); 652 } 653 periph->flags |= CAM_PERIPH_INVALID; 654 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 655 if (periph->periph_oninval != NULL) 656 periph->periph_oninval(periph); 657 cam_periph_release_locked(periph); 658 } 659 660 static void 661 camperiphfree(struct cam_periph *periph) 662 { 663 struct periph_driver **p_drv; 664 struct periph_driver *drv; 665 666 cam_periph_assert(periph, MA_OWNED); 667 KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating", 668 periph->periph_name, periph->unit_number)); 669 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 670 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 671 break; 672 } 673 if (*p_drv == NULL) { 674 printf("camperiphfree: attempt to free non-existant periph\n"); 675 return; 676 } 677 /* 678 * Cache a pointer to the periph_driver structure. If a 679 * periph_driver is added or removed from the array (see 680 * periphdriver_register()) while we drop the toplogy lock 681 * below, p_drv may change. This doesn't protect against this 682 * particular periph_driver going away. That will require full 683 * reference counting in the periph_driver infrastructure. 684 */ 685 drv = *p_drv; 686 687 /* 688 * We need to set this flag before dropping the topology lock, to 689 * let anyone who is traversing the list that this peripheral is 690 * about to be freed, and there will be no more reference count 691 * checks. 692 */ 693 periph->flags |= CAM_PERIPH_FREE; 694 695 /* 696 * The peripheral destructor semantics dictate calling with only the 697 * SIM mutex held. Since it might sleep, it should not be called 698 * with the topology lock held. 699 */ 700 xpt_unlock_buses(); 701 702 /* 703 * We need to call the peripheral destructor prior to removing the 704 * peripheral from the list. Otherwise, we risk running into a 705 * scenario where the peripheral unit number may get reused 706 * (because it has been removed from the list), but some resources 707 * used by the peripheral are still hanging around. In particular, 708 * the devfs nodes used by some peripherals like the pass(4) driver 709 * aren't fully cleaned up until the destructor is run. If the 710 * unit number is reused before the devfs instance is fully gone, 711 * devfs will panic. 712 */ 713 if (periph->periph_dtor != NULL) 714 periph->periph_dtor(periph); 715 716 /* 717 * The peripheral list is protected by the topology lock. 718 */ 719 xpt_lock_buses(); 720 721 TAILQ_REMOVE(&drv->units, periph, unit_links); 722 drv->generation++; 723 724 xpt_remove_periph(periph); 725 726 xpt_unlock_buses(); 727 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) 728 xpt_print(periph->path, "Periph destroyed\n"); 729 else 730 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 731 732 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 733 union ccb ccb; 734 void *arg; 735 736 switch (periph->deferred_ac) { 737 case AC_FOUND_DEVICE: 738 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 739 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 740 xpt_action(&ccb); 741 arg = &ccb; 742 break; 743 case AC_PATH_REGISTERED: 744 ccb.ccb_h.func_code = XPT_PATH_INQ; 745 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 746 xpt_action(&ccb); 747 arg = &ccb; 748 break; 749 default: 750 arg = NULL; 751 break; 752 } 753 periph->deferred_callback(NULL, periph->deferred_ac, 754 periph->path, arg); 755 } 756 xpt_free_path(periph->path); 757 free(periph, M_CAMPERIPH); 758 xpt_lock_buses(); 759 } 760 761 /* 762 * Map user virtual pointers into kernel virtual address space, so we can 763 * access the memory. This is now a generic function that centralizes most 764 * of the sanity checks on the data flags, if any. 765 * This also only works for up to MAXPHYS memory. Since we use 766 * buffers to map stuff in and out, we're limited to the buffer size. 767 */ 768 int 769 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo, 770 u_int maxmap) 771 { 772 int numbufs, i, j; 773 int flags[CAM_PERIPH_MAXMAPS]; 774 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 775 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 776 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 777 778 if (maxmap == 0) 779 maxmap = DFLTPHYS; /* traditional default */ 780 else if (maxmap > MAXPHYS) 781 maxmap = MAXPHYS; /* for safety */ 782 switch(ccb->ccb_h.func_code) { 783 case XPT_DEV_MATCH: 784 if (ccb->cdm.match_buf_len == 0) { 785 printf("cam_periph_mapmem: invalid match buffer " 786 "length 0\n"); 787 return(EINVAL); 788 } 789 if (ccb->cdm.pattern_buf_len > 0) { 790 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 791 lengths[0] = ccb->cdm.pattern_buf_len; 792 dirs[0] = CAM_DIR_OUT; 793 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 794 lengths[1] = ccb->cdm.match_buf_len; 795 dirs[1] = CAM_DIR_IN; 796 numbufs = 2; 797 } else { 798 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 799 lengths[0] = ccb->cdm.match_buf_len; 800 dirs[0] = CAM_DIR_IN; 801 numbufs = 1; 802 } 803 /* 804 * This request will not go to the hardware, no reason 805 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 806 */ 807 maxmap = MAXPHYS; 808 break; 809 case XPT_SCSI_IO: 810 case XPT_CONT_TARGET_IO: 811 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 812 return(0); 813 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 814 return (EINVAL); 815 data_ptrs[0] = &ccb->csio.data_ptr; 816 lengths[0] = ccb->csio.dxfer_len; 817 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 818 numbufs = 1; 819 break; 820 case XPT_ATA_IO: 821 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 822 return(0); 823 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 824 return (EINVAL); 825 data_ptrs[0] = &ccb->ataio.data_ptr; 826 lengths[0] = ccb->ataio.dxfer_len; 827 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 828 numbufs = 1; 829 break; 830 case XPT_MMC_IO: 831 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 832 return(0); 833 /* Two mappings: one for cmd->data and one for cmd->data->data */ 834 data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data; 835 lengths[0] = sizeof(struct mmc_data *); 836 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 837 data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data; 838 lengths[1] = ccb->mmcio.cmd.data->len; 839 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 840 numbufs = 2; 841 break; 842 case XPT_SMP_IO: 843 data_ptrs[0] = &ccb->smpio.smp_request; 844 lengths[0] = ccb->smpio.smp_request_len; 845 dirs[0] = CAM_DIR_OUT; 846 data_ptrs[1] = &ccb->smpio.smp_response; 847 lengths[1] = ccb->smpio.smp_response_len; 848 dirs[1] = CAM_DIR_IN; 849 numbufs = 2; 850 break; 851 case XPT_DEV_ADVINFO: 852 if (ccb->cdai.bufsiz == 0) 853 return (0); 854 855 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 856 lengths[0] = ccb->cdai.bufsiz; 857 dirs[0] = CAM_DIR_IN; 858 numbufs = 1; 859 860 /* 861 * This request will not go to the hardware, no reason 862 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 863 */ 864 maxmap = MAXPHYS; 865 break; 866 default: 867 return(EINVAL); 868 break; /* NOTREACHED */ 869 } 870 871 /* 872 * Check the transfer length and permissions first, so we don't 873 * have to unmap any previously mapped buffers. 874 */ 875 for (i = 0; i < numbufs; i++) { 876 877 flags[i] = 0; 878 879 /* 880 * The userland data pointer passed in may not be page 881 * aligned. vmapbuf() truncates the address to a page 882 * boundary, so if the address isn't page aligned, we'll 883 * need enough space for the given transfer length, plus 884 * whatever extra space is necessary to make it to the page 885 * boundary. 886 */ 887 if ((lengths[i] + 888 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){ 889 printf("cam_periph_mapmem: attempt to map %lu bytes, " 890 "which is greater than %lu\n", 891 (long)(lengths[i] + 892 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)), 893 (u_long)maxmap); 894 return(E2BIG); 895 } 896 897 if (dirs[i] & CAM_DIR_OUT) { 898 flags[i] = BIO_WRITE; 899 } 900 901 if (dirs[i] & CAM_DIR_IN) { 902 flags[i] = BIO_READ; 903 } 904 905 } 906 907 /* 908 * This keeps the kernel stack of current thread from getting 909 * swapped. In low-memory situations where the kernel stack might 910 * otherwise get swapped out, this holds it and allows the thread 911 * to make progress and release the kernel mapped pages sooner. 912 * 913 * XXX KDM should I use P_NOSWAP instead? 914 */ 915 PHOLD(curproc); 916 917 for (i = 0; i < numbufs; i++) { 918 /* 919 * Get the buffer. 920 */ 921 mapinfo->bp[i] = getpbuf(NULL); 922 923 /* put our pointer in the data slot */ 924 mapinfo->bp[i]->b_data = *data_ptrs[i]; 925 926 /* save the user's data address */ 927 mapinfo->bp[i]->b_caller1 = *data_ptrs[i]; 928 929 /* set the transfer length, we know it's < MAXPHYS */ 930 mapinfo->bp[i]->b_bufsize = lengths[i]; 931 932 /* set the direction */ 933 mapinfo->bp[i]->b_iocmd = flags[i]; 934 935 /* 936 * Map the buffer into kernel memory. 937 * 938 * Note that useracc() alone is not a sufficient test. 939 * vmapbuf() can still fail due to a smaller file mapped 940 * into a larger area of VM, or if userland races against 941 * vmapbuf() after the useracc() check. 942 */ 943 if (vmapbuf(mapinfo->bp[i], 1) < 0) { 944 for (j = 0; j < i; ++j) { 945 *data_ptrs[j] = mapinfo->bp[j]->b_caller1; 946 vunmapbuf(mapinfo->bp[j]); 947 relpbuf(mapinfo->bp[j], NULL); 948 } 949 relpbuf(mapinfo->bp[i], NULL); 950 PRELE(curproc); 951 return(EACCES); 952 } 953 954 /* set our pointer to the new mapped area */ 955 *data_ptrs[i] = mapinfo->bp[i]->b_data; 956 957 mapinfo->num_bufs_used++; 958 } 959 960 /* 961 * Now that we've gotten this far, change ownership to the kernel 962 * of the buffers so that we don't run afoul of returning to user 963 * space with locks (on the buffer) held. 964 */ 965 for (i = 0; i < numbufs; i++) { 966 BUF_KERNPROC(mapinfo->bp[i]); 967 } 968 969 970 return(0); 971 } 972 973 /* 974 * Unmap memory segments mapped into kernel virtual address space by 975 * cam_periph_mapmem(). 976 */ 977 void 978 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 979 { 980 int numbufs, i; 981 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 982 983 if (mapinfo->num_bufs_used <= 0) { 984 /* nothing to free and the process wasn't held. */ 985 return; 986 } 987 988 switch (ccb->ccb_h.func_code) { 989 case XPT_DEV_MATCH: 990 numbufs = min(mapinfo->num_bufs_used, 2); 991 992 if (numbufs == 1) { 993 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 994 } else { 995 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 996 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 997 } 998 break; 999 case XPT_SCSI_IO: 1000 case XPT_CONT_TARGET_IO: 1001 data_ptrs[0] = &ccb->csio.data_ptr; 1002 numbufs = min(mapinfo->num_bufs_used, 1); 1003 break; 1004 case XPT_ATA_IO: 1005 data_ptrs[0] = &ccb->ataio.data_ptr; 1006 numbufs = min(mapinfo->num_bufs_used, 1); 1007 break; 1008 case XPT_SMP_IO: 1009 numbufs = min(mapinfo->num_bufs_used, 2); 1010 data_ptrs[0] = &ccb->smpio.smp_request; 1011 data_ptrs[1] = &ccb->smpio.smp_response; 1012 break; 1013 case XPT_DEV_ADVINFO: 1014 numbufs = min(mapinfo->num_bufs_used, 1); 1015 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1016 break; 1017 default: 1018 /* allow ourselves to be swapped once again */ 1019 PRELE(curproc); 1020 return; 1021 break; /* NOTREACHED */ 1022 } 1023 1024 for (i = 0; i < numbufs; i++) { 1025 /* Set the user's pointer back to the original value */ 1026 *data_ptrs[i] = mapinfo->bp[i]->b_caller1; 1027 1028 /* unmap the buffer */ 1029 vunmapbuf(mapinfo->bp[i]); 1030 1031 /* release the buffer */ 1032 relpbuf(mapinfo->bp[i], NULL); 1033 } 1034 1035 /* allow ourselves to be swapped once again */ 1036 PRELE(curproc); 1037 } 1038 1039 int 1040 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 1041 int (*error_routine)(union ccb *ccb, 1042 cam_flags camflags, 1043 u_int32_t sense_flags)) 1044 { 1045 union ccb *ccb; 1046 int error; 1047 int found; 1048 1049 error = found = 0; 1050 1051 switch(cmd){ 1052 case CAMGETPASSTHRU: 1053 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 1054 xpt_setup_ccb(&ccb->ccb_h, 1055 ccb->ccb_h.path, 1056 CAM_PRIORITY_NORMAL); 1057 ccb->ccb_h.func_code = XPT_GDEVLIST; 1058 1059 /* 1060 * Basically, the point of this is that we go through 1061 * getting the list of devices, until we find a passthrough 1062 * device. In the current version of the CAM code, the 1063 * only way to determine what type of device we're dealing 1064 * with is by its name. 1065 */ 1066 while (found == 0) { 1067 ccb->cgdl.index = 0; 1068 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1069 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1070 1071 /* we want the next device in the list */ 1072 xpt_action(ccb); 1073 if (strncmp(ccb->cgdl.periph_name, 1074 "pass", 4) == 0){ 1075 found = 1; 1076 break; 1077 } 1078 } 1079 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1080 (found == 0)) { 1081 ccb->cgdl.periph_name[0] = '\0'; 1082 ccb->cgdl.unit_number = 0; 1083 break; 1084 } 1085 } 1086 1087 /* copy the result back out */ 1088 bcopy(ccb, addr, sizeof(union ccb)); 1089 1090 /* and release the ccb */ 1091 xpt_release_ccb(ccb); 1092 1093 break; 1094 default: 1095 error = ENOTTY; 1096 break; 1097 } 1098 return(error); 1099 } 1100 1101 static void 1102 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb) 1103 { 1104 1105 panic("%s: already done with ccb %p", __func__, done_ccb); 1106 } 1107 1108 static void 1109 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb) 1110 { 1111 1112 /* Caller will release the CCB */ 1113 xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED); 1114 done_ccb->ccb_h.cbfcnp = cam_periph_done_panic; 1115 wakeup(&done_ccb->ccb_h.cbfcnp); 1116 } 1117 1118 static void 1119 cam_periph_ccbwait(union ccb *ccb) 1120 { 1121 1122 if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 1123 while (ccb->ccb_h.cbfcnp != cam_periph_done_panic) 1124 xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, 1125 PRIBIO, "cbwait", 0); 1126 } 1127 KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && 1128 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG, 1129 ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, " 1130 "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code, 1131 ccb->ccb_h.status, ccb->ccb_h.pinfo.index)); 1132 } 1133 1134 int 1135 cam_periph_runccb(union ccb *ccb, 1136 int (*error_routine)(union ccb *ccb, 1137 cam_flags camflags, 1138 u_int32_t sense_flags), 1139 cam_flags camflags, u_int32_t sense_flags, 1140 struct devstat *ds) 1141 { 1142 struct bintime *starttime; 1143 struct bintime ltime; 1144 int error; 1145 1146 starttime = NULL; 1147 xpt_path_assert(ccb->ccb_h.path, MA_OWNED); 1148 KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0, 1149 ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb, 1150 ccb->ccb_h.func_code, ccb->ccb_h.flags)); 1151 1152 /* 1153 * If the user has supplied a stats structure, and if we understand 1154 * this particular type of ccb, record the transaction start. 1155 */ 1156 if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO || 1157 ccb->ccb_h.func_code == XPT_ATA_IO)) { 1158 starttime = <ime; 1159 binuptime(starttime); 1160 devstat_start_transaction(ds, starttime); 1161 } 1162 1163 ccb->ccb_h.cbfcnp = cam_periph_done; 1164 xpt_action(ccb); 1165 1166 do { 1167 cam_periph_ccbwait(ccb); 1168 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1169 error = 0; 1170 else if (error_routine != NULL) { 1171 ccb->ccb_h.cbfcnp = cam_periph_done; 1172 error = (*error_routine)(ccb, camflags, sense_flags); 1173 } else 1174 error = 0; 1175 1176 } while (error == ERESTART); 1177 1178 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1179 cam_release_devq(ccb->ccb_h.path, 1180 /* relsim_flags */0, 1181 /* openings */0, 1182 /* timeout */0, 1183 /* getcount_only */ FALSE); 1184 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1185 } 1186 1187 if (ds != NULL) { 1188 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1189 devstat_end_transaction(ds, 1190 ccb->csio.dxfer_len - ccb->csio.resid, 1191 ccb->csio.tag_action & 0x3, 1192 ((ccb->ccb_h.flags & CAM_DIR_MASK) == 1193 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 1194 (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1195 DEVSTAT_WRITE : 1196 DEVSTAT_READ, NULL, starttime); 1197 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1198 devstat_end_transaction(ds, 1199 ccb->ataio.dxfer_len - ccb->ataio.resid, 1200 0, /* Not used in ATA */ 1201 ((ccb->ccb_h.flags & CAM_DIR_MASK) == 1202 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 1203 (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1204 DEVSTAT_WRITE : 1205 DEVSTAT_READ, NULL, starttime); 1206 } 1207 } 1208 1209 return(error); 1210 } 1211 1212 void 1213 cam_freeze_devq(struct cam_path *path) 1214 { 1215 struct ccb_hdr ccb_h; 1216 1217 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n")); 1218 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 1219 ccb_h.func_code = XPT_NOOP; 1220 ccb_h.flags = CAM_DEV_QFREEZE; 1221 xpt_action((union ccb *)&ccb_h); 1222 } 1223 1224 u_int32_t 1225 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 1226 u_int32_t openings, u_int32_t arg, 1227 int getcount_only) 1228 { 1229 struct ccb_relsim crs; 1230 1231 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n", 1232 relsim_flags, openings, arg, getcount_only)); 1233 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1234 crs.ccb_h.func_code = XPT_REL_SIMQ; 1235 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1236 crs.release_flags = relsim_flags; 1237 crs.openings = openings; 1238 crs.release_timeout = arg; 1239 xpt_action((union ccb *)&crs); 1240 return (crs.qfrozen_cnt); 1241 } 1242 1243 #define saved_ccb_ptr ppriv_ptr0 1244 static void 1245 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1246 { 1247 union ccb *saved_ccb; 1248 cam_status status; 1249 struct scsi_start_stop_unit *scsi_cmd; 1250 int error_code, sense_key, asc, ascq; 1251 1252 scsi_cmd = (struct scsi_start_stop_unit *) 1253 &done_ccb->csio.cdb_io.cdb_bytes; 1254 status = done_ccb->ccb_h.status; 1255 1256 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1257 if (scsi_extract_sense_ccb(done_ccb, 1258 &error_code, &sense_key, &asc, &ascq)) { 1259 /* 1260 * If the error is "invalid field in CDB", 1261 * and the load/eject flag is set, turn the 1262 * flag off and try again. This is just in 1263 * case the drive in question barfs on the 1264 * load eject flag. The CAM code should set 1265 * the load/eject flag by default for 1266 * removable media. 1267 */ 1268 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1269 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1270 (asc == 0x24) && (ascq == 0x00)) { 1271 scsi_cmd->how &= ~SSS_LOEJ; 1272 if (status & CAM_DEV_QFRZN) { 1273 cam_release_devq(done_ccb->ccb_h.path, 1274 0, 0, 0, 0); 1275 done_ccb->ccb_h.status &= 1276 ~CAM_DEV_QFRZN; 1277 } 1278 xpt_action(done_ccb); 1279 goto out; 1280 } 1281 } 1282 if (cam_periph_error(done_ccb, 1283 0, SF_RETRY_UA | SF_NO_PRINT, NULL) == ERESTART) 1284 goto out; 1285 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1286 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1287 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1288 } 1289 } else { 1290 /* 1291 * If we have successfully taken a device from the not 1292 * ready to ready state, re-scan the device and re-get 1293 * the inquiry information. Many devices (mostly disks) 1294 * don't properly report their inquiry information unless 1295 * they are spun up. 1296 */ 1297 if (scsi_cmd->opcode == START_STOP_UNIT) 1298 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1299 } 1300 1301 /* 1302 * Perform the final retry with the original CCB so that final 1303 * error processing is performed by the owner of the CCB. 1304 */ 1305 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1306 bcopy(saved_ccb, done_ccb, sizeof(*done_ccb)); 1307 xpt_free_ccb(saved_ccb); 1308 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1309 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1310 xpt_action(done_ccb); 1311 1312 out: 1313 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1314 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1315 } 1316 1317 /* 1318 * Generic Async Event handler. Peripheral drivers usually 1319 * filter out the events that require personal attention, 1320 * and leave the rest to this function. 1321 */ 1322 void 1323 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1324 struct cam_path *path, void *arg) 1325 { 1326 switch (code) { 1327 case AC_LOST_DEVICE: 1328 cam_periph_invalidate(periph); 1329 break; 1330 default: 1331 break; 1332 } 1333 } 1334 1335 void 1336 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1337 { 1338 struct ccb_getdevstats cgds; 1339 1340 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1341 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1342 xpt_action((union ccb *)&cgds); 1343 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1344 } 1345 1346 void 1347 cam_periph_freeze_after_event(struct cam_periph *periph, 1348 struct timeval* event_time, u_int duration_ms) 1349 { 1350 struct timeval delta; 1351 struct timeval duration_tv; 1352 1353 if (!timevalisset(event_time)) 1354 return; 1355 1356 microtime(&delta); 1357 timevalsub(&delta, event_time); 1358 duration_tv.tv_sec = duration_ms / 1000; 1359 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1360 if (timevalcmp(&delta, &duration_tv, <)) { 1361 timevalsub(&duration_tv, &delta); 1362 1363 duration_ms = duration_tv.tv_sec * 1000; 1364 duration_ms += duration_tv.tv_usec / 1000; 1365 cam_freeze_devq(periph->path); 1366 cam_release_devq(periph->path, 1367 RELSIM_RELEASE_AFTER_TIMEOUT, 1368 /*reduction*/0, 1369 /*timeout*/duration_ms, 1370 /*getcount_only*/0); 1371 } 1372 1373 } 1374 1375 static int 1376 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1377 cam_flags camflags, u_int32_t sense_flags, 1378 int *openings, u_int32_t *relsim_flags, 1379 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1380 { 1381 int error; 1382 1383 switch (ccb->csio.scsi_status) { 1384 case SCSI_STATUS_OK: 1385 case SCSI_STATUS_COND_MET: 1386 case SCSI_STATUS_INTERMED: 1387 case SCSI_STATUS_INTERMED_COND_MET: 1388 error = 0; 1389 break; 1390 case SCSI_STATUS_CMD_TERMINATED: 1391 case SCSI_STATUS_CHECK_COND: 1392 error = camperiphscsisenseerror(ccb, orig_ccb, 1393 camflags, 1394 sense_flags, 1395 openings, 1396 relsim_flags, 1397 timeout, 1398 action, 1399 action_string); 1400 break; 1401 case SCSI_STATUS_QUEUE_FULL: 1402 { 1403 /* no decrement */ 1404 struct ccb_getdevstats cgds; 1405 1406 /* 1407 * First off, find out what the current 1408 * transaction counts are. 1409 */ 1410 xpt_setup_ccb(&cgds.ccb_h, 1411 ccb->ccb_h.path, 1412 CAM_PRIORITY_NORMAL); 1413 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1414 xpt_action((union ccb *)&cgds); 1415 1416 /* 1417 * If we were the only transaction active, treat 1418 * the QUEUE FULL as if it were a BUSY condition. 1419 */ 1420 if (cgds.dev_active != 0) { 1421 int total_openings; 1422 1423 /* 1424 * Reduce the number of openings to 1425 * be 1 less than the amount it took 1426 * to get a queue full bounded by the 1427 * minimum allowed tag count for this 1428 * device. 1429 */ 1430 total_openings = cgds.dev_active + cgds.dev_openings; 1431 *openings = cgds.dev_active; 1432 if (*openings < cgds.mintags) 1433 *openings = cgds.mintags; 1434 if (*openings < total_openings) 1435 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1436 else { 1437 /* 1438 * Some devices report queue full for 1439 * temporary resource shortages. For 1440 * this reason, we allow a minimum 1441 * tag count to be entered via a 1442 * quirk entry to prevent the queue 1443 * count on these devices from falling 1444 * to a pessimisticly low value. We 1445 * still wait for the next successful 1446 * completion, however, before queueing 1447 * more transactions to the device. 1448 */ 1449 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1450 } 1451 *timeout = 0; 1452 error = ERESTART; 1453 *action &= ~SSQ_PRINT_SENSE; 1454 break; 1455 } 1456 /* FALLTHROUGH */ 1457 } 1458 case SCSI_STATUS_BUSY: 1459 /* 1460 * Restart the queue after either another 1461 * command completes or a 1 second timeout. 1462 */ 1463 if ((sense_flags & SF_RETRY_BUSY) != 0 || 1464 (ccb->ccb_h.retry_count--) > 0) { 1465 error = ERESTART; 1466 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1467 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1468 *timeout = 1000; 1469 } else { 1470 error = EIO; 1471 } 1472 break; 1473 case SCSI_STATUS_RESERV_CONFLICT: 1474 default: 1475 error = EIO; 1476 break; 1477 } 1478 return (error); 1479 } 1480 1481 static int 1482 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1483 cam_flags camflags, u_int32_t sense_flags, 1484 int *openings, u_int32_t *relsim_flags, 1485 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1486 { 1487 struct cam_periph *periph; 1488 union ccb *orig_ccb = ccb; 1489 int error, recoveryccb; 1490 1491 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1492 if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL) 1493 biotrack(ccb->csio.bio, __func__); 1494 #endif 1495 1496 periph = xpt_path_periph(ccb->ccb_h.path); 1497 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1498 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1499 /* 1500 * If error recovery is already in progress, don't attempt 1501 * to process this error, but requeue it unconditionally 1502 * and attempt to process it once error recovery has 1503 * completed. This failed command is probably related to 1504 * the error that caused the currently active error recovery 1505 * action so our current recovery efforts should also 1506 * address this command. Be aware that the error recovery 1507 * code assumes that only one recovery action is in progress 1508 * on a particular peripheral instance at any given time 1509 * (e.g. only one saved CCB for error recovery) so it is 1510 * imperitive that we don't violate this assumption. 1511 */ 1512 error = ERESTART; 1513 *action &= ~SSQ_PRINT_SENSE; 1514 } else { 1515 scsi_sense_action err_action; 1516 struct ccb_getdev cgd; 1517 1518 /* 1519 * Grab the inquiry data for this device. 1520 */ 1521 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1522 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1523 xpt_action((union ccb *)&cgd); 1524 1525 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1526 sense_flags); 1527 error = err_action & SS_ERRMASK; 1528 1529 /* 1530 * Do not autostart sequential access devices 1531 * to avoid unexpected tape loading. 1532 */ 1533 if ((err_action & SS_MASK) == SS_START && 1534 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1535 *action_string = "Will not autostart a " 1536 "sequential access device"; 1537 goto sense_error_done; 1538 } 1539 1540 /* 1541 * Avoid recovery recursion if recovery action is the same. 1542 */ 1543 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1544 if (((err_action & SS_MASK) == SS_START && 1545 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1546 ((err_action & SS_MASK) == SS_TUR && 1547 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1548 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1549 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1550 *timeout = 500; 1551 } 1552 } 1553 1554 /* 1555 * If the recovery action will consume a retry, 1556 * make sure we actually have retries available. 1557 */ 1558 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1559 if (ccb->ccb_h.retry_count > 0 && 1560 (periph->flags & CAM_PERIPH_INVALID) == 0) 1561 ccb->ccb_h.retry_count--; 1562 else { 1563 *action_string = "Retries exhausted"; 1564 goto sense_error_done; 1565 } 1566 } 1567 1568 if ((err_action & SS_MASK) >= SS_START) { 1569 /* 1570 * Do common portions of commands that 1571 * use recovery CCBs. 1572 */ 1573 orig_ccb = xpt_alloc_ccb_nowait(); 1574 if (orig_ccb == NULL) { 1575 *action_string = "Can't allocate recovery CCB"; 1576 goto sense_error_done; 1577 } 1578 /* 1579 * Clear freeze flag for original request here, as 1580 * this freeze will be dropped as part of ERESTART. 1581 */ 1582 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1583 bcopy(ccb, orig_ccb, sizeof(*orig_ccb)); 1584 } 1585 1586 switch (err_action & SS_MASK) { 1587 case SS_NOP: 1588 *action_string = "No recovery action needed"; 1589 error = 0; 1590 break; 1591 case SS_RETRY: 1592 *action_string = "Retrying command (per sense data)"; 1593 error = ERESTART; 1594 break; 1595 case SS_FAIL: 1596 *action_string = "Unretryable error"; 1597 break; 1598 case SS_START: 1599 { 1600 int le; 1601 1602 /* 1603 * Send a start unit command to the device, and 1604 * then retry the command. 1605 */ 1606 *action_string = "Attempting to start unit"; 1607 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1608 1609 /* 1610 * Check for removable media and set 1611 * load/eject flag appropriately. 1612 */ 1613 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1614 le = TRUE; 1615 else 1616 le = FALSE; 1617 1618 scsi_start_stop(&ccb->csio, 1619 /*retries*/1, 1620 camperiphdone, 1621 MSG_SIMPLE_Q_TAG, 1622 /*start*/TRUE, 1623 /*load/eject*/le, 1624 /*immediate*/FALSE, 1625 SSD_FULL_SIZE, 1626 /*timeout*/50000); 1627 break; 1628 } 1629 case SS_TUR: 1630 { 1631 /* 1632 * Send a Test Unit Ready to the device. 1633 * If the 'many' flag is set, we send 120 1634 * test unit ready commands, one every half 1635 * second. Otherwise, we just send one TUR. 1636 * We only want to do this if the retry 1637 * count has not been exhausted. 1638 */ 1639 int retries; 1640 1641 if ((err_action & SSQ_MANY) != 0) { 1642 *action_string = "Polling device for readiness"; 1643 retries = 120; 1644 } else { 1645 *action_string = "Testing device for readiness"; 1646 retries = 1; 1647 } 1648 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1649 scsi_test_unit_ready(&ccb->csio, 1650 retries, 1651 camperiphdone, 1652 MSG_SIMPLE_Q_TAG, 1653 SSD_FULL_SIZE, 1654 /*timeout*/5000); 1655 1656 /* 1657 * Accomplish our 500ms delay by deferring 1658 * the release of our device queue appropriately. 1659 */ 1660 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1661 *timeout = 500; 1662 break; 1663 } 1664 default: 1665 panic("Unhandled error action %x", err_action); 1666 } 1667 1668 if ((err_action & SS_MASK) >= SS_START) { 1669 /* 1670 * Drop the priority, so that the recovery 1671 * CCB is the first to execute. Freeze the queue 1672 * after this command is sent so that we can 1673 * restore the old csio and have it queued in 1674 * the proper order before we release normal 1675 * transactions to the device. 1676 */ 1677 ccb->ccb_h.pinfo.priority--; 1678 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1679 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1680 error = ERESTART; 1681 *orig = orig_ccb; 1682 } 1683 1684 sense_error_done: 1685 *action = err_action; 1686 } 1687 return (error); 1688 } 1689 1690 /* 1691 * Generic error handler. Peripheral drivers usually filter 1692 * out the errors that they handle in a unique manner, then 1693 * call this function. 1694 */ 1695 int 1696 cam_periph_error(union ccb *ccb, cam_flags camflags, 1697 u_int32_t sense_flags, union ccb *save_ccb) 1698 { 1699 struct cam_path *newpath; 1700 union ccb *orig_ccb, *scan_ccb; 1701 struct cam_periph *periph; 1702 const char *action_string; 1703 cam_status status; 1704 int frozen, error, openings, devctl_err; 1705 u_int32_t action, relsim_flags, timeout; 1706 1707 action = SSQ_PRINT_SENSE; 1708 periph = xpt_path_periph(ccb->ccb_h.path); 1709 action_string = NULL; 1710 status = ccb->ccb_h.status; 1711 frozen = (status & CAM_DEV_QFRZN) != 0; 1712 status &= CAM_STATUS_MASK; 1713 devctl_err = openings = relsim_flags = timeout = 0; 1714 orig_ccb = ccb; 1715 1716 /* Filter the errors that should be reported via devctl */ 1717 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 1718 case CAM_CMD_TIMEOUT: 1719 case CAM_REQ_ABORTED: 1720 case CAM_REQ_CMP_ERR: 1721 case CAM_REQ_TERMIO: 1722 case CAM_UNREC_HBA_ERROR: 1723 case CAM_DATA_RUN_ERR: 1724 case CAM_SCSI_STATUS_ERROR: 1725 case CAM_ATA_STATUS_ERROR: 1726 case CAM_SMP_STATUS_ERROR: 1727 devctl_err++; 1728 break; 1729 default: 1730 break; 1731 } 1732 1733 switch (status) { 1734 case CAM_REQ_CMP: 1735 error = 0; 1736 action &= ~SSQ_PRINT_SENSE; 1737 break; 1738 case CAM_SCSI_STATUS_ERROR: 1739 error = camperiphscsistatuserror(ccb, &orig_ccb, 1740 camflags, sense_flags, &openings, &relsim_flags, 1741 &timeout, &action, &action_string); 1742 break; 1743 case CAM_AUTOSENSE_FAIL: 1744 error = EIO; /* we have to kill the command */ 1745 break; 1746 case CAM_UA_ABORT: 1747 case CAM_UA_TERMIO: 1748 case CAM_MSG_REJECT_REC: 1749 /* XXX Don't know that these are correct */ 1750 error = EIO; 1751 break; 1752 case CAM_SEL_TIMEOUT: 1753 if ((camflags & CAM_RETRY_SELTO) != 0) { 1754 if (ccb->ccb_h.retry_count > 0 && 1755 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1756 ccb->ccb_h.retry_count--; 1757 error = ERESTART; 1758 1759 /* 1760 * Wait a bit to give the device 1761 * time to recover before we try again. 1762 */ 1763 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1764 timeout = periph_selto_delay; 1765 break; 1766 } 1767 action_string = "Retries exhausted"; 1768 } 1769 /* FALLTHROUGH */ 1770 case CAM_DEV_NOT_THERE: 1771 error = ENXIO; 1772 action = SSQ_LOST; 1773 break; 1774 case CAM_REQ_INVALID: 1775 case CAM_PATH_INVALID: 1776 case CAM_NO_HBA: 1777 case CAM_PROVIDE_FAIL: 1778 case CAM_REQ_TOO_BIG: 1779 case CAM_LUN_INVALID: 1780 case CAM_TID_INVALID: 1781 case CAM_FUNC_NOTAVAIL: 1782 error = EINVAL; 1783 break; 1784 case CAM_SCSI_BUS_RESET: 1785 case CAM_BDR_SENT: 1786 /* 1787 * Commands that repeatedly timeout and cause these 1788 * kinds of error recovery actions, should return 1789 * CAM_CMD_TIMEOUT, which allows us to safely assume 1790 * that this command was an innocent bystander to 1791 * these events and should be unconditionally 1792 * retried. 1793 */ 1794 case CAM_REQUEUE_REQ: 1795 /* Unconditional requeue if device is still there */ 1796 if (periph->flags & CAM_PERIPH_INVALID) { 1797 action_string = "Periph was invalidated"; 1798 error = EIO; 1799 } else if (sense_flags & SF_NO_RETRY) { 1800 error = EIO; 1801 action_string = "Retry was blocked"; 1802 } else { 1803 error = ERESTART; 1804 action &= ~SSQ_PRINT_SENSE; 1805 } 1806 break; 1807 case CAM_RESRC_UNAVAIL: 1808 /* Wait a bit for the resource shortage to abate. */ 1809 timeout = periph_noresrc_delay; 1810 /* FALLTHROUGH */ 1811 case CAM_BUSY: 1812 if (timeout == 0) { 1813 /* Wait a bit for the busy condition to abate. */ 1814 timeout = periph_busy_delay; 1815 } 1816 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1817 /* FALLTHROUGH */ 1818 case CAM_ATA_STATUS_ERROR: 1819 case CAM_REQ_CMP_ERR: 1820 case CAM_CMD_TIMEOUT: 1821 case CAM_UNEXP_BUSFREE: 1822 case CAM_UNCOR_PARITY: 1823 case CAM_DATA_RUN_ERR: 1824 default: 1825 if (periph->flags & CAM_PERIPH_INVALID) { 1826 error = EIO; 1827 action_string = "Periph was invalidated"; 1828 } else if (ccb->ccb_h.retry_count == 0) { 1829 error = EIO; 1830 action_string = "Retries exhausted"; 1831 } else if (sense_flags & SF_NO_RETRY) { 1832 error = EIO; 1833 action_string = "Retry was blocked"; 1834 } else { 1835 ccb->ccb_h.retry_count--; 1836 error = ERESTART; 1837 } 1838 break; 1839 } 1840 1841 if ((sense_flags & SF_PRINT_ALWAYS) || 1842 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 1843 action |= SSQ_PRINT_SENSE; 1844 else if (sense_flags & SF_NO_PRINT) 1845 action &= ~SSQ_PRINT_SENSE; 1846 if ((action & SSQ_PRINT_SENSE) != 0) 1847 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 1848 if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) { 1849 if (error != ERESTART) { 1850 if (action_string == NULL) 1851 action_string = "Unretryable error"; 1852 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 1853 error, action_string); 1854 } else if (action_string != NULL) 1855 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 1856 else 1857 xpt_print(ccb->ccb_h.path, "Retrying command\n"); 1858 } 1859 1860 if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0)) 1861 cam_periph_devctl_notify(orig_ccb); 1862 1863 if ((action & SSQ_LOST) != 0) { 1864 lun_id_t lun_id; 1865 1866 /* 1867 * For a selection timeout, we consider all of the LUNs on 1868 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 1869 * then we only get rid of the device(s) specified by the 1870 * path in the original CCB. 1871 */ 1872 if (status == CAM_SEL_TIMEOUT) 1873 lun_id = CAM_LUN_WILDCARD; 1874 else 1875 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 1876 1877 /* Should we do more if we can't create the path?? */ 1878 if (xpt_create_path(&newpath, periph, 1879 xpt_path_path_id(ccb->ccb_h.path), 1880 xpt_path_target_id(ccb->ccb_h.path), 1881 lun_id) == CAM_REQ_CMP) { 1882 1883 /* 1884 * Let peripheral drivers know that this 1885 * device has gone away. 1886 */ 1887 xpt_async(AC_LOST_DEVICE, newpath, NULL); 1888 xpt_free_path(newpath); 1889 } 1890 } 1891 1892 /* Broadcast UNIT ATTENTIONs to all periphs. */ 1893 if ((action & SSQ_UA) != 0) 1894 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 1895 1896 /* Rescan target on "Reported LUNs data has changed" */ 1897 if ((action & SSQ_RESCAN) != 0) { 1898 if (xpt_create_path(&newpath, NULL, 1899 xpt_path_path_id(ccb->ccb_h.path), 1900 xpt_path_target_id(ccb->ccb_h.path), 1901 CAM_LUN_WILDCARD) == CAM_REQ_CMP) { 1902 1903 scan_ccb = xpt_alloc_ccb_nowait(); 1904 if (scan_ccb != NULL) { 1905 scan_ccb->ccb_h.path = newpath; 1906 scan_ccb->ccb_h.func_code = XPT_SCAN_TGT; 1907 scan_ccb->crcn.flags = 0; 1908 xpt_rescan(scan_ccb); 1909 } else { 1910 xpt_print(newpath, 1911 "Can't allocate CCB to rescan target\n"); 1912 xpt_free_path(newpath); 1913 } 1914 } 1915 } 1916 1917 /* Attempt a retry */ 1918 if (error == ERESTART || error == 0) { 1919 if (frozen != 0) 1920 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1921 if (error == ERESTART) 1922 xpt_action(ccb); 1923 if (frozen != 0) 1924 cam_release_devq(ccb->ccb_h.path, 1925 relsim_flags, 1926 openings, 1927 timeout, 1928 /*getcount_only*/0); 1929 } 1930 1931 return (error); 1932 } 1933 1934 #define CAM_PERIPH_DEVD_MSG_SIZE 256 1935 1936 static void 1937 cam_periph_devctl_notify(union ccb *ccb) 1938 { 1939 struct cam_periph *periph; 1940 struct ccb_getdev *cgd; 1941 struct sbuf sb; 1942 int serr, sk, asc, ascq; 1943 char *sbmsg, *type; 1944 1945 sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT); 1946 if (sbmsg == NULL) 1947 return; 1948 1949 sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN); 1950 1951 periph = xpt_path_periph(ccb->ccb_h.path); 1952 sbuf_printf(&sb, "device=%s%d ", periph->periph_name, 1953 periph->unit_number); 1954 1955 sbuf_printf(&sb, "serial=\""); 1956 if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) { 1957 xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path, 1958 CAM_PRIORITY_NORMAL); 1959 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 1960 xpt_action((union ccb *)cgd); 1961 1962 if (cgd->ccb_h.status == CAM_REQ_CMP) 1963 sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len); 1964 xpt_free_ccb((union ccb *)cgd); 1965 } 1966 sbuf_printf(&sb, "\" "); 1967 sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status); 1968 1969 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 1970 case CAM_CMD_TIMEOUT: 1971 sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout); 1972 type = "timeout"; 1973 break; 1974 case CAM_SCSI_STATUS_ERROR: 1975 sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status); 1976 if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq)) 1977 sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ", 1978 serr, sk, asc, ascq); 1979 type = "error"; 1980 break; 1981 case CAM_ATA_STATUS_ERROR: 1982 sbuf_printf(&sb, "RES=\""); 1983 ata_res_sbuf(&ccb->ataio.res, &sb); 1984 sbuf_printf(&sb, "\" "); 1985 type = "error"; 1986 break; 1987 default: 1988 type = "error"; 1989 break; 1990 } 1991 1992 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1993 sbuf_printf(&sb, "CDB=\""); 1994 scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb); 1995 sbuf_printf(&sb, "\" "); 1996 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1997 sbuf_printf(&sb, "ACB=\""); 1998 ata_cmd_sbuf(&ccb->ataio.cmd, &sb); 1999 sbuf_printf(&sb, "\" "); 2000 } 2001 2002 if (sbuf_finish(&sb) == 0) 2003 devctl_notify("CAM", "periph", type, sbuf_data(&sb)); 2004 sbuf_delete(&sb); 2005 free(sbmsg, M_CAMPERIPH); 2006 } 2007 2008