1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/types.h> 38 #include <sys/malloc.h> 39 #include <sys/kernel.h> 40 #include <sys/bio.h> 41 #include <sys/conf.h> 42 #include <sys/lock.h> 43 #include <sys/mutex.h> 44 #include <sys/buf.h> 45 #include <sys/proc.h> 46 #include <sys/devicestat.h> 47 #include <sys/bus.h> 48 #include <sys/sbuf.h> 49 #include <vm/vm.h> 50 #include <vm/vm_extern.h> 51 52 #include <cam/cam.h> 53 #include <cam/cam_ccb.h> 54 #include <cam/cam_queue.h> 55 #include <cam/cam_xpt_periph.h> 56 #include <cam/cam_periph.h> 57 #include <cam/cam_debug.h> 58 #include <cam/cam_sim.h> 59 60 #include <cam/scsi/scsi_all.h> 61 #include <cam/scsi/scsi_message.h> 62 #include <cam/scsi/scsi_pass.h> 63 64 static u_int camperiphnextunit(struct periph_driver *p_drv, 65 u_int newunit, int wired, 66 path_id_t pathid, target_id_t target, 67 lun_id_t lun); 68 static u_int camperiphunit(struct periph_driver *p_drv, 69 path_id_t pathid, target_id_t target, 70 lun_id_t lun); 71 static void camperiphdone(struct cam_periph *periph, 72 union ccb *done_ccb); 73 static void camperiphfree(struct cam_periph *periph); 74 static int camperiphscsistatuserror(union ccb *ccb, 75 union ccb **orig_ccb, 76 cam_flags camflags, 77 u_int32_t sense_flags, 78 int *openings, 79 u_int32_t *relsim_flags, 80 u_int32_t *timeout, 81 u_int32_t *action, 82 const char **action_string); 83 static int camperiphscsisenseerror(union ccb *ccb, 84 union ccb **orig_ccb, 85 cam_flags camflags, 86 u_int32_t sense_flags, 87 int *openings, 88 u_int32_t *relsim_flags, 89 u_int32_t *timeout, 90 u_int32_t *action, 91 const char **action_string); 92 static void cam_periph_devctl_notify(union ccb *ccb); 93 94 static int nperiph_drivers; 95 static int initialized = 0; 96 struct periph_driver **periph_drivers; 97 98 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 99 100 static int periph_selto_delay = 1000; 101 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 102 static int periph_noresrc_delay = 500; 103 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 104 static int periph_busy_delay = 500; 105 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 106 107 108 void 109 periphdriver_register(void *data) 110 { 111 struct periph_driver *drv = (struct periph_driver *)data; 112 struct periph_driver **newdrivers, **old; 113 int ndrivers; 114 115 again: 116 ndrivers = nperiph_drivers + 2; 117 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 118 M_WAITOK); 119 xpt_lock_buses(); 120 if (ndrivers != nperiph_drivers + 2) { 121 /* 122 * Lost race against itself; go around. 123 */ 124 xpt_unlock_buses(); 125 free(newdrivers, M_CAMPERIPH); 126 goto again; 127 } 128 if (periph_drivers) 129 bcopy(periph_drivers, newdrivers, 130 sizeof(*newdrivers) * nperiph_drivers); 131 newdrivers[nperiph_drivers] = drv; 132 newdrivers[nperiph_drivers + 1] = NULL; 133 old = periph_drivers; 134 periph_drivers = newdrivers; 135 nperiph_drivers++; 136 xpt_unlock_buses(); 137 if (old) 138 free(old, M_CAMPERIPH); 139 /* If driver marked as early or it is late now, initialize it. */ 140 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 141 initialized > 1) 142 (*drv->init)(); 143 } 144 145 int 146 periphdriver_unregister(void *data) 147 { 148 struct periph_driver *drv = (struct periph_driver *)data; 149 int error, n; 150 151 /* If driver marked as early or it is late now, deinitialize it. */ 152 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 153 initialized > 1) { 154 if (drv->deinit == NULL) { 155 printf("CAM periph driver '%s' doesn't have deinit.\n", 156 drv->driver_name); 157 return (EOPNOTSUPP); 158 } 159 error = drv->deinit(); 160 if (error != 0) 161 return (error); 162 } 163 164 xpt_lock_buses(); 165 for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++) 166 ; 167 KASSERT(n < nperiph_drivers, 168 ("Periph driver '%s' was not registered", drv->driver_name)); 169 for (; n + 1 < nperiph_drivers; n++) 170 periph_drivers[n] = periph_drivers[n + 1]; 171 periph_drivers[n + 1] = NULL; 172 nperiph_drivers--; 173 xpt_unlock_buses(); 174 return (0); 175 } 176 177 void 178 periphdriver_init(int level) 179 { 180 int i, early; 181 182 initialized = max(initialized, level); 183 for (i = 0; periph_drivers[i] != NULL; i++) { 184 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 185 if (early == initialized) 186 (*periph_drivers[i]->init)(); 187 } 188 } 189 190 cam_status 191 cam_periph_alloc(periph_ctor_t *periph_ctor, 192 periph_oninv_t *periph_oninvalidate, 193 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 194 char *name, cam_periph_type type, struct cam_path *path, 195 ac_callback_t *ac_callback, ac_code code, void *arg) 196 { 197 struct periph_driver **p_drv; 198 struct cam_sim *sim; 199 struct cam_periph *periph; 200 struct cam_periph *cur_periph; 201 path_id_t path_id; 202 target_id_t target_id; 203 lun_id_t lun_id; 204 cam_status status; 205 u_int init_level; 206 207 init_level = 0; 208 /* 209 * Handle Hot-Plug scenarios. If there is already a peripheral 210 * of our type assigned to this path, we are likely waiting for 211 * final close on an old, invalidated, peripheral. If this is 212 * the case, queue up a deferred call to the peripheral's async 213 * handler. If it looks like a mistaken re-allocation, complain. 214 */ 215 if ((periph = cam_periph_find(path, name)) != NULL) { 216 217 if ((periph->flags & CAM_PERIPH_INVALID) != 0 218 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 219 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 220 periph->deferred_callback = ac_callback; 221 periph->deferred_ac = code; 222 return (CAM_REQ_INPROG); 223 } else { 224 printf("cam_periph_alloc: attempt to re-allocate " 225 "valid device %s%d rejected flags %#x " 226 "refcount %d\n", periph->periph_name, 227 periph->unit_number, periph->flags, 228 periph->refcount); 229 } 230 return (CAM_REQ_INVALID); 231 } 232 233 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 234 M_NOWAIT|M_ZERO); 235 236 if (periph == NULL) 237 return (CAM_RESRC_UNAVAIL); 238 239 init_level++; 240 241 242 sim = xpt_path_sim(path); 243 path_id = xpt_path_path_id(path); 244 target_id = xpt_path_target_id(path); 245 lun_id = xpt_path_lun_id(path); 246 periph->periph_start = periph_start; 247 periph->periph_dtor = periph_dtor; 248 periph->periph_oninval = periph_oninvalidate; 249 periph->type = type; 250 periph->periph_name = name; 251 periph->scheduled_priority = CAM_PRIORITY_NONE; 252 periph->immediate_priority = CAM_PRIORITY_NONE; 253 periph->refcount = 1; /* Dropped by invalidation. */ 254 periph->sim = sim; 255 SLIST_INIT(&periph->ccb_list); 256 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 257 if (status != CAM_REQ_CMP) 258 goto failure; 259 periph->path = path; 260 261 xpt_lock_buses(); 262 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 263 if (strcmp((*p_drv)->driver_name, name) == 0) 264 break; 265 } 266 if (*p_drv == NULL) { 267 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 268 xpt_unlock_buses(); 269 xpt_free_path(periph->path); 270 free(periph, M_CAMPERIPH); 271 return (CAM_REQ_INVALID); 272 } 273 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); 274 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 275 while (cur_periph != NULL 276 && cur_periph->unit_number < periph->unit_number) 277 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 278 if (cur_periph != NULL) { 279 KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list")); 280 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 281 } else { 282 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 283 (*p_drv)->generation++; 284 } 285 xpt_unlock_buses(); 286 287 init_level++; 288 289 status = xpt_add_periph(periph); 290 if (status != CAM_REQ_CMP) 291 goto failure; 292 293 init_level++; 294 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 295 296 status = periph_ctor(periph, arg); 297 298 if (status == CAM_REQ_CMP) 299 init_level++; 300 301 failure: 302 switch (init_level) { 303 case 4: 304 /* Initialized successfully */ 305 break; 306 case 3: 307 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 308 xpt_remove_periph(periph); 309 /* FALLTHROUGH */ 310 case 2: 311 xpt_lock_buses(); 312 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 313 xpt_unlock_buses(); 314 xpt_free_path(periph->path); 315 /* FALLTHROUGH */ 316 case 1: 317 free(periph, M_CAMPERIPH); 318 /* FALLTHROUGH */ 319 case 0: 320 /* No cleanup to perform. */ 321 break; 322 default: 323 panic("%s: Unknown init level", __func__); 324 } 325 return(status); 326 } 327 328 /* 329 * Find a peripheral structure with the specified path, target, lun, 330 * and (optionally) type. If the name is NULL, this function will return 331 * the first peripheral driver that matches the specified path. 332 */ 333 struct cam_periph * 334 cam_periph_find(struct cam_path *path, char *name) 335 { 336 struct periph_driver **p_drv; 337 struct cam_periph *periph; 338 339 xpt_lock_buses(); 340 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 341 342 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 343 continue; 344 345 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 346 if (xpt_path_comp(periph->path, path) == 0) { 347 xpt_unlock_buses(); 348 cam_periph_assert(periph, MA_OWNED); 349 return(periph); 350 } 351 } 352 if (name != NULL) { 353 xpt_unlock_buses(); 354 return(NULL); 355 } 356 } 357 xpt_unlock_buses(); 358 return(NULL); 359 } 360 361 /* 362 * Find peripheral driver instances attached to the specified path. 363 */ 364 int 365 cam_periph_list(struct cam_path *path, struct sbuf *sb) 366 { 367 struct sbuf local_sb; 368 struct periph_driver **p_drv; 369 struct cam_periph *periph; 370 int count; 371 int sbuf_alloc_len; 372 373 sbuf_alloc_len = 16; 374 retry: 375 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 376 count = 0; 377 xpt_lock_buses(); 378 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 379 380 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 381 if (xpt_path_comp(periph->path, path) != 0) 382 continue; 383 384 if (sbuf_len(&local_sb) != 0) 385 sbuf_cat(&local_sb, ","); 386 387 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 388 periph->unit_number); 389 390 if (sbuf_error(&local_sb) == ENOMEM) { 391 sbuf_alloc_len *= 2; 392 xpt_unlock_buses(); 393 sbuf_delete(&local_sb); 394 goto retry; 395 } 396 count++; 397 } 398 } 399 xpt_unlock_buses(); 400 sbuf_finish(&local_sb); 401 sbuf_cpy(sb, sbuf_data(&local_sb)); 402 sbuf_delete(&local_sb); 403 return (count); 404 } 405 406 int 407 cam_periph_acquire(struct cam_periph *periph) 408 { 409 int status; 410 411 if (periph == NULL) 412 return (EINVAL); 413 414 status = ENOENT; 415 xpt_lock_buses(); 416 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 417 periph->refcount++; 418 status = 0; 419 } 420 xpt_unlock_buses(); 421 422 return (status); 423 } 424 425 void 426 cam_periph_doacquire(struct cam_periph *periph) 427 { 428 429 xpt_lock_buses(); 430 KASSERT(periph->refcount >= 1, 431 ("cam_periph_doacquire() with refcount == %d", periph->refcount)); 432 periph->refcount++; 433 xpt_unlock_buses(); 434 } 435 436 void 437 cam_periph_release_locked_buses(struct cam_periph *periph) 438 { 439 440 cam_periph_assert(periph, MA_OWNED); 441 KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); 442 if (--periph->refcount == 0) 443 camperiphfree(periph); 444 } 445 446 void 447 cam_periph_release_locked(struct cam_periph *periph) 448 { 449 450 if (periph == NULL) 451 return; 452 453 xpt_lock_buses(); 454 cam_periph_release_locked_buses(periph); 455 xpt_unlock_buses(); 456 } 457 458 void 459 cam_periph_release(struct cam_periph *periph) 460 { 461 struct mtx *mtx; 462 463 if (periph == NULL) 464 return; 465 466 cam_periph_assert(periph, MA_NOTOWNED); 467 mtx = cam_periph_mtx(periph); 468 mtx_lock(mtx); 469 cam_periph_release_locked(periph); 470 mtx_unlock(mtx); 471 } 472 473 int 474 cam_periph_hold(struct cam_periph *periph, int priority) 475 { 476 int error; 477 478 /* 479 * Increment the reference count on the peripheral 480 * while we wait for our lock attempt to succeed 481 * to ensure the peripheral doesn't disappear out 482 * from user us while we sleep. 483 */ 484 485 if (cam_periph_acquire(periph) != 0) 486 return (ENXIO); 487 488 cam_periph_assert(periph, MA_OWNED); 489 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 490 periph->flags |= CAM_PERIPH_LOCK_WANTED; 491 if ((error = cam_periph_sleep(periph, periph, priority, 492 "caplck", 0)) != 0) { 493 cam_periph_release_locked(periph); 494 return (error); 495 } 496 if (periph->flags & CAM_PERIPH_INVALID) { 497 cam_periph_release_locked(periph); 498 return (ENXIO); 499 } 500 } 501 502 periph->flags |= CAM_PERIPH_LOCKED; 503 return (0); 504 } 505 506 void 507 cam_periph_unhold(struct cam_periph *periph) 508 { 509 510 cam_periph_assert(periph, MA_OWNED); 511 512 periph->flags &= ~CAM_PERIPH_LOCKED; 513 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 514 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 515 wakeup(periph); 516 } 517 518 cam_periph_release_locked(periph); 519 } 520 521 /* 522 * Look for the next unit number that is not currently in use for this 523 * peripheral type starting at "newunit". Also exclude unit numbers that 524 * are reserved by for future "hardwiring" unless we already know that this 525 * is a potential wired device. Only assume that the device is "wired" the 526 * first time through the loop since after that we'll be looking at unit 527 * numbers that did not match a wiring entry. 528 */ 529 static u_int 530 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, 531 path_id_t pathid, target_id_t target, lun_id_t lun) 532 { 533 struct cam_periph *periph; 534 char *periph_name; 535 int i, val, dunit, r; 536 const char *dname, *strval; 537 538 periph_name = p_drv->driver_name; 539 for (;;newunit++) { 540 541 for (periph = TAILQ_FIRST(&p_drv->units); 542 periph != NULL && periph->unit_number != newunit; 543 periph = TAILQ_NEXT(periph, unit_links)) 544 ; 545 546 if (periph != NULL && periph->unit_number == newunit) { 547 if (wired != 0) { 548 xpt_print(periph->path, "Duplicate Wired " 549 "Device entry!\n"); 550 xpt_print(periph->path, "Second device (%s " 551 "device at scbus%d target %d lun %d) will " 552 "not be wired\n", periph_name, pathid, 553 target, lun); 554 wired = 0; 555 } 556 continue; 557 } 558 if (wired) 559 break; 560 561 /* 562 * Don't match entries like "da 4" as a wired down 563 * device, but do match entries like "da 4 target 5" 564 * or even "da 4 scbus 1". 565 */ 566 i = 0; 567 dname = periph_name; 568 for (;;) { 569 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 570 if (r != 0) 571 break; 572 /* if no "target" and no specific scbus, skip */ 573 if (resource_int_value(dname, dunit, "target", &val) && 574 (resource_string_value(dname, dunit, "at",&strval)|| 575 strcmp(strval, "scbus") == 0)) 576 continue; 577 if (newunit == dunit) 578 break; 579 } 580 if (r != 0) 581 break; 582 } 583 return (newunit); 584 } 585 586 static u_int 587 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 588 target_id_t target, lun_id_t lun) 589 { 590 u_int unit; 591 int wired, i, val, dunit; 592 const char *dname, *strval; 593 char pathbuf[32], *periph_name; 594 595 periph_name = p_drv->driver_name; 596 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 597 unit = 0; 598 i = 0; 599 dname = periph_name; 600 for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 601 wired = 0) { 602 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 603 if (strcmp(strval, pathbuf) != 0) 604 continue; 605 wired++; 606 } 607 if (resource_int_value(dname, dunit, "target", &val) == 0) { 608 if (val != target) 609 continue; 610 wired++; 611 } 612 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 613 if (val != lun) 614 continue; 615 wired++; 616 } 617 if (wired != 0) { 618 unit = dunit; 619 break; 620 } 621 } 622 623 /* 624 * Either start from 0 looking for the next unit or from 625 * the unit number given in the resource config. This way, 626 * if we have wildcard matches, we don't return the same 627 * unit number twice. 628 */ 629 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 630 631 return (unit); 632 } 633 634 void 635 cam_periph_invalidate(struct cam_periph *periph) 636 { 637 638 cam_periph_assert(periph, MA_OWNED); 639 /* 640 * We only call this routine the first time a peripheral is 641 * invalidated. 642 */ 643 if ((periph->flags & CAM_PERIPH_INVALID) != 0) 644 return; 645 646 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 647 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) { 648 struct sbuf sb; 649 char buffer[160]; 650 651 sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN); 652 xpt_denounce_periph_sbuf(periph, &sb); 653 sbuf_finish(&sb); 654 sbuf_putbuf(&sb); 655 } 656 periph->flags |= CAM_PERIPH_INVALID; 657 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 658 if (periph->periph_oninval != NULL) 659 periph->periph_oninval(periph); 660 cam_periph_release_locked(periph); 661 } 662 663 static void 664 camperiphfree(struct cam_periph *periph) 665 { 666 struct periph_driver **p_drv; 667 struct periph_driver *drv; 668 669 cam_periph_assert(periph, MA_OWNED); 670 KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating", 671 periph->periph_name, periph->unit_number)); 672 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 673 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 674 break; 675 } 676 if (*p_drv == NULL) { 677 printf("camperiphfree: attempt to free non-existant periph\n"); 678 return; 679 } 680 /* 681 * Cache a pointer to the periph_driver structure. If a 682 * periph_driver is added or removed from the array (see 683 * periphdriver_register()) while we drop the toplogy lock 684 * below, p_drv may change. This doesn't protect against this 685 * particular periph_driver going away. That will require full 686 * reference counting in the periph_driver infrastructure. 687 */ 688 drv = *p_drv; 689 690 /* 691 * We need to set this flag before dropping the topology lock, to 692 * let anyone who is traversing the list that this peripheral is 693 * about to be freed, and there will be no more reference count 694 * checks. 695 */ 696 periph->flags |= CAM_PERIPH_FREE; 697 698 /* 699 * The peripheral destructor semantics dictate calling with only the 700 * SIM mutex held. Since it might sleep, it should not be called 701 * with the topology lock held. 702 */ 703 xpt_unlock_buses(); 704 705 /* 706 * We need to call the peripheral destructor prior to removing the 707 * peripheral from the list. Otherwise, we risk running into a 708 * scenario where the peripheral unit number may get reused 709 * (because it has been removed from the list), but some resources 710 * used by the peripheral are still hanging around. In particular, 711 * the devfs nodes used by some peripherals like the pass(4) driver 712 * aren't fully cleaned up until the destructor is run. If the 713 * unit number is reused before the devfs instance is fully gone, 714 * devfs will panic. 715 */ 716 if (periph->periph_dtor != NULL) 717 periph->periph_dtor(periph); 718 719 /* 720 * The peripheral list is protected by the topology lock. 721 */ 722 xpt_lock_buses(); 723 724 TAILQ_REMOVE(&drv->units, periph, unit_links); 725 drv->generation++; 726 727 xpt_remove_periph(periph); 728 729 xpt_unlock_buses(); 730 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) 731 xpt_print(periph->path, "Periph destroyed\n"); 732 else 733 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 734 735 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 736 union ccb ccb; 737 void *arg; 738 739 switch (periph->deferred_ac) { 740 case AC_FOUND_DEVICE: 741 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 742 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 743 xpt_action(&ccb); 744 arg = &ccb; 745 break; 746 case AC_PATH_REGISTERED: 747 xpt_path_inq(&ccb.cpi, periph->path); 748 arg = &ccb; 749 break; 750 default: 751 arg = NULL; 752 break; 753 } 754 periph->deferred_callback(NULL, periph->deferred_ac, 755 periph->path, arg); 756 } 757 xpt_free_path(periph->path); 758 free(periph, M_CAMPERIPH); 759 xpt_lock_buses(); 760 } 761 762 /* 763 * Map user virtual pointers into kernel virtual address space, so we can 764 * access the memory. This is now a generic function that centralizes most 765 * of the sanity checks on the data flags, if any. 766 * This also only works for up to MAXPHYS memory. Since we use 767 * buffers to map stuff in and out, we're limited to the buffer size. 768 */ 769 int 770 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo, 771 u_int maxmap) 772 { 773 int numbufs, i, j; 774 int flags[CAM_PERIPH_MAXMAPS]; 775 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 776 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 777 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 778 779 if (maxmap == 0) 780 maxmap = DFLTPHYS; /* traditional default */ 781 else if (maxmap > MAXPHYS) 782 maxmap = MAXPHYS; /* for safety */ 783 switch(ccb->ccb_h.func_code) { 784 case XPT_DEV_MATCH: 785 if (ccb->cdm.match_buf_len == 0) { 786 printf("cam_periph_mapmem: invalid match buffer " 787 "length 0\n"); 788 return(EINVAL); 789 } 790 if (ccb->cdm.pattern_buf_len > 0) { 791 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 792 lengths[0] = ccb->cdm.pattern_buf_len; 793 dirs[0] = CAM_DIR_OUT; 794 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 795 lengths[1] = ccb->cdm.match_buf_len; 796 dirs[1] = CAM_DIR_IN; 797 numbufs = 2; 798 } else { 799 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 800 lengths[0] = ccb->cdm.match_buf_len; 801 dirs[0] = CAM_DIR_IN; 802 numbufs = 1; 803 } 804 /* 805 * This request will not go to the hardware, no reason 806 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 807 */ 808 maxmap = MAXPHYS; 809 break; 810 case XPT_SCSI_IO: 811 case XPT_CONT_TARGET_IO: 812 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 813 return(0); 814 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 815 return (EINVAL); 816 data_ptrs[0] = &ccb->csio.data_ptr; 817 lengths[0] = ccb->csio.dxfer_len; 818 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 819 numbufs = 1; 820 break; 821 case XPT_ATA_IO: 822 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 823 return(0); 824 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 825 return (EINVAL); 826 data_ptrs[0] = &ccb->ataio.data_ptr; 827 lengths[0] = ccb->ataio.dxfer_len; 828 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 829 numbufs = 1; 830 break; 831 case XPT_MMC_IO: 832 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 833 return(0); 834 /* Two mappings: one for cmd->data and one for cmd->data->data */ 835 data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data; 836 lengths[0] = sizeof(struct mmc_data *); 837 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 838 data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data; 839 lengths[1] = ccb->mmcio.cmd.data->len; 840 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 841 numbufs = 2; 842 break; 843 case XPT_SMP_IO: 844 data_ptrs[0] = &ccb->smpio.smp_request; 845 lengths[0] = ccb->smpio.smp_request_len; 846 dirs[0] = CAM_DIR_OUT; 847 data_ptrs[1] = &ccb->smpio.smp_response; 848 lengths[1] = ccb->smpio.smp_response_len; 849 dirs[1] = CAM_DIR_IN; 850 numbufs = 2; 851 break; 852 case XPT_NVME_IO: 853 case XPT_NVME_ADMIN: 854 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 855 return (0); 856 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 857 return (EINVAL); 858 data_ptrs[0] = &ccb->nvmeio.data_ptr; 859 lengths[0] = ccb->nvmeio.dxfer_len; 860 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 861 numbufs = 1; 862 break; 863 case XPT_DEV_ADVINFO: 864 if (ccb->cdai.bufsiz == 0) 865 return (0); 866 867 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 868 lengths[0] = ccb->cdai.bufsiz; 869 dirs[0] = CAM_DIR_IN; 870 numbufs = 1; 871 872 /* 873 * This request will not go to the hardware, no reason 874 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 875 */ 876 maxmap = MAXPHYS; 877 break; 878 default: 879 return(EINVAL); 880 break; /* NOTREACHED */ 881 } 882 883 /* 884 * Check the transfer length and permissions first, so we don't 885 * have to unmap any previously mapped buffers. 886 */ 887 for (i = 0; i < numbufs; i++) { 888 889 flags[i] = 0; 890 891 /* 892 * The userland data pointer passed in may not be page 893 * aligned. vmapbuf() truncates the address to a page 894 * boundary, so if the address isn't page aligned, we'll 895 * need enough space for the given transfer length, plus 896 * whatever extra space is necessary to make it to the page 897 * boundary. 898 */ 899 if ((lengths[i] + 900 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){ 901 printf("cam_periph_mapmem: attempt to map %lu bytes, " 902 "which is greater than %lu\n", 903 (long)(lengths[i] + 904 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)), 905 (u_long)maxmap); 906 return(E2BIG); 907 } 908 909 if (dirs[i] & CAM_DIR_OUT) { 910 flags[i] = BIO_WRITE; 911 } 912 913 if (dirs[i] & CAM_DIR_IN) { 914 flags[i] = BIO_READ; 915 } 916 917 } 918 919 /* 920 * This keeps the kernel stack of current thread from getting 921 * swapped. In low-memory situations where the kernel stack might 922 * otherwise get swapped out, this holds it and allows the thread 923 * to make progress and release the kernel mapped pages sooner. 924 * 925 * XXX KDM should I use P_NOSWAP instead? 926 */ 927 PHOLD(curproc); 928 929 for (i = 0; i < numbufs; i++) { 930 /* 931 * Get the buffer. 932 */ 933 mapinfo->bp[i] = getpbuf(NULL); 934 935 /* put our pointer in the data slot */ 936 mapinfo->bp[i]->b_data = *data_ptrs[i]; 937 938 /* save the user's data address */ 939 mapinfo->bp[i]->b_caller1 = *data_ptrs[i]; 940 941 /* set the transfer length, we know it's < MAXPHYS */ 942 mapinfo->bp[i]->b_bufsize = lengths[i]; 943 944 /* set the direction */ 945 mapinfo->bp[i]->b_iocmd = flags[i]; 946 947 /* 948 * Map the buffer into kernel memory. 949 * 950 * Note that useracc() alone is not a sufficient test. 951 * vmapbuf() can still fail due to a smaller file mapped 952 * into a larger area of VM, or if userland races against 953 * vmapbuf() after the useracc() check. 954 */ 955 if (vmapbuf(mapinfo->bp[i], 1) < 0) { 956 for (j = 0; j < i; ++j) { 957 *data_ptrs[j] = mapinfo->bp[j]->b_caller1; 958 vunmapbuf(mapinfo->bp[j]); 959 relpbuf(mapinfo->bp[j], NULL); 960 } 961 relpbuf(mapinfo->bp[i], NULL); 962 PRELE(curproc); 963 return(EACCES); 964 } 965 966 /* set our pointer to the new mapped area */ 967 *data_ptrs[i] = mapinfo->bp[i]->b_data; 968 969 mapinfo->num_bufs_used++; 970 } 971 972 /* 973 * Now that we've gotten this far, change ownership to the kernel 974 * of the buffers so that we don't run afoul of returning to user 975 * space with locks (on the buffer) held. 976 */ 977 for (i = 0; i < numbufs; i++) { 978 BUF_KERNPROC(mapinfo->bp[i]); 979 } 980 981 982 return(0); 983 } 984 985 /* 986 * Unmap memory segments mapped into kernel virtual address space by 987 * cam_periph_mapmem(). 988 */ 989 void 990 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 991 { 992 int numbufs, i; 993 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 994 995 if (mapinfo->num_bufs_used <= 0) { 996 /* nothing to free and the process wasn't held. */ 997 return; 998 } 999 1000 switch (ccb->ccb_h.func_code) { 1001 case XPT_DEV_MATCH: 1002 numbufs = min(mapinfo->num_bufs_used, 2); 1003 1004 if (numbufs == 1) { 1005 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1006 } else { 1007 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1008 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1009 } 1010 break; 1011 case XPT_SCSI_IO: 1012 case XPT_CONT_TARGET_IO: 1013 data_ptrs[0] = &ccb->csio.data_ptr; 1014 numbufs = min(mapinfo->num_bufs_used, 1); 1015 break; 1016 case XPT_ATA_IO: 1017 data_ptrs[0] = &ccb->ataio.data_ptr; 1018 numbufs = min(mapinfo->num_bufs_used, 1); 1019 break; 1020 case XPT_SMP_IO: 1021 numbufs = min(mapinfo->num_bufs_used, 2); 1022 data_ptrs[0] = &ccb->smpio.smp_request; 1023 data_ptrs[1] = &ccb->smpio.smp_response; 1024 break; 1025 case XPT_DEV_ADVINFO: 1026 numbufs = min(mapinfo->num_bufs_used, 1); 1027 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1028 break; 1029 case XPT_NVME_IO: 1030 case XPT_NVME_ADMIN: 1031 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1032 numbufs = min(mapinfo->num_bufs_used, 1); 1033 break; 1034 default: 1035 /* allow ourselves to be swapped once again */ 1036 PRELE(curproc); 1037 return; 1038 break; /* NOTREACHED */ 1039 } 1040 1041 for (i = 0; i < numbufs; i++) { 1042 /* Set the user's pointer back to the original value */ 1043 *data_ptrs[i] = mapinfo->bp[i]->b_caller1; 1044 1045 /* unmap the buffer */ 1046 vunmapbuf(mapinfo->bp[i]); 1047 1048 /* release the buffer */ 1049 relpbuf(mapinfo->bp[i], NULL); 1050 } 1051 1052 /* allow ourselves to be swapped once again */ 1053 PRELE(curproc); 1054 } 1055 1056 int 1057 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 1058 int (*error_routine)(union ccb *ccb, 1059 cam_flags camflags, 1060 u_int32_t sense_flags)) 1061 { 1062 union ccb *ccb; 1063 int error; 1064 int found; 1065 1066 error = found = 0; 1067 1068 switch(cmd){ 1069 case CAMGETPASSTHRU: 1070 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 1071 xpt_setup_ccb(&ccb->ccb_h, 1072 ccb->ccb_h.path, 1073 CAM_PRIORITY_NORMAL); 1074 ccb->ccb_h.func_code = XPT_GDEVLIST; 1075 1076 /* 1077 * Basically, the point of this is that we go through 1078 * getting the list of devices, until we find a passthrough 1079 * device. In the current version of the CAM code, the 1080 * only way to determine what type of device we're dealing 1081 * with is by its name. 1082 */ 1083 while (found == 0) { 1084 ccb->cgdl.index = 0; 1085 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1086 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1087 1088 /* we want the next device in the list */ 1089 xpt_action(ccb); 1090 if (strncmp(ccb->cgdl.periph_name, 1091 "pass", 4) == 0){ 1092 found = 1; 1093 break; 1094 } 1095 } 1096 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1097 (found == 0)) { 1098 ccb->cgdl.periph_name[0] = '\0'; 1099 ccb->cgdl.unit_number = 0; 1100 break; 1101 } 1102 } 1103 1104 /* copy the result back out */ 1105 bcopy(ccb, addr, sizeof(union ccb)); 1106 1107 /* and release the ccb */ 1108 xpt_release_ccb(ccb); 1109 1110 break; 1111 default: 1112 error = ENOTTY; 1113 break; 1114 } 1115 return(error); 1116 } 1117 1118 static void 1119 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb) 1120 { 1121 1122 panic("%s: already done with ccb %p", __func__, done_ccb); 1123 } 1124 1125 static void 1126 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb) 1127 { 1128 1129 /* Caller will release the CCB */ 1130 xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED); 1131 done_ccb->ccb_h.cbfcnp = cam_periph_done_panic; 1132 wakeup(&done_ccb->ccb_h.cbfcnp); 1133 } 1134 1135 static void 1136 cam_periph_ccbwait(union ccb *ccb) 1137 { 1138 1139 if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 1140 while (ccb->ccb_h.cbfcnp != cam_periph_done_panic) 1141 xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, 1142 PRIBIO, "cbwait", 0); 1143 } 1144 KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && 1145 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG, 1146 ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, " 1147 "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code, 1148 ccb->ccb_h.status, ccb->ccb_h.pinfo.index)); 1149 } 1150 1151 int 1152 cam_periph_runccb(union ccb *ccb, 1153 int (*error_routine)(union ccb *ccb, 1154 cam_flags camflags, 1155 u_int32_t sense_flags), 1156 cam_flags camflags, u_int32_t sense_flags, 1157 struct devstat *ds) 1158 { 1159 struct bintime *starttime; 1160 struct bintime ltime; 1161 int error; 1162 bool must_poll; 1163 uint32_t timeout = 1; 1164 1165 starttime = NULL; 1166 xpt_path_assert(ccb->ccb_h.path, MA_OWNED); 1167 KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0, 1168 ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb, 1169 ccb->ccb_h.func_code, ccb->ccb_h.flags)); 1170 1171 /* 1172 * If the user has supplied a stats structure, and if we understand 1173 * this particular type of ccb, record the transaction start. 1174 */ 1175 if (ds != NULL && 1176 (ccb->ccb_h.func_code == XPT_SCSI_IO || 1177 ccb->ccb_h.func_code == XPT_ATA_IO || 1178 ccb->ccb_h.func_code == XPT_NVME_IO)) { 1179 starttime = <ime; 1180 binuptime(starttime); 1181 devstat_start_transaction(ds, starttime); 1182 } 1183 1184 /* 1185 * We must poll the I/O while we're dumping. The scheduler is normally 1186 * stopped for dumping, except when we call doadump from ddb. While the 1187 * scheduler is running in this case, we still need to poll the I/O to 1188 * avoid sleeping waiting for the ccb to complete. 1189 * 1190 * A panic triggered dump stops the scheduler, any callback from the 1191 * shutdown_post_sync event will run with the scheduler stopped, but 1192 * before we're officially dumping. To avoid hanging in adashutdown 1193 * initiated commands (or other similar situations), we have to test for 1194 * either SCHEDULER_STOPPED() here as well. 1195 * 1196 * To avoid locking problems, dumping/polling callers must call 1197 * without a periph lock held. 1198 */ 1199 must_poll = dumping || SCHEDULER_STOPPED(); 1200 ccb->ccb_h.cbfcnp = cam_periph_done; 1201 1202 /* 1203 * If we're polling, then we need to ensure that we have ample resources 1204 * in the periph. 1205 * cam_periph_error can reschedule the ccb by calling xpt_action and returning 1206 * ERESTART, so we have to effect the polling in the do loop below. 1207 */ 1208 if (must_poll) { 1209 timeout = xpt_poll_setup(ccb); 1210 } 1211 1212 if (timeout == 0) { 1213 ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 1214 error = EBUSY; 1215 } else { 1216 xpt_action(ccb); 1217 do { 1218 if (must_poll) { 1219 xpt_pollwait(ccb, timeout); 1220 timeout = ccb->ccb_h.timeout * 10; 1221 } else { 1222 cam_periph_ccbwait(ccb); 1223 } 1224 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1225 error = 0; 1226 else if (error_routine != NULL) { 1227 ccb->ccb_h.cbfcnp = cam_periph_done; 1228 error = (*error_routine)(ccb, camflags, sense_flags); 1229 } else 1230 error = 0; 1231 } while (error == ERESTART); 1232 } 1233 1234 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1235 cam_release_devq(ccb->ccb_h.path, 1236 /* relsim_flags */0, 1237 /* openings */0, 1238 /* timeout */0, 1239 /* getcount_only */ FALSE); 1240 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1241 } 1242 1243 if (ds != NULL) { 1244 uint32_t bytes; 1245 devstat_tag_type tag; 1246 bool valid = true; 1247 1248 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1249 bytes = ccb->csio.dxfer_len - ccb->csio.resid; 1250 tag = (devstat_tag_type)(ccb->csio.tag_action & 0x3); 1251 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1252 bytes = ccb->ataio.dxfer_len - ccb->ataio.resid; 1253 tag = (devstat_tag_type)0; 1254 } else if (ccb->ccb_h.func_code == XPT_NVME_IO) { 1255 bytes = ccb->nvmeio.dxfer_len; /* NB: resid no possible */ 1256 tag = (devstat_tag_type)0; 1257 } else { 1258 valid = false; 1259 } 1260 if (valid) 1261 devstat_end_transaction(ds, bytes, tag, 1262 ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? 1263 DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1264 DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime); 1265 } 1266 1267 return(error); 1268 } 1269 1270 void 1271 cam_freeze_devq(struct cam_path *path) 1272 { 1273 struct ccb_hdr ccb_h; 1274 1275 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n")); 1276 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 1277 ccb_h.func_code = XPT_NOOP; 1278 ccb_h.flags = CAM_DEV_QFREEZE; 1279 xpt_action((union ccb *)&ccb_h); 1280 } 1281 1282 u_int32_t 1283 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 1284 u_int32_t openings, u_int32_t arg, 1285 int getcount_only) 1286 { 1287 struct ccb_relsim crs; 1288 1289 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n", 1290 relsim_flags, openings, arg, getcount_only)); 1291 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1292 crs.ccb_h.func_code = XPT_REL_SIMQ; 1293 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1294 crs.release_flags = relsim_flags; 1295 crs.openings = openings; 1296 crs.release_timeout = arg; 1297 xpt_action((union ccb *)&crs); 1298 return (crs.qfrozen_cnt); 1299 } 1300 1301 #define saved_ccb_ptr ppriv_ptr0 1302 static void 1303 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1304 { 1305 union ccb *saved_ccb; 1306 cam_status status; 1307 struct scsi_start_stop_unit *scsi_cmd; 1308 int error_code, sense_key, asc, ascq; 1309 1310 scsi_cmd = (struct scsi_start_stop_unit *) 1311 &done_ccb->csio.cdb_io.cdb_bytes; 1312 status = done_ccb->ccb_h.status; 1313 1314 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1315 if (scsi_extract_sense_ccb(done_ccb, 1316 &error_code, &sense_key, &asc, &ascq)) { 1317 /* 1318 * If the error is "invalid field in CDB", 1319 * and the load/eject flag is set, turn the 1320 * flag off and try again. This is just in 1321 * case the drive in question barfs on the 1322 * load eject flag. The CAM code should set 1323 * the load/eject flag by default for 1324 * removable media. 1325 */ 1326 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1327 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1328 (asc == 0x24) && (ascq == 0x00)) { 1329 scsi_cmd->how &= ~SSS_LOEJ; 1330 if (status & CAM_DEV_QFRZN) { 1331 cam_release_devq(done_ccb->ccb_h.path, 1332 0, 0, 0, 0); 1333 done_ccb->ccb_h.status &= 1334 ~CAM_DEV_QFRZN; 1335 } 1336 xpt_action(done_ccb); 1337 goto out; 1338 } 1339 } 1340 if (cam_periph_error(done_ccb, 1341 0, SF_RETRY_UA | SF_NO_PRINT) == ERESTART) 1342 goto out; 1343 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1344 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1345 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1346 } 1347 } else { 1348 /* 1349 * If we have successfully taken a device from the not 1350 * ready to ready state, re-scan the device and re-get 1351 * the inquiry information. Many devices (mostly disks) 1352 * don't properly report their inquiry information unless 1353 * they are spun up. 1354 */ 1355 if (scsi_cmd->opcode == START_STOP_UNIT) 1356 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1357 } 1358 1359 /* 1360 * Perform the final retry with the original CCB so that final 1361 * error processing is performed by the owner of the CCB. 1362 */ 1363 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1364 bcopy(saved_ccb, done_ccb, sizeof(*done_ccb)); 1365 xpt_free_ccb(saved_ccb); 1366 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1367 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1368 xpt_action(done_ccb); 1369 1370 out: 1371 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1372 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1373 } 1374 1375 /* 1376 * Generic Async Event handler. Peripheral drivers usually 1377 * filter out the events that require personal attention, 1378 * and leave the rest to this function. 1379 */ 1380 void 1381 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1382 struct cam_path *path, void *arg) 1383 { 1384 switch (code) { 1385 case AC_LOST_DEVICE: 1386 cam_periph_invalidate(periph); 1387 break; 1388 default: 1389 break; 1390 } 1391 } 1392 1393 void 1394 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1395 { 1396 struct ccb_getdevstats cgds; 1397 1398 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1399 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1400 xpt_action((union ccb *)&cgds); 1401 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1402 } 1403 1404 void 1405 cam_periph_freeze_after_event(struct cam_periph *periph, 1406 struct timeval* event_time, u_int duration_ms) 1407 { 1408 struct timeval delta; 1409 struct timeval duration_tv; 1410 1411 if (!timevalisset(event_time)) 1412 return; 1413 1414 microtime(&delta); 1415 timevalsub(&delta, event_time); 1416 duration_tv.tv_sec = duration_ms / 1000; 1417 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1418 if (timevalcmp(&delta, &duration_tv, <)) { 1419 timevalsub(&duration_tv, &delta); 1420 1421 duration_ms = duration_tv.tv_sec * 1000; 1422 duration_ms += duration_tv.tv_usec / 1000; 1423 cam_freeze_devq(periph->path); 1424 cam_release_devq(periph->path, 1425 RELSIM_RELEASE_AFTER_TIMEOUT, 1426 /*reduction*/0, 1427 /*timeout*/duration_ms, 1428 /*getcount_only*/0); 1429 } 1430 1431 } 1432 1433 static int 1434 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1435 cam_flags camflags, u_int32_t sense_flags, 1436 int *openings, u_int32_t *relsim_flags, 1437 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1438 { 1439 int error; 1440 1441 switch (ccb->csio.scsi_status) { 1442 case SCSI_STATUS_OK: 1443 case SCSI_STATUS_COND_MET: 1444 case SCSI_STATUS_INTERMED: 1445 case SCSI_STATUS_INTERMED_COND_MET: 1446 error = 0; 1447 break; 1448 case SCSI_STATUS_CMD_TERMINATED: 1449 case SCSI_STATUS_CHECK_COND: 1450 error = camperiphscsisenseerror(ccb, orig_ccb, 1451 camflags, 1452 sense_flags, 1453 openings, 1454 relsim_flags, 1455 timeout, 1456 action, 1457 action_string); 1458 break; 1459 case SCSI_STATUS_QUEUE_FULL: 1460 { 1461 /* no decrement */ 1462 struct ccb_getdevstats cgds; 1463 1464 /* 1465 * First off, find out what the current 1466 * transaction counts are. 1467 */ 1468 xpt_setup_ccb(&cgds.ccb_h, 1469 ccb->ccb_h.path, 1470 CAM_PRIORITY_NORMAL); 1471 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1472 xpt_action((union ccb *)&cgds); 1473 1474 /* 1475 * If we were the only transaction active, treat 1476 * the QUEUE FULL as if it were a BUSY condition. 1477 */ 1478 if (cgds.dev_active != 0) { 1479 int total_openings; 1480 1481 /* 1482 * Reduce the number of openings to 1483 * be 1 less than the amount it took 1484 * to get a queue full bounded by the 1485 * minimum allowed tag count for this 1486 * device. 1487 */ 1488 total_openings = cgds.dev_active + cgds.dev_openings; 1489 *openings = cgds.dev_active; 1490 if (*openings < cgds.mintags) 1491 *openings = cgds.mintags; 1492 if (*openings < total_openings) 1493 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1494 else { 1495 /* 1496 * Some devices report queue full for 1497 * temporary resource shortages. For 1498 * this reason, we allow a minimum 1499 * tag count to be entered via a 1500 * quirk entry to prevent the queue 1501 * count on these devices from falling 1502 * to a pessimisticly low value. We 1503 * still wait for the next successful 1504 * completion, however, before queueing 1505 * more transactions to the device. 1506 */ 1507 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1508 } 1509 *timeout = 0; 1510 error = ERESTART; 1511 *action &= ~SSQ_PRINT_SENSE; 1512 break; 1513 } 1514 /* FALLTHROUGH */ 1515 } 1516 case SCSI_STATUS_BUSY: 1517 /* 1518 * Restart the queue after either another 1519 * command completes or a 1 second timeout. 1520 */ 1521 if ((sense_flags & SF_RETRY_BUSY) != 0 || 1522 (ccb->ccb_h.retry_count--) > 0) { 1523 error = ERESTART; 1524 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1525 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1526 *timeout = 1000; 1527 } else { 1528 error = EIO; 1529 } 1530 break; 1531 case SCSI_STATUS_RESERV_CONFLICT: 1532 default: 1533 error = EIO; 1534 break; 1535 } 1536 return (error); 1537 } 1538 1539 static int 1540 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1541 cam_flags camflags, u_int32_t sense_flags, 1542 int *openings, u_int32_t *relsim_flags, 1543 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1544 { 1545 struct cam_periph *periph; 1546 union ccb *orig_ccb = ccb; 1547 int error, recoveryccb; 1548 1549 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1550 if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL) 1551 biotrack(ccb->csio.bio, __func__); 1552 #endif 1553 1554 periph = xpt_path_periph(ccb->ccb_h.path); 1555 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1556 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1557 /* 1558 * If error recovery is already in progress, don't attempt 1559 * to process this error, but requeue it unconditionally 1560 * and attempt to process it once error recovery has 1561 * completed. This failed command is probably related to 1562 * the error that caused the currently active error recovery 1563 * action so our current recovery efforts should also 1564 * address this command. Be aware that the error recovery 1565 * code assumes that only one recovery action is in progress 1566 * on a particular peripheral instance at any given time 1567 * (e.g. only one saved CCB for error recovery) so it is 1568 * imperitive that we don't violate this assumption. 1569 */ 1570 error = ERESTART; 1571 *action &= ~SSQ_PRINT_SENSE; 1572 } else { 1573 scsi_sense_action err_action; 1574 struct ccb_getdev cgd; 1575 1576 /* 1577 * Grab the inquiry data for this device. 1578 */ 1579 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1580 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1581 xpt_action((union ccb *)&cgd); 1582 1583 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1584 sense_flags); 1585 error = err_action & SS_ERRMASK; 1586 1587 /* 1588 * Do not autostart sequential access devices 1589 * to avoid unexpected tape loading. 1590 */ 1591 if ((err_action & SS_MASK) == SS_START && 1592 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1593 *action_string = "Will not autostart a " 1594 "sequential access device"; 1595 goto sense_error_done; 1596 } 1597 1598 /* 1599 * Avoid recovery recursion if recovery action is the same. 1600 */ 1601 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1602 if (((err_action & SS_MASK) == SS_START && 1603 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1604 ((err_action & SS_MASK) == SS_TUR && 1605 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1606 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1607 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1608 *timeout = 500; 1609 } 1610 } 1611 1612 /* 1613 * If the recovery action will consume a retry, 1614 * make sure we actually have retries available. 1615 */ 1616 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1617 if (ccb->ccb_h.retry_count > 0 && 1618 (periph->flags & CAM_PERIPH_INVALID) == 0) 1619 ccb->ccb_h.retry_count--; 1620 else { 1621 *action_string = "Retries exhausted"; 1622 goto sense_error_done; 1623 } 1624 } 1625 1626 if ((err_action & SS_MASK) >= SS_START) { 1627 /* 1628 * Do common portions of commands that 1629 * use recovery CCBs. 1630 */ 1631 orig_ccb = xpt_alloc_ccb_nowait(); 1632 if (orig_ccb == NULL) { 1633 *action_string = "Can't allocate recovery CCB"; 1634 goto sense_error_done; 1635 } 1636 /* 1637 * Clear freeze flag for original request here, as 1638 * this freeze will be dropped as part of ERESTART. 1639 */ 1640 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1641 bcopy(ccb, orig_ccb, sizeof(*orig_ccb)); 1642 } 1643 1644 switch (err_action & SS_MASK) { 1645 case SS_NOP: 1646 *action_string = "No recovery action needed"; 1647 error = 0; 1648 break; 1649 case SS_RETRY: 1650 *action_string = "Retrying command (per sense data)"; 1651 error = ERESTART; 1652 break; 1653 case SS_FAIL: 1654 *action_string = "Unretryable error"; 1655 break; 1656 case SS_START: 1657 { 1658 int le; 1659 1660 /* 1661 * Send a start unit command to the device, and 1662 * then retry the command. 1663 */ 1664 *action_string = "Attempting to start unit"; 1665 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1666 1667 /* 1668 * Check for removable media and set 1669 * load/eject flag appropriately. 1670 */ 1671 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1672 le = TRUE; 1673 else 1674 le = FALSE; 1675 1676 scsi_start_stop(&ccb->csio, 1677 /*retries*/1, 1678 camperiphdone, 1679 MSG_SIMPLE_Q_TAG, 1680 /*start*/TRUE, 1681 /*load/eject*/le, 1682 /*immediate*/FALSE, 1683 SSD_FULL_SIZE, 1684 /*timeout*/50000); 1685 break; 1686 } 1687 case SS_TUR: 1688 { 1689 /* 1690 * Send a Test Unit Ready to the device. 1691 * If the 'many' flag is set, we send 120 1692 * test unit ready commands, one every half 1693 * second. Otherwise, we just send one TUR. 1694 * We only want to do this if the retry 1695 * count has not been exhausted. 1696 */ 1697 int retries; 1698 1699 if ((err_action & SSQ_MANY) != 0) { 1700 *action_string = "Polling device for readiness"; 1701 retries = 120; 1702 } else { 1703 *action_string = "Testing device for readiness"; 1704 retries = 1; 1705 } 1706 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1707 scsi_test_unit_ready(&ccb->csio, 1708 retries, 1709 camperiphdone, 1710 MSG_SIMPLE_Q_TAG, 1711 SSD_FULL_SIZE, 1712 /*timeout*/5000); 1713 1714 /* 1715 * Accomplish our 500ms delay by deferring 1716 * the release of our device queue appropriately. 1717 */ 1718 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1719 *timeout = 500; 1720 break; 1721 } 1722 default: 1723 panic("Unhandled error action %x", err_action); 1724 } 1725 1726 if ((err_action & SS_MASK) >= SS_START) { 1727 /* 1728 * Drop the priority, so that the recovery 1729 * CCB is the first to execute. Freeze the queue 1730 * after this command is sent so that we can 1731 * restore the old csio and have it queued in 1732 * the proper order before we release normal 1733 * transactions to the device. 1734 */ 1735 ccb->ccb_h.pinfo.priority--; 1736 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1737 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1738 error = ERESTART; 1739 *orig = orig_ccb; 1740 } 1741 1742 sense_error_done: 1743 *action = err_action; 1744 } 1745 return (error); 1746 } 1747 1748 /* 1749 * Generic error handler. Peripheral drivers usually filter 1750 * out the errors that they handle in a unique manner, then 1751 * call this function. 1752 */ 1753 int 1754 cam_periph_error(union ccb *ccb, cam_flags camflags, 1755 u_int32_t sense_flags) 1756 { 1757 struct cam_path *newpath; 1758 union ccb *orig_ccb, *scan_ccb; 1759 struct cam_periph *periph; 1760 const char *action_string; 1761 cam_status status; 1762 int frozen, error, openings, devctl_err; 1763 u_int32_t action, relsim_flags, timeout; 1764 1765 action = SSQ_PRINT_SENSE; 1766 periph = xpt_path_periph(ccb->ccb_h.path); 1767 action_string = NULL; 1768 status = ccb->ccb_h.status; 1769 frozen = (status & CAM_DEV_QFRZN) != 0; 1770 status &= CAM_STATUS_MASK; 1771 devctl_err = openings = relsim_flags = timeout = 0; 1772 orig_ccb = ccb; 1773 1774 /* Filter the errors that should be reported via devctl */ 1775 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 1776 case CAM_CMD_TIMEOUT: 1777 case CAM_REQ_ABORTED: 1778 case CAM_REQ_CMP_ERR: 1779 case CAM_REQ_TERMIO: 1780 case CAM_UNREC_HBA_ERROR: 1781 case CAM_DATA_RUN_ERR: 1782 case CAM_SCSI_STATUS_ERROR: 1783 case CAM_ATA_STATUS_ERROR: 1784 case CAM_SMP_STATUS_ERROR: 1785 devctl_err++; 1786 break; 1787 default: 1788 break; 1789 } 1790 1791 switch (status) { 1792 case CAM_REQ_CMP: 1793 error = 0; 1794 action &= ~SSQ_PRINT_SENSE; 1795 break; 1796 case CAM_SCSI_STATUS_ERROR: 1797 error = camperiphscsistatuserror(ccb, &orig_ccb, 1798 camflags, sense_flags, &openings, &relsim_flags, 1799 &timeout, &action, &action_string); 1800 break; 1801 case CAM_AUTOSENSE_FAIL: 1802 error = EIO; /* we have to kill the command */ 1803 break; 1804 case CAM_UA_ABORT: 1805 case CAM_UA_TERMIO: 1806 case CAM_MSG_REJECT_REC: 1807 /* XXX Don't know that these are correct */ 1808 error = EIO; 1809 break; 1810 case CAM_SEL_TIMEOUT: 1811 if ((camflags & CAM_RETRY_SELTO) != 0) { 1812 if (ccb->ccb_h.retry_count > 0 && 1813 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1814 ccb->ccb_h.retry_count--; 1815 error = ERESTART; 1816 1817 /* 1818 * Wait a bit to give the device 1819 * time to recover before we try again. 1820 */ 1821 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1822 timeout = periph_selto_delay; 1823 break; 1824 } 1825 action_string = "Retries exhausted"; 1826 } 1827 /* FALLTHROUGH */ 1828 case CAM_DEV_NOT_THERE: 1829 error = ENXIO; 1830 action = SSQ_LOST; 1831 break; 1832 case CAM_REQ_INVALID: 1833 case CAM_PATH_INVALID: 1834 case CAM_NO_HBA: 1835 case CAM_PROVIDE_FAIL: 1836 case CAM_REQ_TOO_BIG: 1837 case CAM_LUN_INVALID: 1838 case CAM_TID_INVALID: 1839 case CAM_FUNC_NOTAVAIL: 1840 error = EINVAL; 1841 break; 1842 case CAM_SCSI_BUS_RESET: 1843 case CAM_BDR_SENT: 1844 /* 1845 * Commands that repeatedly timeout and cause these 1846 * kinds of error recovery actions, should return 1847 * CAM_CMD_TIMEOUT, which allows us to safely assume 1848 * that this command was an innocent bystander to 1849 * these events and should be unconditionally 1850 * retried. 1851 */ 1852 case CAM_REQUEUE_REQ: 1853 /* Unconditional requeue if device is still there */ 1854 if (periph->flags & CAM_PERIPH_INVALID) { 1855 action_string = "Periph was invalidated"; 1856 error = EIO; 1857 } else if (sense_flags & SF_NO_RETRY) { 1858 error = EIO; 1859 action_string = "Retry was blocked"; 1860 } else { 1861 error = ERESTART; 1862 action &= ~SSQ_PRINT_SENSE; 1863 } 1864 break; 1865 case CAM_RESRC_UNAVAIL: 1866 /* Wait a bit for the resource shortage to abate. */ 1867 timeout = periph_noresrc_delay; 1868 /* FALLTHROUGH */ 1869 case CAM_BUSY: 1870 if (timeout == 0) { 1871 /* Wait a bit for the busy condition to abate. */ 1872 timeout = periph_busy_delay; 1873 } 1874 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1875 /* FALLTHROUGH */ 1876 case CAM_ATA_STATUS_ERROR: 1877 case CAM_REQ_CMP_ERR: 1878 case CAM_CMD_TIMEOUT: 1879 case CAM_UNEXP_BUSFREE: 1880 case CAM_UNCOR_PARITY: 1881 case CAM_DATA_RUN_ERR: 1882 default: 1883 if (periph->flags & CAM_PERIPH_INVALID) { 1884 error = EIO; 1885 action_string = "Periph was invalidated"; 1886 } else if (ccb->ccb_h.retry_count == 0) { 1887 error = EIO; 1888 action_string = "Retries exhausted"; 1889 } else if (sense_flags & SF_NO_RETRY) { 1890 error = EIO; 1891 action_string = "Retry was blocked"; 1892 } else { 1893 ccb->ccb_h.retry_count--; 1894 error = ERESTART; 1895 } 1896 break; 1897 } 1898 1899 if ((sense_flags & SF_PRINT_ALWAYS) || 1900 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 1901 action |= SSQ_PRINT_SENSE; 1902 else if (sense_flags & SF_NO_PRINT) 1903 action &= ~SSQ_PRINT_SENSE; 1904 if ((action & SSQ_PRINT_SENSE) != 0) 1905 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 1906 if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) { 1907 if (error != ERESTART) { 1908 if (action_string == NULL) 1909 action_string = "Unretryable error"; 1910 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 1911 error, action_string); 1912 } else if (action_string != NULL) 1913 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 1914 else { 1915 xpt_print(ccb->ccb_h.path, 1916 "Retrying command, %d more tries remain\n", 1917 ccb->ccb_h.retry_count); 1918 } 1919 } 1920 1921 if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0)) 1922 cam_periph_devctl_notify(orig_ccb); 1923 1924 if ((action & SSQ_LOST) != 0) { 1925 lun_id_t lun_id; 1926 1927 /* 1928 * For a selection timeout, we consider all of the LUNs on 1929 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 1930 * then we only get rid of the device(s) specified by the 1931 * path in the original CCB. 1932 */ 1933 if (status == CAM_SEL_TIMEOUT) 1934 lun_id = CAM_LUN_WILDCARD; 1935 else 1936 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 1937 1938 /* Should we do more if we can't create the path?? */ 1939 if (xpt_create_path(&newpath, periph, 1940 xpt_path_path_id(ccb->ccb_h.path), 1941 xpt_path_target_id(ccb->ccb_h.path), 1942 lun_id) == CAM_REQ_CMP) { 1943 1944 /* 1945 * Let peripheral drivers know that this 1946 * device has gone away. 1947 */ 1948 xpt_async(AC_LOST_DEVICE, newpath, NULL); 1949 xpt_free_path(newpath); 1950 } 1951 } 1952 1953 /* Broadcast UNIT ATTENTIONs to all periphs. */ 1954 if ((action & SSQ_UA) != 0) 1955 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 1956 1957 /* Rescan target on "Reported LUNs data has changed" */ 1958 if ((action & SSQ_RESCAN) != 0) { 1959 if (xpt_create_path(&newpath, NULL, 1960 xpt_path_path_id(ccb->ccb_h.path), 1961 xpt_path_target_id(ccb->ccb_h.path), 1962 CAM_LUN_WILDCARD) == CAM_REQ_CMP) { 1963 1964 scan_ccb = xpt_alloc_ccb_nowait(); 1965 if (scan_ccb != NULL) { 1966 scan_ccb->ccb_h.path = newpath; 1967 scan_ccb->ccb_h.func_code = XPT_SCAN_TGT; 1968 scan_ccb->crcn.flags = 0; 1969 xpt_rescan(scan_ccb); 1970 } else { 1971 xpt_print(newpath, 1972 "Can't allocate CCB to rescan target\n"); 1973 xpt_free_path(newpath); 1974 } 1975 } 1976 } 1977 1978 /* Attempt a retry */ 1979 if (error == ERESTART || error == 0) { 1980 if (frozen != 0) 1981 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1982 if (error == ERESTART) 1983 xpt_action(ccb); 1984 if (frozen != 0) 1985 cam_release_devq(ccb->ccb_h.path, 1986 relsim_flags, 1987 openings, 1988 timeout, 1989 /*getcount_only*/0); 1990 } 1991 1992 return (error); 1993 } 1994 1995 #define CAM_PERIPH_DEVD_MSG_SIZE 256 1996 1997 static void 1998 cam_periph_devctl_notify(union ccb *ccb) 1999 { 2000 struct cam_periph *periph; 2001 struct ccb_getdev *cgd; 2002 struct sbuf sb; 2003 int serr, sk, asc, ascq; 2004 char *sbmsg, *type; 2005 2006 sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT); 2007 if (sbmsg == NULL) 2008 return; 2009 2010 sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN); 2011 2012 periph = xpt_path_periph(ccb->ccb_h.path); 2013 sbuf_printf(&sb, "device=%s%d ", periph->periph_name, 2014 periph->unit_number); 2015 2016 sbuf_printf(&sb, "serial=\""); 2017 if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) { 2018 xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path, 2019 CAM_PRIORITY_NORMAL); 2020 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 2021 xpt_action((union ccb *)cgd); 2022 2023 if (cgd->ccb_h.status == CAM_REQ_CMP) 2024 sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len); 2025 xpt_free_ccb((union ccb *)cgd); 2026 } 2027 sbuf_printf(&sb, "\" "); 2028 sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status); 2029 2030 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 2031 case CAM_CMD_TIMEOUT: 2032 sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout); 2033 type = "timeout"; 2034 break; 2035 case CAM_SCSI_STATUS_ERROR: 2036 sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status); 2037 if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq)) 2038 sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ", 2039 serr, sk, asc, ascq); 2040 type = "error"; 2041 break; 2042 case CAM_ATA_STATUS_ERROR: 2043 sbuf_printf(&sb, "RES=\""); 2044 ata_res_sbuf(&ccb->ataio.res, &sb); 2045 sbuf_printf(&sb, "\" "); 2046 type = "error"; 2047 break; 2048 default: 2049 type = "error"; 2050 break; 2051 } 2052 2053 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 2054 sbuf_printf(&sb, "CDB=\""); 2055 scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb); 2056 sbuf_printf(&sb, "\" "); 2057 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 2058 sbuf_printf(&sb, "ACB=\""); 2059 ata_cmd_sbuf(&ccb->ataio.cmd, &sb); 2060 sbuf_printf(&sb, "\" "); 2061 } 2062 2063 if (sbuf_finish(&sb) == 0) 2064 devctl_notify("CAM", "periph", type, sbuf_data(&sb)); 2065 sbuf_delete(&sb); 2066 free(sbmsg, M_CAMPERIPH); 2067 } 2068 2069