xref: /freebsd/sys/cam/cam_periph.c (revision 0e1497aefd602cea581d2380d22e67dfdcac6b4e)
1 /*-
2  * Common functions for CAM "type" (peripheral) drivers.
3  *
4  * Copyright (c) 1997, 1998 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/types.h>
36 #include <sys/malloc.h>
37 #include <sys/kernel.h>
38 #include <sys/linker_set.h>
39 #include <sys/bio.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/buf.h>
43 #include <sys/proc.h>
44 #include <sys/devicestat.h>
45 #include <sys/bus.h>
46 #include <vm/vm.h>
47 #include <vm/vm_extern.h>
48 
49 #include <cam/cam.h>
50 #include <cam/cam_ccb.h>
51 #include <cam/cam_queue.h>
52 #include <cam/cam_xpt_periph.h>
53 #include <cam/cam_periph.h>
54 #include <cam/cam_debug.h>
55 #include <cam/cam_sim.h>
56 
57 #include <cam/scsi/scsi_all.h>
58 #include <cam/scsi/scsi_message.h>
59 #include <cam/scsi/scsi_pass.h>
60 
61 static	u_int		camperiphnextunit(struct periph_driver *p_drv,
62 					  u_int newunit, int wired,
63 					  path_id_t pathid, target_id_t target,
64 					  lun_id_t lun);
65 static	u_int		camperiphunit(struct periph_driver *p_drv,
66 				      path_id_t pathid, target_id_t target,
67 				      lun_id_t lun);
68 static	void		camperiphdone(struct cam_periph *periph,
69 					union ccb *done_ccb);
70 static  void		camperiphfree(struct cam_periph *periph);
71 static int		camperiphscsistatuserror(union ccb *ccb,
72 						 cam_flags camflags,
73 						 u_int32_t sense_flags,
74 						 int *openings,
75 						 u_int32_t *relsim_flags,
76 						 u_int32_t *timeout,
77 						 const char **action_string);
78 static	int		camperiphscsisenseerror(union ccb *ccb,
79 					        cam_flags camflags,
80 					        u_int32_t sense_flags,
81 					        int *openings,
82 					        u_int32_t *relsim_flags,
83 					        u_int32_t *timeout,
84 					        const char **action_string);
85 
86 static int nperiph_drivers;
87 static int initialized = 0;
88 struct periph_driver **periph_drivers;
89 
90 MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
91 
92 static int periph_selto_delay = 1000;
93 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
94 static int periph_noresrc_delay = 500;
95 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
96 static int periph_busy_delay = 500;
97 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
98 
99 
100 void
101 periphdriver_register(void *data)
102 {
103 	struct periph_driver *drv = (struct periph_driver *)data;
104 	struct periph_driver **newdrivers, **old;
105 	int ndrivers;
106 
107 	ndrivers = nperiph_drivers + 2;
108 	newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
109 			    M_WAITOK);
110 	if (periph_drivers)
111 		bcopy(periph_drivers, newdrivers,
112 		      sizeof(*newdrivers) * nperiph_drivers);
113 	newdrivers[nperiph_drivers] = drv;
114 	newdrivers[nperiph_drivers + 1] = NULL;
115 	old = periph_drivers;
116 	periph_drivers = newdrivers;
117 	if (old)
118 		free(old, M_CAMPERIPH);
119 	nperiph_drivers++;
120 	/* If driver marked as early or it is late now, initialize it. */
121 	if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) ||
122 	    initialized > 1)
123 		(*drv->init)();
124 }
125 
126 void
127 periphdriver_init(int level)
128 {
129 	int	i, early;
130 
131 	initialized = max(initialized, level);
132 	for (i = 0; periph_drivers[i] != NULL; i++) {
133 		early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2;
134 		if (early == initialized)
135 			(*periph_drivers[i]->init)();
136 	}
137 }
138 
139 cam_status
140 cam_periph_alloc(periph_ctor_t *periph_ctor,
141 		 periph_oninv_t *periph_oninvalidate,
142 		 periph_dtor_t *periph_dtor, periph_start_t *periph_start,
143 		 char *name, cam_periph_type type, struct cam_path *path,
144 		 ac_callback_t *ac_callback, ac_code code, void *arg)
145 {
146 	struct		periph_driver **p_drv;
147 	struct		cam_sim *sim;
148 	struct		cam_periph *periph;
149 	struct		cam_periph *cur_periph;
150 	path_id_t	path_id;
151 	target_id_t	target_id;
152 	lun_id_t	lun_id;
153 	cam_status	status;
154 	u_int		init_level;
155 
156 	init_level = 0;
157 	/*
158 	 * Handle Hot-Plug scenarios.  If there is already a peripheral
159 	 * of our type assigned to this path, we are likely waiting for
160 	 * final close on an old, invalidated, peripheral.  If this is
161 	 * the case, queue up a deferred call to the peripheral's async
162 	 * handler.  If it looks like a mistaken re-allocation, complain.
163 	 */
164 	if ((periph = cam_periph_find(path, name)) != NULL) {
165 
166 		if ((periph->flags & CAM_PERIPH_INVALID) != 0
167 		 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
168 			periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
169 			periph->deferred_callback = ac_callback;
170 			periph->deferred_ac = code;
171 			return (CAM_REQ_INPROG);
172 		} else {
173 			printf("cam_periph_alloc: attempt to re-allocate "
174 			       "valid device %s%d rejected\n",
175 			       periph->periph_name, periph->unit_number);
176 		}
177 		return (CAM_REQ_INVALID);
178 	}
179 
180 	periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH,
181 					     M_NOWAIT);
182 
183 	if (periph == NULL)
184 		return (CAM_RESRC_UNAVAIL);
185 
186 	init_level++;
187 
188 
189 	sim = xpt_path_sim(path);
190 	path_id = xpt_path_path_id(path);
191 	target_id = xpt_path_target_id(path);
192 	lun_id = xpt_path_lun_id(path);
193 	bzero(periph, sizeof(*periph));
194 	cam_init_pinfo(&periph->pinfo);
195 	periph->periph_start = periph_start;
196 	periph->periph_dtor = periph_dtor;
197 	periph->periph_oninval = periph_oninvalidate;
198 	periph->type = type;
199 	periph->periph_name = name;
200 	periph->immediate_priority = CAM_PRIORITY_NONE;
201 	periph->refcount = 0;
202 	periph->sim = sim;
203 	SLIST_INIT(&periph->ccb_list);
204 	status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
205 	if (status != CAM_REQ_CMP)
206 		goto failure;
207 	periph->path = path;
208 
209 	xpt_lock_buses();
210 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
211 		if (strcmp((*p_drv)->driver_name, name) == 0)
212 			break;
213 	}
214 	if (*p_drv == NULL) {
215 		printf("cam_periph_alloc: invalid periph name '%s'\n", name);
216 		xpt_free_path(periph->path);
217 		free(periph, M_CAMPERIPH);
218 		xpt_unlock_buses();
219 		return (CAM_REQ_INVALID);
220 	}
221 	periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id);
222 	cur_periph = TAILQ_FIRST(&(*p_drv)->units);
223 	while (cur_periph != NULL
224 	    && cur_periph->unit_number < periph->unit_number)
225 		cur_periph = TAILQ_NEXT(cur_periph, unit_links);
226 	if (cur_periph != NULL) {
227 		KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list"));
228 		TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
229 	} else {
230 		TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
231 		(*p_drv)->generation++;
232 	}
233 	xpt_unlock_buses();
234 
235 	init_level++;
236 
237 	status = xpt_add_periph(periph);
238 	if (status != CAM_REQ_CMP)
239 		goto failure;
240 
241 	init_level++;
242 
243 	status = periph_ctor(periph, arg);
244 
245 	if (status == CAM_REQ_CMP)
246 		init_level++;
247 
248 failure:
249 	switch (init_level) {
250 	case 4:
251 		/* Initialized successfully */
252 		break;
253 	case 3:
254 		xpt_remove_periph(periph);
255 		/* FALLTHROUGH */
256 	case 2:
257 		xpt_lock_buses();
258 		TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
259 		xpt_unlock_buses();
260 		xpt_free_path(periph->path);
261 		/* FALLTHROUGH */
262 	case 1:
263 		free(periph, M_CAMPERIPH);
264 		/* FALLTHROUGH */
265 	case 0:
266 		/* No cleanup to perform. */
267 		break;
268 	default:
269 		panic("cam_periph_alloc: Unkown init level");
270 	}
271 	return(status);
272 }
273 
274 /*
275  * Find a peripheral structure with the specified path, target, lun,
276  * and (optionally) type.  If the name is NULL, this function will return
277  * the first peripheral driver that matches the specified path.
278  */
279 struct cam_periph *
280 cam_periph_find(struct cam_path *path, char *name)
281 {
282 	struct periph_driver **p_drv;
283 	struct cam_periph *periph;
284 
285 	xpt_lock_buses();
286 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
287 
288 		if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
289 			continue;
290 
291 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
292 			if (xpt_path_comp(periph->path, path) == 0) {
293 				xpt_unlock_buses();
294 				mtx_assert(periph->sim->mtx, MA_OWNED);
295 				return(periph);
296 			}
297 		}
298 		if (name != NULL) {
299 			xpt_unlock_buses();
300 			return(NULL);
301 		}
302 	}
303 	xpt_unlock_buses();
304 	return(NULL);
305 }
306 
307 cam_status
308 cam_periph_acquire(struct cam_periph *periph)
309 {
310 
311 	if (periph == NULL)
312 		return(CAM_REQ_CMP_ERR);
313 
314 	xpt_lock_buses();
315 	periph->refcount++;
316 	xpt_unlock_buses();
317 
318 	return(CAM_REQ_CMP);
319 }
320 
321 void
322 cam_periph_release_locked(struct cam_periph *periph)
323 {
324 
325 	if (periph == NULL)
326 		return;
327 
328 	xpt_lock_buses();
329 	if (periph->refcount != 0) {
330 		periph->refcount--;
331 	} else {
332 		xpt_print(periph->path, "%s: release %p when refcount is zero\n ", __func__, periph);
333 	}
334 	if (periph->refcount == 0
335 	    && (periph->flags & CAM_PERIPH_INVALID)) {
336 		camperiphfree(periph);
337 	}
338 	xpt_unlock_buses();
339 }
340 
341 void
342 cam_periph_release(struct cam_periph *periph)
343 {
344 	struct cam_sim *sim;
345 
346 	if (periph == NULL)
347 		return;
348 
349 	sim = periph->sim;
350 	mtx_assert(sim->mtx, MA_NOTOWNED);
351 	mtx_lock(sim->mtx);
352 	cam_periph_release_locked(periph);
353 	mtx_unlock(sim->mtx);
354 }
355 
356 int
357 cam_periph_hold(struct cam_periph *periph, int priority)
358 {
359 	int error;
360 
361 	/*
362 	 * Increment the reference count on the peripheral
363 	 * while we wait for our lock attempt to succeed
364 	 * to ensure the peripheral doesn't disappear out
365 	 * from user us while we sleep.
366 	 */
367 
368 	if (cam_periph_acquire(periph) != CAM_REQ_CMP)
369 		return (ENXIO);
370 
371 	mtx_assert(periph->sim->mtx, MA_OWNED);
372 	while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
373 		periph->flags |= CAM_PERIPH_LOCK_WANTED;
374 		if ((error = mtx_sleep(periph, periph->sim->mtx, priority,
375 		    "caplck", 0)) != 0) {
376 			cam_periph_release_locked(periph);
377 			return (error);
378 		}
379 	}
380 
381 	periph->flags |= CAM_PERIPH_LOCKED;
382 	return (0);
383 }
384 
385 void
386 cam_periph_unhold(struct cam_periph *periph)
387 {
388 
389 	mtx_assert(periph->sim->mtx, MA_OWNED);
390 
391 	periph->flags &= ~CAM_PERIPH_LOCKED;
392 	if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
393 		periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
394 		wakeup(periph);
395 	}
396 
397 	cam_periph_release_locked(periph);
398 }
399 
400 /*
401  * Look for the next unit number that is not currently in use for this
402  * peripheral type starting at "newunit".  Also exclude unit numbers that
403  * are reserved by for future "hardwiring" unless we already know that this
404  * is a potential wired device.  Only assume that the device is "wired" the
405  * first time through the loop since after that we'll be looking at unit
406  * numbers that did not match a wiring entry.
407  */
408 static u_int
409 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
410 		  path_id_t pathid, target_id_t target, lun_id_t lun)
411 {
412 	struct	cam_periph *periph;
413 	char	*periph_name;
414 	int	i, val, dunit, r;
415 	const char *dname, *strval;
416 
417 	periph_name = p_drv->driver_name;
418 	for (;;newunit++) {
419 
420 		for (periph = TAILQ_FIRST(&p_drv->units);
421 		     periph != NULL && periph->unit_number != newunit;
422 		     periph = TAILQ_NEXT(periph, unit_links))
423 			;
424 
425 		if (periph != NULL && periph->unit_number == newunit) {
426 			if (wired != 0) {
427 				xpt_print(periph->path, "Duplicate Wired "
428 				    "Device entry!\n");
429 				xpt_print(periph->path, "Second device (%s "
430 				    "device at scbus%d target %d lun %d) will "
431 				    "not be wired\n", periph_name, pathid,
432 				    target, lun);
433 				wired = 0;
434 			}
435 			continue;
436 		}
437 		if (wired)
438 			break;
439 
440 		/*
441 		 * Don't match entries like "da 4" as a wired down
442 		 * device, but do match entries like "da 4 target 5"
443 		 * or even "da 4 scbus 1".
444 		 */
445 		i = 0;
446 		dname = periph_name;
447 		for (;;) {
448 			r = resource_find_dev(&i, dname, &dunit, NULL, NULL);
449 			if (r != 0)
450 				break;
451 			/* if no "target" and no specific scbus, skip */
452 			if (resource_int_value(dname, dunit, "target", &val) &&
453 			    (resource_string_value(dname, dunit, "at",&strval)||
454 			     strcmp(strval, "scbus") == 0))
455 				continue;
456 			if (newunit == dunit)
457 				break;
458 		}
459 		if (r != 0)
460 			break;
461 	}
462 	return (newunit);
463 }
464 
465 static u_int
466 camperiphunit(struct periph_driver *p_drv, path_id_t pathid,
467 	      target_id_t target, lun_id_t lun)
468 {
469 	u_int	unit;
470 	int	wired, i, val, dunit;
471 	const char *dname, *strval;
472 	char	pathbuf[32], *periph_name;
473 
474 	periph_name = p_drv->driver_name;
475 	snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
476 	unit = 0;
477 	i = 0;
478 	dname = periph_name;
479 	for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0;
480 	     wired = 0) {
481 		if (resource_string_value(dname, dunit, "at", &strval) == 0) {
482 			if (strcmp(strval, pathbuf) != 0)
483 				continue;
484 			wired++;
485 		}
486 		if (resource_int_value(dname, dunit, "target", &val) == 0) {
487 			if (val != target)
488 				continue;
489 			wired++;
490 		}
491 		if (resource_int_value(dname, dunit, "lun", &val) == 0) {
492 			if (val != lun)
493 				continue;
494 			wired++;
495 		}
496 		if (wired != 0) {
497 			unit = dunit;
498 			break;
499 		}
500 	}
501 
502 	/*
503 	 * Either start from 0 looking for the next unit or from
504 	 * the unit number given in the resource config.  This way,
505 	 * if we have wildcard matches, we don't return the same
506 	 * unit number twice.
507 	 */
508 	unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun);
509 
510 	return (unit);
511 }
512 
513 void
514 cam_periph_invalidate(struct cam_periph *periph)
515 {
516 
517 	/*
518 	 * We only call this routine the first time a peripheral is
519 	 * invalidated.
520 	 */
521 	if (((periph->flags & CAM_PERIPH_INVALID) == 0)
522 	 && (periph->periph_oninval != NULL))
523 		periph->periph_oninval(periph);
524 
525 	periph->flags |= CAM_PERIPH_INVALID;
526 	periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
527 
528 	xpt_lock_buses();
529 	if (periph->refcount == 0)
530 		camperiphfree(periph);
531 	else if (periph->refcount < 0)
532 		printf("cam_invalidate_periph: refcount < 0!!\n");
533 	xpt_unlock_buses();
534 }
535 
536 static void
537 camperiphfree(struct cam_periph *periph)
538 {
539 	struct periph_driver **p_drv;
540 
541 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
542 		if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
543 			break;
544 	}
545 	if (*p_drv == NULL) {
546 		printf("camperiphfree: attempt to free non-existant periph\n");
547 		return;
548 	}
549 
550 	TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
551 	(*p_drv)->generation++;
552 	xpt_unlock_buses();
553 
554 	if (periph->periph_dtor != NULL)
555 		periph->periph_dtor(periph);
556 	xpt_remove_periph(periph);
557 
558 	if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
559 		union ccb ccb;
560 		void *arg;
561 
562 		switch (periph->deferred_ac) {
563 		case AC_FOUND_DEVICE:
564 			ccb.ccb_h.func_code = XPT_GDEV_TYPE;
565 			xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
566 			xpt_action(&ccb);
567 			arg = &ccb;
568 			break;
569 		case AC_PATH_REGISTERED:
570 			ccb.ccb_h.func_code = XPT_PATH_INQ;
571 			xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
572 			xpt_action(&ccb);
573 			arg = &ccb;
574 			break;
575 		default:
576 			arg = NULL;
577 			break;
578 		}
579 		periph->deferred_callback(NULL, periph->deferred_ac,
580 					  periph->path, arg);
581 	}
582 	xpt_free_path(periph->path);
583 	free(periph, M_CAMPERIPH);
584 	xpt_lock_buses();
585 }
586 
587 /*
588  * Map user virtual pointers into kernel virtual address space, so we can
589  * access the memory.  This won't work on physical pointers, for now it's
590  * up to the caller to check for that.  (XXX KDM -- should we do that here
591  * instead?)  This also only works for up to MAXPHYS memory.  Since we use
592  * buffers to map stuff in and out, we're limited to the buffer size.
593  */
594 int
595 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
596 {
597 	int numbufs, i, j;
598 	int flags[CAM_PERIPH_MAXMAPS];
599 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
600 	u_int32_t lengths[CAM_PERIPH_MAXMAPS];
601 	u_int32_t dirs[CAM_PERIPH_MAXMAPS];
602 	/* Some controllers may not be able to handle more data. */
603 	size_t maxmap = DFLTPHYS;
604 
605 	switch(ccb->ccb_h.func_code) {
606 	case XPT_DEV_MATCH:
607 		if (ccb->cdm.match_buf_len == 0) {
608 			printf("cam_periph_mapmem: invalid match buffer "
609 			       "length 0\n");
610 			return(EINVAL);
611 		}
612 		if (ccb->cdm.pattern_buf_len > 0) {
613 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
614 			lengths[0] = ccb->cdm.pattern_buf_len;
615 			dirs[0] = CAM_DIR_OUT;
616 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
617 			lengths[1] = ccb->cdm.match_buf_len;
618 			dirs[1] = CAM_DIR_IN;
619 			numbufs = 2;
620 		} else {
621 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
622 			lengths[0] = ccb->cdm.match_buf_len;
623 			dirs[0] = CAM_DIR_IN;
624 			numbufs = 1;
625 		}
626 		/*
627 		 * This request will not go to the hardware, no reason
628 		 * to be so strict. vmapbuf() is able to map up to MAXPHYS.
629 		 */
630 		maxmap = MAXPHYS;
631 		break;
632 	case XPT_SCSI_IO:
633 	case XPT_CONT_TARGET_IO:
634 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
635 			return(0);
636 
637 		data_ptrs[0] = &ccb->csio.data_ptr;
638 		lengths[0] = ccb->csio.dxfer_len;
639 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
640 		numbufs = 1;
641 		break;
642 	case XPT_ATA_IO:
643 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
644 			return(0);
645 
646 		data_ptrs[0] = &ccb->ataio.data_ptr;
647 		lengths[0] = ccb->ataio.dxfer_len;
648 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
649 		numbufs = 1;
650 		break;
651 	case XPT_SMP_IO:
652 		data_ptrs[0] = &ccb->smpio.smp_request;
653 		lengths[0] = ccb->smpio.smp_request_len;
654 		dirs[0] = CAM_DIR_OUT;
655 		data_ptrs[1] = &ccb->smpio.smp_response;
656 		lengths[1] = ccb->smpio.smp_response_len;
657 		dirs[1] = CAM_DIR_IN;
658 		numbufs = 2;
659 		break;
660 	case XPT_GDEV_ADVINFO:
661 		if (ccb->cgdai.bufsiz == 0)
662 			return (0);
663 
664 		data_ptrs[0] = (uint8_t **)&ccb->cgdai.buf;
665 		lengths[0] = ccb->cgdai.bufsiz;
666 		dirs[0] = CAM_DIR_IN;
667 		numbufs = 1;
668 
669 		/*
670 		 * This request will not go to the hardware, no reason
671 		 * to be so strict. vmapbuf() is able to map up to MAXPHYS.
672 		 */
673 		maxmap = MAXPHYS;
674 		break;
675 	default:
676 		return(EINVAL);
677 		break; /* NOTREACHED */
678 	}
679 
680 	/*
681 	 * Check the transfer length and permissions first, so we don't
682 	 * have to unmap any previously mapped buffers.
683 	 */
684 	for (i = 0; i < numbufs; i++) {
685 
686 		flags[i] = 0;
687 
688 		/*
689 		 * The userland data pointer passed in may not be page
690 		 * aligned.  vmapbuf() truncates the address to a page
691 		 * boundary, so if the address isn't page aligned, we'll
692 		 * need enough space for the given transfer length, plus
693 		 * whatever extra space is necessary to make it to the page
694 		 * boundary.
695 		 */
696 		if ((lengths[i] +
697 		    (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){
698 			printf("cam_periph_mapmem: attempt to map %lu bytes, "
699 			       "which is greater than %lu\n",
700 			       (long)(lengths[i] +
701 			       (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)),
702 			       (u_long)maxmap);
703 			return(E2BIG);
704 		}
705 
706 		if (dirs[i] & CAM_DIR_OUT) {
707 			flags[i] = BIO_WRITE;
708 		}
709 
710 		if (dirs[i] & CAM_DIR_IN) {
711 			flags[i] = BIO_READ;
712 		}
713 
714 	}
715 
716 	/* this keeps the current process from getting swapped */
717 	/*
718 	 * XXX KDM should I use P_NOSWAP instead?
719 	 */
720 	PHOLD(curproc);
721 
722 	for (i = 0; i < numbufs; i++) {
723 		/*
724 		 * Get the buffer.
725 		 */
726 		mapinfo->bp[i] = getpbuf(NULL);
727 
728 		/* save the buffer's data address */
729 		mapinfo->bp[i]->b_saveaddr = mapinfo->bp[i]->b_data;
730 
731 		/* put our pointer in the data slot */
732 		mapinfo->bp[i]->b_data = *data_ptrs[i];
733 
734 		/* set the transfer length, we know it's < MAXPHYS */
735 		mapinfo->bp[i]->b_bufsize = lengths[i];
736 
737 		/* set the direction */
738 		mapinfo->bp[i]->b_iocmd = flags[i];
739 
740 		/*
741 		 * Map the buffer into kernel memory.
742 		 *
743 		 * Note that useracc() alone is not a  sufficient test.
744 		 * vmapbuf() can still fail due to a smaller file mapped
745 		 * into a larger area of VM, or if userland races against
746 		 * vmapbuf() after the useracc() check.
747 		 */
748 		if (vmapbuf(mapinfo->bp[i]) < 0) {
749 			for (j = 0; j < i; ++j) {
750 				*data_ptrs[j] = mapinfo->bp[j]->b_saveaddr;
751 				vunmapbuf(mapinfo->bp[j]);
752 				relpbuf(mapinfo->bp[j], NULL);
753 			}
754 			relpbuf(mapinfo->bp[i], NULL);
755 			PRELE(curproc);
756 			return(EACCES);
757 		}
758 
759 		/* set our pointer to the new mapped area */
760 		*data_ptrs[i] = mapinfo->bp[i]->b_data;
761 
762 		mapinfo->num_bufs_used++;
763 	}
764 
765 	/*
766 	 * Now that we've gotten this far, change ownership to the kernel
767 	 * of the buffers so that we don't run afoul of returning to user
768 	 * space with locks (on the buffer) held.
769 	 */
770 	for (i = 0; i < numbufs; i++) {
771 		BUF_KERNPROC(mapinfo->bp[i]);
772 	}
773 
774 
775 	return(0);
776 }
777 
778 /*
779  * Unmap memory segments mapped into kernel virtual address space by
780  * cam_periph_mapmem().
781  */
782 void
783 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
784 {
785 	int numbufs, i;
786 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
787 
788 	if (mapinfo->num_bufs_used <= 0) {
789 		/* allow ourselves to be swapped once again */
790 		PRELE(curproc);
791 		return;
792 	}
793 
794 	switch (ccb->ccb_h.func_code) {
795 	case XPT_DEV_MATCH:
796 		numbufs = min(mapinfo->num_bufs_used, 2);
797 
798 		if (numbufs == 1) {
799 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
800 		} else {
801 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
802 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
803 		}
804 		break;
805 	case XPT_SCSI_IO:
806 	case XPT_CONT_TARGET_IO:
807 		data_ptrs[0] = &ccb->csio.data_ptr;
808 		numbufs = min(mapinfo->num_bufs_used, 1);
809 		break;
810 	case XPT_ATA_IO:
811 		data_ptrs[0] = &ccb->ataio.data_ptr;
812 		numbufs = min(mapinfo->num_bufs_used, 1);
813 		break;
814 	case XPT_SMP_IO:
815 		numbufs = min(mapinfo->num_bufs_used, 2);
816 		data_ptrs[0] = &ccb->smpio.smp_request;
817 		data_ptrs[1] = &ccb->smpio.smp_response;
818 		break;
819 	case XPT_GDEV_ADVINFO:
820 		numbufs = min(mapinfo->num_bufs_used, 1);
821 		data_ptrs[0] = (uint8_t **)&ccb->cgdai.buf;
822 		break;
823 	default:
824 		/* allow ourselves to be swapped once again */
825 		PRELE(curproc);
826 		return;
827 		break; /* NOTREACHED */
828 	}
829 
830 	for (i = 0; i < numbufs; i++) {
831 		/* Set the user's pointer back to the original value */
832 		*data_ptrs[i] = mapinfo->bp[i]->b_saveaddr;
833 
834 		/* unmap the buffer */
835 		vunmapbuf(mapinfo->bp[i]);
836 
837 		/* release the buffer */
838 		relpbuf(mapinfo->bp[i], NULL);
839 	}
840 
841 	/* allow ourselves to be swapped once again */
842 	PRELE(curproc);
843 }
844 
845 union ccb *
846 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
847 {
848 	struct ccb_hdr *ccb_h;
849 
850 	mtx_assert(periph->sim->mtx, MA_OWNED);
851 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n"));
852 
853 	while (SLIST_FIRST(&periph->ccb_list) == NULL) {
854 		if (periph->immediate_priority > priority)
855 			periph->immediate_priority = priority;
856 		xpt_schedule(periph, priority);
857 		if ((SLIST_FIRST(&periph->ccb_list) != NULL)
858 		 && (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority))
859 			break;
860 		mtx_assert(periph->sim->mtx, MA_OWNED);
861 		mtx_sleep(&periph->ccb_list, periph->sim->mtx, PRIBIO, "cgticb",
862 		    0);
863 	}
864 
865 	ccb_h = SLIST_FIRST(&periph->ccb_list);
866 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
867 	return ((union ccb *)ccb_h);
868 }
869 
870 void
871 cam_periph_ccbwait(union ccb *ccb)
872 {
873 	struct cam_sim *sim;
874 
875 	sim = xpt_path_sim(ccb->ccb_h.path);
876 	if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX)
877 	 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG))
878 		mtx_sleep(&ccb->ccb_h.cbfcnp, sim->mtx, PRIBIO, "cbwait", 0);
879 }
880 
881 int
882 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr,
883 		 int (*error_routine)(union ccb *ccb,
884 				      cam_flags camflags,
885 				      u_int32_t sense_flags))
886 {
887 	union ccb 	     *ccb;
888 	int 		     error;
889 	int		     found;
890 
891 	error = found = 0;
892 
893 	switch(cmd){
894 	case CAMGETPASSTHRU:
895 		ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL);
896 		xpt_setup_ccb(&ccb->ccb_h,
897 			      ccb->ccb_h.path,
898 			      CAM_PRIORITY_NORMAL);
899 		ccb->ccb_h.func_code = XPT_GDEVLIST;
900 
901 		/*
902 		 * Basically, the point of this is that we go through
903 		 * getting the list of devices, until we find a passthrough
904 		 * device.  In the current version of the CAM code, the
905 		 * only way to determine what type of device we're dealing
906 		 * with is by its name.
907 		 */
908 		while (found == 0) {
909 			ccb->cgdl.index = 0;
910 			ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
911 			while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
912 
913 				/* we want the next device in the list */
914 				xpt_action(ccb);
915 				if (strncmp(ccb->cgdl.periph_name,
916 				    "pass", 4) == 0){
917 					found = 1;
918 					break;
919 				}
920 			}
921 			if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
922 			    (found == 0)) {
923 				ccb->cgdl.periph_name[0] = '\0';
924 				ccb->cgdl.unit_number = 0;
925 				break;
926 			}
927 		}
928 
929 		/* copy the result back out */
930 		bcopy(ccb, addr, sizeof(union ccb));
931 
932 		/* and release the ccb */
933 		xpt_release_ccb(ccb);
934 
935 		break;
936 	default:
937 		error = ENOTTY;
938 		break;
939 	}
940 	return(error);
941 }
942 
943 int
944 cam_periph_runccb(union ccb *ccb,
945 		  int (*error_routine)(union ccb *ccb,
946 				       cam_flags camflags,
947 				       u_int32_t sense_flags),
948 		  cam_flags camflags, u_int32_t sense_flags,
949 		  struct devstat *ds)
950 {
951 	struct cam_sim *sim;
952 	int error;
953 
954 	error = 0;
955 	sim = xpt_path_sim(ccb->ccb_h.path);
956 	mtx_assert(sim->mtx, MA_OWNED);
957 
958 	/*
959 	 * If the user has supplied a stats structure, and if we understand
960 	 * this particular type of ccb, record the transaction start.
961 	 */
962 	if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO ||
963 	    ccb->ccb_h.func_code == XPT_ATA_IO))
964 		devstat_start_transaction(ds, NULL);
965 
966 	xpt_action(ccb);
967 
968 	do {
969 		cam_periph_ccbwait(ccb);
970 		if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
971 			error = 0;
972 		else if (error_routine != NULL)
973 			error = (*error_routine)(ccb, camflags, sense_flags);
974 		else
975 			error = 0;
976 
977 	} while (error == ERESTART);
978 
979 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
980 		cam_release_devq(ccb->ccb_h.path,
981 				 /* relsim_flags */0,
982 				 /* openings */0,
983 				 /* timeout */0,
984 				 /* getcount_only */ FALSE);
985 		ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
986 	}
987 
988 	if (ds != NULL) {
989 		if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
990 			devstat_end_transaction(ds,
991 					ccb->csio.dxfer_len,
992 					ccb->csio.tag_action & 0x3,
993 					((ccb->ccb_h.flags & CAM_DIR_MASK) ==
994 					CAM_DIR_NONE) ?  DEVSTAT_NO_DATA :
995 					(ccb->ccb_h.flags & CAM_DIR_OUT) ?
996 					DEVSTAT_WRITE :
997 					DEVSTAT_READ, NULL, NULL);
998 		} else if (ccb->ccb_h.func_code == XPT_ATA_IO) {
999 			devstat_end_transaction(ds,
1000 					ccb->ataio.dxfer_len,
1001 					ccb->ataio.tag_action & 0x3,
1002 					((ccb->ccb_h.flags & CAM_DIR_MASK) ==
1003 					CAM_DIR_NONE) ?  DEVSTAT_NO_DATA :
1004 					(ccb->ccb_h.flags & CAM_DIR_OUT) ?
1005 					DEVSTAT_WRITE :
1006 					DEVSTAT_READ, NULL, NULL);
1007 		}
1008 	}
1009 
1010 	return(error);
1011 }
1012 
1013 void
1014 cam_freeze_devq(struct cam_path *path)
1015 {
1016 
1017 	cam_freeze_devq_arg(path, 0, 0);
1018 }
1019 
1020 void
1021 cam_freeze_devq_arg(struct cam_path *path, uint32_t flags, uint32_t arg)
1022 {
1023 	struct ccb_relsim crs;
1024 
1025 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NONE);
1026 	crs.ccb_h.func_code = XPT_FREEZE_QUEUE;
1027 	crs.release_flags = flags;
1028 	crs.openings = arg;
1029 	crs.release_timeout = arg;
1030 	xpt_action((union ccb *)&crs);
1031 }
1032 
1033 u_int32_t
1034 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
1035 		 u_int32_t openings, u_int32_t arg,
1036 		 int getcount_only)
1037 {
1038 	struct ccb_relsim crs;
1039 
1040 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
1041 	crs.ccb_h.func_code = XPT_REL_SIMQ;
1042 	crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
1043 	crs.release_flags = relsim_flags;
1044 	crs.openings = openings;
1045 	crs.release_timeout = arg;
1046 	xpt_action((union ccb *)&crs);
1047 	return (crs.qfrozen_cnt);
1048 }
1049 
1050 #define saved_ccb_ptr ppriv_ptr0
1051 #define recovery_depth ppriv_field1
1052 static void
1053 camperiphsensedone(struct cam_periph *periph, union ccb *done_ccb)
1054 {
1055 	union ccb      *saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
1056 	cam_status	status;
1057 	int		frozen = 0;
1058 	u_int		sense_key;
1059 	int		depth = done_ccb->ccb_h.recovery_depth;
1060 
1061 	status = done_ccb->ccb_h.status;
1062 	if (status & CAM_DEV_QFRZN) {
1063 		frozen = 1;
1064 		/*
1065 		 * Clear freeze flag now for case of retry,
1066 		 * freeze will be dropped later.
1067 		 */
1068 		done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1069 	}
1070 	status &= CAM_STATUS_MASK;
1071 	switch (status) {
1072 	case CAM_REQ_CMP:
1073 	{
1074 		/*
1075 		 * If we manually retrieved sense into a CCB and got
1076 		 * something other than "NO SENSE" send the updated CCB
1077 		 * back to the client via xpt_done() to be processed via
1078 		 * the error recovery code again.
1079 		 */
1080 		sense_key = saved_ccb->csio.sense_data.flags;
1081 		sense_key &= SSD_KEY;
1082 		if (sense_key != SSD_KEY_NO_SENSE) {
1083 			saved_ccb->ccb_h.status |=
1084 			    CAM_AUTOSNS_VALID;
1085 		} else {
1086 			saved_ccb->ccb_h.status &=
1087 			    ~CAM_STATUS_MASK;
1088 			saved_ccb->ccb_h.status |=
1089 			    CAM_AUTOSENSE_FAIL;
1090 		}
1091 		saved_ccb->csio.sense_resid = done_ccb->csio.resid;
1092 		bcopy(saved_ccb, done_ccb, sizeof(union ccb));
1093 		xpt_free_ccb(saved_ccb);
1094 		break;
1095 	}
1096 	default:
1097 		bcopy(saved_ccb, done_ccb, sizeof(union ccb));
1098 		xpt_free_ccb(saved_ccb);
1099 		done_ccb->ccb_h.status &= ~CAM_STATUS_MASK;
1100 		done_ccb->ccb_h.status |= CAM_AUTOSENSE_FAIL;
1101 		break;
1102 	}
1103 	periph->flags &= ~CAM_PERIPH_SENSE_INPROG;
1104 	/*
1105 	 * If it is the end of recovery, drop freeze, taken due to
1106 	 * CAM_DEV_QFREEZE flag, set on recovery request.
1107 	 */
1108 	if (depth == 0) {
1109 		cam_release_devq(done_ccb->ccb_h.path,
1110 			 /*relsim_flags*/0,
1111 			 /*openings*/0,
1112 			 /*timeout*/0,
1113 			 /*getcount_only*/0);
1114 	}
1115 	/*
1116 	 * Copy frozen flag from recovery request if it is set there
1117 	 * for some reason.
1118 	 */
1119 	if (frozen != 0)
1120 		done_ccb->ccb_h.status |= CAM_DEV_QFRZN;
1121 	(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
1122 }
1123 
1124 static void
1125 camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
1126 {
1127 	union ccb      *saved_ccb, *save_ccb;
1128 	cam_status	status;
1129 	int		frozen = 0;
1130 	struct scsi_start_stop_unit *scsi_cmd;
1131 	u_int32_t	relsim_flags, timeout;
1132 
1133 	status = done_ccb->ccb_h.status;
1134 	if (status & CAM_DEV_QFRZN) {
1135 		frozen = 1;
1136 		/*
1137 		 * Clear freeze flag now for case of retry,
1138 		 * freeze will be dropped later.
1139 		 */
1140 		done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1141 	}
1142 
1143 	timeout = 0;
1144 	relsim_flags = 0;
1145 	saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
1146 
1147 	switch (status & CAM_STATUS_MASK) {
1148 	case CAM_REQ_CMP:
1149 	{
1150 		/*
1151 		 * If we have successfully taken a device from the not
1152 		 * ready to ready state, re-scan the device and re-get
1153 		 * the inquiry information.  Many devices (mostly disks)
1154 		 * don't properly report their inquiry information unless
1155 		 * they are spun up.
1156 		 */
1157 		scsi_cmd = (struct scsi_start_stop_unit *)
1158 				&done_ccb->csio.cdb_io.cdb_bytes;
1159 
1160 	 	if (scsi_cmd->opcode == START_STOP_UNIT)
1161 			xpt_async(AC_INQ_CHANGED,
1162 				  done_ccb->ccb_h.path, NULL);
1163 		goto final;
1164 	}
1165 	case CAM_SCSI_STATUS_ERROR:
1166 		scsi_cmd = (struct scsi_start_stop_unit *)
1167 				&done_ccb->csio.cdb_io.cdb_bytes;
1168 		if (status & CAM_AUTOSNS_VALID) {
1169 			struct ccb_getdev cgd;
1170 			struct scsi_sense_data *sense;
1171 			int    error_code, sense_key, asc, ascq;
1172 			scsi_sense_action err_action;
1173 
1174 			sense = &done_ccb->csio.sense_data;
1175 			scsi_extract_sense(sense, &error_code,
1176 					   &sense_key, &asc, &ascq);
1177 			/*
1178 			 * Grab the inquiry data for this device.
1179 			 */
1180 			xpt_setup_ccb(&cgd.ccb_h, done_ccb->ccb_h.path,
1181 			    CAM_PRIORITY_NORMAL);
1182 			cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1183 			xpt_action((union ccb *)&cgd);
1184 			err_action = scsi_error_action(&done_ccb->csio,
1185 						       &cgd.inq_data, 0);
1186 			/*
1187 	 		 * If the error is "invalid field in CDB",
1188 			 * and the load/eject flag is set, turn the
1189 			 * flag off and try again.  This is just in
1190 			 * case the drive in question barfs on the
1191 			 * load eject flag.  The CAM code should set
1192 			 * the load/eject flag by default for
1193 			 * removable media.
1194 			 */
1195 			/* XXX KDM
1196 			 * Should we check to see what the specific
1197 			 * scsi status is??  Or does it not matter
1198 			 * since we already know that there was an
1199 			 * error, and we know what the specific
1200 			 * error code was, and we know what the
1201 			 * opcode is..
1202 			 */
1203 			if ((scsi_cmd->opcode == START_STOP_UNIT) &&
1204 			    ((scsi_cmd->how & SSS_LOEJ) != 0) &&
1205 			     (asc == 0x24) && (ascq == 0x00) &&
1206 			     (done_ccb->ccb_h.retry_count > 0)) {
1207 
1208 				scsi_cmd->how &= ~SSS_LOEJ;
1209 				xpt_action(done_ccb);
1210 			} else if ((done_ccb->ccb_h.retry_count > 1)
1211 				&& ((err_action & SS_MASK) != SS_FAIL)) {
1212 
1213 				/*
1214 				 * In this case, the error recovery
1215 				 * command failed, but we've got
1216 				 * some retries left on it.  Give
1217 				 * it another try unless this is an
1218 				 * unretryable error.
1219 				 */
1220 				/* set the timeout to .5 sec */
1221 				relsim_flags =
1222 					RELSIM_RELEASE_AFTER_TIMEOUT;
1223 				timeout = 500;
1224 				xpt_action(done_ccb);
1225 				break;
1226 			} else {
1227 				/*
1228 				 * Perform the final retry with the original
1229 				 * CCB so that final error processing is
1230 				 * performed by the owner of the CCB.
1231 				 */
1232 				goto final;
1233 			}
1234 		} else {
1235 			save_ccb = xpt_alloc_ccb_nowait();
1236 			if (save_ccb == NULL)
1237 				goto final;
1238 			bcopy(done_ccb, save_ccb, sizeof(*save_ccb));
1239 			periph->flags |= CAM_PERIPH_SENSE_INPROG;
1240 			/*
1241 			 * Send a Request Sense to the device.  We
1242 			 * assume that we are in a contingent allegiance
1243 			 * condition so we do not tag this request.
1244 			 */
1245 			scsi_request_sense(&done_ccb->csio, /*retries*/1,
1246 					   camperiphsensedone,
1247 					   &save_ccb->csio.sense_data,
1248 					   save_ccb->csio.sense_len,
1249 					   CAM_TAG_ACTION_NONE,
1250 					   /*sense_len*/SSD_FULL_SIZE,
1251 					   /*timeout*/5000);
1252 			done_ccb->ccb_h.pinfo.priority--;
1253 			done_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1254 			done_ccb->ccb_h.saved_ccb_ptr = save_ccb;
1255 			done_ccb->ccb_h.recovery_depth++;
1256 			xpt_action(done_ccb);
1257 		}
1258 		break;
1259 	default:
1260 final:
1261 		bcopy(saved_ccb, done_ccb, sizeof(*done_ccb));
1262 		xpt_free_ccb(saved_ccb);
1263 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1264 		xpt_action(done_ccb);
1265 		break;
1266 	}
1267 
1268 	/* decrement the retry count */
1269 	/*
1270 	 * XXX This isn't appropriate in all cases.  Restructure,
1271 	 *     so that the retry count is only decremented on an
1272 	 *     actual retry.  Remeber that the orignal ccb had its
1273 	 *     retry count dropped before entering recovery, so
1274 	 *     doing it again is a bug.
1275 	 */
1276 	if (done_ccb->ccb_h.retry_count > 0)
1277 		done_ccb->ccb_h.retry_count--;
1278 	/*
1279 	 * Drop freeze taken due to CAM_DEV_QFREEZE flag set on recovery
1280 	 * request.
1281 	 */
1282 	cam_release_devq(done_ccb->ccb_h.path,
1283 			 /*relsim_flags*/relsim_flags,
1284 			 /*openings*/0,
1285 			 /*timeout*/timeout,
1286 			 /*getcount_only*/0);
1287 	/* Drop freeze taken, if this recovery request got error. */
1288 	if (frozen != 0) {
1289 		cam_release_devq(done_ccb->ccb_h.path,
1290 			 /*relsim_flags*/0,
1291 			 /*openings*/0,
1292 			 /*timeout*/0,
1293 			 /*getcount_only*/0);
1294 	}
1295 }
1296 
1297 /*
1298  * Generic Async Event handler.  Peripheral drivers usually
1299  * filter out the events that require personal attention,
1300  * and leave the rest to this function.
1301  */
1302 void
1303 cam_periph_async(struct cam_periph *periph, u_int32_t code,
1304 		 struct cam_path *path, void *arg)
1305 {
1306 	switch (code) {
1307 	case AC_LOST_DEVICE:
1308 		cam_periph_invalidate(periph);
1309 		break;
1310 	default:
1311 		break;
1312 	}
1313 }
1314 
1315 void
1316 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
1317 {
1318 	struct ccb_getdevstats cgds;
1319 
1320 	xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
1321 	cgds.ccb_h.func_code = XPT_GDEV_STATS;
1322 	xpt_action((union ccb *)&cgds);
1323 	cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
1324 }
1325 
1326 void
1327 cam_periph_freeze_after_event(struct cam_periph *periph,
1328 			      struct timeval* event_time, u_int duration_ms)
1329 {
1330 	struct timeval delta;
1331 	struct timeval duration_tv;
1332 
1333 	microtime(&delta);
1334 	timevalsub(&delta, event_time);
1335 	duration_tv.tv_sec = duration_ms / 1000;
1336 	duration_tv.tv_usec = (duration_ms % 1000) * 1000;
1337 	if (timevalcmp(&delta, &duration_tv, <)) {
1338 		timevalsub(&duration_tv, &delta);
1339 
1340 		duration_ms = duration_tv.tv_sec * 1000;
1341 		duration_ms += duration_tv.tv_usec / 1000;
1342 		cam_freeze_devq(periph->path);
1343 		cam_release_devq(periph->path,
1344 				RELSIM_RELEASE_AFTER_TIMEOUT,
1345 				/*reduction*/0,
1346 				/*timeout*/duration_ms,
1347 				/*getcount_only*/0);
1348 	}
1349 
1350 }
1351 
1352 static int
1353 camperiphscsistatuserror(union ccb *ccb, cam_flags camflags,
1354 			 u_int32_t sense_flags,
1355 			 int *openings, u_int32_t *relsim_flags,
1356 			 u_int32_t *timeout, const char **action_string)
1357 {
1358 	int error;
1359 
1360 	switch (ccb->csio.scsi_status) {
1361 	case SCSI_STATUS_OK:
1362 	case SCSI_STATUS_COND_MET:
1363 	case SCSI_STATUS_INTERMED:
1364 	case SCSI_STATUS_INTERMED_COND_MET:
1365 		error = 0;
1366 		break;
1367 	case SCSI_STATUS_CMD_TERMINATED:
1368 	case SCSI_STATUS_CHECK_COND:
1369 		if (bootverbose)
1370 			xpt_print(ccb->ccb_h.path, "SCSI status error\n");
1371 		error = camperiphscsisenseerror(ccb,
1372 					        camflags,
1373 					        sense_flags,
1374 					        openings,
1375 					        relsim_flags,
1376 					        timeout,
1377 					        action_string);
1378 		break;
1379 	case SCSI_STATUS_QUEUE_FULL:
1380 	{
1381 		/* no decrement */
1382 		struct ccb_getdevstats cgds;
1383 
1384 		/*
1385 		 * First off, find out what the current
1386 		 * transaction counts are.
1387 		 */
1388 		xpt_setup_ccb(&cgds.ccb_h,
1389 			      ccb->ccb_h.path,
1390 			      CAM_PRIORITY_NORMAL);
1391 		cgds.ccb_h.func_code = XPT_GDEV_STATS;
1392 		xpt_action((union ccb *)&cgds);
1393 
1394 		/*
1395 		 * If we were the only transaction active, treat
1396 		 * the QUEUE FULL as if it were a BUSY condition.
1397 		 */
1398 		if (cgds.dev_active != 0) {
1399 			int total_openings;
1400 
1401 			/*
1402 		 	 * Reduce the number of openings to
1403 			 * be 1 less than the amount it took
1404 			 * to get a queue full bounded by the
1405 			 * minimum allowed tag count for this
1406 			 * device.
1407 		 	 */
1408 			total_openings = cgds.dev_active + cgds.dev_openings;
1409 			*openings = cgds.dev_active;
1410 			if (*openings < cgds.mintags)
1411 				*openings = cgds.mintags;
1412 			if (*openings < total_openings)
1413 				*relsim_flags = RELSIM_ADJUST_OPENINGS;
1414 			else {
1415 				/*
1416 				 * Some devices report queue full for
1417 				 * temporary resource shortages.  For
1418 				 * this reason, we allow a minimum
1419 				 * tag count to be entered via a
1420 				 * quirk entry to prevent the queue
1421 				 * count on these devices from falling
1422 				 * to a pessimisticly low value.  We
1423 				 * still wait for the next successful
1424 				 * completion, however, before queueing
1425 				 * more transactions to the device.
1426 				 */
1427 				*relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
1428 			}
1429 			*timeout = 0;
1430 			error = ERESTART;
1431 			if (bootverbose) {
1432 				xpt_print(ccb->ccb_h.path, "Queue full\n");
1433 			}
1434 			break;
1435 		}
1436 		/* FALLTHROUGH */
1437 	}
1438 	case SCSI_STATUS_BUSY:
1439 		/*
1440 		 * Restart the queue after either another
1441 		 * command completes or a 1 second timeout.
1442 		 */
1443 		if (bootverbose) {
1444 			xpt_print(ccb->ccb_h.path, "Device busy\n");
1445 		}
1446 	 	if (ccb->ccb_h.retry_count > 0) {
1447 	 		ccb->ccb_h.retry_count--;
1448 			error = ERESTART;
1449 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
1450 				      | RELSIM_RELEASE_AFTER_CMDCMPLT;
1451 			*timeout = 1000;
1452 		} else {
1453 			error = EIO;
1454 		}
1455 		break;
1456 	case SCSI_STATUS_RESERV_CONFLICT:
1457 		xpt_print(ccb->ccb_h.path, "Reservation conflict\n");
1458 		error = EIO;
1459 		break;
1460 	default:
1461 		xpt_print(ccb->ccb_h.path, "SCSI status 0x%x\n",
1462 		    ccb->csio.scsi_status);
1463 		error = EIO;
1464 		break;
1465 	}
1466 	return (error);
1467 }
1468 
1469 static int
1470 camperiphscsisenseerror(union ccb *ccb, cam_flags camflags,
1471 			u_int32_t sense_flags,
1472 		       int *openings, u_int32_t *relsim_flags,
1473 		       u_int32_t *timeout, const char **action_string)
1474 {
1475 	struct cam_periph *periph;
1476 	union ccb *orig_ccb = ccb;
1477 	int error;
1478 
1479 	periph = xpt_path_periph(ccb->ccb_h.path);
1480 	if (periph->flags &
1481 	    (CAM_PERIPH_RECOVERY_INPROG | CAM_PERIPH_SENSE_INPROG)) {
1482 		/*
1483 		 * If error recovery is already in progress, don't attempt
1484 		 * to process this error, but requeue it unconditionally
1485 		 * and attempt to process it once error recovery has
1486 		 * completed.  This failed command is probably related to
1487 		 * the error that caused the currently active error recovery
1488 		 * action so our  current recovery efforts should also
1489 		 * address this command.  Be aware that the error recovery
1490 		 * code assumes that only one recovery action is in progress
1491 		 * on a particular peripheral instance at any given time
1492 		 * (e.g. only one saved CCB for error recovery) so it is
1493 		 * imperitive that we don't violate this assumption.
1494 		 */
1495 		error = ERESTART;
1496 	} else {
1497 		scsi_sense_action err_action;
1498 		struct ccb_getdev cgd;
1499 
1500 		/*
1501 		 * Grab the inquiry data for this device.
1502 		 */
1503 		xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL);
1504 		cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1505 		xpt_action((union ccb *)&cgd);
1506 
1507 		if ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)
1508 			err_action = scsi_error_action(&ccb->csio,
1509 						       &cgd.inq_data,
1510 						       sense_flags);
1511 		else if ((ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0)
1512 			err_action = SS_REQSENSE;
1513 		else
1514 			err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
1515 
1516 		error = err_action & SS_ERRMASK;
1517 
1518 		/*
1519 		 * If the recovery action will consume a retry,
1520 		 * make sure we actually have retries available.
1521 		 */
1522 		if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
1523 		 	if (ccb->ccb_h.retry_count > 0)
1524 		 		ccb->ccb_h.retry_count--;
1525 			else {
1526 				*action_string = "Retries exhausted";
1527 				goto sense_error_done;
1528 			}
1529 		}
1530 
1531 		if ((err_action & SS_MASK) >= SS_START) {
1532 			/*
1533 			 * Do common portions of commands that
1534 			 * use recovery CCBs.
1535 			 */
1536 			orig_ccb = xpt_alloc_ccb_nowait();
1537 			if (orig_ccb == NULL) {
1538 				*action_string = "Can't allocate recovery CCB";
1539 				goto sense_error_done;
1540 			}
1541 			/*
1542 			 * Clear freeze flag for original request here, as
1543 			 * this freeze will be dropped as part of ERESTART.
1544 			 */
1545 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1546 			bcopy(ccb, orig_ccb, sizeof(*orig_ccb));
1547 		}
1548 
1549 		switch (err_action & SS_MASK) {
1550 		case SS_NOP:
1551 			*action_string = "No recovery action needed";
1552 			error = 0;
1553 			break;
1554 		case SS_RETRY:
1555 			*action_string = "Retrying command (per sense data)";
1556 			error = ERESTART;
1557 			break;
1558 		case SS_FAIL:
1559 			*action_string = "Unretryable error";
1560 			break;
1561 		case SS_START:
1562 		{
1563 			int le;
1564 
1565 			/*
1566 			 * Send a start unit command to the device, and
1567 			 * then retry the command.
1568 			 */
1569 			*action_string = "Attempting to start unit";
1570 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1571 
1572 			/*
1573 			 * Check for removable media and set
1574 			 * load/eject flag appropriately.
1575 			 */
1576 			if (SID_IS_REMOVABLE(&cgd.inq_data))
1577 				le = TRUE;
1578 			else
1579 				le = FALSE;
1580 
1581 			scsi_start_stop(&ccb->csio,
1582 					/*retries*/1,
1583 					camperiphdone,
1584 					MSG_SIMPLE_Q_TAG,
1585 					/*start*/TRUE,
1586 					/*load/eject*/le,
1587 					/*immediate*/FALSE,
1588 					SSD_FULL_SIZE,
1589 					/*timeout*/50000);
1590 			break;
1591 		}
1592 		case SS_TUR:
1593 		{
1594 			/*
1595 			 * Send a Test Unit Ready to the device.
1596 			 * If the 'many' flag is set, we send 120
1597 			 * test unit ready commands, one every half
1598 			 * second.  Otherwise, we just send one TUR.
1599 			 * We only want to do this if the retry
1600 			 * count has not been exhausted.
1601 			 */
1602 			int retries;
1603 
1604 			if ((err_action & SSQ_MANY) != 0) {
1605 				*action_string = "Polling device for readiness";
1606 				retries = 120;
1607 			} else {
1608 				*action_string = "Testing device for readiness";
1609 				retries = 1;
1610 			}
1611 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1612 			scsi_test_unit_ready(&ccb->csio,
1613 					     retries,
1614 					     camperiphdone,
1615 					     MSG_SIMPLE_Q_TAG,
1616 					     SSD_FULL_SIZE,
1617 					     /*timeout*/5000);
1618 
1619 			/*
1620 			 * Accomplish our 500ms delay by deferring
1621 			 * the release of our device queue appropriately.
1622 			 */
1623 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1624 			*timeout = 500;
1625 			break;
1626 		}
1627 		case SS_REQSENSE:
1628 		{
1629 			*action_string = "Requesting SCSI sense data";
1630 			periph->flags |= CAM_PERIPH_SENSE_INPROG;
1631 			/*
1632 			 * Send a Request Sense to the device.  We
1633 			 * assume that we are in a contingent allegiance
1634 			 * condition so we do not tag this request.
1635 			 */
1636 			scsi_request_sense(&ccb->csio, /*retries*/1,
1637 					   camperiphsensedone,
1638 					   &orig_ccb->csio.sense_data,
1639 					   orig_ccb->csio.sense_len,
1640 					   CAM_TAG_ACTION_NONE,
1641 					   /*sense_len*/SSD_FULL_SIZE,
1642 					   /*timeout*/5000);
1643 			break;
1644 		}
1645 		default:
1646 			panic("Unhandled error action %x", err_action);
1647 		}
1648 
1649 		if ((err_action & SS_MASK) >= SS_START) {
1650 			/*
1651 			 * Drop the priority, so that the recovery
1652 			 * CCB is the first to execute.  Freeze the queue
1653 			 * after this command is sent so that we can
1654 			 * restore the old csio and have it queued in
1655 			 * the proper order before we release normal
1656 			 * transactions to the device.
1657 			 */
1658 			ccb->ccb_h.pinfo.priority--;
1659 			ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1660 			ccb->ccb_h.saved_ccb_ptr = orig_ccb;
1661 			ccb->ccb_h.recovery_depth = 0;
1662 			error = ERESTART;
1663 		}
1664 
1665 sense_error_done:
1666 		if ((err_action & SSQ_PRINT_SENSE) != 0
1667 		 && (ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)
1668 			cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
1669 	}
1670 	return (error);
1671 }
1672 
1673 /*
1674  * Generic error handler.  Peripheral drivers usually filter
1675  * out the errors that they handle in a unique mannor, then
1676  * call this function.
1677  */
1678 int
1679 cam_periph_error(union ccb *ccb, cam_flags camflags,
1680 		 u_int32_t sense_flags, union ccb *save_ccb)
1681 {
1682 	const char *action_string;
1683 	cam_status  status;
1684 	int	    frozen;
1685 	int	    error, printed = 0;
1686 	int         openings;
1687 	u_int32_t   relsim_flags;
1688 	u_int32_t   timeout = 0;
1689 
1690 	action_string = NULL;
1691 	status = ccb->ccb_h.status;
1692 	frozen = (status & CAM_DEV_QFRZN) != 0;
1693 	status &= CAM_STATUS_MASK;
1694 	openings = relsim_flags = 0;
1695 
1696 	switch (status) {
1697 	case CAM_REQ_CMP:
1698 		error = 0;
1699 		break;
1700 	case CAM_SCSI_STATUS_ERROR:
1701 		error = camperiphscsistatuserror(ccb,
1702 						 camflags,
1703 						 sense_flags,
1704 						 &openings,
1705 						 &relsim_flags,
1706 						 &timeout,
1707 						 &action_string);
1708 		break;
1709 	case CAM_AUTOSENSE_FAIL:
1710 		xpt_print(ccb->ccb_h.path, "AutoSense failed\n");
1711 		error = EIO;	/* we have to kill the command */
1712 		break;
1713 	case CAM_ATA_STATUS_ERROR:
1714 		if (bootverbose && printed == 0) {
1715 			xpt_print(ccb->ccb_h.path, "ATA status error\n");
1716 			cam_error_print(ccb, CAM_ESF_ALL, CAM_EPF_ALL);
1717 			printed++;
1718 		}
1719 		/* FALLTHROUGH */
1720 	case CAM_REQ_CMP_ERR:
1721 		if (bootverbose && printed == 0) {
1722 			xpt_print(ccb->ccb_h.path,
1723 			    "Request completed with CAM_REQ_CMP_ERR\n");
1724 			printed++;
1725 		}
1726 		/* FALLTHROUGH */
1727 	case CAM_CMD_TIMEOUT:
1728 		if (bootverbose && printed == 0) {
1729 			xpt_print(ccb->ccb_h.path, "Command timed out\n");
1730 			printed++;
1731 		}
1732 		/* FALLTHROUGH */
1733 	case CAM_UNEXP_BUSFREE:
1734 		if (bootverbose && printed == 0) {
1735 			xpt_print(ccb->ccb_h.path, "Unexpected Bus Free\n");
1736 			printed++;
1737 		}
1738 		/* FALLTHROUGH */
1739 	case CAM_UNCOR_PARITY:
1740 		if (bootverbose && printed == 0) {
1741 			xpt_print(ccb->ccb_h.path,
1742 			    "Uncorrected parity error\n");
1743 			printed++;
1744 		}
1745 		/* FALLTHROUGH */
1746 	case CAM_DATA_RUN_ERR:
1747 		if (bootverbose && printed == 0) {
1748 			xpt_print(ccb->ccb_h.path, "Data overrun\n");
1749 			printed++;
1750 		}
1751 		error = EIO;	/* we have to kill the command */
1752 		/* decrement the number of retries */
1753 		if (ccb->ccb_h.retry_count > 0) {
1754 			ccb->ccb_h.retry_count--;
1755 			error = ERESTART;
1756 		} else {
1757 			action_string = "Retries exhausted";
1758 			error = EIO;
1759 		}
1760 		break;
1761 	case CAM_UA_ABORT:
1762 	case CAM_UA_TERMIO:
1763 	case CAM_MSG_REJECT_REC:
1764 		/* XXX Don't know that these are correct */
1765 		error = EIO;
1766 		break;
1767 	case CAM_SEL_TIMEOUT:
1768 	{
1769 		struct cam_path *newpath;
1770 
1771 		if ((camflags & CAM_RETRY_SELTO) != 0) {
1772 			if (ccb->ccb_h.retry_count > 0) {
1773 
1774 				ccb->ccb_h.retry_count--;
1775 				error = ERESTART;
1776 				if (bootverbose && printed == 0) {
1777 					xpt_print(ccb->ccb_h.path,
1778 					    "Selection timeout\n");
1779 					printed++;
1780 				}
1781 
1782 				/*
1783 				 * Wait a bit to give the device
1784 				 * time to recover before we try again.
1785 				 */
1786 				relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1787 				timeout = periph_selto_delay;
1788 				break;
1789 			}
1790 		}
1791 		error = ENXIO;
1792 		/* Should we do more if we can't create the path?? */
1793 		if (xpt_create_path(&newpath, xpt_path_periph(ccb->ccb_h.path),
1794 				    xpt_path_path_id(ccb->ccb_h.path),
1795 				    xpt_path_target_id(ccb->ccb_h.path),
1796 				    CAM_LUN_WILDCARD) != CAM_REQ_CMP)
1797 			break;
1798 
1799 		/*
1800 		 * Let peripheral drivers know that this device has gone
1801 		 * away.
1802 		 */
1803 		xpt_async(AC_LOST_DEVICE, newpath, NULL);
1804 		xpt_free_path(newpath);
1805 		break;
1806 	}
1807 	case CAM_REQ_INVALID:
1808 	case CAM_PATH_INVALID:
1809 	case CAM_DEV_NOT_THERE:
1810 	case CAM_NO_HBA:
1811 	case CAM_PROVIDE_FAIL:
1812 	case CAM_REQ_TOO_BIG:
1813 	case CAM_LUN_INVALID:
1814 	case CAM_TID_INVALID:
1815 		error = EINVAL;
1816 		break;
1817 	case CAM_SCSI_BUS_RESET:
1818 	case CAM_BDR_SENT:
1819 		/*
1820 		 * Commands that repeatedly timeout and cause these
1821 		 * kinds of error recovery actions, should return
1822 		 * CAM_CMD_TIMEOUT, which allows us to safely assume
1823 		 * that this command was an innocent bystander to
1824 		 * these events and should be unconditionally
1825 		 * retried.
1826 		 */
1827 		if (bootverbose && printed == 0) {
1828 			xpt_print_path(ccb->ccb_h.path);
1829 			if (status == CAM_BDR_SENT)
1830 				printf("Bus Device Reset sent\n");
1831 			else
1832 				printf("Bus Reset issued\n");
1833 			printed++;
1834 		}
1835 		/* FALLTHROUGH */
1836 	case CAM_REQUEUE_REQ:
1837 		/* Unconditional requeue */
1838 		error = ERESTART;
1839 		if (bootverbose && printed == 0) {
1840 			xpt_print(ccb->ccb_h.path, "Request requeued\n");
1841 			printed++;
1842 		}
1843 		break;
1844 	case CAM_RESRC_UNAVAIL:
1845 		/* Wait a bit for the resource shortage to abate. */
1846 		timeout = periph_noresrc_delay;
1847 		/* FALLTHROUGH */
1848 	case CAM_BUSY:
1849 		if (timeout == 0) {
1850 			/* Wait a bit for the busy condition to abate. */
1851 			timeout = periph_busy_delay;
1852 		}
1853 		relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1854 		/* FALLTHROUGH */
1855 	default:
1856 		/* decrement the number of retries */
1857 		if (ccb->ccb_h.retry_count > 0) {
1858 			ccb->ccb_h.retry_count--;
1859 			error = ERESTART;
1860 			if (bootverbose && printed == 0) {
1861 				xpt_print(ccb->ccb_h.path, "CAM status 0x%x\n",
1862 				    status);
1863 				printed++;
1864 			}
1865 		} else {
1866 			error = EIO;
1867 			action_string = "Retries exhausted";
1868 		}
1869 		break;
1870 	}
1871 
1872 	/*
1873 	 * If we have and error and are booting verbosely, whine
1874 	 * *unless* this was a non-retryable selection timeout.
1875 	 */
1876 	if (error != 0 && bootverbose &&
1877 	    !(status == CAM_SEL_TIMEOUT && (camflags & CAM_RETRY_SELTO) == 0)) {
1878 		if (error != ERESTART) {
1879 			if (action_string == NULL)
1880 				action_string = "Unretryable error";
1881 			xpt_print(ccb->ccb_h.path, "Error %d, %s\n",
1882 			    error, action_string);
1883 		} else if (action_string != NULL)
1884 			xpt_print(ccb->ccb_h.path, "%s\n", action_string);
1885 		else
1886 			xpt_print(ccb->ccb_h.path, "Retrying command\n");
1887 	}
1888 
1889 	/* Attempt a retry */
1890 	if (error == ERESTART || error == 0) {
1891 		if (frozen != 0)
1892 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1893 		if (error == ERESTART)
1894 			xpt_action(ccb);
1895 		if (frozen != 0)
1896 			cam_release_devq(ccb->ccb_h.path,
1897 					 relsim_flags,
1898 					 openings,
1899 					 timeout,
1900 					 /*getcount_only*/0);
1901 	}
1902 
1903 	return (error);
1904 }
1905