xref: /freebsd/sys/cam/cam_periph.c (revision 0b57cec536236d46e3dba9bd041533462f33dbb7)
1 /*-
2  * Common functions for CAM "type" (peripheral) drivers.
3  *
4  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5  *
6  * Copyright (c) 1997, 1998 Justin T. Gibbs.
7  * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions, and the following disclaimer,
15  *    without modification, immediately at the beginning of the file.
16  * 2. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/types.h>
38 #include <sys/malloc.h>
39 #include <sys/kernel.h>
40 #include <sys/bio.h>
41 #include <sys/conf.h>
42 #include <sys/lock.h>
43 #include <sys/mutex.h>
44 #include <sys/buf.h>
45 #include <sys/proc.h>
46 #include <sys/devicestat.h>
47 #include <sys/bus.h>
48 #include <sys/sbuf.h>
49 #include <sys/sysctl.h>
50 #include <vm/vm.h>
51 #include <vm/vm_extern.h>
52 
53 #include <cam/cam.h>
54 #include <cam/cam_ccb.h>
55 #include <cam/cam_queue.h>
56 #include <cam/cam_xpt_periph.h>
57 #include <cam/cam_periph.h>
58 #include <cam/cam_debug.h>
59 #include <cam/cam_sim.h>
60 
61 #include <cam/scsi/scsi_all.h>
62 #include <cam/scsi/scsi_message.h>
63 #include <cam/scsi/scsi_pass.h>
64 
65 static	u_int		camperiphnextunit(struct periph_driver *p_drv,
66 					  u_int newunit, int wired,
67 					  path_id_t pathid, target_id_t target,
68 					  lun_id_t lun);
69 static	u_int		camperiphunit(struct periph_driver *p_drv,
70 				      path_id_t pathid, target_id_t target,
71 				      lun_id_t lun);
72 static	void		camperiphdone(struct cam_periph *periph,
73 					union ccb *done_ccb);
74 static  void		camperiphfree(struct cam_periph *periph);
75 static int		camperiphscsistatuserror(union ccb *ccb,
76 					        union ccb **orig_ccb,
77 						 cam_flags camflags,
78 						 u_int32_t sense_flags,
79 						 int *openings,
80 						 u_int32_t *relsim_flags,
81 						 u_int32_t *timeout,
82 						 u_int32_t  *action,
83 						 const char **action_string);
84 static	int		camperiphscsisenseerror(union ccb *ccb,
85 					        union ccb **orig_ccb,
86 					        cam_flags camflags,
87 					        u_int32_t sense_flags,
88 					        int *openings,
89 					        u_int32_t *relsim_flags,
90 					        u_int32_t *timeout,
91 					        u_int32_t *action,
92 					        const char **action_string);
93 static void		cam_periph_devctl_notify(union ccb *ccb);
94 
95 static int nperiph_drivers;
96 static int initialized = 0;
97 struct periph_driver **periph_drivers;
98 
99 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
100 
101 static int periph_selto_delay = 1000;
102 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
103 static int periph_noresrc_delay = 500;
104 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
105 static int periph_busy_delay = 500;
106 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
107 
108 static u_int periph_mapmem_thresh = 65536;
109 SYSCTL_UINT(_kern_cam, OID_AUTO, mapmem_thresh, CTLFLAG_RWTUN,
110     &periph_mapmem_thresh, 0, "Threshold for user-space buffer mapping");
111 
112 void
113 periphdriver_register(void *data)
114 {
115 	struct periph_driver *drv = (struct periph_driver *)data;
116 	struct periph_driver **newdrivers, **old;
117 	int ndrivers;
118 
119 again:
120 	ndrivers = nperiph_drivers + 2;
121 	newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
122 			    M_WAITOK);
123 	xpt_lock_buses();
124 	if (ndrivers != nperiph_drivers + 2) {
125 		/*
126 		 * Lost race against itself; go around.
127 		 */
128 		xpt_unlock_buses();
129 		free(newdrivers, M_CAMPERIPH);
130 		goto again;
131 	}
132 	if (periph_drivers)
133 		bcopy(periph_drivers, newdrivers,
134 		      sizeof(*newdrivers) * nperiph_drivers);
135 	newdrivers[nperiph_drivers] = drv;
136 	newdrivers[nperiph_drivers + 1] = NULL;
137 	old = periph_drivers;
138 	periph_drivers = newdrivers;
139 	nperiph_drivers++;
140 	xpt_unlock_buses();
141 	if (old)
142 		free(old, M_CAMPERIPH);
143 	/* If driver marked as early or it is late now, initialize it. */
144 	if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) ||
145 	    initialized > 1)
146 		(*drv->init)();
147 }
148 
149 int
150 periphdriver_unregister(void *data)
151 {
152 	struct periph_driver *drv = (struct periph_driver *)data;
153 	int error, n;
154 
155 	/* If driver marked as early or it is late now, deinitialize it. */
156 	if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) ||
157 	    initialized > 1) {
158 		if (drv->deinit == NULL) {
159 			printf("CAM periph driver '%s' doesn't have deinit.\n",
160 			    drv->driver_name);
161 			return (EOPNOTSUPP);
162 		}
163 		error = drv->deinit();
164 		if (error != 0)
165 			return (error);
166 	}
167 
168 	xpt_lock_buses();
169 	for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++)
170 		;
171 	KASSERT(n < nperiph_drivers,
172 	    ("Periph driver '%s' was not registered", drv->driver_name));
173 	for (; n + 1 < nperiph_drivers; n++)
174 		periph_drivers[n] = periph_drivers[n + 1];
175 	periph_drivers[n + 1] = NULL;
176 	nperiph_drivers--;
177 	xpt_unlock_buses();
178 	return (0);
179 }
180 
181 void
182 periphdriver_init(int level)
183 {
184 	int	i, early;
185 
186 	initialized = max(initialized, level);
187 	for (i = 0; periph_drivers[i] != NULL; i++) {
188 		early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2;
189 		if (early == initialized)
190 			(*periph_drivers[i]->init)();
191 	}
192 }
193 
194 cam_status
195 cam_periph_alloc(periph_ctor_t *periph_ctor,
196 		 periph_oninv_t *periph_oninvalidate,
197 		 periph_dtor_t *periph_dtor, periph_start_t *periph_start,
198 		 char *name, cam_periph_type type, struct cam_path *path,
199 		 ac_callback_t *ac_callback, ac_code code, void *arg)
200 {
201 	struct		periph_driver **p_drv;
202 	struct		cam_sim *sim;
203 	struct		cam_periph *periph;
204 	struct		cam_periph *cur_periph;
205 	path_id_t	path_id;
206 	target_id_t	target_id;
207 	lun_id_t	lun_id;
208 	cam_status	status;
209 	u_int		init_level;
210 
211 	init_level = 0;
212 	/*
213 	 * Handle Hot-Plug scenarios.  If there is already a peripheral
214 	 * of our type assigned to this path, we are likely waiting for
215 	 * final close on an old, invalidated, peripheral.  If this is
216 	 * the case, queue up a deferred call to the peripheral's async
217 	 * handler.  If it looks like a mistaken re-allocation, complain.
218 	 */
219 	if ((periph = cam_periph_find(path, name)) != NULL) {
220 
221 		if ((periph->flags & CAM_PERIPH_INVALID) != 0
222 		 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
223 			periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
224 			periph->deferred_callback = ac_callback;
225 			periph->deferred_ac = code;
226 			return (CAM_REQ_INPROG);
227 		} else {
228 			printf("cam_periph_alloc: attempt to re-allocate "
229 			       "valid device %s%d rejected flags %#x "
230 			       "refcount %d\n", periph->periph_name,
231 			       periph->unit_number, periph->flags,
232 			       periph->refcount);
233 		}
234 		return (CAM_REQ_INVALID);
235 	}
236 
237 	periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH,
238 					     M_NOWAIT|M_ZERO);
239 
240 	if (periph == NULL)
241 		return (CAM_RESRC_UNAVAIL);
242 
243 	init_level++;
244 
245 
246 	sim = xpt_path_sim(path);
247 	path_id = xpt_path_path_id(path);
248 	target_id = xpt_path_target_id(path);
249 	lun_id = xpt_path_lun_id(path);
250 	periph->periph_start = periph_start;
251 	periph->periph_dtor = periph_dtor;
252 	periph->periph_oninval = periph_oninvalidate;
253 	periph->type = type;
254 	periph->periph_name = name;
255 	periph->scheduled_priority = CAM_PRIORITY_NONE;
256 	periph->immediate_priority = CAM_PRIORITY_NONE;
257 	periph->refcount = 1;		/* Dropped by invalidation. */
258 	periph->sim = sim;
259 	SLIST_INIT(&periph->ccb_list);
260 	status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
261 	if (status != CAM_REQ_CMP)
262 		goto failure;
263 	periph->path = path;
264 
265 	xpt_lock_buses();
266 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
267 		if (strcmp((*p_drv)->driver_name, name) == 0)
268 			break;
269 	}
270 	if (*p_drv == NULL) {
271 		printf("cam_periph_alloc: invalid periph name '%s'\n", name);
272 		xpt_unlock_buses();
273 		xpt_free_path(periph->path);
274 		free(periph, M_CAMPERIPH);
275 		return (CAM_REQ_INVALID);
276 	}
277 	periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id);
278 	cur_periph = TAILQ_FIRST(&(*p_drv)->units);
279 	while (cur_periph != NULL
280 	    && cur_periph->unit_number < periph->unit_number)
281 		cur_periph = TAILQ_NEXT(cur_periph, unit_links);
282 	if (cur_periph != NULL) {
283 		KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list"));
284 		TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
285 	} else {
286 		TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
287 		(*p_drv)->generation++;
288 	}
289 	xpt_unlock_buses();
290 
291 	init_level++;
292 
293 	status = xpt_add_periph(periph);
294 	if (status != CAM_REQ_CMP)
295 		goto failure;
296 
297 	init_level++;
298 	CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n"));
299 
300 	status = periph_ctor(periph, arg);
301 
302 	if (status == CAM_REQ_CMP)
303 		init_level++;
304 
305 failure:
306 	switch (init_level) {
307 	case 4:
308 		/* Initialized successfully */
309 		break;
310 	case 3:
311 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n"));
312 		xpt_remove_periph(periph);
313 		/* FALLTHROUGH */
314 	case 2:
315 		xpt_lock_buses();
316 		TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
317 		xpt_unlock_buses();
318 		xpt_free_path(periph->path);
319 		/* FALLTHROUGH */
320 	case 1:
321 		free(periph, M_CAMPERIPH);
322 		/* FALLTHROUGH */
323 	case 0:
324 		/* No cleanup to perform. */
325 		break;
326 	default:
327 		panic("%s: Unknown init level", __func__);
328 	}
329 	return(status);
330 }
331 
332 /*
333  * Find a peripheral structure with the specified path, target, lun,
334  * and (optionally) type.  If the name is NULL, this function will return
335  * the first peripheral driver that matches the specified path.
336  */
337 struct cam_periph *
338 cam_periph_find(struct cam_path *path, char *name)
339 {
340 	struct periph_driver **p_drv;
341 	struct cam_periph *periph;
342 
343 	xpt_lock_buses();
344 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
345 
346 		if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
347 			continue;
348 
349 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
350 			if (xpt_path_comp(periph->path, path) == 0) {
351 				xpt_unlock_buses();
352 				cam_periph_assert(periph, MA_OWNED);
353 				return(periph);
354 			}
355 		}
356 		if (name != NULL) {
357 			xpt_unlock_buses();
358 			return(NULL);
359 		}
360 	}
361 	xpt_unlock_buses();
362 	return(NULL);
363 }
364 
365 /*
366  * Find peripheral driver instances attached to the specified path.
367  */
368 int
369 cam_periph_list(struct cam_path *path, struct sbuf *sb)
370 {
371 	struct sbuf local_sb;
372 	struct periph_driver **p_drv;
373 	struct cam_periph *periph;
374 	int count;
375 	int sbuf_alloc_len;
376 
377 	sbuf_alloc_len = 16;
378 retry:
379 	sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN);
380 	count = 0;
381 	xpt_lock_buses();
382 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
383 
384 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
385 			if (xpt_path_comp(periph->path, path) != 0)
386 				continue;
387 
388 			if (sbuf_len(&local_sb) != 0)
389 				sbuf_cat(&local_sb, ",");
390 
391 			sbuf_printf(&local_sb, "%s%d", periph->periph_name,
392 				    periph->unit_number);
393 
394 			if (sbuf_error(&local_sb) == ENOMEM) {
395 				sbuf_alloc_len *= 2;
396 				xpt_unlock_buses();
397 				sbuf_delete(&local_sb);
398 				goto retry;
399 			}
400 			count++;
401 		}
402 	}
403 	xpt_unlock_buses();
404 	sbuf_finish(&local_sb);
405 	if (sbuf_len(sb) != 0)
406 		sbuf_cat(sb, ",");
407 	sbuf_cat(sb, sbuf_data(&local_sb));
408 	sbuf_delete(&local_sb);
409 	return (count);
410 }
411 
412 int
413 cam_periph_acquire(struct cam_periph *periph)
414 {
415 	int status;
416 
417 	if (periph == NULL)
418 		return (EINVAL);
419 
420 	status = ENOENT;
421 	xpt_lock_buses();
422 	if ((periph->flags & CAM_PERIPH_INVALID) == 0) {
423 		periph->refcount++;
424 		status = 0;
425 	}
426 	xpt_unlock_buses();
427 
428 	return (status);
429 }
430 
431 void
432 cam_periph_doacquire(struct cam_periph *periph)
433 {
434 
435 	xpt_lock_buses();
436 	KASSERT(periph->refcount >= 1,
437 	    ("cam_periph_doacquire() with refcount == %d", periph->refcount));
438 	periph->refcount++;
439 	xpt_unlock_buses();
440 }
441 
442 void
443 cam_periph_release_locked_buses(struct cam_periph *periph)
444 {
445 
446 	cam_periph_assert(periph, MA_OWNED);
447 	KASSERT(periph->refcount >= 1, ("periph->refcount >= 1"));
448 	if (--periph->refcount == 0)
449 		camperiphfree(periph);
450 }
451 
452 void
453 cam_periph_release_locked(struct cam_periph *periph)
454 {
455 
456 	if (periph == NULL)
457 		return;
458 
459 	xpt_lock_buses();
460 	cam_periph_release_locked_buses(periph);
461 	xpt_unlock_buses();
462 }
463 
464 void
465 cam_periph_release(struct cam_periph *periph)
466 {
467 	struct mtx *mtx;
468 
469 	if (periph == NULL)
470 		return;
471 
472 	cam_periph_assert(periph, MA_NOTOWNED);
473 	mtx = cam_periph_mtx(periph);
474 	mtx_lock(mtx);
475 	cam_periph_release_locked(periph);
476 	mtx_unlock(mtx);
477 }
478 
479 /*
480  * hold/unhold act as mutual exclusion for sections of the code that
481  * need to sleep and want to make sure that other sections that
482  * will interfere are held off. This only protects exclusive sections
483  * from each other.
484  */
485 int
486 cam_periph_hold(struct cam_periph *periph, int priority)
487 {
488 	int error;
489 
490 	/*
491 	 * Increment the reference count on the peripheral
492 	 * while we wait for our lock attempt to succeed
493 	 * to ensure the peripheral doesn't disappear out
494 	 * from user us while we sleep.
495 	 */
496 
497 	if (cam_periph_acquire(periph) != 0)
498 		return (ENXIO);
499 
500 	cam_periph_assert(periph, MA_OWNED);
501 	while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
502 		periph->flags |= CAM_PERIPH_LOCK_WANTED;
503 		if ((error = cam_periph_sleep(periph, periph, priority,
504 		    "caplck", 0)) != 0) {
505 			cam_periph_release_locked(periph);
506 			return (error);
507 		}
508 		if (periph->flags & CAM_PERIPH_INVALID) {
509 			cam_periph_release_locked(periph);
510 			return (ENXIO);
511 		}
512 	}
513 
514 	periph->flags |= CAM_PERIPH_LOCKED;
515 	return (0);
516 }
517 
518 void
519 cam_periph_unhold(struct cam_periph *periph)
520 {
521 
522 	cam_periph_assert(periph, MA_OWNED);
523 
524 	periph->flags &= ~CAM_PERIPH_LOCKED;
525 	if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
526 		periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
527 		wakeup(periph);
528 	}
529 
530 	cam_periph_release_locked(periph);
531 }
532 
533 /*
534  * Look for the next unit number that is not currently in use for this
535  * peripheral type starting at "newunit".  Also exclude unit numbers that
536  * are reserved by for future "hardwiring" unless we already know that this
537  * is a potential wired device.  Only assume that the device is "wired" the
538  * first time through the loop since after that we'll be looking at unit
539  * numbers that did not match a wiring entry.
540  */
541 static u_int
542 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
543 		  path_id_t pathid, target_id_t target, lun_id_t lun)
544 {
545 	struct	cam_periph *periph;
546 	char	*periph_name;
547 	int	i, val, dunit, r;
548 	const char *dname, *strval;
549 
550 	periph_name = p_drv->driver_name;
551 	for (;;newunit++) {
552 
553 		for (periph = TAILQ_FIRST(&p_drv->units);
554 		     periph != NULL && periph->unit_number != newunit;
555 		     periph = TAILQ_NEXT(periph, unit_links))
556 			;
557 
558 		if (periph != NULL && periph->unit_number == newunit) {
559 			if (wired != 0) {
560 				xpt_print(periph->path, "Duplicate Wired "
561 				    "Device entry!\n");
562 				xpt_print(periph->path, "Second device (%s "
563 				    "device at scbus%d target %d lun %d) will "
564 				    "not be wired\n", periph_name, pathid,
565 				    target, lun);
566 				wired = 0;
567 			}
568 			continue;
569 		}
570 		if (wired)
571 			break;
572 
573 		/*
574 		 * Don't match entries like "da 4" as a wired down
575 		 * device, but do match entries like "da 4 target 5"
576 		 * or even "da 4 scbus 1".
577 		 */
578 		i = 0;
579 		dname = periph_name;
580 		for (;;) {
581 			r = resource_find_dev(&i, dname, &dunit, NULL, NULL);
582 			if (r != 0)
583 				break;
584 			/* if no "target" and no specific scbus, skip */
585 			if (resource_int_value(dname, dunit, "target", &val) &&
586 			    (resource_string_value(dname, dunit, "at",&strval)||
587 			     strcmp(strval, "scbus") == 0))
588 				continue;
589 			if (newunit == dunit)
590 				break;
591 		}
592 		if (r != 0)
593 			break;
594 	}
595 	return (newunit);
596 }
597 
598 static u_int
599 camperiphunit(struct periph_driver *p_drv, path_id_t pathid,
600 	      target_id_t target, lun_id_t lun)
601 {
602 	u_int	unit;
603 	int	wired, i, val, dunit;
604 	const char *dname, *strval;
605 	char	pathbuf[32], *periph_name;
606 
607 	periph_name = p_drv->driver_name;
608 	snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
609 	unit = 0;
610 	i = 0;
611 	dname = periph_name;
612 	for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0;
613 	     wired = 0) {
614 		if (resource_string_value(dname, dunit, "at", &strval) == 0) {
615 			if (strcmp(strval, pathbuf) != 0)
616 				continue;
617 			wired++;
618 		}
619 		if (resource_int_value(dname, dunit, "target", &val) == 0) {
620 			if (val != target)
621 				continue;
622 			wired++;
623 		}
624 		if (resource_int_value(dname, dunit, "lun", &val) == 0) {
625 			if (val != lun)
626 				continue;
627 			wired++;
628 		}
629 		if (wired != 0) {
630 			unit = dunit;
631 			break;
632 		}
633 	}
634 
635 	/*
636 	 * Either start from 0 looking for the next unit or from
637 	 * the unit number given in the resource config.  This way,
638 	 * if we have wildcard matches, we don't return the same
639 	 * unit number twice.
640 	 */
641 	unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun);
642 
643 	return (unit);
644 }
645 
646 void
647 cam_periph_invalidate(struct cam_periph *periph)
648 {
649 
650 	cam_periph_assert(periph, MA_OWNED);
651 	/*
652 	 * We only call this routine the first time a peripheral is
653 	 * invalidated.
654 	 */
655 	if ((periph->flags & CAM_PERIPH_INVALID) != 0)
656 		return;
657 
658 	CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n"));
659 	if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) {
660 		struct sbuf sb;
661 		char buffer[160];
662 
663 		sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN);
664 		xpt_denounce_periph_sbuf(periph, &sb);
665 		sbuf_finish(&sb);
666 		sbuf_putbuf(&sb);
667 	}
668 	periph->flags |= CAM_PERIPH_INVALID;
669 	periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
670 	if (periph->periph_oninval != NULL)
671 		periph->periph_oninval(periph);
672 	cam_periph_release_locked(periph);
673 }
674 
675 static void
676 camperiphfree(struct cam_periph *periph)
677 {
678 	struct periph_driver **p_drv;
679 	struct periph_driver *drv;
680 
681 	cam_periph_assert(periph, MA_OWNED);
682 	KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating",
683 	    periph->periph_name, periph->unit_number));
684 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
685 		if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
686 			break;
687 	}
688 	if (*p_drv == NULL) {
689 		printf("camperiphfree: attempt to free non-existant periph\n");
690 		return;
691 	}
692 	/*
693 	 * Cache a pointer to the periph_driver structure.  If a
694 	 * periph_driver is added or removed from the array (see
695 	 * periphdriver_register()) while we drop the toplogy lock
696 	 * below, p_drv may change.  This doesn't protect against this
697 	 * particular periph_driver going away.  That will require full
698 	 * reference counting in the periph_driver infrastructure.
699 	 */
700 	drv = *p_drv;
701 
702 	/*
703 	 * We need to set this flag before dropping the topology lock, to
704 	 * let anyone who is traversing the list that this peripheral is
705 	 * about to be freed, and there will be no more reference count
706 	 * checks.
707 	 */
708 	periph->flags |= CAM_PERIPH_FREE;
709 
710 	/*
711 	 * The peripheral destructor semantics dictate calling with only the
712 	 * SIM mutex held.  Since it might sleep, it should not be called
713 	 * with the topology lock held.
714 	 */
715 	xpt_unlock_buses();
716 
717 	/*
718 	 * We need to call the peripheral destructor prior to removing the
719 	 * peripheral from the list.  Otherwise, we risk running into a
720 	 * scenario where the peripheral unit number may get reused
721 	 * (because it has been removed from the list), but some resources
722 	 * used by the peripheral are still hanging around.  In particular,
723 	 * the devfs nodes used by some peripherals like the pass(4) driver
724 	 * aren't fully cleaned up until the destructor is run.  If the
725 	 * unit number is reused before the devfs instance is fully gone,
726 	 * devfs will panic.
727 	 */
728 	if (periph->periph_dtor != NULL)
729 		periph->periph_dtor(periph);
730 
731 	/*
732 	 * The peripheral list is protected by the topology lock.
733 	 */
734 	xpt_lock_buses();
735 
736 	TAILQ_REMOVE(&drv->units, periph, unit_links);
737 	drv->generation++;
738 
739 	xpt_remove_periph(periph);
740 
741 	xpt_unlock_buses();
742 	if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting)
743 		xpt_print(periph->path, "Periph destroyed\n");
744 	else
745 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n"));
746 
747 	if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
748 		union ccb ccb;
749 		void *arg;
750 
751 		switch (periph->deferred_ac) {
752 		case AC_FOUND_DEVICE:
753 			ccb.ccb_h.func_code = XPT_GDEV_TYPE;
754 			xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
755 			xpt_action(&ccb);
756 			arg = &ccb;
757 			break;
758 		case AC_PATH_REGISTERED:
759 			xpt_path_inq(&ccb.cpi, periph->path);
760 			arg = &ccb;
761 			break;
762 		default:
763 			arg = NULL;
764 			break;
765 		}
766 		periph->deferred_callback(NULL, periph->deferred_ac,
767 					  periph->path, arg);
768 	}
769 	xpt_free_path(periph->path);
770 	free(periph, M_CAMPERIPH);
771 	xpt_lock_buses();
772 }
773 
774 /*
775  * Map user virtual pointers into kernel virtual address space, so we can
776  * access the memory.  This is now a generic function that centralizes most
777  * of the sanity checks on the data flags, if any.
778  * This also only works for up to MAXPHYS memory.  Since we use
779  * buffers to map stuff in and out, we're limited to the buffer size.
780  */
781 int
782 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo,
783     u_int maxmap)
784 {
785 	int numbufs, i;
786 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
787 	u_int32_t lengths[CAM_PERIPH_MAXMAPS];
788 	u_int32_t dirs[CAM_PERIPH_MAXMAPS];
789 
790 	bzero(mapinfo, sizeof(*mapinfo));
791 	if (maxmap == 0)
792 		maxmap = DFLTPHYS;	/* traditional default */
793 	else if (maxmap > MAXPHYS)
794 		maxmap = MAXPHYS;	/* for safety */
795 	switch(ccb->ccb_h.func_code) {
796 	case XPT_DEV_MATCH:
797 		if (ccb->cdm.match_buf_len == 0) {
798 			printf("cam_periph_mapmem: invalid match buffer "
799 			       "length 0\n");
800 			return(EINVAL);
801 		}
802 		if (ccb->cdm.pattern_buf_len > 0) {
803 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
804 			lengths[0] = ccb->cdm.pattern_buf_len;
805 			dirs[0] = CAM_DIR_OUT;
806 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
807 			lengths[1] = ccb->cdm.match_buf_len;
808 			dirs[1] = CAM_DIR_IN;
809 			numbufs = 2;
810 		} else {
811 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
812 			lengths[0] = ccb->cdm.match_buf_len;
813 			dirs[0] = CAM_DIR_IN;
814 			numbufs = 1;
815 		}
816 		/*
817 		 * This request will not go to the hardware, no reason
818 		 * to be so strict. vmapbuf() is able to map up to MAXPHYS.
819 		 */
820 		maxmap = MAXPHYS;
821 		break;
822 	case XPT_SCSI_IO:
823 	case XPT_CONT_TARGET_IO:
824 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
825 			return(0);
826 		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
827 			return (EINVAL);
828 		data_ptrs[0] = &ccb->csio.data_ptr;
829 		lengths[0] = ccb->csio.dxfer_len;
830 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
831 		numbufs = 1;
832 		break;
833 	case XPT_ATA_IO:
834 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
835 			return(0);
836 		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
837 			return (EINVAL);
838 		data_ptrs[0] = &ccb->ataio.data_ptr;
839 		lengths[0] = ccb->ataio.dxfer_len;
840 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
841 		numbufs = 1;
842 		break;
843 	case XPT_MMC_IO:
844 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
845 			return(0);
846 		/* Two mappings: one for cmd->data and one for cmd->data->data */
847 		data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data;
848 		lengths[0] = sizeof(struct mmc_data *);
849 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
850 		data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data;
851 		lengths[1] = ccb->mmcio.cmd.data->len;
852 		dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK;
853 		numbufs = 2;
854 		break;
855 	case XPT_SMP_IO:
856 		data_ptrs[0] = &ccb->smpio.smp_request;
857 		lengths[0] = ccb->smpio.smp_request_len;
858 		dirs[0] = CAM_DIR_OUT;
859 		data_ptrs[1] = &ccb->smpio.smp_response;
860 		lengths[1] = ccb->smpio.smp_response_len;
861 		dirs[1] = CAM_DIR_IN;
862 		numbufs = 2;
863 		break;
864 	case XPT_NVME_IO:
865 	case XPT_NVME_ADMIN:
866 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
867 			return (0);
868 		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
869 			return (EINVAL);
870 		data_ptrs[0] = &ccb->nvmeio.data_ptr;
871 		lengths[0] = ccb->nvmeio.dxfer_len;
872 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
873 		numbufs = 1;
874 		break;
875 	case XPT_DEV_ADVINFO:
876 		if (ccb->cdai.bufsiz == 0)
877 			return (0);
878 
879 		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
880 		lengths[0] = ccb->cdai.bufsiz;
881 		dirs[0] = CAM_DIR_IN;
882 		numbufs = 1;
883 
884 		/*
885 		 * This request will not go to the hardware, no reason
886 		 * to be so strict. vmapbuf() is able to map up to MAXPHYS.
887 		 */
888 		maxmap = MAXPHYS;
889 		break;
890 	default:
891 		return(EINVAL);
892 		break; /* NOTREACHED */
893 	}
894 
895 	/*
896 	 * Check the transfer length and permissions first, so we don't
897 	 * have to unmap any previously mapped buffers.
898 	 */
899 	for (i = 0; i < numbufs; i++) {
900 
901 		/*
902 		 * The userland data pointer passed in may not be page
903 		 * aligned.  vmapbuf() truncates the address to a page
904 		 * boundary, so if the address isn't page aligned, we'll
905 		 * need enough space for the given transfer length, plus
906 		 * whatever extra space is necessary to make it to the page
907 		 * boundary.
908 		 */
909 		if ((lengths[i] +
910 		    (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){
911 			printf("cam_periph_mapmem: attempt to map %lu bytes, "
912 			       "which is greater than %lu\n",
913 			       (long)(lengths[i] +
914 			       (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)),
915 			       (u_long)maxmap);
916 			return(E2BIG);
917 		}
918 	}
919 
920 	/*
921 	 * This keeps the kernel stack of current thread from getting
922 	 * swapped.  In low-memory situations where the kernel stack might
923 	 * otherwise get swapped out, this holds it and allows the thread
924 	 * to make progress and release the kernel mapped pages sooner.
925 	 *
926 	 * XXX KDM should I use P_NOSWAP instead?
927 	 */
928 	PHOLD(curproc);
929 
930 	for (i = 0; i < numbufs; i++) {
931 
932 		/* Save the user's data address. */
933 		mapinfo->orig[i] = *data_ptrs[i];
934 
935 		/*
936 		 * For small buffers use malloc+copyin/copyout instead of
937 		 * mapping to KVA to avoid expensive TLB shootdowns.  For
938 		 * small allocations malloc is backed by UMA, and so much
939 		 * cheaper on SMP systems.
940 		 */
941 		if (lengths[i] <= periph_mapmem_thresh &&
942 		    ccb->ccb_h.func_code != XPT_MMC_IO) {
943 			*data_ptrs[i] = malloc(lengths[i], M_CAMPERIPH,
944 			    M_WAITOK);
945 			if (dirs[i] != CAM_DIR_IN) {
946 				if (copyin(mapinfo->orig[i], *data_ptrs[i],
947 				    lengths[i]) != 0) {
948 					free(*data_ptrs[i], M_CAMPERIPH);
949 					*data_ptrs[i] = mapinfo->orig[i];
950 					goto fail;
951 				}
952 			} else
953 				bzero(*data_ptrs[i], lengths[i]);
954 			continue;
955 		}
956 
957 		/*
958 		 * Get the buffer.
959 		 */
960 		mapinfo->bp[i] = uma_zalloc(pbuf_zone, M_WAITOK);
961 
962 		/* put our pointer in the data slot */
963 		mapinfo->bp[i]->b_data = *data_ptrs[i];
964 
965 		/* set the transfer length, we know it's < MAXPHYS */
966 		mapinfo->bp[i]->b_bufsize = lengths[i];
967 
968 		/* set the direction */
969 		mapinfo->bp[i]->b_iocmd = (dirs[i] == CAM_DIR_OUT) ?
970 		    BIO_WRITE : BIO_READ;
971 
972 		/*
973 		 * Map the buffer into kernel memory.
974 		 *
975 		 * Note that useracc() alone is not a  sufficient test.
976 		 * vmapbuf() can still fail due to a smaller file mapped
977 		 * into a larger area of VM, or if userland races against
978 		 * vmapbuf() after the useracc() check.
979 		 */
980 		if (vmapbuf(mapinfo->bp[i], 1) < 0) {
981 			uma_zfree(pbuf_zone, mapinfo->bp[i]);
982 			goto fail;
983 		}
984 
985 		/* set our pointer to the new mapped area */
986 		*data_ptrs[i] = mapinfo->bp[i]->b_data;
987 	}
988 
989 	/*
990 	 * Now that we've gotten this far, change ownership to the kernel
991 	 * of the buffers so that we don't run afoul of returning to user
992 	 * space with locks (on the buffer) held.
993 	 */
994 	for (i = 0; i < numbufs; i++) {
995 		if (mapinfo->bp[i])
996 			BUF_KERNPROC(mapinfo->bp[i]);
997 	}
998 
999 	mapinfo->num_bufs_used = numbufs;
1000 	return(0);
1001 
1002 fail:
1003 	for (i--; i >= 0; i--) {
1004 		if (mapinfo->bp[i]) {
1005 			vunmapbuf(mapinfo->bp[i]);
1006 			uma_zfree(pbuf_zone, mapinfo->bp[i]);
1007 		} else
1008 			free(*data_ptrs[i], M_CAMPERIPH);
1009 		*data_ptrs[i] = mapinfo->orig[i];
1010 	}
1011 	PRELE(curproc);
1012 	return(EACCES);
1013 }
1014 
1015 /*
1016  * Unmap memory segments mapped into kernel virtual address space by
1017  * cam_periph_mapmem().
1018  */
1019 void
1020 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
1021 {
1022 	int numbufs, i;
1023 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1024 	u_int32_t lengths[CAM_PERIPH_MAXMAPS];
1025 	u_int32_t dirs[CAM_PERIPH_MAXMAPS];
1026 
1027 	if (mapinfo->num_bufs_used <= 0) {
1028 		/* nothing to free and the process wasn't held. */
1029 		return;
1030 	}
1031 
1032 	switch (ccb->ccb_h.func_code) {
1033 	case XPT_DEV_MATCH:
1034 		if (ccb->cdm.pattern_buf_len > 0) {
1035 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1036 			lengths[0] = ccb->cdm.pattern_buf_len;
1037 			dirs[0] = CAM_DIR_OUT;
1038 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1039 			lengths[1] = ccb->cdm.match_buf_len;
1040 			dirs[1] = CAM_DIR_IN;
1041 			numbufs = 2;
1042 		} else {
1043 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1044 			lengths[0] = ccb->cdm.match_buf_len;
1045 			dirs[0] = CAM_DIR_IN;
1046 			numbufs = 1;
1047 		}
1048 		break;
1049 	case XPT_SCSI_IO:
1050 	case XPT_CONT_TARGET_IO:
1051 		data_ptrs[0] = &ccb->csio.data_ptr;
1052 		lengths[0] = ccb->csio.dxfer_len;
1053 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1054 		numbufs = 1;
1055 		break;
1056 	case XPT_ATA_IO:
1057 		data_ptrs[0] = &ccb->ataio.data_ptr;
1058 		lengths[0] = ccb->ataio.dxfer_len;
1059 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1060 		numbufs = 1;
1061 		break;
1062 	case XPT_MMC_IO:
1063 		data_ptrs[0] = (u_int8_t **)&ccb->mmcio.cmd.data;
1064 		lengths[0] = sizeof(struct mmc_data *);
1065 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1066 		data_ptrs[1] = (u_int8_t **)&ccb->mmcio.cmd.data->data;
1067 		lengths[1] = ccb->mmcio.cmd.data->len;
1068 		dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK;
1069 		numbufs = 2;
1070 		break;
1071 	case XPT_SMP_IO:
1072 		data_ptrs[0] = &ccb->smpio.smp_request;
1073 		lengths[0] = ccb->smpio.smp_request_len;
1074 		dirs[0] = CAM_DIR_OUT;
1075 		data_ptrs[1] = &ccb->smpio.smp_response;
1076 		lengths[1] = ccb->smpio.smp_response_len;
1077 		dirs[1] = CAM_DIR_IN;
1078 		numbufs = 2;
1079 		break;
1080 	case XPT_NVME_IO:
1081 	case XPT_NVME_ADMIN:
1082 		data_ptrs[0] = &ccb->nvmeio.data_ptr;
1083 		lengths[0] = ccb->nvmeio.dxfer_len;
1084 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1085 		numbufs = 1;
1086 		break;
1087 	case XPT_DEV_ADVINFO:
1088 		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1089 		lengths[0] = ccb->cdai.bufsiz;
1090 		dirs[0] = CAM_DIR_IN;
1091 		numbufs = 1;
1092 		break;
1093 	default:
1094 		/* allow ourselves to be swapped once again */
1095 		PRELE(curproc);
1096 		return;
1097 		break; /* NOTREACHED */
1098 	}
1099 
1100 	for (i = 0; i < numbufs; i++) {
1101 		if (mapinfo->bp[i]) {
1102 			/* unmap the buffer */
1103 			vunmapbuf(mapinfo->bp[i]);
1104 
1105 			/* release the buffer */
1106 			uma_zfree(pbuf_zone, mapinfo->bp[i]);
1107 		} else {
1108 			if (dirs[i] != CAM_DIR_OUT) {
1109 				copyout(*data_ptrs[i], mapinfo->orig[i],
1110 				    lengths[i]);
1111 			}
1112 			free(*data_ptrs[i], M_CAMPERIPH);
1113 		}
1114 
1115 		/* Set the user's pointer back to the original value */
1116 		*data_ptrs[i] = mapinfo->orig[i];
1117 	}
1118 
1119 	/* allow ourselves to be swapped once again */
1120 	PRELE(curproc);
1121 }
1122 
1123 int
1124 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr,
1125 		 int (*error_routine)(union ccb *ccb,
1126 				      cam_flags camflags,
1127 				      u_int32_t sense_flags))
1128 {
1129 	union ccb 	     *ccb;
1130 	int 		     error;
1131 	int		     found;
1132 
1133 	error = found = 0;
1134 
1135 	switch(cmd){
1136 	case CAMGETPASSTHRU:
1137 		ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL);
1138 		xpt_setup_ccb(&ccb->ccb_h,
1139 			      ccb->ccb_h.path,
1140 			      CAM_PRIORITY_NORMAL);
1141 		ccb->ccb_h.func_code = XPT_GDEVLIST;
1142 
1143 		/*
1144 		 * Basically, the point of this is that we go through
1145 		 * getting the list of devices, until we find a passthrough
1146 		 * device.  In the current version of the CAM code, the
1147 		 * only way to determine what type of device we're dealing
1148 		 * with is by its name.
1149 		 */
1150 		while (found == 0) {
1151 			ccb->cgdl.index = 0;
1152 			ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
1153 			while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
1154 
1155 				/* we want the next device in the list */
1156 				xpt_action(ccb);
1157 				if (strncmp(ccb->cgdl.periph_name,
1158 				    "pass", 4) == 0){
1159 					found = 1;
1160 					break;
1161 				}
1162 			}
1163 			if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
1164 			    (found == 0)) {
1165 				ccb->cgdl.periph_name[0] = '\0';
1166 				ccb->cgdl.unit_number = 0;
1167 				break;
1168 			}
1169 		}
1170 
1171 		/* copy the result back out */
1172 		bcopy(ccb, addr, sizeof(union ccb));
1173 
1174 		/* and release the ccb */
1175 		xpt_release_ccb(ccb);
1176 
1177 		break;
1178 	default:
1179 		error = ENOTTY;
1180 		break;
1181 	}
1182 	return(error);
1183 }
1184 
1185 static void
1186 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb)
1187 {
1188 
1189 	panic("%s: already done with ccb %p", __func__, done_ccb);
1190 }
1191 
1192 static void
1193 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb)
1194 {
1195 
1196 	/* Caller will release the CCB */
1197 	xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED);
1198 	done_ccb->ccb_h.cbfcnp = cam_periph_done_panic;
1199 	wakeup(&done_ccb->ccb_h.cbfcnp);
1200 }
1201 
1202 static void
1203 cam_periph_ccbwait(union ccb *ccb)
1204 {
1205 
1206 	if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
1207 		while (ccb->ccb_h.cbfcnp != cam_periph_done_panic)
1208 			xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp,
1209 			    PRIBIO, "cbwait", 0);
1210 	}
1211 	KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX &&
1212 	    (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG,
1213 	    ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, "
1214 	     "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code,
1215 	     ccb->ccb_h.status, ccb->ccb_h.pinfo.index));
1216 }
1217 
1218 /*
1219  * Dispatch a CCB and wait for it to complete.  If the CCB has set a
1220  * callback function (ccb->ccb_h.cbfcnp), it will be overwritten and lost.
1221  */
1222 int
1223 cam_periph_runccb(union ccb *ccb,
1224 		  int (*error_routine)(union ccb *ccb,
1225 				       cam_flags camflags,
1226 				       u_int32_t sense_flags),
1227 		  cam_flags camflags, u_int32_t sense_flags,
1228 		  struct devstat *ds)
1229 {
1230 	struct bintime *starttime;
1231 	struct bintime ltime;
1232 	int error;
1233 	bool must_poll;
1234 	uint32_t timeout = 1;
1235 
1236 	starttime = NULL;
1237 	xpt_path_assert(ccb->ccb_h.path, MA_OWNED);
1238 	KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0,
1239 	    ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb,
1240 	     ccb->ccb_h.func_code, ccb->ccb_h.flags));
1241 
1242 	/*
1243 	 * If the user has supplied a stats structure, and if we understand
1244 	 * this particular type of ccb, record the transaction start.
1245 	 */
1246 	if (ds != NULL &&
1247 	    (ccb->ccb_h.func_code == XPT_SCSI_IO ||
1248 	    ccb->ccb_h.func_code == XPT_ATA_IO ||
1249 	    ccb->ccb_h.func_code == XPT_NVME_IO)) {
1250 		starttime = &ltime;
1251 		binuptime(starttime);
1252 		devstat_start_transaction(ds, starttime);
1253 	}
1254 
1255 	/*
1256 	 * We must poll the I/O while we're dumping. The scheduler is normally
1257 	 * stopped for dumping, except when we call doadump from ddb. While the
1258 	 * scheduler is running in this case, we still need to poll the I/O to
1259 	 * avoid sleeping waiting for the ccb to complete.
1260 	 *
1261 	 * A panic triggered dump stops the scheduler, any callback from the
1262 	 * shutdown_post_sync event will run with the scheduler stopped, but
1263 	 * before we're officially dumping. To avoid hanging in adashutdown
1264 	 * initiated commands (or other similar situations), we have to test for
1265 	 * either SCHEDULER_STOPPED() here as well.
1266 	 *
1267 	 * To avoid locking problems, dumping/polling callers must call
1268 	 * without a periph lock held.
1269 	 */
1270 	must_poll = dumping || SCHEDULER_STOPPED();
1271 	ccb->ccb_h.cbfcnp = cam_periph_done;
1272 
1273 	/*
1274 	 * If we're polling, then we need to ensure that we have ample resources
1275 	 * in the periph.  cam_periph_error can reschedule the ccb by calling
1276 	 * xpt_action and returning ERESTART, so we have to effect the polling
1277 	 * in the do loop below.
1278 	 */
1279 	if (must_poll) {
1280 		timeout = xpt_poll_setup(ccb);
1281 	}
1282 
1283 	if (timeout == 0) {
1284 		ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
1285 		error = EBUSY;
1286 	} else {
1287 		xpt_action(ccb);
1288 		do {
1289 			if (must_poll) {
1290 				xpt_pollwait(ccb, timeout);
1291 				timeout = ccb->ccb_h.timeout * 10;
1292 			} else {
1293 				cam_periph_ccbwait(ccb);
1294 			}
1295 			if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
1296 				error = 0;
1297 			else if (error_routine != NULL) {
1298 				ccb->ccb_h.cbfcnp = cam_periph_done;
1299 				error = (*error_routine)(ccb, camflags, sense_flags);
1300 			} else
1301 				error = 0;
1302 		} while (error == ERESTART);
1303 	}
1304 
1305 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
1306 		cam_release_devq(ccb->ccb_h.path,
1307 				 /* relsim_flags */0,
1308 				 /* openings */0,
1309 				 /* timeout */0,
1310 				 /* getcount_only */ FALSE);
1311 		ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1312 	}
1313 
1314 	if (ds != NULL) {
1315 		uint32_t bytes;
1316 		devstat_tag_type tag;
1317 		bool valid = true;
1318 
1319 		if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
1320 			bytes = ccb->csio.dxfer_len - ccb->csio.resid;
1321 			tag = (devstat_tag_type)(ccb->csio.tag_action & 0x3);
1322 		} else if (ccb->ccb_h.func_code == XPT_ATA_IO) {
1323 			bytes = ccb->ataio.dxfer_len - ccb->ataio.resid;
1324 			tag = (devstat_tag_type)0;
1325 		} else if (ccb->ccb_h.func_code == XPT_NVME_IO) {
1326 			bytes = ccb->nvmeio.dxfer_len; /* NB: resid no possible */
1327 			tag = (devstat_tag_type)0;
1328 		} else {
1329 			valid = false;
1330 		}
1331 		if (valid)
1332 			devstat_end_transaction(ds, bytes, tag,
1333 			    ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ?
1334 			    DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ?
1335 			    DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime);
1336 	}
1337 
1338 	return(error);
1339 }
1340 
1341 void
1342 cam_freeze_devq(struct cam_path *path)
1343 {
1344 	struct ccb_hdr ccb_h;
1345 
1346 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n"));
1347 	xpt_setup_ccb(&ccb_h, path, /*priority*/1);
1348 	ccb_h.func_code = XPT_NOOP;
1349 	ccb_h.flags = CAM_DEV_QFREEZE;
1350 	xpt_action((union ccb *)&ccb_h);
1351 }
1352 
1353 u_int32_t
1354 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
1355 		 u_int32_t openings, u_int32_t arg,
1356 		 int getcount_only)
1357 {
1358 	struct ccb_relsim crs;
1359 
1360 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n",
1361 	    relsim_flags, openings, arg, getcount_only));
1362 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
1363 	crs.ccb_h.func_code = XPT_REL_SIMQ;
1364 	crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
1365 	crs.release_flags = relsim_flags;
1366 	crs.openings = openings;
1367 	crs.release_timeout = arg;
1368 	xpt_action((union ccb *)&crs);
1369 	return (crs.qfrozen_cnt);
1370 }
1371 
1372 #define saved_ccb_ptr ppriv_ptr0
1373 static void
1374 camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
1375 {
1376 	union ccb      *saved_ccb;
1377 	cam_status	status;
1378 	struct scsi_start_stop_unit *scsi_cmd;
1379 	int		error = 0, error_code, sense_key, asc, ascq;
1380 
1381 	scsi_cmd = (struct scsi_start_stop_unit *)
1382 	    &done_ccb->csio.cdb_io.cdb_bytes;
1383 	status = done_ccb->ccb_h.status;
1384 
1385 	if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1386 		if (scsi_extract_sense_ccb(done_ccb,
1387 		    &error_code, &sense_key, &asc, &ascq)) {
1388 			/*
1389 			 * If the error is "invalid field in CDB",
1390 			 * and the load/eject flag is set, turn the
1391 			 * flag off and try again.  This is just in
1392 			 * case the drive in question barfs on the
1393 			 * load eject flag.  The CAM code should set
1394 			 * the load/eject flag by default for
1395 			 * removable media.
1396 			 */
1397 			if ((scsi_cmd->opcode == START_STOP_UNIT) &&
1398 			    ((scsi_cmd->how & SSS_LOEJ) != 0) &&
1399 			     (asc == 0x24) && (ascq == 0x00)) {
1400 				scsi_cmd->how &= ~SSS_LOEJ;
1401 				if (status & CAM_DEV_QFRZN) {
1402 					cam_release_devq(done_ccb->ccb_h.path,
1403 					    0, 0, 0, 0);
1404 					done_ccb->ccb_h.status &=
1405 					    ~CAM_DEV_QFRZN;
1406 				}
1407 				xpt_action(done_ccb);
1408 				goto out;
1409 			}
1410 		}
1411 		error = cam_periph_error(done_ccb, 0,
1412 		    SF_RETRY_UA | SF_NO_PRINT);
1413 		if (error == ERESTART)
1414 			goto out;
1415 		if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) {
1416 			cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0);
1417 			done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1418 		}
1419 	} else {
1420 		/*
1421 		 * If we have successfully taken a device from the not
1422 		 * ready to ready state, re-scan the device and re-get
1423 		 * the inquiry information.  Many devices (mostly disks)
1424 		 * don't properly report their inquiry information unless
1425 		 * they are spun up.
1426 		 */
1427 		if (scsi_cmd->opcode == START_STOP_UNIT)
1428 			xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL);
1429 	}
1430 
1431 	/* If we tried long wait and still failed, remember that. */
1432 	if ((periph->flags & CAM_PERIPH_RECOVERY_WAIT) &&
1433 	    (done_ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY)) {
1434 		periph->flags &= ~CAM_PERIPH_RECOVERY_WAIT;
1435 		if (error != 0 && done_ccb->ccb_h.retry_count == 0)
1436 			periph->flags |= CAM_PERIPH_RECOVERY_WAIT_FAILED;
1437 	}
1438 
1439 	/*
1440 	 * After recovery action(s) completed, return to the original CCB.
1441 	 * If the recovery CCB has failed, considering its own possible
1442 	 * retries and recovery, assume we are back in state where we have
1443 	 * been originally, but without recovery hopes left.  In such case,
1444 	 * after the final attempt below, we cancel any further retries,
1445 	 * blocking by that also any new recovery attempts for this CCB,
1446 	 * and the result will be the final one returned to the CCB owher.
1447 	 */
1448 	saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
1449 	bcopy(saved_ccb, done_ccb, sizeof(*done_ccb));
1450 	xpt_free_ccb(saved_ccb);
1451 	if (done_ccb->ccb_h.cbfcnp != camperiphdone)
1452 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1453 	if (error != 0)
1454 		done_ccb->ccb_h.retry_count = 0;
1455 	xpt_action(done_ccb);
1456 
1457 out:
1458 	/* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */
1459 	cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0);
1460 }
1461 
1462 /*
1463  * Generic Async Event handler.  Peripheral drivers usually
1464  * filter out the events that require personal attention,
1465  * and leave the rest to this function.
1466  */
1467 void
1468 cam_periph_async(struct cam_periph *periph, u_int32_t code,
1469 		 struct cam_path *path, void *arg)
1470 {
1471 	switch (code) {
1472 	case AC_LOST_DEVICE:
1473 		cam_periph_invalidate(periph);
1474 		break;
1475 	default:
1476 		break;
1477 	}
1478 }
1479 
1480 void
1481 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
1482 {
1483 	struct ccb_getdevstats cgds;
1484 
1485 	xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
1486 	cgds.ccb_h.func_code = XPT_GDEV_STATS;
1487 	xpt_action((union ccb *)&cgds);
1488 	cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
1489 }
1490 
1491 void
1492 cam_periph_freeze_after_event(struct cam_periph *periph,
1493 			      struct timeval* event_time, u_int duration_ms)
1494 {
1495 	struct timeval delta;
1496 	struct timeval duration_tv;
1497 
1498 	if (!timevalisset(event_time))
1499 		return;
1500 
1501 	microtime(&delta);
1502 	timevalsub(&delta, event_time);
1503 	duration_tv.tv_sec = duration_ms / 1000;
1504 	duration_tv.tv_usec = (duration_ms % 1000) * 1000;
1505 	if (timevalcmp(&delta, &duration_tv, <)) {
1506 		timevalsub(&duration_tv, &delta);
1507 
1508 		duration_ms = duration_tv.tv_sec * 1000;
1509 		duration_ms += duration_tv.tv_usec / 1000;
1510 		cam_freeze_devq(periph->path);
1511 		cam_release_devq(periph->path,
1512 				RELSIM_RELEASE_AFTER_TIMEOUT,
1513 				/*reduction*/0,
1514 				/*timeout*/duration_ms,
1515 				/*getcount_only*/0);
1516 	}
1517 
1518 }
1519 
1520 static int
1521 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb,
1522     cam_flags camflags, u_int32_t sense_flags,
1523     int *openings, u_int32_t *relsim_flags,
1524     u_int32_t *timeout, u_int32_t *action, const char **action_string)
1525 {
1526 	struct cam_periph *periph;
1527 	int error;
1528 
1529 	switch (ccb->csio.scsi_status) {
1530 	case SCSI_STATUS_OK:
1531 	case SCSI_STATUS_COND_MET:
1532 	case SCSI_STATUS_INTERMED:
1533 	case SCSI_STATUS_INTERMED_COND_MET:
1534 		error = 0;
1535 		break;
1536 	case SCSI_STATUS_CMD_TERMINATED:
1537 	case SCSI_STATUS_CHECK_COND:
1538 		error = camperiphscsisenseerror(ccb, orig_ccb,
1539 					        camflags,
1540 					        sense_flags,
1541 					        openings,
1542 					        relsim_flags,
1543 					        timeout,
1544 					        action,
1545 					        action_string);
1546 		break;
1547 	case SCSI_STATUS_QUEUE_FULL:
1548 	{
1549 		/* no decrement */
1550 		struct ccb_getdevstats cgds;
1551 
1552 		/*
1553 		 * First off, find out what the current
1554 		 * transaction counts are.
1555 		 */
1556 		xpt_setup_ccb(&cgds.ccb_h,
1557 			      ccb->ccb_h.path,
1558 			      CAM_PRIORITY_NORMAL);
1559 		cgds.ccb_h.func_code = XPT_GDEV_STATS;
1560 		xpt_action((union ccb *)&cgds);
1561 
1562 		/*
1563 		 * If we were the only transaction active, treat
1564 		 * the QUEUE FULL as if it were a BUSY condition.
1565 		 */
1566 		if (cgds.dev_active != 0) {
1567 			int total_openings;
1568 
1569 			/*
1570 		 	 * Reduce the number of openings to
1571 			 * be 1 less than the amount it took
1572 			 * to get a queue full bounded by the
1573 			 * minimum allowed tag count for this
1574 			 * device.
1575 		 	 */
1576 			total_openings = cgds.dev_active + cgds.dev_openings;
1577 			*openings = cgds.dev_active;
1578 			if (*openings < cgds.mintags)
1579 				*openings = cgds.mintags;
1580 			if (*openings < total_openings)
1581 				*relsim_flags = RELSIM_ADJUST_OPENINGS;
1582 			else {
1583 				/*
1584 				 * Some devices report queue full for
1585 				 * temporary resource shortages.  For
1586 				 * this reason, we allow a minimum
1587 				 * tag count to be entered via a
1588 				 * quirk entry to prevent the queue
1589 				 * count on these devices from falling
1590 				 * to a pessimisticly low value.  We
1591 				 * still wait for the next successful
1592 				 * completion, however, before queueing
1593 				 * more transactions to the device.
1594 				 */
1595 				*relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
1596 			}
1597 			*timeout = 0;
1598 			error = ERESTART;
1599 			*action &= ~SSQ_PRINT_SENSE;
1600 			break;
1601 		}
1602 		/* FALLTHROUGH */
1603 	}
1604 	case SCSI_STATUS_BUSY:
1605 		/*
1606 		 * Restart the queue after either another
1607 		 * command completes or a 1 second timeout.
1608 		 */
1609 		periph = xpt_path_periph(ccb->ccb_h.path);
1610 		if (periph->flags & CAM_PERIPH_INVALID) {
1611 			error = EIO;
1612 			*action_string = "Periph was invalidated";
1613 		} else if ((sense_flags & SF_RETRY_BUSY) != 0 ||
1614 		    ccb->ccb_h.retry_count > 0) {
1615 			if ((sense_flags & SF_RETRY_BUSY) == 0)
1616 				ccb->ccb_h.retry_count--;
1617 			error = ERESTART;
1618 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
1619 				      | RELSIM_RELEASE_AFTER_CMDCMPLT;
1620 			*timeout = 1000;
1621 		} else {
1622 			error = EIO;
1623 			*action_string = "Retries exhausted";
1624 		}
1625 		break;
1626 	case SCSI_STATUS_RESERV_CONFLICT:
1627 	default:
1628 		error = EIO;
1629 		break;
1630 	}
1631 	return (error);
1632 }
1633 
1634 static int
1635 camperiphscsisenseerror(union ccb *ccb, union ccb **orig,
1636     cam_flags camflags, u_int32_t sense_flags,
1637     int *openings, u_int32_t *relsim_flags,
1638     u_int32_t *timeout, u_int32_t *action, const char **action_string)
1639 {
1640 	struct cam_periph *periph;
1641 	union ccb *orig_ccb = ccb;
1642 	int error, recoveryccb;
1643 
1644 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1645 	if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL)
1646 		biotrack(ccb->csio.bio, __func__);
1647 #endif
1648 
1649 	periph = xpt_path_periph(ccb->ccb_h.path);
1650 	recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone);
1651 	if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) {
1652 		/*
1653 		 * If error recovery is already in progress, don't attempt
1654 		 * to process this error, but requeue it unconditionally
1655 		 * and attempt to process it once error recovery has
1656 		 * completed.  This failed command is probably related to
1657 		 * the error that caused the currently active error recovery
1658 		 * action so our  current recovery efforts should also
1659 		 * address this command.  Be aware that the error recovery
1660 		 * code assumes that only one recovery action is in progress
1661 		 * on a particular peripheral instance at any given time
1662 		 * (e.g. only one saved CCB for error recovery) so it is
1663 		 * imperitive that we don't violate this assumption.
1664 		 */
1665 		error = ERESTART;
1666 		*action &= ~SSQ_PRINT_SENSE;
1667 	} else {
1668 		scsi_sense_action err_action;
1669 		struct ccb_getdev cgd;
1670 
1671 		/*
1672 		 * Grab the inquiry data for this device.
1673 		 */
1674 		xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL);
1675 		cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1676 		xpt_action((union ccb *)&cgd);
1677 
1678 		err_action = scsi_error_action(&ccb->csio, &cgd.inq_data,
1679 		    sense_flags);
1680 		error = err_action & SS_ERRMASK;
1681 
1682 		/*
1683 		 * Do not autostart sequential access devices
1684 		 * to avoid unexpected tape loading.
1685 		 */
1686 		if ((err_action & SS_MASK) == SS_START &&
1687 		    SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) {
1688 			*action_string = "Will not autostart a "
1689 			    "sequential access device";
1690 			goto sense_error_done;
1691 		}
1692 
1693 		/*
1694 		 * Avoid recovery recursion if recovery action is the same.
1695 		 */
1696 		if ((err_action & SS_MASK) >= SS_START && recoveryccb) {
1697 			if (((err_action & SS_MASK) == SS_START &&
1698 			     ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) ||
1699 			    ((err_action & SS_MASK) == SS_TUR &&
1700 			     (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) {
1701 				err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
1702 				*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1703 				*timeout = 500;
1704 			}
1705 		}
1706 
1707 		/*
1708 		 * If the recovery action will consume a retry,
1709 		 * make sure we actually have retries available.
1710 		 */
1711 		if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
1712 		 	if (ccb->ccb_h.retry_count > 0 &&
1713 			    (periph->flags & CAM_PERIPH_INVALID) == 0)
1714 		 		ccb->ccb_h.retry_count--;
1715 			else {
1716 				*action_string = "Retries exhausted";
1717 				goto sense_error_done;
1718 			}
1719 		}
1720 
1721 		if ((err_action & SS_MASK) >= SS_START) {
1722 			/*
1723 			 * Do common portions of commands that
1724 			 * use recovery CCBs.
1725 			 */
1726 			orig_ccb = xpt_alloc_ccb_nowait();
1727 			if (orig_ccb == NULL) {
1728 				*action_string = "Can't allocate recovery CCB";
1729 				goto sense_error_done;
1730 			}
1731 			/*
1732 			 * Clear freeze flag for original request here, as
1733 			 * this freeze will be dropped as part of ERESTART.
1734 			 */
1735 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1736 			bcopy(ccb, orig_ccb, sizeof(*orig_ccb));
1737 		}
1738 
1739 		switch (err_action & SS_MASK) {
1740 		case SS_NOP:
1741 			*action_string = "No recovery action needed";
1742 			error = 0;
1743 			break;
1744 		case SS_RETRY:
1745 			*action_string = "Retrying command (per sense data)";
1746 			error = ERESTART;
1747 			break;
1748 		case SS_FAIL:
1749 			*action_string = "Unretryable error";
1750 			break;
1751 		case SS_START:
1752 		{
1753 			int le;
1754 
1755 			/*
1756 			 * Send a start unit command to the device, and
1757 			 * then retry the command.
1758 			 */
1759 			*action_string = "Attempting to start unit";
1760 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1761 
1762 			/*
1763 			 * Check for removable media and set
1764 			 * load/eject flag appropriately.
1765 			 */
1766 			if (SID_IS_REMOVABLE(&cgd.inq_data))
1767 				le = TRUE;
1768 			else
1769 				le = FALSE;
1770 
1771 			scsi_start_stop(&ccb->csio,
1772 					/*retries*/1,
1773 					camperiphdone,
1774 					MSG_SIMPLE_Q_TAG,
1775 					/*start*/TRUE,
1776 					/*load/eject*/le,
1777 					/*immediate*/FALSE,
1778 					SSD_FULL_SIZE,
1779 					/*timeout*/50000);
1780 			break;
1781 		}
1782 		case SS_TUR:
1783 		{
1784 			/*
1785 			 * Send a Test Unit Ready to the device.
1786 			 * If the 'many' flag is set, we send 120
1787 			 * test unit ready commands, one every half
1788 			 * second.  Otherwise, we just send one TUR.
1789 			 * We only want to do this if the retry
1790 			 * count has not been exhausted.
1791 			 */
1792 			int retries;
1793 
1794 			if ((err_action & SSQ_MANY) != 0 && (periph->flags &
1795 			     CAM_PERIPH_RECOVERY_WAIT_FAILED) == 0) {
1796 				periph->flags |= CAM_PERIPH_RECOVERY_WAIT;
1797 				*action_string = "Polling device for readiness";
1798 				retries = 120;
1799 			} else {
1800 				*action_string = "Testing device for readiness";
1801 				retries = 1;
1802 			}
1803 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1804 			scsi_test_unit_ready(&ccb->csio,
1805 					     retries,
1806 					     camperiphdone,
1807 					     MSG_SIMPLE_Q_TAG,
1808 					     SSD_FULL_SIZE,
1809 					     /*timeout*/5000);
1810 
1811 			/*
1812 			 * Accomplish our 500ms delay by deferring
1813 			 * the release of our device queue appropriately.
1814 			 */
1815 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1816 			*timeout = 500;
1817 			break;
1818 		}
1819 		default:
1820 			panic("Unhandled error action %x", err_action);
1821 		}
1822 
1823 		if ((err_action & SS_MASK) >= SS_START) {
1824 			/*
1825 			 * Drop the priority, so that the recovery
1826 			 * CCB is the first to execute.  Freeze the queue
1827 			 * after this command is sent so that we can
1828 			 * restore the old csio and have it queued in
1829 			 * the proper order before we release normal
1830 			 * transactions to the device.
1831 			 */
1832 			ccb->ccb_h.pinfo.priority--;
1833 			ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1834 			ccb->ccb_h.saved_ccb_ptr = orig_ccb;
1835 			error = ERESTART;
1836 			*orig = orig_ccb;
1837 		}
1838 
1839 sense_error_done:
1840 		*action = err_action;
1841 	}
1842 	return (error);
1843 }
1844 
1845 /*
1846  * Generic error handler.  Peripheral drivers usually filter
1847  * out the errors that they handle in a unique manner, then
1848  * call this function.
1849  */
1850 int
1851 cam_periph_error(union ccb *ccb, cam_flags camflags,
1852 		 u_int32_t sense_flags)
1853 {
1854 	struct cam_path *newpath;
1855 	union ccb  *orig_ccb, *scan_ccb;
1856 	struct cam_periph *periph;
1857 	const char *action_string;
1858 	cam_status  status;
1859 	int	    frozen, error, openings, devctl_err;
1860 	u_int32_t   action, relsim_flags, timeout;
1861 
1862 	action = SSQ_PRINT_SENSE;
1863 	periph = xpt_path_periph(ccb->ccb_h.path);
1864 	action_string = NULL;
1865 	status = ccb->ccb_h.status;
1866 	frozen = (status & CAM_DEV_QFRZN) != 0;
1867 	status &= CAM_STATUS_MASK;
1868 	devctl_err = openings = relsim_flags = timeout = 0;
1869 	orig_ccb = ccb;
1870 
1871 	/* Filter the errors that should be reported via devctl */
1872 	switch (ccb->ccb_h.status & CAM_STATUS_MASK) {
1873 	case CAM_CMD_TIMEOUT:
1874 	case CAM_REQ_ABORTED:
1875 	case CAM_REQ_CMP_ERR:
1876 	case CAM_REQ_TERMIO:
1877 	case CAM_UNREC_HBA_ERROR:
1878 	case CAM_DATA_RUN_ERR:
1879 	case CAM_SCSI_STATUS_ERROR:
1880 	case CAM_ATA_STATUS_ERROR:
1881 	case CAM_SMP_STATUS_ERROR:
1882 		devctl_err++;
1883 		break;
1884 	default:
1885 		break;
1886 	}
1887 
1888 	switch (status) {
1889 	case CAM_REQ_CMP:
1890 		error = 0;
1891 		action &= ~SSQ_PRINT_SENSE;
1892 		break;
1893 	case CAM_SCSI_STATUS_ERROR:
1894 		error = camperiphscsistatuserror(ccb, &orig_ccb,
1895 		    camflags, sense_flags, &openings, &relsim_flags,
1896 		    &timeout, &action, &action_string);
1897 		break;
1898 	case CAM_AUTOSENSE_FAIL:
1899 		error = EIO;	/* we have to kill the command */
1900 		break;
1901 	case CAM_UA_ABORT:
1902 	case CAM_UA_TERMIO:
1903 	case CAM_MSG_REJECT_REC:
1904 		/* XXX Don't know that these are correct */
1905 		error = EIO;
1906 		break;
1907 	case CAM_SEL_TIMEOUT:
1908 		if ((camflags & CAM_RETRY_SELTO) != 0) {
1909 			if (ccb->ccb_h.retry_count > 0 &&
1910 			    (periph->flags & CAM_PERIPH_INVALID) == 0) {
1911 				ccb->ccb_h.retry_count--;
1912 				error = ERESTART;
1913 
1914 				/*
1915 				 * Wait a bit to give the device
1916 				 * time to recover before we try again.
1917 				 */
1918 				relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1919 				timeout = periph_selto_delay;
1920 				break;
1921 			}
1922 			action_string = "Retries exhausted";
1923 		}
1924 		/* FALLTHROUGH */
1925 	case CAM_DEV_NOT_THERE:
1926 		error = ENXIO;
1927 		action = SSQ_LOST;
1928 		break;
1929 	case CAM_REQ_INVALID:
1930 	case CAM_PATH_INVALID:
1931 	case CAM_NO_HBA:
1932 	case CAM_PROVIDE_FAIL:
1933 	case CAM_REQ_TOO_BIG:
1934 	case CAM_LUN_INVALID:
1935 	case CAM_TID_INVALID:
1936 	case CAM_FUNC_NOTAVAIL:
1937 		error = EINVAL;
1938 		break;
1939 	case CAM_SCSI_BUS_RESET:
1940 	case CAM_BDR_SENT:
1941 		/*
1942 		 * Commands that repeatedly timeout and cause these
1943 		 * kinds of error recovery actions, should return
1944 		 * CAM_CMD_TIMEOUT, which allows us to safely assume
1945 		 * that this command was an innocent bystander to
1946 		 * these events and should be unconditionally
1947 		 * retried.
1948 		 */
1949 	case CAM_REQUEUE_REQ:
1950 		/* Unconditional requeue if device is still there */
1951 		if (periph->flags & CAM_PERIPH_INVALID) {
1952 			action_string = "Periph was invalidated";
1953 			error = EIO;
1954 		} else if (sense_flags & SF_NO_RETRY) {
1955 			error = EIO;
1956 			action_string = "Retry was blocked";
1957 		} else {
1958 			error = ERESTART;
1959 			action &= ~SSQ_PRINT_SENSE;
1960 		}
1961 		break;
1962 	case CAM_RESRC_UNAVAIL:
1963 		/* Wait a bit for the resource shortage to abate. */
1964 		timeout = periph_noresrc_delay;
1965 		/* FALLTHROUGH */
1966 	case CAM_BUSY:
1967 		if (timeout == 0) {
1968 			/* Wait a bit for the busy condition to abate. */
1969 			timeout = periph_busy_delay;
1970 		}
1971 		relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1972 		/* FALLTHROUGH */
1973 	case CAM_ATA_STATUS_ERROR:
1974 	case CAM_REQ_CMP_ERR:
1975 	case CAM_CMD_TIMEOUT:
1976 	case CAM_UNEXP_BUSFREE:
1977 	case CAM_UNCOR_PARITY:
1978 	case CAM_DATA_RUN_ERR:
1979 	default:
1980 		if (periph->flags & CAM_PERIPH_INVALID) {
1981 			error = EIO;
1982 			action_string = "Periph was invalidated";
1983 		} else if (ccb->ccb_h.retry_count == 0) {
1984 			error = EIO;
1985 			action_string = "Retries exhausted";
1986 		} else if (sense_flags & SF_NO_RETRY) {
1987 			error = EIO;
1988 			action_string = "Retry was blocked";
1989 		} else {
1990 			ccb->ccb_h.retry_count--;
1991 			error = ERESTART;
1992 		}
1993 		break;
1994 	}
1995 
1996 	if ((sense_flags & SF_PRINT_ALWAYS) ||
1997 	    CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO))
1998 		action |= SSQ_PRINT_SENSE;
1999 	else if (sense_flags & SF_NO_PRINT)
2000 		action &= ~SSQ_PRINT_SENSE;
2001 	if ((action & SSQ_PRINT_SENSE) != 0)
2002 		cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
2003 	if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) {
2004 		if (error != ERESTART) {
2005 			if (action_string == NULL)
2006 				action_string = "Unretryable error";
2007 			xpt_print(ccb->ccb_h.path, "Error %d, %s\n",
2008 			    error, action_string);
2009 		} else if (action_string != NULL)
2010 			xpt_print(ccb->ccb_h.path, "%s\n", action_string);
2011 		else {
2012 			xpt_print(ccb->ccb_h.path,
2013 			    "Retrying command, %d more tries remain\n",
2014 			    ccb->ccb_h.retry_count);
2015 		}
2016 	}
2017 
2018 	if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0))
2019 		cam_periph_devctl_notify(orig_ccb);
2020 
2021 	if ((action & SSQ_LOST) != 0) {
2022 		lun_id_t lun_id;
2023 
2024 		/*
2025 		 * For a selection timeout, we consider all of the LUNs on
2026 		 * the target to be gone.  If the status is CAM_DEV_NOT_THERE,
2027 		 * then we only get rid of the device(s) specified by the
2028 		 * path in the original CCB.
2029 		 */
2030 		if (status == CAM_SEL_TIMEOUT)
2031 			lun_id = CAM_LUN_WILDCARD;
2032 		else
2033 			lun_id = xpt_path_lun_id(ccb->ccb_h.path);
2034 
2035 		/* Should we do more if we can't create the path?? */
2036 		if (xpt_create_path(&newpath, periph,
2037 				    xpt_path_path_id(ccb->ccb_h.path),
2038 				    xpt_path_target_id(ccb->ccb_h.path),
2039 				    lun_id) == CAM_REQ_CMP) {
2040 
2041 			/*
2042 			 * Let peripheral drivers know that this
2043 			 * device has gone away.
2044 			 */
2045 			xpt_async(AC_LOST_DEVICE, newpath, NULL);
2046 			xpt_free_path(newpath);
2047 		}
2048 	}
2049 
2050 	/* Broadcast UNIT ATTENTIONs to all periphs. */
2051 	if ((action & SSQ_UA) != 0)
2052 		xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb);
2053 
2054 	/* Rescan target on "Reported LUNs data has changed" */
2055 	if ((action & SSQ_RESCAN) != 0) {
2056 		if (xpt_create_path(&newpath, NULL,
2057 				    xpt_path_path_id(ccb->ccb_h.path),
2058 				    xpt_path_target_id(ccb->ccb_h.path),
2059 				    CAM_LUN_WILDCARD) == CAM_REQ_CMP) {
2060 
2061 			scan_ccb = xpt_alloc_ccb_nowait();
2062 			if (scan_ccb != NULL) {
2063 				scan_ccb->ccb_h.path = newpath;
2064 				scan_ccb->ccb_h.func_code = XPT_SCAN_TGT;
2065 				scan_ccb->crcn.flags = 0;
2066 				xpt_rescan(scan_ccb);
2067 			} else {
2068 				xpt_print(newpath,
2069 				    "Can't allocate CCB to rescan target\n");
2070 				xpt_free_path(newpath);
2071 			}
2072 		}
2073 	}
2074 
2075 	/* Attempt a retry */
2076 	if (error == ERESTART || error == 0) {
2077 		if (frozen != 0)
2078 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
2079 		if (error == ERESTART)
2080 			xpt_action(ccb);
2081 		if (frozen != 0)
2082 			cam_release_devq(ccb->ccb_h.path,
2083 					 relsim_flags,
2084 					 openings,
2085 					 timeout,
2086 					 /*getcount_only*/0);
2087 	}
2088 
2089 	return (error);
2090 }
2091 
2092 #define CAM_PERIPH_DEVD_MSG_SIZE	256
2093 
2094 static void
2095 cam_periph_devctl_notify(union ccb *ccb)
2096 {
2097 	struct cam_periph *periph;
2098 	struct ccb_getdev *cgd;
2099 	struct sbuf sb;
2100 	int serr, sk, asc, ascq;
2101 	char *sbmsg, *type;
2102 
2103 	sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT);
2104 	if (sbmsg == NULL)
2105 		return;
2106 
2107 	sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN);
2108 
2109 	periph = xpt_path_periph(ccb->ccb_h.path);
2110 	sbuf_printf(&sb, "device=%s%d ", periph->periph_name,
2111 	    periph->unit_number);
2112 
2113 	sbuf_printf(&sb, "serial=\"");
2114 	if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) {
2115 		xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path,
2116 		    CAM_PRIORITY_NORMAL);
2117 		cgd->ccb_h.func_code = XPT_GDEV_TYPE;
2118 		xpt_action((union ccb *)cgd);
2119 
2120 		if (cgd->ccb_h.status == CAM_REQ_CMP)
2121 			sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len);
2122 		xpt_free_ccb((union ccb *)cgd);
2123 	}
2124 	sbuf_printf(&sb, "\" ");
2125 	sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status);
2126 
2127 	switch (ccb->ccb_h.status & CAM_STATUS_MASK) {
2128 	case CAM_CMD_TIMEOUT:
2129 		sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout);
2130 		type = "timeout";
2131 		break;
2132 	case CAM_SCSI_STATUS_ERROR:
2133 		sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status);
2134 		if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq))
2135 			sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ",
2136 			    serr, sk, asc, ascq);
2137 		type = "error";
2138 		break;
2139 	case CAM_ATA_STATUS_ERROR:
2140 		sbuf_printf(&sb, "RES=\"");
2141 		ata_res_sbuf(&ccb->ataio.res, &sb);
2142 		sbuf_printf(&sb, "\" ");
2143 		type = "error";
2144 		break;
2145 	default:
2146 		type = "error";
2147 		break;
2148 	}
2149 
2150 	if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
2151 		sbuf_printf(&sb, "CDB=\"");
2152 		scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb);
2153 		sbuf_printf(&sb, "\" ");
2154 	} else if (ccb->ccb_h.func_code == XPT_ATA_IO) {
2155 		sbuf_printf(&sb, "ACB=\"");
2156 		ata_cmd_sbuf(&ccb->ataio.cmd, &sb);
2157 		sbuf_printf(&sb, "\" ");
2158 	}
2159 
2160 	if (sbuf_finish(&sb) == 0)
2161 		devctl_notify("CAM", "periph", type, sbuf_data(&sb));
2162 	sbuf_delete(&sb);
2163 	free(sbmsg, M_CAMPERIPH);
2164 }
2165 
2166 /*
2167  * Sysctl to force an invalidation of the drive right now. Can be
2168  * called with CTLFLAG_MPSAFE since we take periph lock.
2169  */
2170 int
2171 cam_periph_invalidate_sysctl(SYSCTL_HANDLER_ARGS)
2172 {
2173 	struct cam_periph *periph;
2174 	int error, value;
2175 
2176 	periph = arg1;
2177 	value = 0;
2178 	error = sysctl_handle_int(oidp, &value, 0, req);
2179 	if (error != 0 || req->newptr == NULL || value != 1)
2180 		return (error);
2181 
2182 	cam_periph_lock(periph);
2183 	cam_periph_invalidate(periph);
2184 	cam_periph_unlock(periph);
2185 
2186 	return (0);
2187 }
2188