1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * Copyright (c) 1997, 1998 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/types.h> 36 #include <sys/malloc.h> 37 #include <sys/kernel.h> 38 #include <sys/bio.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/buf.h> 42 #include <sys/proc.h> 43 #include <sys/devicestat.h> 44 #include <sys/bus.h> 45 #include <sys/sbuf.h> 46 #include <vm/vm.h> 47 #include <vm/vm_extern.h> 48 49 #include <cam/cam.h> 50 #include <cam/cam_ccb.h> 51 #include <cam/cam_queue.h> 52 #include <cam/cam_xpt_periph.h> 53 #include <cam/cam_periph.h> 54 #include <cam/cam_debug.h> 55 #include <cam/cam_sim.h> 56 57 #include <cam/scsi/scsi_all.h> 58 #include <cam/scsi/scsi_message.h> 59 #include <cam/scsi/scsi_pass.h> 60 61 static u_int camperiphnextunit(struct periph_driver *p_drv, 62 u_int newunit, int wired, 63 path_id_t pathid, target_id_t target, 64 lun_id_t lun); 65 static u_int camperiphunit(struct periph_driver *p_drv, 66 path_id_t pathid, target_id_t target, 67 lun_id_t lun); 68 static void camperiphdone(struct cam_periph *periph, 69 union ccb *done_ccb); 70 static void camperiphfree(struct cam_periph *periph); 71 static int camperiphscsistatuserror(union ccb *ccb, 72 union ccb **orig_ccb, 73 cam_flags camflags, 74 u_int32_t sense_flags, 75 int *openings, 76 u_int32_t *relsim_flags, 77 u_int32_t *timeout, 78 int *print, 79 const char **action_string); 80 static int camperiphscsisenseerror(union ccb *ccb, 81 union ccb **orig_ccb, 82 cam_flags camflags, 83 u_int32_t sense_flags, 84 int *openings, 85 u_int32_t *relsim_flags, 86 u_int32_t *timeout, 87 int *print, 88 const char **action_string); 89 90 static int nperiph_drivers; 91 static int initialized = 0; 92 struct periph_driver **periph_drivers; 93 94 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 95 96 static int periph_selto_delay = 1000; 97 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 98 static int periph_noresrc_delay = 500; 99 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 100 static int periph_busy_delay = 500; 101 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 102 103 104 void 105 periphdriver_register(void *data) 106 { 107 struct periph_driver *drv = (struct periph_driver *)data; 108 struct periph_driver **newdrivers, **old; 109 int ndrivers; 110 111 ndrivers = nperiph_drivers + 2; 112 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 113 M_WAITOK); 114 if (periph_drivers) 115 bcopy(periph_drivers, newdrivers, 116 sizeof(*newdrivers) * nperiph_drivers); 117 newdrivers[nperiph_drivers] = drv; 118 newdrivers[nperiph_drivers + 1] = NULL; 119 old = periph_drivers; 120 periph_drivers = newdrivers; 121 if (old) 122 free(old, M_CAMPERIPH); 123 nperiph_drivers++; 124 /* If driver marked as early or it is late now, initialize it. */ 125 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 126 initialized > 1) 127 (*drv->init)(); 128 } 129 130 void 131 periphdriver_init(int level) 132 { 133 int i, early; 134 135 initialized = max(initialized, level); 136 for (i = 0; periph_drivers[i] != NULL; i++) { 137 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 138 if (early == initialized) 139 (*periph_drivers[i]->init)(); 140 } 141 } 142 143 cam_status 144 cam_periph_alloc(periph_ctor_t *periph_ctor, 145 periph_oninv_t *periph_oninvalidate, 146 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 147 char *name, cam_periph_type type, struct cam_path *path, 148 ac_callback_t *ac_callback, ac_code code, void *arg) 149 { 150 struct periph_driver **p_drv; 151 struct cam_sim *sim; 152 struct cam_periph *periph; 153 struct cam_periph *cur_periph; 154 path_id_t path_id; 155 target_id_t target_id; 156 lun_id_t lun_id; 157 cam_status status; 158 u_int init_level; 159 160 init_level = 0; 161 /* 162 * Handle Hot-Plug scenarios. If there is already a peripheral 163 * of our type assigned to this path, we are likely waiting for 164 * final close on an old, invalidated, peripheral. If this is 165 * the case, queue up a deferred call to the peripheral's async 166 * handler. If it looks like a mistaken re-allocation, complain. 167 */ 168 if ((periph = cam_periph_find(path, name)) != NULL) { 169 170 if ((periph->flags & CAM_PERIPH_INVALID) != 0 171 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 172 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 173 periph->deferred_callback = ac_callback; 174 periph->deferred_ac = code; 175 return (CAM_REQ_INPROG); 176 } else { 177 printf("cam_periph_alloc: attempt to re-allocate " 178 "valid device %s%d rejected flags %#x " 179 "refcount %d\n", periph->periph_name, 180 periph->unit_number, periph->flags, 181 periph->refcount); 182 } 183 return (CAM_REQ_INVALID); 184 } 185 186 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 187 M_NOWAIT|M_ZERO); 188 189 if (periph == NULL) 190 return (CAM_RESRC_UNAVAIL); 191 192 init_level++; 193 194 195 sim = xpt_path_sim(path); 196 path_id = xpt_path_path_id(path); 197 target_id = xpt_path_target_id(path); 198 lun_id = xpt_path_lun_id(path); 199 cam_init_pinfo(&periph->pinfo); 200 periph->periph_start = periph_start; 201 periph->periph_dtor = periph_dtor; 202 periph->periph_oninval = periph_oninvalidate; 203 periph->type = type; 204 periph->periph_name = name; 205 periph->immediate_priority = CAM_PRIORITY_NONE; 206 periph->refcount = 0; 207 periph->sim = sim; 208 SLIST_INIT(&periph->ccb_list); 209 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 210 if (status != CAM_REQ_CMP) 211 goto failure; 212 periph->path = path; 213 214 xpt_lock_buses(); 215 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 216 if (strcmp((*p_drv)->driver_name, name) == 0) 217 break; 218 } 219 if (*p_drv == NULL) { 220 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 221 xpt_unlock_buses(); 222 xpt_free_path(periph->path); 223 free(periph, M_CAMPERIPH); 224 return (CAM_REQ_INVALID); 225 } 226 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); 227 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 228 while (cur_periph != NULL 229 && cur_periph->unit_number < periph->unit_number) 230 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 231 if (cur_periph != NULL) { 232 KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list")); 233 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 234 } else { 235 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 236 (*p_drv)->generation++; 237 } 238 xpt_unlock_buses(); 239 240 init_level++; 241 242 status = xpt_add_periph(periph); 243 if (status != CAM_REQ_CMP) 244 goto failure; 245 246 init_level++; 247 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 248 249 status = periph_ctor(periph, arg); 250 251 if (status == CAM_REQ_CMP) 252 init_level++; 253 254 failure: 255 switch (init_level) { 256 case 4: 257 /* Initialized successfully */ 258 break; 259 case 3: 260 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 261 xpt_remove_periph(periph, /*topology_lock_held*/ 0); 262 /* FALLTHROUGH */ 263 case 2: 264 xpt_lock_buses(); 265 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 266 xpt_unlock_buses(); 267 xpt_free_path(periph->path); 268 /* FALLTHROUGH */ 269 case 1: 270 free(periph, M_CAMPERIPH); 271 /* FALLTHROUGH */ 272 case 0: 273 /* No cleanup to perform. */ 274 break; 275 default: 276 panic("%s: Unknown init level", __func__); 277 } 278 return(status); 279 } 280 281 /* 282 * Find a peripheral structure with the specified path, target, lun, 283 * and (optionally) type. If the name is NULL, this function will return 284 * the first peripheral driver that matches the specified path. 285 */ 286 struct cam_periph * 287 cam_periph_find(struct cam_path *path, char *name) 288 { 289 struct periph_driver **p_drv; 290 struct cam_periph *periph; 291 292 xpt_lock_buses(); 293 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 294 295 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 296 continue; 297 298 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 299 if (xpt_path_comp(periph->path, path) == 0) { 300 xpt_unlock_buses(); 301 mtx_assert(periph->sim->mtx, MA_OWNED); 302 return(periph); 303 } 304 } 305 if (name != NULL) { 306 xpt_unlock_buses(); 307 return(NULL); 308 } 309 } 310 xpt_unlock_buses(); 311 return(NULL); 312 } 313 314 /* 315 * Find peripheral driver instances attached to the specified path. 316 */ 317 int 318 cam_periph_list(struct cam_path *path, struct sbuf *sb) 319 { 320 struct sbuf local_sb; 321 struct periph_driver **p_drv; 322 struct cam_periph *periph; 323 int count; 324 int sbuf_alloc_len; 325 326 sbuf_alloc_len = 16; 327 retry: 328 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 329 count = 0; 330 xpt_lock_buses(); 331 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 332 333 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 334 if (xpt_path_comp(periph->path, path) != 0) 335 continue; 336 337 if (sbuf_len(&local_sb) != 0) 338 sbuf_cat(&local_sb, ","); 339 340 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 341 periph->unit_number); 342 343 if (sbuf_error(&local_sb) == ENOMEM) { 344 sbuf_alloc_len *= 2; 345 xpt_unlock_buses(); 346 sbuf_delete(&local_sb); 347 goto retry; 348 } 349 count++; 350 } 351 } 352 xpt_unlock_buses(); 353 sbuf_finish(&local_sb); 354 sbuf_cpy(sb, sbuf_data(&local_sb)); 355 sbuf_delete(&local_sb); 356 return (count); 357 } 358 359 cam_status 360 cam_periph_acquire(struct cam_periph *periph) 361 { 362 cam_status status; 363 364 status = CAM_REQ_CMP_ERR; 365 if (periph == NULL) 366 return (status); 367 368 xpt_lock_buses(); 369 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 370 periph->refcount++; 371 status = CAM_REQ_CMP; 372 } 373 xpt_unlock_buses(); 374 375 return (status); 376 } 377 378 void 379 cam_periph_release_locked_buses(struct cam_periph *periph) 380 { 381 382 mtx_assert(periph->sim->mtx, MA_OWNED); 383 KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); 384 if (--periph->refcount == 0 385 && (periph->flags & CAM_PERIPH_INVALID)) { 386 camperiphfree(periph); 387 } 388 } 389 390 void 391 cam_periph_release_locked(struct cam_periph *periph) 392 { 393 394 if (periph == NULL) 395 return; 396 397 xpt_lock_buses(); 398 cam_periph_release_locked_buses(periph); 399 xpt_unlock_buses(); 400 } 401 402 void 403 cam_periph_release(struct cam_periph *periph) 404 { 405 struct cam_sim *sim; 406 407 if (periph == NULL) 408 return; 409 410 sim = periph->sim; 411 mtx_assert(sim->mtx, MA_NOTOWNED); 412 mtx_lock(sim->mtx); 413 cam_periph_release_locked(periph); 414 mtx_unlock(sim->mtx); 415 } 416 417 int 418 cam_periph_hold(struct cam_periph *periph, int priority) 419 { 420 int error; 421 422 /* 423 * Increment the reference count on the peripheral 424 * while we wait for our lock attempt to succeed 425 * to ensure the peripheral doesn't disappear out 426 * from user us while we sleep. 427 */ 428 429 if (cam_periph_acquire(periph) != CAM_REQ_CMP) 430 return (ENXIO); 431 432 mtx_assert(periph->sim->mtx, MA_OWNED); 433 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 434 periph->flags |= CAM_PERIPH_LOCK_WANTED; 435 if ((error = mtx_sleep(periph, periph->sim->mtx, priority, 436 "caplck", 0)) != 0) { 437 cam_periph_release_locked(periph); 438 return (error); 439 } 440 if (periph->flags & CAM_PERIPH_INVALID) { 441 cam_periph_release_locked(periph); 442 return (ENXIO); 443 } 444 } 445 446 periph->flags |= CAM_PERIPH_LOCKED; 447 return (0); 448 } 449 450 void 451 cam_periph_unhold(struct cam_periph *periph) 452 { 453 454 mtx_assert(periph->sim->mtx, MA_OWNED); 455 456 periph->flags &= ~CAM_PERIPH_LOCKED; 457 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 458 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 459 wakeup(periph); 460 } 461 462 cam_periph_release_locked(periph); 463 } 464 465 /* 466 * Look for the next unit number that is not currently in use for this 467 * peripheral type starting at "newunit". Also exclude unit numbers that 468 * are reserved by for future "hardwiring" unless we already know that this 469 * is a potential wired device. Only assume that the device is "wired" the 470 * first time through the loop since after that we'll be looking at unit 471 * numbers that did not match a wiring entry. 472 */ 473 static u_int 474 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, 475 path_id_t pathid, target_id_t target, lun_id_t lun) 476 { 477 struct cam_periph *periph; 478 char *periph_name; 479 int i, val, dunit, r; 480 const char *dname, *strval; 481 482 periph_name = p_drv->driver_name; 483 for (;;newunit++) { 484 485 for (periph = TAILQ_FIRST(&p_drv->units); 486 periph != NULL && periph->unit_number != newunit; 487 periph = TAILQ_NEXT(periph, unit_links)) 488 ; 489 490 if (periph != NULL && periph->unit_number == newunit) { 491 if (wired != 0) { 492 xpt_print(periph->path, "Duplicate Wired " 493 "Device entry!\n"); 494 xpt_print(periph->path, "Second device (%s " 495 "device at scbus%d target %d lun %d) will " 496 "not be wired\n", periph_name, pathid, 497 target, lun); 498 wired = 0; 499 } 500 continue; 501 } 502 if (wired) 503 break; 504 505 /* 506 * Don't match entries like "da 4" as a wired down 507 * device, but do match entries like "da 4 target 5" 508 * or even "da 4 scbus 1". 509 */ 510 i = 0; 511 dname = periph_name; 512 for (;;) { 513 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 514 if (r != 0) 515 break; 516 /* if no "target" and no specific scbus, skip */ 517 if (resource_int_value(dname, dunit, "target", &val) && 518 (resource_string_value(dname, dunit, "at",&strval)|| 519 strcmp(strval, "scbus") == 0)) 520 continue; 521 if (newunit == dunit) 522 break; 523 } 524 if (r != 0) 525 break; 526 } 527 return (newunit); 528 } 529 530 static u_int 531 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 532 target_id_t target, lun_id_t lun) 533 { 534 u_int unit; 535 int wired, i, val, dunit; 536 const char *dname, *strval; 537 char pathbuf[32], *periph_name; 538 539 periph_name = p_drv->driver_name; 540 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 541 unit = 0; 542 i = 0; 543 dname = periph_name; 544 for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 545 wired = 0) { 546 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 547 if (strcmp(strval, pathbuf) != 0) 548 continue; 549 wired++; 550 } 551 if (resource_int_value(dname, dunit, "target", &val) == 0) { 552 if (val != target) 553 continue; 554 wired++; 555 } 556 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 557 if (val != lun) 558 continue; 559 wired++; 560 } 561 if (wired != 0) { 562 unit = dunit; 563 break; 564 } 565 } 566 567 /* 568 * Either start from 0 looking for the next unit or from 569 * the unit number given in the resource config. This way, 570 * if we have wildcard matches, we don't return the same 571 * unit number twice. 572 */ 573 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 574 575 return (unit); 576 } 577 578 void 579 cam_periph_invalidate(struct cam_periph *periph) 580 { 581 582 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 583 mtx_assert(periph->sim->mtx, MA_OWNED); 584 /* 585 * We only call this routine the first time a peripheral is 586 * invalidated. 587 */ 588 if (((periph->flags & CAM_PERIPH_INVALID) == 0) 589 && (periph->periph_oninval != NULL)) 590 periph->periph_oninval(periph); 591 592 periph->flags |= CAM_PERIPH_INVALID; 593 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 594 595 xpt_lock_buses(); 596 if (periph->refcount == 0) 597 camperiphfree(periph); 598 xpt_unlock_buses(); 599 } 600 601 static void 602 camperiphfree(struct cam_periph *periph) 603 { 604 struct periph_driver **p_drv; 605 606 mtx_assert(periph->sim->mtx, MA_OWNED); 607 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 608 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 609 break; 610 } 611 if (*p_drv == NULL) { 612 printf("camperiphfree: attempt to free non-existant periph\n"); 613 return; 614 } 615 616 /* 617 * We need to set this flag before dropping the topology lock, to 618 * let anyone who is traversing the list that this peripheral is 619 * about to be freed, and there will be no more reference count 620 * checks. 621 */ 622 periph->flags |= CAM_PERIPH_FREE; 623 624 /* 625 * The peripheral destructor semantics dictate calling with only the 626 * SIM mutex held. Since it might sleep, it should not be called 627 * with the topology lock held. 628 */ 629 xpt_unlock_buses(); 630 631 /* 632 * We need to call the peripheral destructor prior to removing the 633 * peripheral from the list. Otherwise, we risk running into a 634 * scenario where the peripheral unit number may get reused 635 * (because it has been removed from the list), but some resources 636 * used by the peripheral are still hanging around. In particular, 637 * the devfs nodes used by some peripherals like the pass(4) driver 638 * aren't fully cleaned up until the destructor is run. If the 639 * unit number is reused before the devfs instance is fully gone, 640 * devfs will panic. 641 */ 642 if (periph->periph_dtor != NULL) 643 periph->periph_dtor(periph); 644 645 /* 646 * The peripheral list is protected by the topology lock. 647 */ 648 xpt_lock_buses(); 649 650 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 651 (*p_drv)->generation++; 652 653 xpt_remove_periph(periph, /*topology_lock_held*/ 1); 654 655 xpt_unlock_buses(); 656 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 657 658 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 659 union ccb ccb; 660 void *arg; 661 662 switch (periph->deferred_ac) { 663 case AC_FOUND_DEVICE: 664 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 665 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 666 xpt_action(&ccb); 667 arg = &ccb; 668 break; 669 case AC_PATH_REGISTERED: 670 ccb.ccb_h.func_code = XPT_PATH_INQ; 671 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 672 xpt_action(&ccb); 673 arg = &ccb; 674 break; 675 default: 676 arg = NULL; 677 break; 678 } 679 periph->deferred_callback(NULL, periph->deferred_ac, 680 periph->path, arg); 681 } 682 xpt_free_path(periph->path); 683 free(periph, M_CAMPERIPH); 684 xpt_lock_buses(); 685 } 686 687 /* 688 * Map user virtual pointers into kernel virtual address space, so we can 689 * access the memory. This won't work on physical pointers, for now it's 690 * up to the caller to check for that. (XXX KDM -- should we do that here 691 * instead?) This also only works for up to MAXPHYS memory. Since we use 692 * buffers to map stuff in and out, we're limited to the buffer size. 693 */ 694 int 695 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 696 { 697 int numbufs, i, j; 698 int flags[CAM_PERIPH_MAXMAPS]; 699 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 700 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 701 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 702 /* Some controllers may not be able to handle more data. */ 703 size_t maxmap = DFLTPHYS; 704 705 switch(ccb->ccb_h.func_code) { 706 case XPT_DEV_MATCH: 707 if (ccb->cdm.match_buf_len == 0) { 708 printf("cam_periph_mapmem: invalid match buffer " 709 "length 0\n"); 710 return(EINVAL); 711 } 712 if (ccb->cdm.pattern_buf_len > 0) { 713 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 714 lengths[0] = ccb->cdm.pattern_buf_len; 715 dirs[0] = CAM_DIR_OUT; 716 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 717 lengths[1] = ccb->cdm.match_buf_len; 718 dirs[1] = CAM_DIR_IN; 719 numbufs = 2; 720 } else { 721 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 722 lengths[0] = ccb->cdm.match_buf_len; 723 dirs[0] = CAM_DIR_IN; 724 numbufs = 1; 725 } 726 /* 727 * This request will not go to the hardware, no reason 728 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 729 */ 730 maxmap = MAXPHYS; 731 break; 732 case XPT_SCSI_IO: 733 case XPT_CONT_TARGET_IO: 734 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 735 return(0); 736 KASSERT((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_VADDR, 737 ("not VADDR for SCSI_IO %p %x\n", ccb, ccb->ccb_h.flags)); 738 739 data_ptrs[0] = &ccb->csio.data_ptr; 740 lengths[0] = ccb->csio.dxfer_len; 741 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 742 numbufs = 1; 743 break; 744 case XPT_ATA_IO: 745 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 746 return(0); 747 KASSERT((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_VADDR, 748 ("not VADDR for ATA_IO %p %x\n", ccb, ccb->ccb_h.flags)); 749 750 data_ptrs[0] = &ccb->ataio.data_ptr; 751 lengths[0] = ccb->ataio.dxfer_len; 752 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 753 numbufs = 1; 754 break; 755 case XPT_SMP_IO: 756 data_ptrs[0] = &ccb->smpio.smp_request; 757 lengths[0] = ccb->smpio.smp_request_len; 758 dirs[0] = CAM_DIR_OUT; 759 data_ptrs[1] = &ccb->smpio.smp_response; 760 lengths[1] = ccb->smpio.smp_response_len; 761 dirs[1] = CAM_DIR_IN; 762 numbufs = 2; 763 break; 764 case XPT_DEV_ADVINFO: 765 if (ccb->cdai.bufsiz == 0) 766 return (0); 767 768 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 769 lengths[0] = ccb->cdai.bufsiz; 770 dirs[0] = CAM_DIR_IN; 771 numbufs = 1; 772 773 /* 774 * This request will not go to the hardware, no reason 775 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 776 */ 777 maxmap = MAXPHYS; 778 break; 779 default: 780 return(EINVAL); 781 break; /* NOTREACHED */ 782 } 783 784 /* 785 * Check the transfer length and permissions first, so we don't 786 * have to unmap any previously mapped buffers. 787 */ 788 for (i = 0; i < numbufs; i++) { 789 790 flags[i] = 0; 791 792 /* 793 * The userland data pointer passed in may not be page 794 * aligned. vmapbuf() truncates the address to a page 795 * boundary, so if the address isn't page aligned, we'll 796 * need enough space for the given transfer length, plus 797 * whatever extra space is necessary to make it to the page 798 * boundary. 799 */ 800 if ((lengths[i] + 801 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){ 802 printf("cam_periph_mapmem: attempt to map %lu bytes, " 803 "which is greater than %lu\n", 804 (long)(lengths[i] + 805 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)), 806 (u_long)maxmap); 807 return(E2BIG); 808 } 809 810 if (dirs[i] & CAM_DIR_OUT) { 811 flags[i] = BIO_WRITE; 812 } 813 814 if (dirs[i] & CAM_DIR_IN) { 815 flags[i] = BIO_READ; 816 } 817 818 } 819 820 /* this keeps the current process from getting swapped */ 821 /* 822 * XXX KDM should I use P_NOSWAP instead? 823 */ 824 PHOLD(curproc); 825 826 for (i = 0; i < numbufs; i++) { 827 /* 828 * Get the buffer. 829 */ 830 mapinfo->bp[i] = getpbuf(NULL); 831 832 /* save the buffer's data address */ 833 mapinfo->bp[i]->b_saveaddr = mapinfo->bp[i]->b_data; 834 835 /* put our pointer in the data slot */ 836 mapinfo->bp[i]->b_data = *data_ptrs[i]; 837 838 /* set the transfer length, we know it's < MAXPHYS */ 839 mapinfo->bp[i]->b_bufsize = lengths[i]; 840 841 /* set the direction */ 842 mapinfo->bp[i]->b_iocmd = flags[i]; 843 844 /* 845 * Map the buffer into kernel memory. 846 * 847 * Note that useracc() alone is not a sufficient test. 848 * vmapbuf() can still fail due to a smaller file mapped 849 * into a larger area of VM, or if userland races against 850 * vmapbuf() after the useracc() check. 851 */ 852 if (vmapbuf(mapinfo->bp[i], 1) < 0) { 853 for (j = 0; j < i; ++j) { 854 *data_ptrs[j] = mapinfo->bp[j]->b_saveaddr; 855 vunmapbuf(mapinfo->bp[j]); 856 relpbuf(mapinfo->bp[j], NULL); 857 } 858 relpbuf(mapinfo->bp[i], NULL); 859 PRELE(curproc); 860 return(EACCES); 861 } 862 863 /* set our pointer to the new mapped area */ 864 *data_ptrs[i] = mapinfo->bp[i]->b_data; 865 866 mapinfo->num_bufs_used++; 867 } 868 869 /* 870 * Now that we've gotten this far, change ownership to the kernel 871 * of the buffers so that we don't run afoul of returning to user 872 * space with locks (on the buffer) held. 873 */ 874 for (i = 0; i < numbufs; i++) { 875 BUF_KERNPROC(mapinfo->bp[i]); 876 } 877 878 879 return(0); 880 } 881 882 /* 883 * Unmap memory segments mapped into kernel virtual address space by 884 * cam_periph_mapmem(). 885 */ 886 void 887 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 888 { 889 int numbufs, i; 890 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 891 892 if (mapinfo->num_bufs_used <= 0) { 893 /* allow ourselves to be swapped once again */ 894 PRELE(curproc); 895 return; 896 } 897 898 switch (ccb->ccb_h.func_code) { 899 case XPT_DEV_MATCH: 900 numbufs = min(mapinfo->num_bufs_used, 2); 901 902 if (numbufs == 1) { 903 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 904 } else { 905 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 906 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 907 } 908 break; 909 case XPT_SCSI_IO: 910 case XPT_CONT_TARGET_IO: 911 data_ptrs[0] = &ccb->csio.data_ptr; 912 numbufs = min(mapinfo->num_bufs_used, 1); 913 break; 914 case XPT_ATA_IO: 915 data_ptrs[0] = &ccb->ataio.data_ptr; 916 numbufs = min(mapinfo->num_bufs_used, 1); 917 break; 918 case XPT_SMP_IO: 919 numbufs = min(mapinfo->num_bufs_used, 2); 920 data_ptrs[0] = &ccb->smpio.smp_request; 921 data_ptrs[1] = &ccb->smpio.smp_response; 922 break; 923 case XPT_DEV_ADVINFO: 924 numbufs = min(mapinfo->num_bufs_used, 1); 925 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 926 break; 927 default: 928 /* allow ourselves to be swapped once again */ 929 PRELE(curproc); 930 return; 931 break; /* NOTREACHED */ 932 } 933 934 for (i = 0; i < numbufs; i++) { 935 /* Set the user's pointer back to the original value */ 936 *data_ptrs[i] = mapinfo->bp[i]->b_saveaddr; 937 938 /* unmap the buffer */ 939 vunmapbuf(mapinfo->bp[i]); 940 941 /* release the buffer */ 942 relpbuf(mapinfo->bp[i], NULL); 943 } 944 945 /* allow ourselves to be swapped once again */ 946 PRELE(curproc); 947 } 948 949 union ccb * 950 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 951 { 952 struct ccb_hdr *ccb_h; 953 954 mtx_assert(periph->sim->mtx, MA_OWNED); 955 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n")); 956 957 while (SLIST_FIRST(&periph->ccb_list) == NULL) { 958 if (periph->immediate_priority > priority) 959 periph->immediate_priority = priority; 960 xpt_schedule(periph, priority); 961 if ((SLIST_FIRST(&periph->ccb_list) != NULL) 962 && (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority)) 963 break; 964 mtx_assert(periph->sim->mtx, MA_OWNED); 965 mtx_sleep(&periph->ccb_list, periph->sim->mtx, PRIBIO, "cgticb", 966 0); 967 } 968 969 ccb_h = SLIST_FIRST(&periph->ccb_list); 970 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 971 return ((union ccb *)ccb_h); 972 } 973 974 void 975 cam_periph_ccbwait(union ccb *ccb) 976 { 977 struct cam_sim *sim; 978 979 sim = xpt_path_sim(ccb->ccb_h.path); 980 if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX) 981 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)) 982 mtx_sleep(&ccb->ccb_h.cbfcnp, sim->mtx, PRIBIO, "cbwait", 0); 983 } 984 985 int 986 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 987 int (*error_routine)(union ccb *ccb, 988 cam_flags camflags, 989 u_int32_t sense_flags)) 990 { 991 union ccb *ccb; 992 int error; 993 int found; 994 995 error = found = 0; 996 997 switch(cmd){ 998 case CAMGETPASSTHRU: 999 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 1000 xpt_setup_ccb(&ccb->ccb_h, 1001 ccb->ccb_h.path, 1002 CAM_PRIORITY_NORMAL); 1003 ccb->ccb_h.func_code = XPT_GDEVLIST; 1004 1005 /* 1006 * Basically, the point of this is that we go through 1007 * getting the list of devices, until we find a passthrough 1008 * device. In the current version of the CAM code, the 1009 * only way to determine what type of device we're dealing 1010 * with is by its name. 1011 */ 1012 while (found == 0) { 1013 ccb->cgdl.index = 0; 1014 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1015 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1016 1017 /* we want the next device in the list */ 1018 xpt_action(ccb); 1019 if (strncmp(ccb->cgdl.periph_name, 1020 "pass", 4) == 0){ 1021 found = 1; 1022 break; 1023 } 1024 } 1025 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1026 (found == 0)) { 1027 ccb->cgdl.periph_name[0] = '\0'; 1028 ccb->cgdl.unit_number = 0; 1029 break; 1030 } 1031 } 1032 1033 /* copy the result back out */ 1034 bcopy(ccb, addr, sizeof(union ccb)); 1035 1036 /* and release the ccb */ 1037 xpt_release_ccb(ccb); 1038 1039 break; 1040 default: 1041 error = ENOTTY; 1042 break; 1043 } 1044 return(error); 1045 } 1046 1047 int 1048 cam_periph_runccb(union ccb *ccb, 1049 int (*error_routine)(union ccb *ccb, 1050 cam_flags camflags, 1051 u_int32_t sense_flags), 1052 cam_flags camflags, u_int32_t sense_flags, 1053 struct devstat *ds) 1054 { 1055 struct cam_sim *sim; 1056 int error; 1057 1058 error = 0; 1059 sim = xpt_path_sim(ccb->ccb_h.path); 1060 mtx_assert(sim->mtx, MA_OWNED); 1061 1062 /* 1063 * If the user has supplied a stats structure, and if we understand 1064 * this particular type of ccb, record the transaction start. 1065 */ 1066 if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO || 1067 ccb->ccb_h.func_code == XPT_ATA_IO)) 1068 devstat_start_transaction(ds, NULL); 1069 1070 xpt_action(ccb); 1071 1072 do { 1073 cam_periph_ccbwait(ccb); 1074 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1075 error = 0; 1076 else if (error_routine != NULL) 1077 error = (*error_routine)(ccb, camflags, sense_flags); 1078 else 1079 error = 0; 1080 1081 } while (error == ERESTART); 1082 1083 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1084 cam_release_devq(ccb->ccb_h.path, 1085 /* relsim_flags */0, 1086 /* openings */0, 1087 /* timeout */0, 1088 /* getcount_only */ FALSE); 1089 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1090 } 1091 1092 if (ds != NULL) { 1093 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1094 devstat_end_transaction(ds, 1095 ccb->csio.dxfer_len, 1096 ccb->csio.tag_action & 0x3, 1097 ((ccb->ccb_h.flags & CAM_DIR_MASK) == 1098 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 1099 (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1100 DEVSTAT_WRITE : 1101 DEVSTAT_READ, NULL, NULL); 1102 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1103 devstat_end_transaction(ds, 1104 ccb->ataio.dxfer_len, 1105 ccb->ataio.tag_action & 0x3, 1106 ((ccb->ccb_h.flags & CAM_DIR_MASK) == 1107 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 1108 (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1109 DEVSTAT_WRITE : 1110 DEVSTAT_READ, NULL, NULL); 1111 } 1112 } 1113 1114 return(error); 1115 } 1116 1117 void 1118 cam_freeze_devq(struct cam_path *path) 1119 { 1120 struct ccb_hdr ccb_h; 1121 1122 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 1123 ccb_h.func_code = XPT_NOOP; 1124 ccb_h.flags = CAM_DEV_QFREEZE; 1125 xpt_action((union ccb *)&ccb_h); 1126 } 1127 1128 u_int32_t 1129 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 1130 u_int32_t openings, u_int32_t arg, 1131 int getcount_only) 1132 { 1133 struct ccb_relsim crs; 1134 1135 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1136 crs.ccb_h.func_code = XPT_REL_SIMQ; 1137 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1138 crs.release_flags = relsim_flags; 1139 crs.openings = openings; 1140 crs.release_timeout = arg; 1141 xpt_action((union ccb *)&crs); 1142 return (crs.qfrozen_cnt); 1143 } 1144 1145 #define saved_ccb_ptr ppriv_ptr0 1146 static void 1147 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1148 { 1149 union ccb *saved_ccb; 1150 cam_status status; 1151 struct scsi_start_stop_unit *scsi_cmd; 1152 int error_code, sense_key, asc, ascq; 1153 1154 scsi_cmd = (struct scsi_start_stop_unit *) 1155 &done_ccb->csio.cdb_io.cdb_bytes; 1156 status = done_ccb->ccb_h.status; 1157 1158 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1159 if (scsi_extract_sense_ccb(done_ccb, 1160 &error_code, &sense_key, &asc, &ascq)) { 1161 /* 1162 * If the error is "invalid field in CDB", 1163 * and the load/eject flag is set, turn the 1164 * flag off and try again. This is just in 1165 * case the drive in question barfs on the 1166 * load eject flag. The CAM code should set 1167 * the load/eject flag by default for 1168 * removable media. 1169 */ 1170 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1171 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1172 (asc == 0x24) && (ascq == 0x00)) { 1173 scsi_cmd->how &= ~SSS_LOEJ; 1174 if (status & CAM_DEV_QFRZN) { 1175 cam_release_devq(done_ccb->ccb_h.path, 1176 0, 0, 0, 0); 1177 done_ccb->ccb_h.status &= 1178 ~CAM_DEV_QFRZN; 1179 } 1180 xpt_action(done_ccb); 1181 goto out; 1182 } 1183 } 1184 if (cam_periph_error(done_ccb, 1185 0, SF_RETRY_UA | SF_NO_PRINT, NULL) == ERESTART) 1186 goto out; 1187 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1188 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1189 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1190 } 1191 } else { 1192 /* 1193 * If we have successfully taken a device from the not 1194 * ready to ready state, re-scan the device and re-get 1195 * the inquiry information. Many devices (mostly disks) 1196 * don't properly report their inquiry information unless 1197 * they are spun up. 1198 */ 1199 if (scsi_cmd->opcode == START_STOP_UNIT) 1200 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1201 } 1202 1203 /* 1204 * Perform the final retry with the original CCB so that final 1205 * error processing is performed by the owner of the CCB. 1206 */ 1207 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1208 bcopy(saved_ccb, done_ccb, sizeof(*done_ccb)); 1209 xpt_free_ccb(saved_ccb); 1210 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1211 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1212 xpt_action(done_ccb); 1213 1214 out: 1215 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1216 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1217 } 1218 1219 /* 1220 * Generic Async Event handler. Peripheral drivers usually 1221 * filter out the events that require personal attention, 1222 * and leave the rest to this function. 1223 */ 1224 void 1225 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1226 struct cam_path *path, void *arg) 1227 { 1228 switch (code) { 1229 case AC_LOST_DEVICE: 1230 cam_periph_invalidate(periph); 1231 break; 1232 default: 1233 break; 1234 } 1235 } 1236 1237 void 1238 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1239 { 1240 struct ccb_getdevstats cgds; 1241 1242 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1243 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1244 xpt_action((union ccb *)&cgds); 1245 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1246 } 1247 1248 void 1249 cam_periph_freeze_after_event(struct cam_periph *periph, 1250 struct timeval* event_time, u_int duration_ms) 1251 { 1252 struct timeval delta; 1253 struct timeval duration_tv; 1254 1255 if (!timevalisset(event_time)) 1256 return; 1257 1258 microtime(&delta); 1259 timevalsub(&delta, event_time); 1260 duration_tv.tv_sec = duration_ms / 1000; 1261 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1262 if (timevalcmp(&delta, &duration_tv, <)) { 1263 timevalsub(&duration_tv, &delta); 1264 1265 duration_ms = duration_tv.tv_sec * 1000; 1266 duration_ms += duration_tv.tv_usec / 1000; 1267 cam_freeze_devq(periph->path); 1268 cam_release_devq(periph->path, 1269 RELSIM_RELEASE_AFTER_TIMEOUT, 1270 /*reduction*/0, 1271 /*timeout*/duration_ms, 1272 /*getcount_only*/0); 1273 } 1274 1275 } 1276 1277 static int 1278 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1279 cam_flags camflags, u_int32_t sense_flags, 1280 int *openings, u_int32_t *relsim_flags, 1281 u_int32_t *timeout, int *print, const char **action_string) 1282 { 1283 int error; 1284 1285 switch (ccb->csio.scsi_status) { 1286 case SCSI_STATUS_OK: 1287 case SCSI_STATUS_COND_MET: 1288 case SCSI_STATUS_INTERMED: 1289 case SCSI_STATUS_INTERMED_COND_MET: 1290 error = 0; 1291 break; 1292 case SCSI_STATUS_CMD_TERMINATED: 1293 case SCSI_STATUS_CHECK_COND: 1294 error = camperiphscsisenseerror(ccb, orig_ccb, 1295 camflags, 1296 sense_flags, 1297 openings, 1298 relsim_flags, 1299 timeout, 1300 print, 1301 action_string); 1302 break; 1303 case SCSI_STATUS_QUEUE_FULL: 1304 { 1305 /* no decrement */ 1306 struct ccb_getdevstats cgds; 1307 1308 /* 1309 * First off, find out what the current 1310 * transaction counts are. 1311 */ 1312 xpt_setup_ccb(&cgds.ccb_h, 1313 ccb->ccb_h.path, 1314 CAM_PRIORITY_NORMAL); 1315 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1316 xpt_action((union ccb *)&cgds); 1317 1318 /* 1319 * If we were the only transaction active, treat 1320 * the QUEUE FULL as if it were a BUSY condition. 1321 */ 1322 if (cgds.dev_active != 0) { 1323 int total_openings; 1324 1325 /* 1326 * Reduce the number of openings to 1327 * be 1 less than the amount it took 1328 * to get a queue full bounded by the 1329 * minimum allowed tag count for this 1330 * device. 1331 */ 1332 total_openings = cgds.dev_active + cgds.dev_openings; 1333 *openings = cgds.dev_active; 1334 if (*openings < cgds.mintags) 1335 *openings = cgds.mintags; 1336 if (*openings < total_openings) 1337 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1338 else { 1339 /* 1340 * Some devices report queue full for 1341 * temporary resource shortages. For 1342 * this reason, we allow a minimum 1343 * tag count to be entered via a 1344 * quirk entry to prevent the queue 1345 * count on these devices from falling 1346 * to a pessimisticly low value. We 1347 * still wait for the next successful 1348 * completion, however, before queueing 1349 * more transactions to the device. 1350 */ 1351 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1352 } 1353 *timeout = 0; 1354 error = ERESTART; 1355 *print = 0; 1356 break; 1357 } 1358 /* FALLTHROUGH */ 1359 } 1360 case SCSI_STATUS_BUSY: 1361 /* 1362 * Restart the queue after either another 1363 * command completes or a 1 second timeout. 1364 */ 1365 if (ccb->ccb_h.retry_count > 0) { 1366 ccb->ccb_h.retry_count--; 1367 error = ERESTART; 1368 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1369 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1370 *timeout = 1000; 1371 } else { 1372 error = EIO; 1373 } 1374 break; 1375 case SCSI_STATUS_RESERV_CONFLICT: 1376 default: 1377 error = EIO; 1378 break; 1379 } 1380 return (error); 1381 } 1382 1383 static int 1384 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1385 cam_flags camflags, u_int32_t sense_flags, 1386 int *openings, u_int32_t *relsim_flags, 1387 u_int32_t *timeout, int *print, const char **action_string) 1388 { 1389 struct cam_periph *periph; 1390 union ccb *orig_ccb = ccb; 1391 int error, recoveryccb; 1392 1393 periph = xpt_path_periph(ccb->ccb_h.path); 1394 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1395 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1396 /* 1397 * If error recovery is already in progress, don't attempt 1398 * to process this error, but requeue it unconditionally 1399 * and attempt to process it once error recovery has 1400 * completed. This failed command is probably related to 1401 * the error that caused the currently active error recovery 1402 * action so our current recovery efforts should also 1403 * address this command. Be aware that the error recovery 1404 * code assumes that only one recovery action is in progress 1405 * on a particular peripheral instance at any given time 1406 * (e.g. only one saved CCB for error recovery) so it is 1407 * imperitive that we don't violate this assumption. 1408 */ 1409 error = ERESTART; 1410 *print = 0; 1411 } else { 1412 scsi_sense_action err_action; 1413 struct ccb_getdev cgd; 1414 1415 /* 1416 * Grab the inquiry data for this device. 1417 */ 1418 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1419 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1420 xpt_action((union ccb *)&cgd); 1421 1422 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1423 sense_flags); 1424 error = err_action & SS_ERRMASK; 1425 1426 /* 1427 * Do not autostart sequential access devices 1428 * to avoid unexpected tape loading. 1429 */ 1430 if ((err_action & SS_MASK) == SS_START && 1431 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1432 *action_string = "Will not autostart a " 1433 "sequential access device"; 1434 goto sense_error_done; 1435 } 1436 1437 /* 1438 * Avoid recovery recursion if recovery action is the same. 1439 */ 1440 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1441 if (((err_action & SS_MASK) == SS_START && 1442 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1443 ((err_action & SS_MASK) == SS_TUR && 1444 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1445 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1446 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1447 *timeout = 500; 1448 } 1449 } 1450 1451 /* 1452 * If the recovery action will consume a retry, 1453 * make sure we actually have retries available. 1454 */ 1455 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1456 if (ccb->ccb_h.retry_count > 0 && 1457 (periph->flags & CAM_PERIPH_INVALID) == 0) 1458 ccb->ccb_h.retry_count--; 1459 else { 1460 *action_string = "Retries exhausted"; 1461 goto sense_error_done; 1462 } 1463 } 1464 1465 if ((err_action & SS_MASK) >= SS_START) { 1466 /* 1467 * Do common portions of commands that 1468 * use recovery CCBs. 1469 */ 1470 orig_ccb = xpt_alloc_ccb_nowait(); 1471 if (orig_ccb == NULL) { 1472 *action_string = "Can't allocate recovery CCB"; 1473 goto sense_error_done; 1474 } 1475 /* 1476 * Clear freeze flag for original request here, as 1477 * this freeze will be dropped as part of ERESTART. 1478 */ 1479 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1480 bcopy(ccb, orig_ccb, sizeof(*orig_ccb)); 1481 } 1482 1483 switch (err_action & SS_MASK) { 1484 case SS_NOP: 1485 *action_string = "No recovery action needed"; 1486 error = 0; 1487 break; 1488 case SS_RETRY: 1489 *action_string = "Retrying command (per sense data)"; 1490 error = ERESTART; 1491 break; 1492 case SS_FAIL: 1493 *action_string = "Unretryable error"; 1494 break; 1495 case SS_START: 1496 { 1497 int le; 1498 1499 /* 1500 * Send a start unit command to the device, and 1501 * then retry the command. 1502 */ 1503 *action_string = "Attempting to start unit"; 1504 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1505 1506 /* 1507 * Check for removable media and set 1508 * load/eject flag appropriately. 1509 */ 1510 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1511 le = TRUE; 1512 else 1513 le = FALSE; 1514 1515 scsi_start_stop(&ccb->csio, 1516 /*retries*/1, 1517 camperiphdone, 1518 MSG_SIMPLE_Q_TAG, 1519 /*start*/TRUE, 1520 /*load/eject*/le, 1521 /*immediate*/FALSE, 1522 SSD_FULL_SIZE, 1523 /*timeout*/50000); 1524 break; 1525 } 1526 case SS_TUR: 1527 { 1528 /* 1529 * Send a Test Unit Ready to the device. 1530 * If the 'many' flag is set, we send 120 1531 * test unit ready commands, one every half 1532 * second. Otherwise, we just send one TUR. 1533 * We only want to do this if the retry 1534 * count has not been exhausted. 1535 */ 1536 int retries; 1537 1538 if ((err_action & SSQ_MANY) != 0) { 1539 *action_string = "Polling device for readiness"; 1540 retries = 120; 1541 } else { 1542 *action_string = "Testing device for readiness"; 1543 retries = 1; 1544 } 1545 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1546 scsi_test_unit_ready(&ccb->csio, 1547 retries, 1548 camperiphdone, 1549 MSG_SIMPLE_Q_TAG, 1550 SSD_FULL_SIZE, 1551 /*timeout*/5000); 1552 1553 /* 1554 * Accomplish our 500ms delay by deferring 1555 * the release of our device queue appropriately. 1556 */ 1557 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1558 *timeout = 500; 1559 break; 1560 } 1561 default: 1562 panic("Unhandled error action %x", err_action); 1563 } 1564 1565 if ((err_action & SS_MASK) >= SS_START) { 1566 /* 1567 * Drop the priority, so that the recovery 1568 * CCB is the first to execute. Freeze the queue 1569 * after this command is sent so that we can 1570 * restore the old csio and have it queued in 1571 * the proper order before we release normal 1572 * transactions to the device. 1573 */ 1574 ccb->ccb_h.pinfo.priority--; 1575 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1576 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1577 error = ERESTART; 1578 *orig = orig_ccb; 1579 } 1580 1581 sense_error_done: 1582 *print = ((err_action & SSQ_PRINT_SENSE) != 0); 1583 } 1584 return (error); 1585 } 1586 1587 /* 1588 * Generic error handler. Peripheral drivers usually filter 1589 * out the errors that they handle in a unique mannor, then 1590 * call this function. 1591 */ 1592 int 1593 cam_periph_error(union ccb *ccb, cam_flags camflags, 1594 u_int32_t sense_flags, union ccb *save_ccb) 1595 { 1596 union ccb *orig_ccb; 1597 struct cam_periph *periph; 1598 const char *action_string; 1599 cam_status status; 1600 int frozen, error, openings, print, lost_device; 1601 int error_code, sense_key, asc, ascq; 1602 u_int32_t relsim_flags, timeout; 1603 1604 print = 1; 1605 periph = xpt_path_periph(ccb->ccb_h.path); 1606 action_string = NULL; 1607 status = ccb->ccb_h.status; 1608 frozen = (status & CAM_DEV_QFRZN) != 0; 1609 status &= CAM_STATUS_MASK; 1610 openings = relsim_flags = timeout = lost_device = 0; 1611 orig_ccb = ccb; 1612 1613 switch (status) { 1614 case CAM_REQ_CMP: 1615 error = 0; 1616 print = 0; 1617 break; 1618 case CAM_SCSI_STATUS_ERROR: 1619 error = camperiphscsistatuserror(ccb, &orig_ccb, 1620 camflags, sense_flags, &openings, &relsim_flags, 1621 &timeout, &print, &action_string); 1622 break; 1623 case CAM_AUTOSENSE_FAIL: 1624 error = EIO; /* we have to kill the command */ 1625 break; 1626 case CAM_UA_ABORT: 1627 case CAM_UA_TERMIO: 1628 case CAM_MSG_REJECT_REC: 1629 /* XXX Don't know that these are correct */ 1630 error = EIO; 1631 break; 1632 case CAM_SEL_TIMEOUT: 1633 if ((camflags & CAM_RETRY_SELTO) != 0) { 1634 if (ccb->ccb_h.retry_count > 0 && 1635 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1636 ccb->ccb_h.retry_count--; 1637 error = ERESTART; 1638 1639 /* 1640 * Wait a bit to give the device 1641 * time to recover before we try again. 1642 */ 1643 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1644 timeout = periph_selto_delay; 1645 break; 1646 } 1647 action_string = "Retries exhausted"; 1648 } 1649 /* FALLTHROUGH */ 1650 case CAM_DEV_NOT_THERE: 1651 error = ENXIO; 1652 print = 0; 1653 lost_device = 1; 1654 break; 1655 case CAM_REQ_INVALID: 1656 case CAM_PATH_INVALID: 1657 case CAM_NO_HBA: 1658 case CAM_PROVIDE_FAIL: 1659 case CAM_REQ_TOO_BIG: 1660 case CAM_LUN_INVALID: 1661 case CAM_TID_INVALID: 1662 error = EINVAL; 1663 break; 1664 case CAM_SCSI_BUS_RESET: 1665 case CAM_BDR_SENT: 1666 /* 1667 * Commands that repeatedly timeout and cause these 1668 * kinds of error recovery actions, should return 1669 * CAM_CMD_TIMEOUT, which allows us to safely assume 1670 * that this command was an innocent bystander to 1671 * these events and should be unconditionally 1672 * retried. 1673 */ 1674 case CAM_REQUEUE_REQ: 1675 /* Unconditional requeue if device is still there */ 1676 if (periph->flags & CAM_PERIPH_INVALID) { 1677 action_string = "Periph was invalidated"; 1678 error = EIO; 1679 } else if (sense_flags & SF_NO_RETRY) { 1680 error = EIO; 1681 action_string = "Retry was blocked"; 1682 } else { 1683 error = ERESTART; 1684 print = 0; 1685 } 1686 break; 1687 case CAM_RESRC_UNAVAIL: 1688 /* Wait a bit for the resource shortage to abate. */ 1689 timeout = periph_noresrc_delay; 1690 /* FALLTHROUGH */ 1691 case CAM_BUSY: 1692 if (timeout == 0) { 1693 /* Wait a bit for the busy condition to abate. */ 1694 timeout = periph_busy_delay; 1695 } 1696 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1697 /* FALLTHROUGH */ 1698 case CAM_ATA_STATUS_ERROR: 1699 case CAM_REQ_CMP_ERR: 1700 case CAM_CMD_TIMEOUT: 1701 case CAM_UNEXP_BUSFREE: 1702 case CAM_UNCOR_PARITY: 1703 case CAM_DATA_RUN_ERR: 1704 default: 1705 if (periph->flags & CAM_PERIPH_INVALID) { 1706 error = EIO; 1707 action_string = "Periph was invalidated"; 1708 } else if (ccb->ccb_h.retry_count == 0) { 1709 error = EIO; 1710 action_string = "Retries exhausted"; 1711 } else if (sense_flags & SF_NO_RETRY) { 1712 error = EIO; 1713 action_string = "Retry was blocked"; 1714 } else { 1715 ccb->ccb_h.retry_count--; 1716 error = ERESTART; 1717 } 1718 break; 1719 } 1720 1721 if ((sense_flags & SF_PRINT_ALWAYS) || 1722 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 1723 print = 1; 1724 else if (sense_flags & SF_NO_PRINT) 1725 print = 0; 1726 if (print) 1727 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 1728 if (error != 0 && print) { 1729 if (error != ERESTART) { 1730 if (action_string == NULL) 1731 action_string = "Unretryable error"; 1732 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 1733 error, action_string); 1734 } else if (action_string != NULL) 1735 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 1736 else 1737 xpt_print(ccb->ccb_h.path, "Retrying command\n"); 1738 } 1739 1740 if (lost_device) { 1741 struct cam_path *newpath; 1742 lun_id_t lun_id; 1743 1744 /* 1745 * For a selection timeout, we consider all of the LUNs on 1746 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 1747 * then we only get rid of the device(s) specified by the 1748 * path in the original CCB. 1749 */ 1750 if (status == CAM_DEV_NOT_THERE) 1751 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 1752 else 1753 lun_id = CAM_LUN_WILDCARD; 1754 1755 /* Should we do more if we can't create the path?? */ 1756 if (xpt_create_path(&newpath, periph, 1757 xpt_path_path_id(ccb->ccb_h.path), 1758 xpt_path_target_id(ccb->ccb_h.path), 1759 lun_id) == CAM_REQ_CMP) { 1760 1761 /* 1762 * Let peripheral drivers know that this 1763 * device has gone away. 1764 */ 1765 xpt_async(AC_LOST_DEVICE, newpath, NULL); 1766 xpt_free_path(newpath); 1767 } 1768 1769 /* Broadcast UNIT ATTENTIONs to all periphs. */ 1770 } else if (scsi_extract_sense_ccb(ccb, 1771 &error_code, &sense_key, &asc, &ascq) && 1772 sense_key == SSD_KEY_UNIT_ATTENTION) { 1773 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 1774 } 1775 1776 /* Attempt a retry */ 1777 if (error == ERESTART || error == 0) { 1778 if (frozen != 0) 1779 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1780 if (error == ERESTART) 1781 xpt_action(ccb); 1782 if (frozen != 0) 1783 cam_release_devq(ccb->ccb_h.path, 1784 relsim_flags, 1785 openings, 1786 timeout, 1787 /*getcount_only*/0); 1788 } 1789 1790 return (error); 1791 } 1792