xref: /freebsd/sys/cam/cam_iosched.c (revision ee5cf11617a9b7f034d95c639bd4d27d1f09e848)
1 /*-
2  * CAM IO Scheduler Interface
3  *
4  * Copyright (c) 2015 Netflix, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification, immediately at the beginning of the file.
13  * 2. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 #include "opt_cam.h"
32 #include "opt_ddb.h"
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/bio.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mutex.h>
45 #include <sys/sysctl.h>
46 
47 #include <cam/cam.h>
48 #include <cam/cam_ccb.h>
49 #include <cam/cam_periph.h>
50 #include <cam/cam_xpt_periph.h>
51 #include <cam/cam_iosched.h>
52 
53 #include <ddb/ddb.h>
54 
55 static MALLOC_DEFINE(M_CAMSCHED, "CAM I/O Scheduler",
56     "CAM I/O Scheduler buffers");
57 
58 /*
59  * Default I/O scheduler for FreeBSD. This implementation is just a thin-vineer
60  * over the bioq_* interface, with notions of separate calls for normal I/O and
61  * for trims.
62  */
63 
64 #ifdef CAM_NETFLIX_IOSCHED
65 
66 static int do_netflix_iosched = 1;
67 TUNABLE_INT("kern.cam.do_netflix_iosched", &do_netflix_iosched);
68 SYSCTL_INT(_kern_cam, OID_AUTO, do_netflix_iosched, CTLFLAG_RD,
69     &do_netflix_iosched, 1,
70     "Enable Netflix I/O scheduler optimizations.");
71 
72 static int alpha_bits = 9;
73 TUNABLE_INT("kern.cam.iosched_alpha_bits", &alpha_bits);
74 SYSCTL_INT(_kern_cam, OID_AUTO, iosched_alpha_bits, CTLFLAG_RW,
75     &alpha_bits, 1,
76     "Bits in EMA's alpha.");
77 
78 
79 
80 struct iop_stats;
81 struct cam_iosched_softc;
82 
83 int iosched_debug = 0;
84 
85 typedef enum {
86 	none = 0,				/* No limits */
87 	queue_depth,			/* Limit how many ops we queue to SIM */
88 	iops,				/* Limit # of IOPS to the drive */
89 	bandwidth,			/* Limit bandwidth to the drive */
90 	limiter_max
91 } io_limiter;
92 
93 static const char *cam_iosched_limiter_names[] =
94     { "none", "queue_depth", "iops", "bandwidth" };
95 
96 /*
97  * Called to initialize the bits of the iop_stats structure relevant to the
98  * limiter. Called just after the limiter is set.
99  */
100 typedef int l_init_t(struct iop_stats *);
101 
102 /*
103  * Called every tick.
104  */
105 typedef int l_tick_t(struct iop_stats *);
106 
107 /*
108  * Called to see if the limiter thinks this IOP can be allowed to
109  * proceed. If so, the limiter assumes that the while IOP proceeded
110  * and makes any accounting of it that's needed.
111  */
112 typedef int l_iop_t(struct iop_stats *, struct bio *);
113 
114 /*
115  * Called when an I/O completes so the limiter can updates its
116  * accounting. Pending I/Os may complete in any order (even when
117  * sent to the hardware at the same time), so the limiter may not
118  * make any assumptions other than this I/O has completed. If it
119  * returns 1, then xpt_schedule() needs to be called again.
120  */
121 typedef int l_iodone_t(struct iop_stats *, struct bio *);
122 
123 static l_iop_t cam_iosched_qd_iop;
124 static l_iop_t cam_iosched_qd_caniop;
125 static l_iodone_t cam_iosched_qd_iodone;
126 
127 static l_init_t cam_iosched_iops_init;
128 static l_tick_t cam_iosched_iops_tick;
129 static l_iop_t cam_iosched_iops_caniop;
130 static l_iop_t cam_iosched_iops_iop;
131 
132 static l_init_t cam_iosched_bw_init;
133 static l_tick_t cam_iosched_bw_tick;
134 static l_iop_t cam_iosched_bw_caniop;
135 static l_iop_t cam_iosched_bw_iop;
136 
137 struct limswitch
138 {
139 	l_init_t	*l_init;
140 	l_tick_t	*l_tick;
141 	l_iop_t		*l_iop;
142 	l_iop_t		*l_caniop;
143 	l_iodone_t	*l_iodone;
144 } limsw[] =
145 {
146 	{	/* none */
147 		.l_init = NULL,
148 		.l_tick = NULL,
149 		.l_iop = NULL,
150 		.l_iodone= NULL,
151 	},
152 	{	/* queue_depth */
153 		.l_init = NULL,
154 		.l_tick = NULL,
155 		.l_caniop = cam_iosched_qd_caniop,
156 		.l_iop = cam_iosched_qd_iop,
157 		.l_iodone= cam_iosched_qd_iodone,
158 	},
159 	{	/* iops */
160 		.l_init = cam_iosched_iops_init,
161 		.l_tick = cam_iosched_iops_tick,
162 		.l_caniop = cam_iosched_iops_caniop,
163 		.l_iop = cam_iosched_iops_iop,
164 		.l_iodone= NULL,
165 	},
166 	{	/* bandwidth */
167 		.l_init = cam_iosched_bw_init,
168 		.l_tick = cam_iosched_bw_tick,
169 		.l_caniop = cam_iosched_bw_caniop,
170 		.l_iop = cam_iosched_bw_iop,
171 		.l_iodone= NULL,
172 	},
173 };
174 
175 struct iop_stats
176 {
177 	/*
178 	 * sysctl state for this subnode.
179 	 */
180 	struct sysctl_ctx_list	sysctl_ctx;
181 	struct sysctl_oid	*sysctl_tree;
182 
183 	/*
184 	 * Information about the current rate limiters, if any
185 	 */
186 	io_limiter	limiter;	/* How are I/Os being limited */
187 	int		min;		/* Low range of limit */
188 	int		max;		/* High range of limit */
189 	int		current;	/* Current rate limiter */
190 	int		l_value1;	/* per-limiter scratch value 1. */
191 	int		l_value2;	/* per-limiter scratch value 2. */
192 
193 
194 	/*
195 	 * Debug information about counts of I/Os that have gone through the
196 	 * scheduler.
197 	 */
198 	int		pending;	/* I/Os pending in the hardware */
199 	int		queued;		/* number currently in the queue */
200 	int		total;		/* Total for all time -- wraps */
201 	int		in;		/* number queued all time -- wraps */
202 	int		out;		/* number completed all time -- wraps */
203 
204 	/*
205 	 * Statistics on different bits of the process.
206 	 */
207 		/* Exp Moving Average, alpha = 1 / (1 << alpha_bits) */
208 	sbintime_t      ema;
209 	sbintime_t      emss;		/* Exp Moving sum of the squares */
210 	sbintime_t      sd;		/* Last computed sd */
211 
212 	struct cam_iosched_softc *softc;
213 };
214 
215 
216 typedef enum {
217 	set_max = 0,			/* current = max */
218 	read_latency,			/* Steer read latency by throttling writes */
219 	cl_max				/* Keep last */
220 } control_type;
221 
222 static const char *cam_iosched_control_type_names[] =
223     { "set_max", "read_latency" };
224 
225 struct control_loop
226 {
227 	/*
228 	 * sysctl state for this subnode.
229 	 */
230 	struct sysctl_ctx_list	sysctl_ctx;
231 	struct sysctl_oid	*sysctl_tree;
232 
233 	sbintime_t	next_steer;		/* Time of next steer */
234 	sbintime_t	steer_interval;		/* How often do we steer? */
235 	sbintime_t	lolat;
236 	sbintime_t	hilat;
237 	int		alpha;
238 	control_type	type;			/* What type of control? */
239 	int		last_count;		/* Last I/O count */
240 
241 	struct cam_iosched_softc *softc;
242 };
243 
244 #endif
245 
246 struct cam_iosched_softc
247 {
248 	struct bio_queue_head bio_queue;
249 	struct bio_queue_head trim_queue;
250 				/* scheduler flags < 16, user flags >= 16 */
251 	uint32_t	flags;
252 	int		sort_io_queue;
253 #ifdef CAM_NETFLIX_IOSCHED
254 	int		read_bias;		/* Read bias setting */
255 	int		current_read_bias;	/* Current read bias state */
256 	int		total_ticks;
257 
258 	struct bio_queue_head write_queue;
259 	struct iop_stats read_stats, write_stats, trim_stats;
260 	struct sysctl_ctx_list	sysctl_ctx;
261 	struct sysctl_oid	*sysctl_tree;
262 
263 	int		quanta;			/* Number of quanta per second */
264 	struct callout	ticker;			/* Callout for our quota system */
265 	struct cam_periph *periph;		/* cam periph associated with this device */
266 	uint32_t	this_frac;		/* Fraction of a second (1024ths) for this tick */
267 	sbintime_t	last_time;		/* Last time we ticked */
268 	struct control_loop cl;
269 #endif
270 };
271 
272 #ifdef CAM_NETFLIX_IOSCHED
273 /*
274  * helper functions to call the limsw functions.
275  */
276 static int
277 cam_iosched_limiter_init(struct iop_stats *ios)
278 {
279 	int lim = ios->limiter;
280 
281 	/* maybe this should be a kassert */
282 	if (lim < none || lim >= limiter_max)
283 		return EINVAL;
284 
285 	if (limsw[lim].l_init)
286 		return limsw[lim].l_init(ios);
287 
288 	return 0;
289 }
290 
291 static int
292 cam_iosched_limiter_tick(struct iop_stats *ios)
293 {
294 	int lim = ios->limiter;
295 
296 	/* maybe this should be a kassert */
297 	if (lim < none || lim >= limiter_max)
298 		return EINVAL;
299 
300 	if (limsw[lim].l_tick)
301 		return limsw[lim].l_tick(ios);
302 
303 	return 0;
304 }
305 
306 static int
307 cam_iosched_limiter_iop(struct iop_stats *ios, struct bio *bp)
308 {
309 	int lim = ios->limiter;
310 
311 	/* maybe this should be a kassert */
312 	if (lim < none || lim >= limiter_max)
313 		return EINVAL;
314 
315 	if (limsw[lim].l_iop)
316 		return limsw[lim].l_iop(ios, bp);
317 
318 	return 0;
319 }
320 
321 static int
322 cam_iosched_limiter_caniop(struct iop_stats *ios, struct bio *bp)
323 {
324 	int lim = ios->limiter;
325 
326 	/* maybe this should be a kassert */
327 	if (lim < none || lim >= limiter_max)
328 		return EINVAL;
329 
330 	if (limsw[lim].l_caniop)
331 		return limsw[lim].l_caniop(ios, bp);
332 
333 	return 0;
334 }
335 
336 static int
337 cam_iosched_limiter_iodone(struct iop_stats *ios, struct bio *bp)
338 {
339 	int lim = ios->limiter;
340 
341 	/* maybe this should be a kassert */
342 	if (lim < none || lim >= limiter_max)
343 		return 0;
344 
345 	if (limsw[lim].l_iodone)
346 		return limsw[lim].l_iodone(ios, bp);
347 
348 	return 0;
349 }
350 
351 /*
352  * Functions to implement the different kinds of limiters
353  */
354 
355 static int
356 cam_iosched_qd_iop(struct iop_stats *ios, struct bio *bp)
357 {
358 
359 	if (ios->current <= 0 || ios->pending < ios->current)
360 		return 0;
361 
362 	return EAGAIN;
363 }
364 
365 static int
366 cam_iosched_qd_caniop(struct iop_stats *ios, struct bio *bp)
367 {
368 
369 	if (ios->current <= 0 || ios->pending < ios->current)
370 		return 0;
371 
372 	return EAGAIN;
373 }
374 
375 static int
376 cam_iosched_qd_iodone(struct iop_stats *ios, struct bio *bp)
377 {
378 
379 	if (ios->current <= 0 || ios->pending != ios->current)
380 		return 0;
381 
382 	return 1;
383 }
384 
385 static int
386 cam_iosched_iops_init(struct iop_stats *ios)
387 {
388 
389 	ios->l_value1 = ios->current / ios->softc->quanta;
390 	if (ios->l_value1 <= 0)
391 		ios->l_value1 = 1;
392 
393 	return 0;
394 }
395 
396 static int
397 cam_iosched_iops_tick(struct iop_stats *ios)
398 {
399 
400 	ios->l_value1 = (int)((ios->current * (uint64_t)ios->softc->this_frac) >> 16);
401 	if (ios->l_value1 <= 0)
402 		ios->l_value1 = 1;
403 
404 	return 0;
405 }
406 
407 static int
408 cam_iosched_iops_caniop(struct iop_stats *ios, struct bio *bp)
409 {
410 
411 	/*
412 	 * So if we have any more IOPs left, allow it,
413 	 * otherwise wait.
414 	 */
415 	if (ios->l_value1 <= 0)
416 		return EAGAIN;
417 	return 0;
418 }
419 
420 static int
421 cam_iosched_iops_iop(struct iop_stats *ios, struct bio *bp)
422 {
423 	int rv;
424 
425 	rv = cam_iosched_limiter_caniop(ios, bp);
426 	if (rv == 0)
427 		ios->l_value1--;
428 
429 	return rv;
430 }
431 
432 static int
433 cam_iosched_bw_init(struct iop_stats *ios)
434 {
435 
436 	/* ios->current is in kB/s, so scale to bytes */
437 	ios->l_value1 = ios->current * 1000 / ios->softc->quanta;
438 
439 	return 0;
440 }
441 
442 static int
443 cam_iosched_bw_tick(struct iop_stats *ios)
444 {
445 	int bw;
446 
447 	/*
448 	 * If we're in the hole for available quota from
449 	 * the last time, then add the quantum for this.
450 	 * If we have any left over from last quantum,
451 	 * then too bad, that's lost. Also, ios->current
452 	 * is in kB/s, so scale.
453 	 *
454 	 * We also allow up to 4 quanta of credits to
455 	 * accumulate to deal with burstiness. 4 is extremely
456 	 * arbitrary.
457 	 */
458 	bw = (int)((ios->current * 1000ull * (uint64_t)ios->softc->this_frac) >> 16);
459 	if (ios->l_value1 < bw * 4)
460 		ios->l_value1 += bw;
461 
462 	return 0;
463 }
464 
465 static int
466 cam_iosched_bw_caniop(struct iop_stats *ios, struct bio *bp)
467 {
468 	/*
469 	 * So if we have any more bw quota left, allow it,
470 	 * otherwise wait. Not, we'll go negative and that's
471 	 * OK. We'll just get a lettle less next quota.
472 	 *
473 	 * Note on going negative: that allows us to process
474 	 * requests in order better, since we won't allow
475 	 * shorter reads to get around the long one that we
476 	 * don't have the quota to do just yet. It also prevents
477 	 * starvation by being a little more permissive about
478 	 * what we let through this quantum (to prevent the
479 	 * starvation), at the cost of getting a little less
480 	 * next quantum.
481 	 */
482 	if (ios->l_value1 <= 0)
483 		return EAGAIN;
484 
485 
486 	return 0;
487 }
488 
489 static int
490 cam_iosched_bw_iop(struct iop_stats *ios, struct bio *bp)
491 {
492 	int rv;
493 
494 	rv = cam_iosched_limiter_caniop(ios, bp);
495 	if (rv == 0)
496 		ios->l_value1 -= bp->bio_length;
497 
498 	return rv;
499 }
500 
501 static void cam_iosched_cl_maybe_steer(struct control_loop *clp);
502 
503 static void
504 cam_iosched_ticker(void *arg)
505 {
506 	struct cam_iosched_softc *isc = arg;
507 	sbintime_t now, delta;
508 
509 	callout_reset(&isc->ticker, hz / isc->quanta - 1, cam_iosched_ticker, isc);
510 
511 	now = sbinuptime();
512 	delta = now - isc->last_time;
513 	isc->this_frac = (uint32_t)delta >> 16;		/* Note: discards seconds -- should be 0 harmless if not */
514 	isc->last_time = now;
515 
516 	cam_iosched_cl_maybe_steer(&isc->cl);
517 
518 	cam_iosched_limiter_tick(&isc->read_stats);
519 	cam_iosched_limiter_tick(&isc->write_stats);
520 	cam_iosched_limiter_tick(&isc->trim_stats);
521 
522 	cam_iosched_schedule(isc, isc->periph);
523 
524 	isc->total_ticks++;
525 }
526 
527 
528 static void
529 cam_iosched_cl_init(struct control_loop *clp, struct cam_iosched_softc *isc)
530 {
531 
532 	clp->next_steer = sbinuptime();
533 	clp->softc = isc;
534 	clp->steer_interval = SBT_1S * 5;	/* Let's start out steering every 5s */
535 	clp->lolat = 5 * SBT_1MS;
536 	clp->hilat = 15 * SBT_1MS;
537 	clp->alpha = 20;			/* Alpha == gain. 20 = .2 */
538 	clp->type = set_max;
539 }
540 
541 static void
542 cam_iosched_cl_maybe_steer(struct control_loop *clp)
543 {
544 	struct cam_iosched_softc *isc;
545 	sbintime_t now, lat;
546 	int old;
547 
548 	isc = clp->softc;
549 	now = isc->last_time;
550 	if (now < clp->next_steer)
551 		return;
552 
553 	clp->next_steer = now + clp->steer_interval;
554 	switch (clp->type) {
555 	case set_max:
556 		if (isc->write_stats.current != isc->write_stats.max)
557 			printf("Steering write from %d kBps to %d kBps\n",
558 			    isc->write_stats.current, isc->write_stats.max);
559 		isc->read_stats.current = isc->read_stats.max;
560 		isc->write_stats.current = isc->write_stats.max;
561 		isc->trim_stats.current = isc->trim_stats.max;
562 		break;
563 	case read_latency:
564 		old = isc->write_stats.current;
565 		lat = isc->read_stats.ema;
566 		/*
567 		 * Simple PLL-like engine. Since we're steering to a range for
568 		 * the SP (set point) that makes things a little more
569 		 * complicated. In addition, we're not directly controlling our
570 		 * PV (process variable), the read latency, but instead are
571 		 * manipulating the write bandwidth limit for our MV
572 		 * (manipulation variable), analysis of this code gets a bit
573 		 * messy. Also, the MV is a very noisy control surface for read
574 		 * latency since it is affected by many hidden processes inside
575 		 * the device which change how responsive read latency will be
576 		 * in reaction to changes in write bandwidth. Unlike the classic
577 		 * boiler control PLL. this may result in over-steering while
578 		 * the SSD takes its time to react to the new, lower load. This
579 		 * is why we use a relatively low alpha of between .1 and .25 to
580 		 * compensate for this effect. At .1, it takes ~22 steering
581 		 * intervals to back off by a factor of 10. At .2 it only takes
582 		 * ~10. At .25 it only takes ~8. However some preliminary data
583 		 * from the SSD drives suggests a reasponse time in 10's of
584 		 * seconds before latency drops regardless of the new write
585 		 * rate. Careful observation will be reqiured to tune this
586 		 * effectively.
587 		 *
588 		 * Also, when there's no read traffic, we jack up the write
589 		 * limit too regardless of the last read latency.  10 is
590 		 * somewhat arbitrary.
591 		 */
592 		if (lat < clp->lolat || isc->read_stats.total - clp->last_count < 10)
593 			isc->write_stats.current = isc->write_stats.current *
594 			    (100 + clp->alpha) / 100;	/* Scale up */
595 		else if (lat > clp->hilat)
596 			isc->write_stats.current = isc->write_stats.current *
597 			    (100 - clp->alpha) / 100;	/* Scale down */
598 		clp->last_count = isc->read_stats.total;
599 
600 		/*
601 		 * Even if we don't steer, per se, enforce the min/max limits as
602 		 * those may have changed.
603 		 */
604 		if (isc->write_stats.current < isc->write_stats.min)
605 			isc->write_stats.current = isc->write_stats.min;
606 		if (isc->write_stats.current > isc->write_stats.max)
607 			isc->write_stats.current = isc->write_stats.max;
608 		if (old != isc->write_stats.current && 	iosched_debug)
609 			printf("Steering write from %d kBps to %d kBps due to latency of %jdms\n",
610 			    old, isc->write_stats.current,
611 			    (uintmax_t)((uint64_t)1000000 * (uint32_t)lat) >> 32);
612 		break;
613 	case cl_max:
614 		break;
615 	}
616 }
617 #endif
618 
619 			/* Trim or similar currently pending completion */
620 #define CAM_IOSCHED_FLAG_TRIM_ACTIVE	(1ul << 0)
621 			/* Callout active, and needs to be torn down */
622 #define CAM_IOSCHED_FLAG_CALLOUT_ACTIVE (1ul << 1)
623 
624 			/* Periph drivers set these flags to indicate work */
625 #define CAM_IOSCHED_FLAG_WORK_FLAGS	((0xffffu) << 16)
626 
627 #ifdef CAM_NETFLIX_IOSCHED
628 static void
629 cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
630     sbintime_t sim_latency, int cmd, size_t size);
631 #endif
632 
633 static inline int
634 cam_iosched_has_flagged_work(struct cam_iosched_softc *isc)
635 {
636 	return !!(isc->flags & CAM_IOSCHED_FLAG_WORK_FLAGS);
637 }
638 
639 static inline int
640 cam_iosched_has_io(struct cam_iosched_softc *isc)
641 {
642 #ifdef CAM_NETFLIX_IOSCHED
643 	if (do_netflix_iosched) {
644 		struct bio *rbp = bioq_first(&isc->bio_queue);
645 		struct bio *wbp = bioq_first(&isc->write_queue);
646 		int can_write = wbp != NULL &&
647 		    cam_iosched_limiter_caniop(&isc->write_stats, wbp) == 0;
648 		int can_read = rbp != NULL &&
649 		    cam_iosched_limiter_caniop(&isc->read_stats, rbp) == 0;
650 		if (iosched_debug > 2) {
651 			printf("can write %d: pending_writes %d max_writes %d\n", can_write, isc->write_stats.pending, isc->write_stats.max);
652 			printf("can read %d: read_stats.pending %d max_reads %d\n", can_read, isc->read_stats.pending, isc->read_stats.max);
653 			printf("Queued reads %d writes %d\n", isc->read_stats.queued, isc->write_stats.queued);
654 		}
655 		return can_read || can_write;
656 	}
657 #endif
658 	return bioq_first(&isc->bio_queue) != NULL;
659 }
660 
661 static inline int
662 cam_iosched_has_more_trim(struct cam_iosched_softc *isc)
663 {
664 	return !(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) &&
665 	    bioq_first(&isc->trim_queue);
666 }
667 
668 #define cam_iosched_sort_queue(isc)	((isc)->sort_io_queue >= 0 ?	\
669     (isc)->sort_io_queue : cam_sort_io_queues)
670 
671 
672 static inline int
673 cam_iosched_has_work(struct cam_iosched_softc *isc)
674 {
675 #ifdef CAM_NETFLIX_IOSCHED
676 	if (iosched_debug > 2)
677 		printf("has work: %d %d %d\n", cam_iosched_has_io(isc),
678 		    cam_iosched_has_more_trim(isc),
679 		    cam_iosched_has_flagged_work(isc));
680 #endif
681 
682 	return cam_iosched_has_io(isc) ||
683 		cam_iosched_has_more_trim(isc) ||
684 		cam_iosched_has_flagged_work(isc);
685 }
686 
687 #ifdef CAM_NETFLIX_IOSCHED
688 static void
689 cam_iosched_iop_stats_init(struct cam_iosched_softc *isc, struct iop_stats *ios)
690 {
691 
692 	ios->limiter = none;
693 	cam_iosched_limiter_init(ios);
694 	ios->in = 0;
695 	ios->max = 300000;
696 	ios->min = 1;
697 	ios->out = 0;
698 	ios->pending = 0;
699 	ios->queued = 0;
700 	ios->total = 0;
701 	ios->ema = 0;
702 	ios->emss = 0;
703 	ios->sd = 0;
704 	ios->softc = isc;
705 }
706 
707 static int
708 cam_iosched_limiter_sysctl(SYSCTL_HANDLER_ARGS)
709 {
710 	char buf[16];
711 	struct iop_stats *ios;
712 	struct cam_iosched_softc *isc;
713 	int value, i, error, cantick;
714 	const char *p;
715 
716 	ios = arg1;
717 	isc = ios->softc;
718 	value = ios->limiter;
719 	if (value < none || value >= limiter_max)
720 		p = "UNKNOWN";
721 	else
722 		p = cam_iosched_limiter_names[value];
723 
724 	strlcpy(buf, p, sizeof(buf));
725 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
726 	if (error != 0 || req->newptr == NULL)
727 		return error;
728 
729 	cam_periph_lock(isc->periph);
730 
731 	for (i = none; i < limiter_max; i++) {
732 		if (strcmp(buf, cam_iosched_limiter_names[i]) != 0)
733 			continue;
734 		ios->limiter = i;
735 		error = cam_iosched_limiter_init(ios);
736 		if (error != 0) {
737 			ios->limiter = value;
738 			cam_periph_unlock(isc->periph);
739 			return error;
740 		}
741 		cantick = !!limsw[isc->read_stats.limiter].l_tick +
742 		    !!limsw[isc->write_stats.limiter].l_tick +
743 		    !!limsw[isc->trim_stats.limiter].l_tick +
744 		    1;	/* Control loop requires it */
745 		if (isc->flags & CAM_IOSCHED_FLAG_CALLOUT_ACTIVE) {
746 			if (cantick == 0) {
747 				callout_stop(&isc->ticker);
748 				isc->flags &= ~CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
749 			}
750 		} else {
751 			if (cantick != 0) {
752 				callout_reset(&isc->ticker, hz / isc->quanta - 1, cam_iosched_ticker, isc);
753 				isc->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
754 			}
755 		}
756 
757 		cam_periph_unlock(isc->periph);
758 		return 0;
759 	}
760 
761 	cam_periph_unlock(isc->periph);
762 	return EINVAL;
763 }
764 
765 static int
766 cam_iosched_control_type_sysctl(SYSCTL_HANDLER_ARGS)
767 {
768 	char buf[16];
769 	struct control_loop *clp;
770 	struct cam_iosched_softc *isc;
771 	int value, i, error;
772 	const char *p;
773 
774 	clp = arg1;
775 	isc = clp->softc;
776 	value = clp->type;
777 	if (value < none || value >= cl_max)
778 		p = "UNKNOWN";
779 	else
780 		p = cam_iosched_control_type_names[value];
781 
782 	strlcpy(buf, p, sizeof(buf));
783 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
784 	if (error != 0 || req->newptr == NULL)
785 		return error;
786 
787 	for (i = set_max; i < cl_max; i++) {
788 		if (strcmp(buf, cam_iosched_control_type_names[i]) != 0)
789 			continue;
790 		cam_periph_lock(isc->periph);
791 		clp->type = i;
792 		cam_periph_unlock(isc->periph);
793 		return 0;
794 	}
795 
796 	return EINVAL;
797 }
798 
799 static int
800 cam_iosched_sbintime_sysctl(SYSCTL_HANDLER_ARGS)
801 {
802 	char buf[16];
803 	sbintime_t value;
804 	int error;
805 	uint64_t us;
806 
807 	value = *(sbintime_t *)arg1;
808 	us = (uint64_t)value / SBT_1US;
809 	snprintf(buf, sizeof(buf), "%ju", (intmax_t)us);
810 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
811 	if (error != 0 || req->newptr == NULL)
812 		return error;
813 	us = strtoul(buf, NULL, 10);
814 	if (us == 0)
815 		return EINVAL;
816 	*(sbintime_t *)arg1 = us * SBT_1US;
817 	return 0;
818 }
819 
820 static void
821 cam_iosched_iop_stats_sysctl_init(struct cam_iosched_softc *isc, struct iop_stats *ios, char *name)
822 {
823 	struct sysctl_oid_list *n;
824 	struct sysctl_ctx_list *ctx;
825 
826 	ios->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
827 	    SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, name,
828 	    CTLFLAG_RD, 0, name);
829 	n = SYSCTL_CHILDREN(ios->sysctl_tree);
830 	ctx = &ios->sysctl_ctx;
831 
832 	SYSCTL_ADD_UQUAD(ctx, n,
833 	    OID_AUTO, "ema", CTLFLAG_RD,
834 	    &ios->ema,
835 	    "Fast Exponentially Weighted Moving Average");
836 	SYSCTL_ADD_UQUAD(ctx, n,
837 	    OID_AUTO, "emss", CTLFLAG_RD,
838 	    &ios->emss,
839 	    "Fast Exponentially Weighted Moving Sum of Squares (maybe wrong)");
840 	SYSCTL_ADD_UQUAD(ctx, n,
841 	    OID_AUTO, "sd", CTLFLAG_RD,
842 	    &ios->sd,
843 	    "Estimated SD for fast ema (may be wrong)");
844 
845 	SYSCTL_ADD_INT(ctx, n,
846 	    OID_AUTO, "pending", CTLFLAG_RD,
847 	    &ios->pending, 0,
848 	    "Instantaneous # of pending transactions");
849 	SYSCTL_ADD_INT(ctx, n,
850 	    OID_AUTO, "count", CTLFLAG_RD,
851 	    &ios->total, 0,
852 	    "# of transactions submitted to hardware");
853 	SYSCTL_ADD_INT(ctx, n,
854 	    OID_AUTO, "queued", CTLFLAG_RD,
855 	    &ios->queued, 0,
856 	    "# of transactions in the queue");
857 	SYSCTL_ADD_INT(ctx, n,
858 	    OID_AUTO, "in", CTLFLAG_RD,
859 	    &ios->in, 0,
860 	    "# of transactions queued to driver");
861 	SYSCTL_ADD_INT(ctx, n,
862 	    OID_AUTO, "out", CTLFLAG_RD,
863 	    &ios->out, 0,
864 	    "# of transactions completed");
865 
866 	SYSCTL_ADD_PROC(ctx, n,
867 	    OID_AUTO, "limiter", CTLTYPE_STRING | CTLFLAG_RW,
868 	    ios, 0, cam_iosched_limiter_sysctl, "A",
869 	    "Current limiting type.");
870 	SYSCTL_ADD_INT(ctx, n,
871 	    OID_AUTO, "min", CTLFLAG_RW,
872 	    &ios->min, 0,
873 	    "min resource");
874 	SYSCTL_ADD_INT(ctx, n,
875 	    OID_AUTO, "max", CTLFLAG_RW,
876 	    &ios->max, 0,
877 	    "max resource");
878 	SYSCTL_ADD_INT(ctx, n,
879 	    OID_AUTO, "current", CTLFLAG_RW,
880 	    &ios->current, 0,
881 	    "current resource");
882 
883 }
884 
885 static void
886 cam_iosched_iop_stats_fini(struct iop_stats *ios)
887 {
888 	if (ios->sysctl_tree)
889 		if (sysctl_ctx_free(&ios->sysctl_ctx) != 0)
890 			printf("can't remove iosched sysctl stats context\n");
891 }
892 
893 static void
894 cam_iosched_cl_sysctl_init(struct cam_iosched_softc *isc)
895 {
896 	struct sysctl_oid_list *n;
897 	struct sysctl_ctx_list *ctx;
898 	struct control_loop *clp;
899 
900 	clp = &isc->cl;
901 	clp->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
902 	    SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, "control",
903 	    CTLFLAG_RD, 0, "Control loop info");
904 	n = SYSCTL_CHILDREN(clp->sysctl_tree);
905 	ctx = &clp->sysctl_ctx;
906 
907 	SYSCTL_ADD_PROC(ctx, n,
908 	    OID_AUTO, "type", CTLTYPE_STRING | CTLFLAG_RW,
909 	    clp, 0, cam_iosched_control_type_sysctl, "A",
910 	    "Control loop algorithm");
911 	SYSCTL_ADD_PROC(ctx, n,
912 	    OID_AUTO, "steer_interval", CTLTYPE_STRING | CTLFLAG_RW,
913 	    &clp->steer_interval, 0, cam_iosched_sbintime_sysctl, "A",
914 	    "How often to steer (in us)");
915 	SYSCTL_ADD_PROC(ctx, n,
916 	    OID_AUTO, "lolat", CTLTYPE_STRING | CTLFLAG_RW,
917 	    &clp->lolat, 0, cam_iosched_sbintime_sysctl, "A",
918 	    "Low water mark for Latency (in us)");
919 	SYSCTL_ADD_PROC(ctx, n,
920 	    OID_AUTO, "hilat", CTLTYPE_STRING | CTLFLAG_RW,
921 	    &clp->hilat, 0, cam_iosched_sbintime_sysctl, "A",
922 	    "Hi water mark for Latency (in us)");
923 	SYSCTL_ADD_INT(ctx, n,
924 	    OID_AUTO, "alpha", CTLFLAG_RW,
925 	    &clp->alpha, 0,
926 	    "Alpha for PLL (x100) aka gain");
927 }
928 
929 static void
930 cam_iosched_cl_sysctl_fini(struct control_loop *clp)
931 {
932 	if (clp->sysctl_tree)
933 		if (sysctl_ctx_free(&clp->sysctl_ctx) != 0)
934 			printf("can't remove iosched sysctl control loop context\n");
935 }
936 #endif
937 
938 /*
939  * Allocate the iosched structure. This also insulates callers from knowing
940  * sizeof struct cam_iosched_softc.
941  */
942 int
943 cam_iosched_init(struct cam_iosched_softc **iscp, struct cam_periph *periph)
944 {
945 
946 	*iscp = malloc(sizeof(**iscp), M_CAMSCHED, M_NOWAIT | M_ZERO);
947 	if (*iscp == NULL)
948 		return ENOMEM;
949 #ifdef CAM_NETFLIX_IOSCHED
950 	if (iosched_debug)
951 		printf("CAM IOSCHEDULER Allocating entry at %p\n", *iscp);
952 #endif
953 	(*iscp)->sort_io_queue = -1;
954 	bioq_init(&(*iscp)->bio_queue);
955 	bioq_init(&(*iscp)->trim_queue);
956 #ifdef CAM_NETFLIX_IOSCHED
957 	if (do_netflix_iosched) {
958 		bioq_init(&(*iscp)->write_queue);
959 		(*iscp)->read_bias = 100;
960 		(*iscp)->current_read_bias = 100;
961 		(*iscp)->quanta = 200;
962 		cam_iosched_iop_stats_init(*iscp, &(*iscp)->read_stats);
963 		cam_iosched_iop_stats_init(*iscp, &(*iscp)->write_stats);
964 		cam_iosched_iop_stats_init(*iscp, &(*iscp)->trim_stats);
965 		(*iscp)->trim_stats.max = 1;	/* Trims are special: one at a time for now */
966 		(*iscp)->last_time = sbinuptime();
967 		callout_init_mtx(&(*iscp)->ticker, cam_periph_mtx(periph), 0);
968 		(*iscp)->periph = periph;
969 		cam_iosched_cl_init(&(*iscp)->cl, *iscp);
970 		callout_reset(&(*iscp)->ticker, hz / (*iscp)->quanta - 1, cam_iosched_ticker, *iscp);
971 		(*iscp)->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
972 	}
973 #endif
974 
975 	return 0;
976 }
977 
978 /*
979  * Reclaim all used resources. This assumes that other folks have
980  * drained the requests in the hardware. Maybe an unwise assumption.
981  */
982 void
983 cam_iosched_fini(struct cam_iosched_softc *isc)
984 {
985 	if (isc) {
986 		cam_iosched_flush(isc, NULL, ENXIO);
987 #ifdef CAM_NETFLIX_IOSCHED
988 		cam_iosched_iop_stats_fini(&isc->read_stats);
989 		cam_iosched_iop_stats_fini(&isc->write_stats);
990 		cam_iosched_iop_stats_fini(&isc->trim_stats);
991 		cam_iosched_cl_sysctl_fini(&isc->cl);
992 		if (isc->sysctl_tree)
993 			if (sysctl_ctx_free(&isc->sysctl_ctx) != 0)
994 				printf("can't remove iosched sysctl stats context\n");
995 		if (isc->flags & CAM_IOSCHED_FLAG_CALLOUT_ACTIVE) {
996 			callout_drain(&isc->ticker);
997 			isc->flags &= ~ CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
998 		}
999 
1000 #endif
1001 		free(isc, M_CAMSCHED);
1002 	}
1003 }
1004 
1005 /*
1006  * After we're sure we're attaching a device, go ahead and add
1007  * hooks for any sysctl we may wish to honor.
1008  */
1009 void cam_iosched_sysctl_init(struct cam_iosched_softc *isc,
1010     struct sysctl_ctx_list *ctx, struct sysctl_oid *node)
1011 {
1012 #ifdef CAM_NETFLIX_IOSCHED
1013 	struct sysctl_oid_list *n;
1014 #endif
1015 
1016 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(node),
1017 		OID_AUTO, "sort_io_queue", CTLFLAG_RW | CTLFLAG_MPSAFE,
1018 		&isc->sort_io_queue, 0,
1019 		"Sort IO queue to try and optimise disk access patterns");
1020 
1021 #ifdef CAM_NETFLIX_IOSCHED
1022 	if (!do_netflix_iosched)
1023 		return;
1024 
1025 	isc->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1026 	    SYSCTL_CHILDREN(node), OID_AUTO, "iosched",
1027 	    CTLFLAG_RD, 0, "I/O scheduler statistics");
1028 	n = SYSCTL_CHILDREN(isc->sysctl_tree);
1029 	ctx = &isc->sysctl_ctx;
1030 
1031 	cam_iosched_iop_stats_sysctl_init(isc, &isc->read_stats, "read");
1032 	cam_iosched_iop_stats_sysctl_init(isc, &isc->write_stats, "write");
1033 	cam_iosched_iop_stats_sysctl_init(isc, &isc->trim_stats, "trim");
1034 	cam_iosched_cl_sysctl_init(isc);
1035 
1036 	SYSCTL_ADD_INT(ctx, n,
1037 	    OID_AUTO, "read_bias", CTLFLAG_RW,
1038 	    &isc->read_bias, 100,
1039 	    "How biased towards read should we be independent of limits");
1040 
1041 	SYSCTL_ADD_INT(ctx, n,
1042 	    OID_AUTO, "quanta", CTLFLAG_RW,
1043 	    &isc->quanta, 200,
1044 	    "How many quanta per second do we slice the I/O up into");
1045 
1046 	SYSCTL_ADD_INT(ctx, n,
1047 	    OID_AUTO, "total_ticks", CTLFLAG_RD,
1048 	    &isc->total_ticks, 0,
1049 	    "Total number of ticks we've done");
1050 #endif
1051 }
1052 
1053 /*
1054  * Flush outstanding I/O. Consumers of this library don't know all the
1055  * queues we may keep, so this allows all I/O to be flushed in one
1056  * convenient call.
1057  */
1058 void
1059 cam_iosched_flush(struct cam_iosched_softc *isc, struct devstat *stp, int err)
1060 {
1061 	bioq_flush(&isc->bio_queue, stp, err);
1062 	bioq_flush(&isc->trim_queue, stp, err);
1063 #ifdef CAM_NETFLIX_IOSCHED
1064 	if (do_netflix_iosched)
1065 		bioq_flush(&isc->write_queue, stp, err);
1066 #endif
1067 }
1068 
1069 #ifdef CAM_NETFLIX_IOSCHED
1070 static struct bio *
1071 cam_iosched_get_write(struct cam_iosched_softc *isc)
1072 {
1073 	struct bio *bp;
1074 
1075 	/*
1076 	 * We control the write rate by controlling how many requests we send
1077 	 * down to the drive at any one time. Fewer requests limits the
1078 	 * effects of both starvation when the requests take a while and write
1079 	 * amplification when each request is causing more than one write to
1080 	 * the NAND media. Limiting the queue depth like this will also limit
1081 	 * the write throughput and give and reads that want to compete to
1082 	 * compete unfairly.
1083 	 */
1084 	bp = bioq_first(&isc->write_queue);
1085 	if (bp == NULL) {
1086 		if (iosched_debug > 3)
1087 			printf("No writes present in write_queue\n");
1088 		return NULL;
1089 	}
1090 
1091 	/*
1092 	 * If pending read, prefer that based on current read bias
1093 	 * setting.
1094 	 */
1095 	if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
1096 		if (iosched_debug)
1097 			printf("Reads present and current_read_bias is %d queued writes %d queued reads %d\n", isc->current_read_bias, isc->write_stats.queued, isc->read_stats.queued);
1098 		isc->current_read_bias--;
1099 		return NULL;
1100 	}
1101 
1102 	/*
1103 	 * See if our current limiter allows this I/O.
1104 	 */
1105 	if (cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
1106 		if (iosched_debug)
1107 			printf("Can't write because limiter says no.\n");
1108 		return NULL;
1109 	}
1110 
1111 	/*
1112 	 * Let's do this: We've passed all the gates and we're a go
1113 	 * to schedule the I/O in the SIM.
1114 	 */
1115 	isc->current_read_bias = isc->read_bias;
1116 	bioq_remove(&isc->write_queue, bp);
1117 	if (bp->bio_cmd == BIO_WRITE) {
1118 		isc->write_stats.queued--;
1119 		isc->write_stats.total++;
1120 		isc->write_stats.pending++;
1121 	}
1122 	if (iosched_debug > 9)
1123 		printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
1124 	return bp;
1125 }
1126 #endif
1127 
1128 /*
1129  * Put back a trim that you weren't able to actually schedule this time.
1130  */
1131 void
1132 cam_iosched_put_back_trim(struct cam_iosched_softc *isc, struct bio *bp)
1133 {
1134 	bioq_insert_head(&isc->trim_queue, bp);
1135 #ifdef CAM_NETFLIX_IOSCHED
1136 	isc->trim_stats.queued++;
1137 	isc->trim_stats.total--;		/* since we put it back, don't double count */
1138 	isc->trim_stats.pending--;
1139 #endif
1140 }
1141 
1142 /*
1143  * gets the next trim from the trim queue.
1144  *
1145  * Assumes we're called with the periph lock held.  It removes this
1146  * trim from the queue and the device must explicitly reinstert it
1147  * should the need arise.
1148  */
1149 struct bio *
1150 cam_iosched_next_trim(struct cam_iosched_softc *isc)
1151 {
1152 	struct bio *bp;
1153 
1154 	bp  = bioq_first(&isc->trim_queue);
1155 	if (bp == NULL)
1156 		return NULL;
1157 	bioq_remove(&isc->trim_queue, bp);
1158 #ifdef CAM_NETFLIX_IOSCHED
1159 	isc->trim_stats.queued--;
1160 	isc->trim_stats.total++;
1161 	isc->trim_stats.pending++;
1162 #endif
1163 	return bp;
1164 }
1165 
1166 /*
1167  * gets the an available trim from the trim queue, if there's no trim
1168  * already pending. It removes this trim from the queue and the device
1169  * must explicitly reinstert it should the need arise.
1170  *
1171  * Assumes we're called with the periph lock held.
1172  */
1173 struct bio *
1174 cam_iosched_get_trim(struct cam_iosched_softc *isc)
1175 {
1176 
1177 	if (!cam_iosched_has_more_trim(isc))
1178 		return NULL;
1179 
1180 	return cam_iosched_next_trim(isc);
1181 }
1182 
1183 /*
1184  * Determine what the next bit of work to do is for the periph. The
1185  * default implementation looks to see if we have trims to do, but no
1186  * trims outstanding. If so, we do that. Otherwise we see if we have
1187  * other work. If we do, then we do that. Otherwise why were we called?
1188  */
1189 struct bio *
1190 cam_iosched_next_bio(struct cam_iosched_softc *isc)
1191 {
1192 	struct bio *bp;
1193 
1194 	/*
1195 	 * See if we have a trim that can be scheduled. We can only send one
1196 	 * at a time down, so this takes that into account.
1197 	 *
1198 	 * XXX newer TRIM commands are queueable. Revisit this when we
1199 	 * implement them.
1200 	 */
1201 	if ((bp = cam_iosched_get_trim(isc)) != NULL)
1202 		return bp;
1203 
1204 #ifdef CAM_NETFLIX_IOSCHED
1205 	/*
1206 	 * See if we have any pending writes, and room in the queue for them,
1207 	 * and if so, those are next.
1208 	 */
1209 	if (do_netflix_iosched) {
1210 		if ((bp = cam_iosched_get_write(isc)) != NULL)
1211 			return bp;
1212 	}
1213 #endif
1214 
1215 	/*
1216 	 * next, see if there's other, normal I/O waiting. If so return that.
1217 	 */
1218 	if ((bp = bioq_first(&isc->bio_queue)) == NULL)
1219 		return NULL;
1220 
1221 #ifdef CAM_NETFLIX_IOSCHED
1222 	/*
1223 	 * For the netflix scheduler, bio_queue is only for reads, so enforce
1224 	 * the limits here. Enforce only for reads.
1225 	 */
1226 	if (do_netflix_iosched) {
1227 		if (bp->bio_cmd == BIO_READ &&
1228 		    cam_iosched_limiter_iop(&isc->read_stats, bp) != 0)
1229 			return NULL;
1230 	}
1231 #endif
1232 	bioq_remove(&isc->bio_queue, bp);
1233 #ifdef CAM_NETFLIX_IOSCHED
1234 	if (do_netflix_iosched) {
1235 		if (bp->bio_cmd == BIO_READ) {
1236 			isc->read_stats.queued--;
1237 			isc->read_stats.total++;
1238 			isc->read_stats.pending++;
1239 		} else
1240 			printf("Found bio_cmd = %#x\n", bp->bio_cmd);
1241 	}
1242 	if (iosched_debug > 9)
1243 		printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
1244 #endif
1245 	return bp;
1246 }
1247 
1248 /*
1249  * Driver has been given some work to do by the block layer. Tell the
1250  * scheduler about it and have it queue the work up. The scheduler module
1251  * will then return the currently most useful bit of work later, possibly
1252  * deferring work for various reasons.
1253  */
1254 void
1255 cam_iosched_queue_work(struct cam_iosched_softc *isc, struct bio *bp)
1256 {
1257 
1258 	/*
1259 	 * Put all trims on the trim queue sorted, since we know
1260 	 * that the collapsing code requires this. Otherwise put
1261 	 * the work on the bio queue.
1262 	 */
1263 	if (bp->bio_cmd == BIO_DELETE) {
1264 		bioq_disksort(&isc->trim_queue, bp);
1265 #ifdef CAM_NETFLIX_IOSCHED
1266 		isc->trim_stats.in++;
1267 		isc->trim_stats.queued++;
1268 #endif
1269 	}
1270 #ifdef CAM_NETFLIX_IOSCHED
1271 	else if (do_netflix_iosched &&
1272 	    (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_FLUSH)) {
1273 		if (cam_iosched_sort_queue(isc))
1274 			bioq_disksort(&isc->write_queue, bp);
1275 		else
1276 			bioq_insert_tail(&isc->write_queue, bp);
1277 		if (iosched_debug > 9)
1278 			printf("Qw  : %p %#x\n", bp, bp->bio_cmd);
1279 		if (bp->bio_cmd == BIO_WRITE) {
1280 			isc->write_stats.in++;
1281 			isc->write_stats.queued++;
1282 		}
1283 	}
1284 #endif
1285 	else {
1286 		if (cam_iosched_sort_queue(isc))
1287 			bioq_disksort(&isc->bio_queue, bp);
1288 		else
1289 			bioq_insert_tail(&isc->bio_queue, bp);
1290 #ifdef CAM_NETFLIX_IOSCHED
1291 		if (iosched_debug > 9)
1292 			printf("Qr  : %p %#x\n", bp, bp->bio_cmd);
1293 		if (bp->bio_cmd == BIO_READ) {
1294 			isc->read_stats.in++;
1295 			isc->read_stats.queued++;
1296 		} else if (bp->bio_cmd == BIO_WRITE) {
1297 			isc->write_stats.in++;
1298 			isc->write_stats.queued++;
1299 		}
1300 #endif
1301 	}
1302 }
1303 
1304 /*
1305  * If we have work, get it scheduled. Called with the periph lock held.
1306  */
1307 void
1308 cam_iosched_schedule(struct cam_iosched_softc *isc, struct cam_periph *periph)
1309 {
1310 
1311 	if (cam_iosched_has_work(isc))
1312 		xpt_schedule(periph, CAM_PRIORITY_NORMAL);
1313 }
1314 
1315 /*
1316  * Complete a trim request
1317  */
1318 void
1319 cam_iosched_trim_done(struct cam_iosched_softc *isc)
1320 {
1321 
1322 	isc->flags &= ~CAM_IOSCHED_FLAG_TRIM_ACTIVE;
1323 }
1324 
1325 /*
1326  * Complete a bio. Called before we release the ccb with xpt_release_ccb so we
1327  * might use notes in the ccb for statistics.
1328  */
1329 int
1330 cam_iosched_bio_complete(struct cam_iosched_softc *isc, struct bio *bp,
1331     union ccb *done_ccb)
1332 {
1333 	int retval = 0;
1334 #ifdef CAM_NETFLIX_IOSCHED
1335 	if (!do_netflix_iosched)
1336 		return retval;
1337 
1338 	if (iosched_debug > 10)
1339 		printf("done: %p %#x\n", bp, bp->bio_cmd);
1340 	if (bp->bio_cmd == BIO_WRITE) {
1341 		retval = cam_iosched_limiter_iodone(&isc->write_stats, bp);
1342 		isc->write_stats.out++;
1343 		isc->write_stats.pending--;
1344 	} else if (bp->bio_cmd == BIO_READ) {
1345 		retval = cam_iosched_limiter_iodone(&isc->read_stats, bp);
1346 		isc->read_stats.out++;
1347 		isc->read_stats.pending--;
1348 	} else if (bp->bio_cmd == BIO_DELETE) {
1349 		isc->trim_stats.out++;
1350 		isc->trim_stats.pending--;
1351 	} else if (bp->bio_cmd != BIO_FLUSH) {
1352 		if (iosched_debug)
1353 			printf("Completing command with bio_cmd == %#x\n", bp->bio_cmd);
1354 	}
1355 
1356 	if (!(bp->bio_flags & BIO_ERROR))
1357 		cam_iosched_io_metric_update(isc, done_ccb->ccb_h.qos.sim_data,
1358 		    bp->bio_cmd, bp->bio_bcount);
1359 #endif
1360 	return retval;
1361 }
1362 
1363 /*
1364  * Tell the io scheduler that you've pushed a trim down into the sim.
1365  * xxx better place for this?
1366  */
1367 void
1368 cam_iosched_submit_trim(struct cam_iosched_softc *isc)
1369 {
1370 
1371 	isc->flags |= CAM_IOSCHED_FLAG_TRIM_ACTIVE;
1372 }
1373 
1374 /*
1375  * Change the sorting policy hint for I/O transactions for this device.
1376  */
1377 void
1378 cam_iosched_set_sort_queue(struct cam_iosched_softc *isc, int val)
1379 {
1380 
1381 	isc->sort_io_queue = val;
1382 }
1383 
1384 int
1385 cam_iosched_has_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1386 {
1387 	return isc->flags & flags;
1388 }
1389 
1390 void
1391 cam_iosched_set_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1392 {
1393 	isc->flags |= flags;
1394 }
1395 
1396 void
1397 cam_iosched_clr_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1398 {
1399 	isc->flags &= ~flags;
1400 }
1401 
1402 #ifdef CAM_NETFLIX_IOSCHED
1403 /*
1404  * After the method presented in Jack Crenshaw's 1998 article "Integer
1405  * Suqare Roots," reprinted at
1406  * http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots
1407  * and well worth the read. Briefly, we find the power of 4 that's the
1408  * largest smaller than val. We then check each smaller power of 4 to
1409  * see if val is still bigger. The right shifts at each step divide
1410  * the result by 2 which after successive application winds up
1411  * accumulating the right answer. It could also have been accumulated
1412  * using a separate root counter, but this code is smaller and faster
1413  * than that method. This method is also integer size invariant.
1414  * It returns floor(sqrt((float)val)), or the larget integer less than
1415  * or equal to the square root.
1416  */
1417 static uint64_t
1418 isqrt64(uint64_t val)
1419 {
1420 	uint64_t res = 0;
1421 	uint64_t bit = 1ULL << (sizeof(uint64_t) * NBBY - 2);
1422 
1423 	/*
1424 	 * Find the largest power of 4 smaller than val.
1425 	 */
1426 	while (bit > val)
1427 		bit >>= 2;
1428 
1429 	/*
1430 	 * Accumulate the answer, one bit at a time (we keep moving
1431 	 * them over since 2 is the square root of 4 and we test
1432 	 * powers of 4). We accumulate where we find the bit, but
1433 	 * the successive shifts land the bit in the right place
1434 	 * by the end.
1435 	 */
1436 	while (bit != 0) {
1437 		if (val >= res + bit) {
1438 			val -= res + bit;
1439 			res = (res >> 1) + bit;
1440 		} else
1441 			res >>= 1;
1442 		bit >>= 2;
1443 	}
1444 
1445 	return res;
1446 }
1447 
1448 /*
1449  * a and b are 32.32 fixed point stored in a 64-bit word.
1450  * Let al and bl be the .32 part of a and b.
1451  * Let ah and bh be the 32 part of a and b.
1452  * R is the radix and is 1 << 32
1453  *
1454  * a * b
1455  * (ah + al / R) * (bh + bl / R)
1456  * ah * bh + (al * bh + ah * bl) / R + al * bl / R^2
1457  *
1458  * After multiplicaiton, we have to renormalize by multiply by
1459  * R, so we wind up with
1460  *	ah * bh * R + al * bh + ah * bl + al * bl / R
1461  * which turns out to be a very nice way to compute this value
1462  * so long as ah and bh are < 65536 there's no loss of high bits
1463  * and the low order bits are below the threshold of caring for
1464  * this application.
1465  */
1466 static uint64_t
1467 mul(uint64_t a, uint64_t b)
1468 {
1469 	uint64_t al, ah, bl, bh;
1470 	al = a & 0xffffffff;
1471 	ah = a >> 32;
1472 	bl = b & 0xffffffff;
1473 	bh = b >> 32;
1474 	return ((ah * bh) << 32) + al * bh + ah * bl + ((al * bl) >> 32);
1475 }
1476 
1477 static void
1478 cam_iosched_update(struct iop_stats *iop, sbintime_t sim_latency)
1479 {
1480 	sbintime_t y, yy;
1481 	uint64_t var;
1482 
1483 	/*
1484 	 * Classic expoentially decaying average with a tiny alpha
1485 	 * (2 ^ -alpha_bits). For more info see the NIST statistical
1486 	 * handbook.
1487 	 *
1488 	 * ema_t = y_t * alpha + ema_t-1 * (1 - alpha)
1489 	 * alpha = 1 / (1 << alpha_bits)
1490 	 *
1491 	 * Since alpha is a power of two, we can compute this w/o any mult or
1492 	 * division.
1493 	 */
1494 	y = sim_latency;
1495 	iop->ema = (y + (iop->ema << alpha_bits) - iop->ema) >> alpha_bits;
1496 
1497 	yy = mul(y, y);
1498 	iop->emss = (yy + (iop->emss << alpha_bits) - iop->emss) >> alpha_bits;
1499 
1500 	/*
1501          * s_1 = sum of data
1502 	 * s_2 = sum of data * data
1503 	 * ema ~ mean (or s_1 / N)
1504 	 * emss ~ s_2 / N
1505 	 *
1506 	 * sd = sqrt((N * s_2 - s_1 ^ 2) / (N * (N - 1)))
1507 	 * sd = sqrt((N * s_2 / N * (N - 1)) - (s_1 ^ 2 / (N * (N - 1))))
1508 	 *
1509 	 * N ~ 2 / alpha - 1
1510 	 * alpha < 1 / 16 (typically much less)
1511 	 * N > 31 --> N large so N * (N - 1) is approx N * N
1512 	 *
1513 	 * substituting and rearranging:
1514 	 * sd ~ sqrt(s_2 / N - (s_1 / N) ^ 2)
1515 	 *    ~ sqrt(emss - ema ^ 2);
1516 	 * which is the formula used here to get a decent estimate of sd which
1517 	 * we use to detect outliers. Note that when first starting up, it
1518 	 * takes a while for emss sum of squares estimator to converge on a
1519 	 * good value.  during this time, it can be less than ema^2. We
1520 	 * compute a sd of 0 in that case, and ignore outliers.
1521 	 */
1522 	var = iop->emss - mul(iop->ema, iop->ema);
1523 	iop->sd = (int64_t)var < 0 ? 0 : isqrt64(var);
1524 }
1525 
1526 #ifdef CAM_NETFLIX_IOSCHED
1527 static void
1528 cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
1529     sbintime_t sim_latency, int cmd, size_t size)
1530 {
1531 	/* xxx Do we need to scale based on the size of the I/O ? */
1532 	switch (cmd) {
1533 	case BIO_READ:
1534 		cam_iosched_update(&isc->read_stats, sim_latency);
1535 		break;
1536 	case BIO_WRITE:
1537 		cam_iosched_update(&isc->write_stats, sim_latency);
1538 		break;
1539 	case BIO_DELETE:
1540 		cam_iosched_update(&isc->trim_stats, sim_latency);
1541 		break;
1542 	default:
1543 		break;
1544 	}
1545 }
1546 #endif
1547 
1548 #ifdef DDB
1549 static int biolen(struct bio_queue_head *bq)
1550 {
1551 	int i = 0;
1552 	struct bio *bp;
1553 
1554 	TAILQ_FOREACH(bp, &bq->queue, bio_queue) {
1555 		i++;
1556 	}
1557 	return i;
1558 }
1559 
1560 /*
1561  * Show the internal state of the I/O scheduler.
1562  */
1563 DB_SHOW_COMMAND(iosched, cam_iosched_db_show)
1564 {
1565 	struct cam_iosched_softc *isc;
1566 
1567 	if (!have_addr) {
1568 		db_printf("Need addr\n");
1569 		return;
1570 	}
1571 	isc = (struct cam_iosched_softc *)addr;
1572 	db_printf("pending_reads:     %d\n", isc->read_stats.pending);
1573 	db_printf("min_reads:         %d\n", isc->read_stats.min);
1574 	db_printf("max_reads:         %d\n", isc->read_stats.max);
1575 	db_printf("reads:             %d\n", isc->read_stats.total);
1576 	db_printf("in_reads:          %d\n", isc->read_stats.in);
1577 	db_printf("out_reads:         %d\n", isc->read_stats.out);
1578 	db_printf("queued_reads:      %d\n", isc->read_stats.queued);
1579 	db_printf("Current Q len      %d\n", biolen(&isc->bio_queue));
1580 	db_printf("pending_writes:    %d\n", isc->write_stats.pending);
1581 	db_printf("min_writes:        %d\n", isc->write_stats.min);
1582 	db_printf("max_writes:        %d\n", isc->write_stats.max);
1583 	db_printf("writes:            %d\n", isc->write_stats.total);
1584 	db_printf("in_writes:         %d\n", isc->write_stats.in);
1585 	db_printf("out_writes:        %d\n", isc->write_stats.out);
1586 	db_printf("queued_writes:     %d\n", isc->write_stats.queued);
1587 	db_printf("Current Q len      %d\n", biolen(&isc->write_queue));
1588 	db_printf("pending_trims:     %d\n", isc->trim_stats.pending);
1589 	db_printf("min_trims:         %d\n", isc->trim_stats.min);
1590 	db_printf("max_trims:         %d\n", isc->trim_stats.max);
1591 	db_printf("trims:             %d\n", isc->trim_stats.total);
1592 	db_printf("in_trims:          %d\n", isc->trim_stats.in);
1593 	db_printf("out_trims:         %d\n", isc->trim_stats.out);
1594 	db_printf("queued_trims:      %d\n", isc->trim_stats.queued);
1595 	db_printf("Current Q len      %d\n", biolen(&isc->trim_queue));
1596 	db_printf("read_bias:         %d\n", isc->read_bias);
1597 	db_printf("current_read_bias: %d\n", isc->current_read_bias);
1598 	db_printf("Trim active?       %s\n",
1599 	    (isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) ? "yes" : "no");
1600 }
1601 #endif
1602 #endif
1603