xref: /freebsd/sys/cam/cam_iosched.c (revision ab1e0d2410ece7d391a5b1e2cbc9d1e9857c2fdb)
1 /*-
2  * CAM IO Scheduler Interface
3  *
4  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5  *
6  * Copyright (c) 2015 Netflix, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 
32 #include "opt_cam.h"
33 #include "opt_ddb.h"
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/bio.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mutex.h>
46 #include <sys/sbuf.h>
47 #include <sys/sysctl.h>
48 
49 #include <cam/cam.h>
50 #include <cam/cam_ccb.h>
51 #include <cam/cam_periph.h>
52 #include <cam/cam_xpt_periph.h>
53 #include <cam/cam_xpt_internal.h>
54 #include <cam/cam_iosched.h>
55 
56 #include <ddb/ddb.h>
57 
58 static MALLOC_DEFINE(M_CAMSCHED, "CAM I/O Scheduler",
59     "CAM I/O Scheduler buffers");
60 
61 /*
62  * Default I/O scheduler for FreeBSD. This implementation is just a thin-vineer
63  * over the bioq_* interface, with notions of separate calls for normal I/O and
64  * for trims.
65  *
66  * When CAM_IOSCHED_DYNAMIC is defined, the scheduler is enhanced to dynamically
67  * steer the rate of one type of traffic to help other types of traffic (eg
68  * limit writes when read latency deteriorates on SSDs).
69  */
70 
71 #ifdef CAM_IOSCHED_DYNAMIC
72 
73 static int do_dynamic_iosched = 1;
74 TUNABLE_INT("kern.cam.do_dynamic_iosched", &do_dynamic_iosched);
75 SYSCTL_INT(_kern_cam, OID_AUTO, do_dynamic_iosched, CTLFLAG_RD,
76     &do_dynamic_iosched, 1,
77     "Enable Dynamic I/O scheduler optimizations.");
78 
79 /*
80  * For an EMA, with an alpha of alpha, we know
81  * 	alpha = 2 / (N + 1)
82  * or
83  * 	N = 1 + (2 / alpha)
84  * where N is the number of samples that 86% of the current
85  * EMA is derived from.
86  *
87  * So we invent[*] alpha_bits:
88  *	alpha_bits = -log_2(alpha)
89  *	alpha = 2^-alpha_bits
90  * So
91  *	N = 1 + 2^(alpha_bits + 1)
92  *
93  * The default 9 gives a 1025 lookback for 86% of the data.
94  * For a brief intro: https://en.wikipedia.org/wiki/Moving_average
95  *
96  * [*] Steal from the load average code and many other places.
97  * Note: See computation of EMA and EMVAR for acceptable ranges of alpha.
98  */
99 static int alpha_bits = 9;
100 TUNABLE_INT("kern.cam.iosched_alpha_bits", &alpha_bits);
101 SYSCTL_INT(_kern_cam, OID_AUTO, iosched_alpha_bits, CTLFLAG_RW,
102     &alpha_bits, 1,
103     "Bits in EMA's alpha.");
104 
105 struct iop_stats;
106 struct cam_iosched_softc;
107 
108 int iosched_debug = 0;
109 
110 typedef enum {
111 	none = 0,				/* No limits */
112 	queue_depth,			/* Limit how many ops we queue to SIM */
113 	iops,				/* Limit # of IOPS to the drive */
114 	bandwidth,			/* Limit bandwidth to the drive */
115 	limiter_max
116 } io_limiter;
117 
118 static const char *cam_iosched_limiter_names[] =
119     { "none", "queue_depth", "iops", "bandwidth" };
120 
121 /*
122  * Called to initialize the bits of the iop_stats structure relevant to the
123  * limiter. Called just after the limiter is set.
124  */
125 typedef int l_init_t(struct iop_stats *);
126 
127 /*
128  * Called every tick.
129  */
130 typedef int l_tick_t(struct iop_stats *);
131 
132 /*
133  * Called to see if the limiter thinks this IOP can be allowed to
134  * proceed. If so, the limiter assumes that the IOP proceeded
135  * and makes any accounting of it that's needed.
136  */
137 typedef int l_iop_t(struct iop_stats *, struct bio *);
138 
139 /*
140  * Called when an I/O completes so the limiter can update its
141  * accounting. Pending I/Os may complete in any order (even when
142  * sent to the hardware at the same time), so the limiter may not
143  * make any assumptions other than this I/O has completed. If it
144  * returns 1, then xpt_schedule() needs to be called again.
145  */
146 typedef int l_iodone_t(struct iop_stats *, struct bio *);
147 
148 static l_iop_t cam_iosched_qd_iop;
149 static l_iop_t cam_iosched_qd_caniop;
150 static l_iodone_t cam_iosched_qd_iodone;
151 
152 static l_init_t cam_iosched_iops_init;
153 static l_tick_t cam_iosched_iops_tick;
154 static l_iop_t cam_iosched_iops_caniop;
155 static l_iop_t cam_iosched_iops_iop;
156 
157 static l_init_t cam_iosched_bw_init;
158 static l_tick_t cam_iosched_bw_tick;
159 static l_iop_t cam_iosched_bw_caniop;
160 static l_iop_t cam_iosched_bw_iop;
161 
162 struct limswitch {
163 	l_init_t	*l_init;
164 	l_tick_t	*l_tick;
165 	l_iop_t		*l_iop;
166 	l_iop_t		*l_caniop;
167 	l_iodone_t	*l_iodone;
168 } limsw[] =
169 {
170 	{	/* none */
171 		.l_init = NULL,
172 		.l_tick = NULL,
173 		.l_iop = NULL,
174 		.l_iodone= NULL,
175 	},
176 	{	/* queue_depth */
177 		.l_init = NULL,
178 		.l_tick = NULL,
179 		.l_caniop = cam_iosched_qd_caniop,
180 		.l_iop = cam_iosched_qd_iop,
181 		.l_iodone= cam_iosched_qd_iodone,
182 	},
183 	{	/* iops */
184 		.l_init = cam_iosched_iops_init,
185 		.l_tick = cam_iosched_iops_tick,
186 		.l_caniop = cam_iosched_iops_caniop,
187 		.l_iop = cam_iosched_iops_iop,
188 		.l_iodone= NULL,
189 	},
190 	{	/* bandwidth */
191 		.l_init = cam_iosched_bw_init,
192 		.l_tick = cam_iosched_bw_tick,
193 		.l_caniop = cam_iosched_bw_caniop,
194 		.l_iop = cam_iosched_bw_iop,
195 		.l_iodone= NULL,
196 	},
197 };
198 
199 struct iop_stats {
200 	/*
201 	 * sysctl state for this subnode.
202 	 */
203 	struct sysctl_ctx_list	sysctl_ctx;
204 	struct sysctl_oid	*sysctl_tree;
205 
206 	/*
207 	 * Information about the current rate limiters, if any
208 	 */
209 	io_limiter	limiter;	/* How are I/Os being limited */
210 	int		min;		/* Low range of limit */
211 	int		max;		/* High range of limit */
212 	int		current;	/* Current rate limiter */
213 	int		l_value1;	/* per-limiter scratch value 1. */
214 	int		l_value2;	/* per-limiter scratch value 2. */
215 
216 	/*
217 	 * Debug information about counts of I/Os that have gone through the
218 	 * scheduler.
219 	 */
220 	int		pending;	/* I/Os pending in the hardware */
221 	int		queued;		/* number currently in the queue */
222 	int		total;		/* Total for all time -- wraps */
223 	int		in;		/* number queued all time -- wraps */
224 	int		out;		/* number completed all time -- wraps */
225 	int		errs;		/* Number of I/Os completed with error --  wraps */
226 
227 	/*
228 	 * Statistics on different bits of the process.
229 	 */
230 		/* Exp Moving Average, see alpha_bits for more details */
231 	sbintime_t      ema;
232 	sbintime_t      emvar;
233 	sbintime_t      sd;		/* Last computed sd */
234 
235 	uint32_t	state_flags;
236 #define IOP_RATE_LIMITED		1u
237 
238 #define LAT_BUCKETS 15			/* < 1ms < 2ms ... < 2^(n-1)ms >= 2^(n-1)ms*/
239 	uint64_t	latencies[LAT_BUCKETS];
240 
241 	struct cam_iosched_softc *softc;
242 };
243 
244 
245 typedef enum {
246 	set_max = 0,			/* current = max */
247 	read_latency,			/* Steer read latency by throttling writes */
248 	cl_max				/* Keep last */
249 } control_type;
250 
251 static const char *cam_iosched_control_type_names[] =
252     { "set_max", "read_latency" };
253 
254 struct control_loop {
255 	/*
256 	 * sysctl state for this subnode.
257 	 */
258 	struct sysctl_ctx_list	sysctl_ctx;
259 	struct sysctl_oid	*sysctl_tree;
260 
261 	sbintime_t	next_steer;		/* Time of next steer */
262 	sbintime_t	steer_interval;		/* How often do we steer? */
263 	sbintime_t	lolat;
264 	sbintime_t	hilat;
265 	int		alpha;
266 	control_type	type;			/* What type of control? */
267 	int		last_count;		/* Last I/O count */
268 
269 	struct cam_iosched_softc *softc;
270 };
271 
272 #endif
273 
274 struct cam_iosched_softc {
275 	struct bio_queue_head bio_queue;
276 	struct bio_queue_head trim_queue;
277 				/* scheduler flags < 16, user flags >= 16 */
278 	uint32_t	flags;
279 	int		sort_io_queue;
280 #ifdef CAM_IOSCHED_DYNAMIC
281 	int		read_bias;		/* Read bias setting */
282 	int		current_read_bias;	/* Current read bias state */
283 	int		total_ticks;
284 	int		load;			/* EMA of 'load average' of disk / 2^16 */
285 
286 	struct bio_queue_head write_queue;
287 	struct iop_stats read_stats, write_stats, trim_stats;
288 	struct sysctl_ctx_list	sysctl_ctx;
289 	struct sysctl_oid	*sysctl_tree;
290 
291 	int		quanta;			/* Number of quanta per second */
292 	struct callout	ticker;			/* Callout for our quota system */
293 	struct cam_periph *periph;		/* cam periph associated with this device */
294 	uint32_t	this_frac;		/* Fraction of a second (1024ths) for this tick */
295 	sbintime_t	last_time;		/* Last time we ticked */
296 	struct control_loop cl;
297 	sbintime_t	max_lat;		/* when != 0, if iop latency > max_lat, call max_lat_fcn */
298 	cam_iosched_latfcn_t	latfcn;
299 	void		*latarg;
300 #endif
301 };
302 
303 #ifdef CAM_IOSCHED_DYNAMIC
304 /*
305  * helper functions to call the limsw functions.
306  */
307 static int
308 cam_iosched_limiter_init(struct iop_stats *ios)
309 {
310 	int lim = ios->limiter;
311 
312 	/* maybe this should be a kassert */
313 	if (lim < none || lim >= limiter_max)
314 		return EINVAL;
315 
316 	if (limsw[lim].l_init)
317 		return limsw[lim].l_init(ios);
318 
319 	return 0;
320 }
321 
322 static int
323 cam_iosched_limiter_tick(struct iop_stats *ios)
324 {
325 	int lim = ios->limiter;
326 
327 	/* maybe this should be a kassert */
328 	if (lim < none || lim >= limiter_max)
329 		return EINVAL;
330 
331 	if (limsw[lim].l_tick)
332 		return limsw[lim].l_tick(ios);
333 
334 	return 0;
335 }
336 
337 static int
338 cam_iosched_limiter_iop(struct iop_stats *ios, struct bio *bp)
339 {
340 	int lim = ios->limiter;
341 
342 	/* maybe this should be a kassert */
343 	if (lim < none || lim >= limiter_max)
344 		return EINVAL;
345 
346 	if (limsw[lim].l_iop)
347 		return limsw[lim].l_iop(ios, bp);
348 
349 	return 0;
350 }
351 
352 static int
353 cam_iosched_limiter_caniop(struct iop_stats *ios, struct bio *bp)
354 {
355 	int lim = ios->limiter;
356 
357 	/* maybe this should be a kassert */
358 	if (lim < none || lim >= limiter_max)
359 		return EINVAL;
360 
361 	if (limsw[lim].l_caniop)
362 		return limsw[lim].l_caniop(ios, bp);
363 
364 	return 0;
365 }
366 
367 static int
368 cam_iosched_limiter_iodone(struct iop_stats *ios, struct bio *bp)
369 {
370 	int lim = ios->limiter;
371 
372 	/* maybe this should be a kassert */
373 	if (lim < none || lim >= limiter_max)
374 		return 0;
375 
376 	if (limsw[lim].l_iodone)
377 		return limsw[lim].l_iodone(ios, bp);
378 
379 	return 0;
380 }
381 
382 /*
383  * Functions to implement the different kinds of limiters
384  */
385 
386 static int
387 cam_iosched_qd_iop(struct iop_stats *ios, struct bio *bp)
388 {
389 
390 	if (ios->current <= 0 || ios->pending < ios->current)
391 		return 0;
392 
393 	return EAGAIN;
394 }
395 
396 static int
397 cam_iosched_qd_caniop(struct iop_stats *ios, struct bio *bp)
398 {
399 
400 	if (ios->current <= 0 || ios->pending < ios->current)
401 		return 0;
402 
403 	return EAGAIN;
404 }
405 
406 static int
407 cam_iosched_qd_iodone(struct iop_stats *ios, struct bio *bp)
408 {
409 
410 	if (ios->current <= 0 || ios->pending != ios->current)
411 		return 0;
412 
413 	return 1;
414 }
415 
416 static int
417 cam_iosched_iops_init(struct iop_stats *ios)
418 {
419 
420 	ios->l_value1 = ios->current / ios->softc->quanta;
421 	if (ios->l_value1 <= 0)
422 		ios->l_value1 = 1;
423 	ios->l_value2 = 0;
424 
425 	return 0;
426 }
427 
428 static int
429 cam_iosched_iops_tick(struct iop_stats *ios)
430 {
431 	int new_ios;
432 
433 	/*
434 	 * Allow at least one IO per tick until all
435 	 * the IOs for this interval have been spent.
436 	 */
437 	new_ios = (int)((ios->current * (uint64_t)ios->softc->this_frac) >> 16);
438 	if (new_ios < 1 && ios->l_value2 < ios->current) {
439 		new_ios = 1;
440 		ios->l_value2++;
441 	}
442 
443 	/*
444 	 * If this a new accounting interval, discard any "unspent" ios
445 	 * granted in the previous interval.  Otherwise add the new ios to
446 	 * the previously granted ones that haven't been spent yet.
447 	 */
448 	if ((ios->softc->total_ticks % ios->softc->quanta) == 0) {
449 		ios->l_value1 = new_ios;
450 		ios->l_value2 = 1;
451 	} else {
452 		ios->l_value1 += new_ios;
453 	}
454 
455 
456 	return 0;
457 }
458 
459 static int
460 cam_iosched_iops_caniop(struct iop_stats *ios, struct bio *bp)
461 {
462 
463 	/*
464 	 * So if we have any more IOPs left, allow it,
465 	 * otherwise wait. If current iops is 0, treat that
466 	 * as unlimited as a failsafe.
467 	 */
468 	if (ios->current > 0 && ios->l_value1 <= 0)
469 		return EAGAIN;
470 	return 0;
471 }
472 
473 static int
474 cam_iosched_iops_iop(struct iop_stats *ios, struct bio *bp)
475 {
476 	int rv;
477 
478 	rv = cam_iosched_limiter_caniop(ios, bp);
479 	if (rv == 0)
480 		ios->l_value1--;
481 
482 	return rv;
483 }
484 
485 static int
486 cam_iosched_bw_init(struct iop_stats *ios)
487 {
488 
489 	/* ios->current is in kB/s, so scale to bytes */
490 	ios->l_value1 = ios->current * 1000 / ios->softc->quanta;
491 
492 	return 0;
493 }
494 
495 static int
496 cam_iosched_bw_tick(struct iop_stats *ios)
497 {
498 	int bw;
499 
500 	/*
501 	 * If we're in the hole for available quota from
502 	 * the last time, then add the quantum for this.
503 	 * If we have any left over from last quantum,
504 	 * then too bad, that's lost. Also, ios->current
505 	 * is in kB/s, so scale.
506 	 *
507 	 * We also allow up to 4 quanta of credits to
508 	 * accumulate to deal with burstiness. 4 is extremely
509 	 * arbitrary.
510 	 */
511 	bw = (int)((ios->current * 1000ull * (uint64_t)ios->softc->this_frac) >> 16);
512 	if (ios->l_value1 < bw * 4)
513 		ios->l_value1 += bw;
514 
515 	return 0;
516 }
517 
518 static int
519 cam_iosched_bw_caniop(struct iop_stats *ios, struct bio *bp)
520 {
521 	/*
522 	 * So if we have any more bw quota left, allow it,
523 	 * otherwise wait. Note, we'll go negative and that's
524 	 * OK. We'll just get a little less next quota.
525 	 *
526 	 * Note on going negative: that allows us to process
527 	 * requests in order better, since we won't allow
528 	 * shorter reads to get around the long one that we
529 	 * don't have the quota to do just yet. It also prevents
530 	 * starvation by being a little more permissive about
531 	 * what we let through this quantum (to prevent the
532 	 * starvation), at the cost of getting a little less
533 	 * next quantum.
534 	 *
535 	 * Also note that if the current limit is <= 0,
536 	 * we treat it as unlimited as a failsafe.
537 	 */
538 	if (ios->current > 0 && ios->l_value1 <= 0)
539 		return EAGAIN;
540 
541 
542 	return 0;
543 }
544 
545 static int
546 cam_iosched_bw_iop(struct iop_stats *ios, struct bio *bp)
547 {
548 	int rv;
549 
550 	rv = cam_iosched_limiter_caniop(ios, bp);
551 	if (rv == 0)
552 		ios->l_value1 -= bp->bio_length;
553 
554 	return rv;
555 }
556 
557 static void cam_iosched_cl_maybe_steer(struct control_loop *clp);
558 
559 static void
560 cam_iosched_ticker(void *arg)
561 {
562 	struct cam_iosched_softc *isc = arg;
563 	sbintime_t now, delta;
564 	int pending;
565 
566 	callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
567 
568 	now = sbinuptime();
569 	delta = now - isc->last_time;
570 	isc->this_frac = (uint32_t)delta >> 16;		/* Note: discards seconds -- should be 0 harmless if not */
571 	isc->last_time = now;
572 
573 	cam_iosched_cl_maybe_steer(&isc->cl);
574 
575 	cam_iosched_limiter_tick(&isc->read_stats);
576 	cam_iosched_limiter_tick(&isc->write_stats);
577 	cam_iosched_limiter_tick(&isc->trim_stats);
578 
579 	cam_iosched_schedule(isc, isc->periph);
580 
581 	/*
582 	 * isc->load is an EMA of the pending I/Os at each tick. The number of
583 	 * pending I/Os is the sum of the I/Os queued to the hardware, and those
584 	 * in the software queue that could be queued to the hardware if there
585 	 * were slots.
586 	 *
587 	 * ios_stats.pending is a count of requests in the SIM right now for
588 	 * each of these types of I/O. So the total pending count is the sum of
589 	 * these I/Os and the sum of the queued I/Os still in the software queue
590 	 * for those operations that aren't being rate limited at the moment.
591 	 *
592 	 * The reason for the rate limiting bit is because those I/Os
593 	 * aren't part of the software queued load (since we could
594 	 * give them to hardware, but choose not to).
595 	 *
596 	 * Note: due to a bug in counting pending TRIM in the device, we
597 	 * don't include them in this count. We count each BIO_DELETE in
598 	 * the pending count, but the periph drivers collapse them down
599 	 * into one TRIM command. That one trim command gets the completion
600 	 * so the counts get off.
601 	 */
602 	pending = isc->read_stats.pending + isc->write_stats.pending /* + isc->trim_stats.pending */;
603 	pending += !!(isc->read_stats.state_flags & IOP_RATE_LIMITED) * isc->read_stats.queued +
604 	    !!(isc->write_stats.state_flags & IOP_RATE_LIMITED) * isc->write_stats.queued /* +
605 	    !!(isc->trim_stats.state_flags & IOP_RATE_LIMITED) * isc->trim_stats.queued */ ;
606 	pending <<= 16;
607 	pending /= isc->periph->path->device->ccbq.total_openings;
608 
609 	isc->load = (pending + (isc->load << 13) - isc->load) >> 13; /* see above: 13 -> 16139 / 200/s = ~81s ~1 minute */
610 
611 	isc->total_ticks++;
612 }
613 
614 
615 static void
616 cam_iosched_cl_init(struct control_loop *clp, struct cam_iosched_softc *isc)
617 {
618 
619 	clp->next_steer = sbinuptime();
620 	clp->softc = isc;
621 	clp->steer_interval = SBT_1S * 5;	/* Let's start out steering every 5s */
622 	clp->lolat = 5 * SBT_1MS;
623 	clp->hilat = 15 * SBT_1MS;
624 	clp->alpha = 20;			/* Alpha == gain. 20 = .2 */
625 	clp->type = set_max;
626 }
627 
628 static void
629 cam_iosched_cl_maybe_steer(struct control_loop *clp)
630 {
631 	struct cam_iosched_softc *isc;
632 	sbintime_t now, lat;
633 	int old;
634 
635 	isc = clp->softc;
636 	now = isc->last_time;
637 	if (now < clp->next_steer)
638 		return;
639 
640 	clp->next_steer = now + clp->steer_interval;
641 	switch (clp->type) {
642 	case set_max:
643 		if (isc->write_stats.current != isc->write_stats.max)
644 			printf("Steering write from %d kBps to %d kBps\n",
645 			    isc->write_stats.current, isc->write_stats.max);
646 		isc->read_stats.current = isc->read_stats.max;
647 		isc->write_stats.current = isc->write_stats.max;
648 		isc->trim_stats.current = isc->trim_stats.max;
649 		break;
650 	case read_latency:
651 		old = isc->write_stats.current;
652 		lat = isc->read_stats.ema;
653 		/*
654 		 * Simple PLL-like engine. Since we're steering to a range for
655 		 * the SP (set point) that makes things a little more
656 		 * complicated. In addition, we're not directly controlling our
657 		 * PV (process variable), the read latency, but instead are
658 		 * manipulating the write bandwidth limit for our MV
659 		 * (manipulation variable), analysis of this code gets a bit
660 		 * messy. Also, the MV is a very noisy control surface for read
661 		 * latency since it is affected by many hidden processes inside
662 		 * the device which change how responsive read latency will be
663 		 * in reaction to changes in write bandwidth. Unlike the classic
664 		 * boiler control PLL. this may result in over-steering while
665 		 * the SSD takes its time to react to the new, lower load. This
666 		 * is why we use a relatively low alpha of between .1 and .25 to
667 		 * compensate for this effect. At .1, it takes ~22 steering
668 		 * intervals to back off by a factor of 10. At .2 it only takes
669 		 * ~10. At .25 it only takes ~8. However some preliminary data
670 		 * from the SSD drives suggests a reasponse time in 10's of
671 		 * seconds before latency drops regardless of the new write
672 		 * rate. Careful observation will be required to tune this
673 		 * effectively.
674 		 *
675 		 * Also, when there's no read traffic, we jack up the write
676 		 * limit too regardless of the last read latency.  10 is
677 		 * somewhat arbitrary.
678 		 */
679 		if (lat < clp->lolat || isc->read_stats.total - clp->last_count < 10)
680 			isc->write_stats.current = isc->write_stats.current *
681 			    (100 + clp->alpha) / 100;	/* Scale up */
682 		else if (lat > clp->hilat)
683 			isc->write_stats.current = isc->write_stats.current *
684 			    (100 - clp->alpha) / 100;	/* Scale down */
685 		clp->last_count = isc->read_stats.total;
686 
687 		/*
688 		 * Even if we don't steer, per se, enforce the min/max limits as
689 		 * those may have changed.
690 		 */
691 		if (isc->write_stats.current < isc->write_stats.min)
692 			isc->write_stats.current = isc->write_stats.min;
693 		if (isc->write_stats.current > isc->write_stats.max)
694 			isc->write_stats.current = isc->write_stats.max;
695 		if (old != isc->write_stats.current && 	iosched_debug)
696 			printf("Steering write from %d kBps to %d kBps due to latency of %jdus\n",
697 			    old, isc->write_stats.current,
698 			    (uintmax_t)((uint64_t)1000000 * (uint32_t)lat) >> 32);
699 		break;
700 	case cl_max:
701 		break;
702 	}
703 }
704 #endif
705 
706 /*
707  * Trim or similar currently pending completion. Should only be set for
708  * those drivers wishing only one Trim active at a time.
709  */
710 #define CAM_IOSCHED_FLAG_TRIM_ACTIVE	(1ul << 0)
711 			/* Callout active, and needs to be torn down */
712 #define CAM_IOSCHED_FLAG_CALLOUT_ACTIVE (1ul << 1)
713 
714 			/* Periph drivers set these flags to indicate work */
715 #define CAM_IOSCHED_FLAG_WORK_FLAGS	((0xffffu) << 16)
716 
717 #ifdef CAM_IOSCHED_DYNAMIC
718 static void
719 cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
720     sbintime_t sim_latency, int cmd, size_t size);
721 #endif
722 
723 static inline bool
724 cam_iosched_has_flagged_work(struct cam_iosched_softc *isc)
725 {
726 	return !!(isc->flags & CAM_IOSCHED_FLAG_WORK_FLAGS);
727 }
728 
729 static inline bool
730 cam_iosched_has_io(struct cam_iosched_softc *isc)
731 {
732 #ifdef CAM_IOSCHED_DYNAMIC
733 	if (do_dynamic_iosched) {
734 		struct bio *rbp = bioq_first(&isc->bio_queue);
735 		struct bio *wbp = bioq_first(&isc->write_queue);
736 		bool can_write = wbp != NULL &&
737 		    cam_iosched_limiter_caniop(&isc->write_stats, wbp) == 0;
738 		bool can_read = rbp != NULL &&
739 		    cam_iosched_limiter_caniop(&isc->read_stats, rbp) == 0;
740 		if (iosched_debug > 2) {
741 			printf("can write %d: pending_writes %d max_writes %d\n", can_write, isc->write_stats.pending, isc->write_stats.max);
742 			printf("can read %d: read_stats.pending %d max_reads %d\n", can_read, isc->read_stats.pending, isc->read_stats.max);
743 			printf("Queued reads %d writes %d\n", isc->read_stats.queued, isc->write_stats.queued);
744 		}
745 		return can_read || can_write;
746 	}
747 #endif
748 	return bioq_first(&isc->bio_queue) != NULL;
749 }
750 
751 static inline bool
752 cam_iosched_has_more_trim(struct cam_iosched_softc *isc)
753 {
754 	return !(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) &&
755 	    bioq_first(&isc->trim_queue);
756 }
757 
758 #define cam_iosched_sort_queue(isc)	((isc)->sort_io_queue >= 0 ?	\
759     (isc)->sort_io_queue : cam_sort_io_queues)
760 
761 
762 static inline bool
763 cam_iosched_has_work(struct cam_iosched_softc *isc)
764 {
765 #ifdef CAM_IOSCHED_DYNAMIC
766 	if (iosched_debug > 2)
767 		printf("has work: %d %d %d\n", cam_iosched_has_io(isc),
768 		    cam_iosched_has_more_trim(isc),
769 		    cam_iosched_has_flagged_work(isc));
770 #endif
771 
772 	return cam_iosched_has_io(isc) ||
773 		cam_iosched_has_more_trim(isc) ||
774 		cam_iosched_has_flagged_work(isc);
775 }
776 
777 #ifdef CAM_IOSCHED_DYNAMIC
778 static void
779 cam_iosched_iop_stats_init(struct cam_iosched_softc *isc, struct iop_stats *ios)
780 {
781 
782 	ios->limiter = none;
783 	ios->in = 0;
784 	ios->max = ios->current = 300000;
785 	ios->min = 1;
786 	ios->out = 0;
787 	ios->errs = 0;
788 	ios->pending = 0;
789 	ios->queued = 0;
790 	ios->total = 0;
791 	ios->ema = 0;
792 	ios->emvar = 0;
793 	ios->softc = isc;
794 	cam_iosched_limiter_init(ios);
795 }
796 
797 static int
798 cam_iosched_limiter_sysctl(SYSCTL_HANDLER_ARGS)
799 {
800 	char buf[16];
801 	struct iop_stats *ios;
802 	struct cam_iosched_softc *isc;
803 	int value, i, error;
804 	const char *p;
805 
806 	ios = arg1;
807 	isc = ios->softc;
808 	value = ios->limiter;
809 	if (value < none || value >= limiter_max)
810 		p = "UNKNOWN";
811 	else
812 		p = cam_iosched_limiter_names[value];
813 
814 	strlcpy(buf, p, sizeof(buf));
815 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
816 	if (error != 0 || req->newptr == NULL)
817 		return error;
818 
819 	cam_periph_lock(isc->periph);
820 
821 	for (i = none; i < limiter_max; i++) {
822 		if (strcmp(buf, cam_iosched_limiter_names[i]) != 0)
823 			continue;
824 		ios->limiter = i;
825 		error = cam_iosched_limiter_init(ios);
826 		if (error != 0) {
827 			ios->limiter = value;
828 			cam_periph_unlock(isc->periph);
829 			return error;
830 		}
831 		/* Note: disk load averate requires ticker to be always running */
832 		callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
833 		isc->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
834 
835 		cam_periph_unlock(isc->periph);
836 		return 0;
837 	}
838 
839 	cam_periph_unlock(isc->periph);
840 	return EINVAL;
841 }
842 
843 static int
844 cam_iosched_control_type_sysctl(SYSCTL_HANDLER_ARGS)
845 {
846 	char buf[16];
847 	struct control_loop *clp;
848 	struct cam_iosched_softc *isc;
849 	int value, i, error;
850 	const char *p;
851 
852 	clp = arg1;
853 	isc = clp->softc;
854 	value = clp->type;
855 	if (value < none || value >= cl_max)
856 		p = "UNKNOWN";
857 	else
858 		p = cam_iosched_control_type_names[value];
859 
860 	strlcpy(buf, p, sizeof(buf));
861 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
862 	if (error != 0 || req->newptr == NULL)
863 		return error;
864 
865 	for (i = set_max; i < cl_max; i++) {
866 		if (strcmp(buf, cam_iosched_control_type_names[i]) != 0)
867 			continue;
868 		cam_periph_lock(isc->periph);
869 		clp->type = i;
870 		cam_periph_unlock(isc->periph);
871 		return 0;
872 	}
873 
874 	return EINVAL;
875 }
876 
877 static int
878 cam_iosched_sbintime_sysctl(SYSCTL_HANDLER_ARGS)
879 {
880 	char buf[16];
881 	sbintime_t value;
882 	int error;
883 	uint64_t us;
884 
885 	value = *(sbintime_t *)arg1;
886 	us = (uint64_t)value / SBT_1US;
887 	snprintf(buf, sizeof(buf), "%ju", (intmax_t)us);
888 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
889 	if (error != 0 || req->newptr == NULL)
890 		return error;
891 	us = strtoul(buf, NULL, 10);
892 	if (us == 0)
893 		return EINVAL;
894 	*(sbintime_t *)arg1 = us * SBT_1US;
895 	return 0;
896 }
897 
898 static int
899 cam_iosched_sysctl_latencies(SYSCTL_HANDLER_ARGS)
900 {
901 	int i, error;
902 	struct sbuf sb;
903 	uint64_t *latencies;
904 
905 	latencies = arg1;
906 	sbuf_new_for_sysctl(&sb, NULL, LAT_BUCKETS * 16, req);
907 
908 	for (i = 0; i < LAT_BUCKETS - 1; i++)
909 		sbuf_printf(&sb, "%jd,", (intmax_t)latencies[i]);
910 	sbuf_printf(&sb, "%jd", (intmax_t)latencies[LAT_BUCKETS - 1]);
911 	error = sbuf_finish(&sb);
912 	sbuf_delete(&sb);
913 
914 	return (error);
915 }
916 
917 static int
918 cam_iosched_quanta_sysctl(SYSCTL_HANDLER_ARGS)
919 {
920 	int *quanta;
921 	int error, value;
922 
923 	quanta = (unsigned *)arg1;
924 	value = *quanta;
925 
926 	error = sysctl_handle_int(oidp, (int *)&value, 0, req);
927 	if ((error != 0) || (req->newptr == NULL))
928 		return (error);
929 
930 	if (value < 1 || value > hz)
931 		return (EINVAL);
932 
933 	*quanta = value;
934 
935 	return (0);
936 }
937 
938 static void
939 cam_iosched_iop_stats_sysctl_init(struct cam_iosched_softc *isc, struct iop_stats *ios, char *name)
940 {
941 	struct sysctl_oid_list *n;
942 	struct sysctl_ctx_list *ctx;
943 
944 	ios->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
945 	    SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, name,
946 	    CTLFLAG_RD, 0, name);
947 	n = SYSCTL_CHILDREN(ios->sysctl_tree);
948 	ctx = &ios->sysctl_ctx;
949 
950 	SYSCTL_ADD_UQUAD(ctx, n,
951 	    OID_AUTO, "ema", CTLFLAG_RD,
952 	    &ios->ema,
953 	    "Fast Exponentially Weighted Moving Average");
954 	SYSCTL_ADD_UQUAD(ctx, n,
955 	    OID_AUTO, "emvar", CTLFLAG_RD,
956 	    &ios->emvar,
957 	    "Fast Exponentially Weighted Moving Variance");
958 
959 	SYSCTL_ADD_INT(ctx, n,
960 	    OID_AUTO, "pending", CTLFLAG_RD,
961 	    &ios->pending, 0,
962 	    "Instantaneous # of pending transactions");
963 	SYSCTL_ADD_INT(ctx, n,
964 	    OID_AUTO, "count", CTLFLAG_RD,
965 	    &ios->total, 0,
966 	    "# of transactions submitted to hardware");
967 	SYSCTL_ADD_INT(ctx, n,
968 	    OID_AUTO, "queued", CTLFLAG_RD,
969 	    &ios->queued, 0,
970 	    "# of transactions in the queue");
971 	SYSCTL_ADD_INT(ctx, n,
972 	    OID_AUTO, "in", CTLFLAG_RD,
973 	    &ios->in, 0,
974 	    "# of transactions queued to driver");
975 	SYSCTL_ADD_INT(ctx, n,
976 	    OID_AUTO, "out", CTLFLAG_RD,
977 	    &ios->out, 0,
978 	    "# of transactions completed (including with error)");
979 	SYSCTL_ADD_INT(ctx, n,
980 	    OID_AUTO, "errs", CTLFLAG_RD,
981 	    &ios->errs, 0,
982 	    "# of transactions completed with an error");
983 
984 	SYSCTL_ADD_PROC(ctx, n,
985 	    OID_AUTO, "limiter", CTLTYPE_STRING | CTLFLAG_RW,
986 	    ios, 0, cam_iosched_limiter_sysctl, "A",
987 	    "Current limiting type.");
988 	SYSCTL_ADD_INT(ctx, n,
989 	    OID_AUTO, "min", CTLFLAG_RW,
990 	    &ios->min, 0,
991 	    "min resource");
992 	SYSCTL_ADD_INT(ctx, n,
993 	    OID_AUTO, "max", CTLFLAG_RW,
994 	    &ios->max, 0,
995 	    "max resource");
996 	SYSCTL_ADD_INT(ctx, n,
997 	    OID_AUTO, "current", CTLFLAG_RW,
998 	    &ios->current, 0,
999 	    "current resource");
1000 
1001 	SYSCTL_ADD_PROC(ctx, n,
1002 	    OID_AUTO, "latencies", CTLTYPE_STRING | CTLFLAG_RD,
1003 	    &ios->latencies, 0,
1004 	    cam_iosched_sysctl_latencies, "A",
1005 	    "Array of power of 2 latency from 1ms to 1.024s");
1006 }
1007 
1008 static void
1009 cam_iosched_iop_stats_fini(struct iop_stats *ios)
1010 {
1011 	if (ios->sysctl_tree)
1012 		if (sysctl_ctx_free(&ios->sysctl_ctx) != 0)
1013 			printf("can't remove iosched sysctl stats context\n");
1014 }
1015 
1016 static void
1017 cam_iosched_cl_sysctl_init(struct cam_iosched_softc *isc)
1018 {
1019 	struct sysctl_oid_list *n;
1020 	struct sysctl_ctx_list *ctx;
1021 	struct control_loop *clp;
1022 
1023 	clp = &isc->cl;
1024 	clp->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1025 	    SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, "control",
1026 	    CTLFLAG_RD, 0, "Control loop info");
1027 	n = SYSCTL_CHILDREN(clp->sysctl_tree);
1028 	ctx = &clp->sysctl_ctx;
1029 
1030 	SYSCTL_ADD_PROC(ctx, n,
1031 	    OID_AUTO, "type", CTLTYPE_STRING | CTLFLAG_RW,
1032 	    clp, 0, cam_iosched_control_type_sysctl, "A",
1033 	    "Control loop algorithm");
1034 	SYSCTL_ADD_PROC(ctx, n,
1035 	    OID_AUTO, "steer_interval", CTLTYPE_STRING | CTLFLAG_RW,
1036 	    &clp->steer_interval, 0, cam_iosched_sbintime_sysctl, "A",
1037 	    "How often to steer (in us)");
1038 	SYSCTL_ADD_PROC(ctx, n,
1039 	    OID_AUTO, "lolat", CTLTYPE_STRING | CTLFLAG_RW,
1040 	    &clp->lolat, 0, cam_iosched_sbintime_sysctl, "A",
1041 	    "Low water mark for Latency (in us)");
1042 	SYSCTL_ADD_PROC(ctx, n,
1043 	    OID_AUTO, "hilat", CTLTYPE_STRING | CTLFLAG_RW,
1044 	    &clp->hilat, 0, cam_iosched_sbintime_sysctl, "A",
1045 	    "Hi water mark for Latency (in us)");
1046 	SYSCTL_ADD_INT(ctx, n,
1047 	    OID_AUTO, "alpha", CTLFLAG_RW,
1048 	    &clp->alpha, 0,
1049 	    "Alpha for PLL (x100) aka gain");
1050 }
1051 
1052 static void
1053 cam_iosched_cl_sysctl_fini(struct control_loop *clp)
1054 {
1055 	if (clp->sysctl_tree)
1056 		if (sysctl_ctx_free(&clp->sysctl_ctx) != 0)
1057 			printf("can't remove iosched sysctl control loop context\n");
1058 }
1059 #endif
1060 
1061 /*
1062  * Allocate the iosched structure. This also insulates callers from knowing
1063  * sizeof struct cam_iosched_softc.
1064  */
1065 int
1066 cam_iosched_init(struct cam_iosched_softc **iscp, struct cam_periph *periph)
1067 {
1068 
1069 	*iscp = malloc(sizeof(**iscp), M_CAMSCHED, M_NOWAIT | M_ZERO);
1070 	if (*iscp == NULL)
1071 		return ENOMEM;
1072 #ifdef CAM_IOSCHED_DYNAMIC
1073 	if (iosched_debug)
1074 		printf("CAM IOSCHEDULER Allocating entry at %p\n", *iscp);
1075 #endif
1076 	(*iscp)->sort_io_queue = -1;
1077 	bioq_init(&(*iscp)->bio_queue);
1078 	bioq_init(&(*iscp)->trim_queue);
1079 #ifdef CAM_IOSCHED_DYNAMIC
1080 	if (do_dynamic_iosched) {
1081 		bioq_init(&(*iscp)->write_queue);
1082 		(*iscp)->read_bias = 100;
1083 		(*iscp)->current_read_bias = 100;
1084 		(*iscp)->quanta = min(hz, 200);
1085 		cam_iosched_iop_stats_init(*iscp, &(*iscp)->read_stats);
1086 		cam_iosched_iop_stats_init(*iscp, &(*iscp)->write_stats);
1087 		cam_iosched_iop_stats_init(*iscp, &(*iscp)->trim_stats);
1088 		(*iscp)->trim_stats.max = 1;	/* Trims are special: one at a time for now */
1089 		(*iscp)->last_time = sbinuptime();
1090 		callout_init_mtx(&(*iscp)->ticker, cam_periph_mtx(periph), 0);
1091 		(*iscp)->periph = periph;
1092 		cam_iosched_cl_init(&(*iscp)->cl, *iscp);
1093 		callout_reset(&(*iscp)->ticker, hz / (*iscp)->quanta, cam_iosched_ticker, *iscp);
1094 		(*iscp)->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
1095 	}
1096 #endif
1097 
1098 	return 0;
1099 }
1100 
1101 /*
1102  * Reclaim all used resources. This assumes that other folks have
1103  * drained the requests in the hardware. Maybe an unwise assumption.
1104  */
1105 void
1106 cam_iosched_fini(struct cam_iosched_softc *isc)
1107 {
1108 	if (isc) {
1109 		cam_iosched_flush(isc, NULL, ENXIO);
1110 #ifdef CAM_IOSCHED_DYNAMIC
1111 		cam_iosched_iop_stats_fini(&isc->read_stats);
1112 		cam_iosched_iop_stats_fini(&isc->write_stats);
1113 		cam_iosched_iop_stats_fini(&isc->trim_stats);
1114 		cam_iosched_cl_sysctl_fini(&isc->cl);
1115 		if (isc->sysctl_tree)
1116 			if (sysctl_ctx_free(&isc->sysctl_ctx) != 0)
1117 				printf("can't remove iosched sysctl stats context\n");
1118 		if (isc->flags & CAM_IOSCHED_FLAG_CALLOUT_ACTIVE) {
1119 			callout_drain(&isc->ticker);
1120 			isc->flags &= ~ CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
1121 		}
1122 #endif
1123 		free(isc, M_CAMSCHED);
1124 	}
1125 }
1126 
1127 /*
1128  * After we're sure we're attaching a device, go ahead and add
1129  * hooks for any sysctl we may wish to honor.
1130  */
1131 void cam_iosched_sysctl_init(struct cam_iosched_softc *isc,
1132     struct sysctl_ctx_list *ctx, struct sysctl_oid *node)
1133 {
1134 #ifdef CAM_IOSCHED_DYNAMIC
1135 	struct sysctl_oid_list *n;
1136 #endif
1137 
1138 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(node),
1139 		OID_AUTO, "sort_io_queue", CTLFLAG_RW | CTLFLAG_MPSAFE,
1140 		&isc->sort_io_queue, 0,
1141 		"Sort IO queue to try and optimise disk access patterns");
1142 
1143 #ifdef CAM_IOSCHED_DYNAMIC
1144 	if (!do_dynamic_iosched)
1145 		return;
1146 
1147 	isc->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1148 	    SYSCTL_CHILDREN(node), OID_AUTO, "iosched",
1149 	    CTLFLAG_RD, 0, "I/O scheduler statistics");
1150 	n = SYSCTL_CHILDREN(isc->sysctl_tree);
1151 	ctx = &isc->sysctl_ctx;
1152 
1153 	cam_iosched_iop_stats_sysctl_init(isc, &isc->read_stats, "read");
1154 	cam_iosched_iop_stats_sysctl_init(isc, &isc->write_stats, "write");
1155 	cam_iosched_iop_stats_sysctl_init(isc, &isc->trim_stats, "trim");
1156 	cam_iosched_cl_sysctl_init(isc);
1157 
1158 	SYSCTL_ADD_INT(ctx, n,
1159 	    OID_AUTO, "read_bias", CTLFLAG_RW,
1160 	    &isc->read_bias, 100,
1161 	    "How biased towards read should we be independent of limits");
1162 
1163 	SYSCTL_ADD_PROC(ctx, n,
1164 	    OID_AUTO, "quanta", CTLTYPE_UINT | CTLFLAG_RW,
1165 	    &isc->quanta, 0, cam_iosched_quanta_sysctl, "I",
1166 	    "How many quanta per second do we slice the I/O up into");
1167 
1168 	SYSCTL_ADD_INT(ctx, n,
1169 	    OID_AUTO, "total_ticks", CTLFLAG_RD,
1170 	    &isc->total_ticks, 0,
1171 	    "Total number of ticks we've done");
1172 
1173 	SYSCTL_ADD_INT(ctx, n,
1174 	    OID_AUTO, "load", CTLFLAG_RD,
1175 	    &isc->load, 0,
1176 	    "scaled load average / 100");
1177 
1178 	SYSCTL_ADD_U64(ctx, n,
1179 	    OID_AUTO, "latency_trigger", CTLFLAG_RW,
1180 	    &isc->max_lat, 0,
1181 	    "Latency treshold to trigger callbacks");
1182 #endif
1183 }
1184 
1185 void
1186 cam_iosched_set_latfcn(struct cam_iosched_softc *isc,
1187     cam_iosched_latfcn_t fnp, void *argp)
1188 {
1189 #ifdef CAM_IOSCHED_DYNAMIC
1190 	isc->latfcn = fnp;
1191 	isc->latarg = argp;
1192 #endif
1193 }
1194 
1195 /*
1196  * Flush outstanding I/O. Consumers of this library don't know all the
1197  * queues we may keep, so this allows all I/O to be flushed in one
1198  * convenient call.
1199  */
1200 void
1201 cam_iosched_flush(struct cam_iosched_softc *isc, struct devstat *stp, int err)
1202 {
1203 	bioq_flush(&isc->bio_queue, stp, err);
1204 	bioq_flush(&isc->trim_queue, stp, err);
1205 #ifdef CAM_IOSCHED_DYNAMIC
1206 	if (do_dynamic_iosched)
1207 		bioq_flush(&isc->write_queue, stp, err);
1208 #endif
1209 }
1210 
1211 #ifdef CAM_IOSCHED_DYNAMIC
1212 static struct bio *
1213 cam_iosched_get_write(struct cam_iosched_softc *isc)
1214 {
1215 	struct bio *bp;
1216 
1217 	/*
1218 	 * We control the write rate by controlling how many requests we send
1219 	 * down to the drive at any one time. Fewer requests limits the
1220 	 * effects of both starvation when the requests take a while and write
1221 	 * amplification when each request is causing more than one write to
1222 	 * the NAND media. Limiting the queue depth like this will also limit
1223 	 * the write throughput and give and reads that want to compete to
1224 	 * compete unfairly.
1225 	 */
1226 	bp = bioq_first(&isc->write_queue);
1227 	if (bp == NULL) {
1228 		if (iosched_debug > 3)
1229 			printf("No writes present in write_queue\n");
1230 		return NULL;
1231 	}
1232 
1233 	/*
1234 	 * If pending read, prefer that based on current read bias
1235 	 * setting.
1236 	 */
1237 	if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
1238 		if (iosched_debug)
1239 			printf(
1240 			    "Reads present and current_read_bias is %d queued "
1241 			    "writes %d queued reads %d\n",
1242 			    isc->current_read_bias, isc->write_stats.queued,
1243     			    isc->read_stats.queued);
1244 		isc->current_read_bias--;
1245 		/* We're not limiting writes, per se, just doing reads first */
1246 		return NULL;
1247 	}
1248 
1249 	/*
1250 	 * See if our current limiter allows this I/O.
1251 	 */
1252 	if (cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
1253 		if (iosched_debug)
1254 			printf("Can't write because limiter says no.\n");
1255 		isc->write_stats.state_flags |= IOP_RATE_LIMITED;
1256 		return NULL;
1257 	}
1258 
1259 	/*
1260 	 * Let's do this: We've passed all the gates and we're a go
1261 	 * to schedule the I/O in the SIM.
1262 	 */
1263 	isc->current_read_bias = isc->read_bias;
1264 	bioq_remove(&isc->write_queue, bp);
1265 	if (bp->bio_cmd == BIO_WRITE) {
1266 		isc->write_stats.queued--;
1267 		isc->write_stats.total++;
1268 		isc->write_stats.pending++;
1269 	}
1270 	if (iosched_debug > 9)
1271 		printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
1272 	isc->write_stats.state_flags &= ~IOP_RATE_LIMITED;
1273 	return bp;
1274 }
1275 #endif
1276 
1277 /*
1278  * Put back a trim that you weren't able to actually schedule this time.
1279  */
1280 void
1281 cam_iosched_put_back_trim(struct cam_iosched_softc *isc, struct bio *bp)
1282 {
1283 	bioq_insert_head(&isc->trim_queue, bp);
1284 #ifdef CAM_IOSCHED_DYNAMIC
1285 	isc->trim_stats.queued++;
1286 	isc->trim_stats.total--;		/* since we put it back, don't double count */
1287 	isc->trim_stats.pending--;
1288 #endif
1289 }
1290 
1291 /*
1292  * gets the next trim from the trim queue.
1293  *
1294  * Assumes we're called with the periph lock held.  It removes this
1295  * trim from the queue and the device must explicitly reinsert it
1296  * should the need arise.
1297  */
1298 struct bio *
1299 cam_iosched_next_trim(struct cam_iosched_softc *isc)
1300 {
1301 	struct bio *bp;
1302 
1303 	bp  = bioq_first(&isc->trim_queue);
1304 	if (bp == NULL)
1305 		return NULL;
1306 	bioq_remove(&isc->trim_queue, bp);
1307 #ifdef CAM_IOSCHED_DYNAMIC
1308 	isc->trim_stats.queued--;
1309 	isc->trim_stats.total++;
1310 	isc->trim_stats.pending++;
1311 #endif
1312 	return bp;
1313 }
1314 
1315 /*
1316  * gets an available trim from the trim queue, if there's no trim
1317  * already pending. It removes this trim from the queue and the device
1318  * must explicitly reinsert it should the need arise.
1319  *
1320  * Assumes we're called with the periph lock held.
1321  */
1322 struct bio *
1323 cam_iosched_get_trim(struct cam_iosched_softc *isc)
1324 {
1325 
1326 	if (!cam_iosched_has_more_trim(isc))
1327 		return NULL;
1328 #ifdef CAM_IOSCHED_DYNAMIC
1329 	if (do_dynamic_iosched) {
1330 		/*
1331 		 * If pending read, prefer that based on current read bias
1332 		 * setting. The read bias is shared for both writes and
1333 		 * TRIMs, but on TRIMs the bias is for a combined TRIM
1334 		 * not a single TRIM request that's come in.
1335 		 */
1336 		if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
1337 			isc->current_read_bias--;
1338 			/* We're not limiting TRIMS, per se, just doing reads first */
1339 			return NULL;
1340 		}
1341 		/*
1342 		 * We're going to do a trim, so reset the bias.
1343 		 */
1344 		isc->current_read_bias = isc->read_bias;
1345 	}
1346 #endif
1347 	return cam_iosched_next_trim(isc);
1348 }
1349 
1350 /*
1351  * Determine what the next bit of work to do is for the periph. The
1352  * default implementation looks to see if we have trims to do, but no
1353  * trims outstanding. If so, we do that. Otherwise we see if we have
1354  * other work. If we do, then we do that. Otherwise why were we called?
1355  */
1356 struct bio *
1357 cam_iosched_next_bio(struct cam_iosched_softc *isc)
1358 {
1359 	struct bio *bp;
1360 
1361 	/*
1362 	 * See if we have a trim that can be scheduled. We can only send one
1363 	 * at a time down, so this takes that into account.
1364 	 *
1365 	 * XXX newer TRIM commands are queueable. Revisit this when we
1366 	 * implement them.
1367 	 */
1368 	if ((bp = cam_iosched_get_trim(isc)) != NULL)
1369 		return bp;
1370 
1371 #ifdef CAM_IOSCHED_DYNAMIC
1372 	/*
1373 	 * See if we have any pending writes, and room in the queue for them,
1374 	 * and if so, those are next.
1375 	 */
1376 	if (do_dynamic_iosched) {
1377 		if ((bp = cam_iosched_get_write(isc)) != NULL)
1378 			return bp;
1379 	}
1380 #endif
1381 
1382 	/*
1383 	 * next, see if there's other, normal I/O waiting. If so return that.
1384 	 */
1385 	if ((bp = bioq_first(&isc->bio_queue)) == NULL)
1386 		return NULL;
1387 
1388 #ifdef CAM_IOSCHED_DYNAMIC
1389 	/*
1390 	 * For the dynamic scheduler, bio_queue is only for reads, so enforce
1391 	 * the limits here. Enforce only for reads.
1392 	 */
1393 	if (do_dynamic_iosched) {
1394 		if (bp->bio_cmd == BIO_READ &&
1395 		    cam_iosched_limiter_iop(&isc->read_stats, bp) != 0) {
1396 			isc->read_stats.state_flags |= IOP_RATE_LIMITED;
1397 			return NULL;
1398 		}
1399 	}
1400 	isc->read_stats.state_flags &= ~IOP_RATE_LIMITED;
1401 #endif
1402 	bioq_remove(&isc->bio_queue, bp);
1403 #ifdef CAM_IOSCHED_DYNAMIC
1404 	if (do_dynamic_iosched) {
1405 		if (bp->bio_cmd == BIO_READ) {
1406 			isc->read_stats.queued--;
1407 			isc->read_stats.total++;
1408 			isc->read_stats.pending++;
1409 		} else
1410 			printf("Found bio_cmd = %#x\n", bp->bio_cmd);
1411 	}
1412 	if (iosched_debug > 9)
1413 		printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
1414 #endif
1415 	return bp;
1416 }
1417 
1418 /*
1419  * Driver has been given some work to do by the block layer. Tell the
1420  * scheduler about it and have it queue the work up. The scheduler module
1421  * will then return the currently most useful bit of work later, possibly
1422  * deferring work for various reasons.
1423  */
1424 void
1425 cam_iosched_queue_work(struct cam_iosched_softc *isc, struct bio *bp)
1426 {
1427 
1428 	/*
1429 	 * Put all trims on the trim queue sorted, since we know
1430 	 * that the collapsing code requires this. Otherwise put
1431 	 * the work on the bio queue.
1432 	 */
1433 	if (bp->bio_cmd == BIO_DELETE) {
1434 		bioq_insert_tail(&isc->trim_queue, bp);
1435 #ifdef CAM_IOSCHED_DYNAMIC
1436 		isc->trim_stats.in++;
1437 		isc->trim_stats.queued++;
1438 #endif
1439 	}
1440 #ifdef CAM_IOSCHED_DYNAMIC
1441 	else if (do_dynamic_iosched && (bp->bio_cmd != BIO_READ)) {
1442 		if (cam_iosched_sort_queue(isc))
1443 			bioq_disksort(&isc->write_queue, bp);
1444 		else
1445 			bioq_insert_tail(&isc->write_queue, bp);
1446 		if (iosched_debug > 9)
1447 			printf("Qw  : %p %#x\n", bp, bp->bio_cmd);
1448 		if (bp->bio_cmd == BIO_WRITE) {
1449 			isc->write_stats.in++;
1450 			isc->write_stats.queued++;
1451 		}
1452 	}
1453 #endif
1454 	else {
1455 		if (cam_iosched_sort_queue(isc))
1456 			bioq_disksort(&isc->bio_queue, bp);
1457 		else
1458 			bioq_insert_tail(&isc->bio_queue, bp);
1459 #ifdef CAM_IOSCHED_DYNAMIC
1460 		if (iosched_debug > 9)
1461 			printf("Qr  : %p %#x\n", bp, bp->bio_cmd);
1462 		if (bp->bio_cmd == BIO_READ) {
1463 			isc->read_stats.in++;
1464 			isc->read_stats.queued++;
1465 		} else if (bp->bio_cmd == BIO_WRITE) {
1466 			isc->write_stats.in++;
1467 			isc->write_stats.queued++;
1468 		}
1469 #endif
1470 	}
1471 }
1472 
1473 /*
1474  * If we have work, get it scheduled. Called with the periph lock held.
1475  */
1476 void
1477 cam_iosched_schedule(struct cam_iosched_softc *isc, struct cam_periph *periph)
1478 {
1479 
1480 	if (cam_iosched_has_work(isc))
1481 		xpt_schedule(periph, CAM_PRIORITY_NORMAL);
1482 }
1483 
1484 /*
1485  * Complete a trim request. Mark that we no longer have one in flight.
1486  */
1487 void
1488 cam_iosched_trim_done(struct cam_iosched_softc *isc)
1489 {
1490 
1491 	isc->flags &= ~CAM_IOSCHED_FLAG_TRIM_ACTIVE;
1492 }
1493 
1494 /*
1495  * Complete a bio. Called before we release the ccb with xpt_release_ccb so we
1496  * might use notes in the ccb for statistics.
1497  */
1498 int
1499 cam_iosched_bio_complete(struct cam_iosched_softc *isc, struct bio *bp,
1500     union ccb *done_ccb)
1501 {
1502 	int retval = 0;
1503 #ifdef CAM_IOSCHED_DYNAMIC
1504 	if (!do_dynamic_iosched)
1505 		return retval;
1506 
1507 	if (iosched_debug > 10)
1508 		printf("done: %p %#x\n", bp, bp->bio_cmd);
1509 	if (bp->bio_cmd == BIO_WRITE) {
1510 		retval = cam_iosched_limiter_iodone(&isc->write_stats, bp);
1511 		if ((bp->bio_flags & BIO_ERROR) != 0)
1512 			isc->write_stats.errs++;
1513 		isc->write_stats.out++;
1514 		isc->write_stats.pending--;
1515 	} else if (bp->bio_cmd == BIO_READ) {
1516 		retval = cam_iosched_limiter_iodone(&isc->read_stats, bp);
1517 		if ((bp->bio_flags & BIO_ERROR) != 0)
1518 			isc->read_stats.errs++;
1519 		isc->read_stats.out++;
1520 		isc->read_stats.pending--;
1521 	} else if (bp->bio_cmd == BIO_DELETE) {
1522 		if ((bp->bio_flags & BIO_ERROR) != 0)
1523 			isc->trim_stats.errs++;
1524 		isc->trim_stats.out++;
1525 		isc->trim_stats.pending--;
1526 	} else if (bp->bio_cmd != BIO_FLUSH) {
1527 		if (iosched_debug)
1528 			printf("Completing command with bio_cmd == %#x\n", bp->bio_cmd);
1529 	}
1530 
1531 	if (!(bp->bio_flags & BIO_ERROR) && done_ccb != NULL) {
1532 		sbintime_t sim_latency;
1533 
1534 		sim_latency = cam_iosched_sbintime_t(done_ccb->ccb_h.qos.periph_data);
1535 
1536 		cam_iosched_io_metric_update(isc, sim_latency,
1537 		    bp->bio_cmd, bp->bio_bcount);
1538 		/*
1539 		 * Debugging code: allow callbacks to the periph driver when latency max
1540 		 * is exceeded. This can be useful for triggering external debugging actions.
1541 		 */
1542 		if (isc->latfcn && isc->max_lat != 0 && sim_latency > isc->max_lat)
1543 			isc->latfcn(isc->latarg, sim_latency, bp);
1544 	}
1545 
1546 #endif
1547 	return retval;
1548 }
1549 
1550 /*
1551  * Tell the io scheduler that you've pushed a trim down into the sim.
1552  * This also tells the I/O scheduler not to push any more trims down, so
1553  * some periphs do not call it if they can cope with multiple trims in flight.
1554  */
1555 void
1556 cam_iosched_submit_trim(struct cam_iosched_softc *isc)
1557 {
1558 
1559 	isc->flags |= CAM_IOSCHED_FLAG_TRIM_ACTIVE;
1560 }
1561 
1562 /*
1563  * Change the sorting policy hint for I/O transactions for this device.
1564  */
1565 void
1566 cam_iosched_set_sort_queue(struct cam_iosched_softc *isc, int val)
1567 {
1568 
1569 	isc->sort_io_queue = val;
1570 }
1571 
1572 int
1573 cam_iosched_has_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1574 {
1575 	return isc->flags & flags;
1576 }
1577 
1578 void
1579 cam_iosched_set_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1580 {
1581 	isc->flags |= flags;
1582 }
1583 
1584 void
1585 cam_iosched_clr_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1586 {
1587 	isc->flags &= ~flags;
1588 }
1589 
1590 #ifdef CAM_IOSCHED_DYNAMIC
1591 /*
1592  * After the method presented in Jack Crenshaw's 1998 article "Integer
1593  * Square Roots," reprinted at
1594  * http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots
1595  * and well worth the read. Briefly, we find the power of 4 that's the
1596  * largest smaller than val. We then check each smaller power of 4 to
1597  * see if val is still bigger. The right shifts at each step divide
1598  * the result by 2 which after successive application winds up
1599  * accumulating the right answer. It could also have been accumulated
1600  * using a separate root counter, but this code is smaller and faster
1601  * than that method. This method is also integer size invariant.
1602  * It returns floor(sqrt((float)val)), or the largest integer less than
1603  * or equal to the square root.
1604  */
1605 static uint64_t
1606 isqrt64(uint64_t val)
1607 {
1608 	uint64_t res = 0;
1609 	uint64_t bit = 1ULL << (sizeof(uint64_t) * NBBY - 2);
1610 
1611 	/*
1612 	 * Find the largest power of 4 smaller than val.
1613 	 */
1614 	while (bit > val)
1615 		bit >>= 2;
1616 
1617 	/*
1618 	 * Accumulate the answer, one bit at a time (we keep moving
1619 	 * them over since 2 is the square root of 4 and we test
1620 	 * powers of 4). We accumulate where we find the bit, but
1621 	 * the successive shifts land the bit in the right place
1622 	 * by the end.
1623 	 */
1624 	while (bit != 0) {
1625 		if (val >= res + bit) {
1626 			val -= res + bit;
1627 			res = (res >> 1) + bit;
1628 		} else
1629 			res >>= 1;
1630 		bit >>= 2;
1631 	}
1632 
1633 	return res;
1634 }
1635 
1636 static sbintime_t latencies[LAT_BUCKETS - 1] = {
1637 	SBT_1MS <<  0,
1638 	SBT_1MS <<  1,
1639 	SBT_1MS <<  2,
1640 	SBT_1MS <<  3,
1641 	SBT_1MS <<  4,
1642 	SBT_1MS <<  5,
1643 	SBT_1MS <<  6,
1644 	SBT_1MS <<  7,
1645 	SBT_1MS <<  8,
1646 	SBT_1MS <<  9,
1647 	SBT_1MS << 10,
1648 	SBT_1MS << 11,
1649 	SBT_1MS << 12,
1650 	SBT_1MS << 13		/* 8.192s */
1651 };
1652 
1653 static void
1654 cam_iosched_update(struct iop_stats *iop, sbintime_t sim_latency)
1655 {
1656 	sbintime_t y, deltasq, delta;
1657 	int i;
1658 
1659 	/*
1660 	 * Keep counts for latency. We do it by power of two buckets.
1661 	 * This helps us spot outlier behavior obscured by averages.
1662 	 */
1663 	for (i = 0; i < LAT_BUCKETS - 1; i++) {
1664 		if (sim_latency < latencies[i]) {
1665 			iop->latencies[i]++;
1666 			break;
1667 		}
1668 	}
1669 	if (i == LAT_BUCKETS - 1)
1670 		iop->latencies[i]++; 	 /* Put all > 1024ms values into the last bucket. */
1671 
1672 	/*
1673 	 * Classic exponentially decaying average with a tiny alpha
1674 	 * (2 ^ -alpha_bits). For more info see the NIST statistical
1675 	 * handbook.
1676 	 *
1677 	 * ema_t = y_t * alpha + ema_t-1 * (1 - alpha)		[nist]
1678 	 * ema_t = y_t * alpha + ema_t-1 - alpha * ema_t-1
1679 	 * ema_t = alpha * y_t - alpha * ema_t-1 + ema_t-1
1680 	 * alpha = 1 / (1 << alpha_bits)
1681 	 * sub e == ema_t-1, b == 1/alpha (== 1 << alpha_bits), d == y_t - ema_t-1
1682 	 *	= y_t/b - e/b + be/b
1683 	 *      = (y_t - e + be) / b
1684 	 *	= (e + d) / b
1685 	 *
1686 	 * Since alpha is a power of two, we can compute this w/o any mult or
1687 	 * division.
1688 	 *
1689 	 * Variance can also be computed. Usually, it would be expressed as follows:
1690 	 *	diff_t = y_t - ema_t-1
1691 	 *	emvar_t = (1 - alpha) * (emavar_t-1 + diff_t^2 * alpha)
1692 	 *	  = emavar_t-1 - alpha * emavar_t-1 + delta_t^2 * alpha - (delta_t * alpha)^2
1693 	 * sub b == 1/alpha (== 1 << alpha_bits), e == emavar_t-1, d = delta_t^2
1694 	 *	  = e - e/b + dd/b + dd/bb
1695 	 *	  = (bbe - be + bdd + dd) / bb
1696 	 *	  = (bbe + b(dd-e) + dd) / bb (which is expanded below bb = 1<<(2*alpha_bits))
1697 	 */
1698 	/*
1699 	 * XXX possible numeric issues
1700 	 *	o We assume right shifted integers do the right thing, since that's
1701 	 *	  implementation defined. You can change the right shifts to / (1LL << alpha).
1702 	 *	o alpha_bits = 9 gives ema ceiling of 23 bits of seconds for ema and 14 bits
1703 	 *	  for emvar. This puts a ceiling of 13 bits on alpha since we need a
1704 	 *	  few tens of seconds of representation.
1705 	 *	o We mitigate alpha issues by never setting it too high.
1706 	 */
1707 	y = sim_latency;
1708 	delta = (y - iop->ema);					/* d */
1709 	iop->ema = ((iop->ema << alpha_bits) + delta) >> alpha_bits;
1710 
1711 	/*
1712 	 * Were we to naively plow ahead at this point, we wind up with many numerical
1713 	 * issues making any SD > ~3ms unreliable. So, we shift right by 12. This leaves
1714 	 * us with microsecond level precision in the input, so the same in the
1715 	 * output. It means we can't overflow deltasq unless delta > 4k seconds. It
1716 	 * also means that emvar can be up 46 bits 40 of which are fraction, which
1717 	 * gives us a way to measure up to ~8s in the SD before the computation goes
1718 	 * unstable. Even the worst hard disk rarely has > 1s service time in the
1719 	 * drive. It does mean we have to shift left 12 bits after taking the
1720 	 * square root to compute the actual standard deviation estimate. This loss of
1721 	 * precision is preferable to needing int128 types to work. The above numbers
1722 	 * assume alpha=9. 10 or 11 are ok, but we start to run into issues at 12,
1723 	 * so 12 or 13 is OK for EMA, EMVAR and SD will be wrong in those cases.
1724 	 */
1725 	delta >>= 12;
1726 	deltasq = delta * delta;				/* dd */
1727 	iop->emvar = ((iop->emvar << (2 * alpha_bits)) +	/* bbe */
1728 	    ((deltasq - iop->emvar) << alpha_bits) +		/* b(dd-e) */
1729 	    deltasq)						/* dd */
1730 	    >> (2 * alpha_bits);				/* div bb */
1731 	iop->sd = (sbintime_t)isqrt64((uint64_t)iop->emvar) << 12;
1732 }
1733 
1734 static void
1735 cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
1736     sbintime_t sim_latency, int cmd, size_t size)
1737 {
1738 	/* xxx Do we need to scale based on the size of the I/O ? */
1739 	switch (cmd) {
1740 	case BIO_READ:
1741 		cam_iosched_update(&isc->read_stats, sim_latency);
1742 		break;
1743 	case BIO_WRITE:
1744 		cam_iosched_update(&isc->write_stats, sim_latency);
1745 		break;
1746 	case BIO_DELETE:
1747 		cam_iosched_update(&isc->trim_stats, sim_latency);
1748 		break;
1749 	default:
1750 		break;
1751 	}
1752 }
1753 
1754 #ifdef DDB
1755 static int biolen(struct bio_queue_head *bq)
1756 {
1757 	int i = 0;
1758 	struct bio *bp;
1759 
1760 	TAILQ_FOREACH(bp, &bq->queue, bio_queue) {
1761 		i++;
1762 	}
1763 	return i;
1764 }
1765 
1766 /*
1767  * Show the internal state of the I/O scheduler.
1768  */
1769 DB_SHOW_COMMAND(iosched, cam_iosched_db_show)
1770 {
1771 	struct cam_iosched_softc *isc;
1772 
1773 	if (!have_addr) {
1774 		db_printf("Need addr\n");
1775 		return;
1776 	}
1777 	isc = (struct cam_iosched_softc *)addr;
1778 	db_printf("pending_reads:     %d\n", isc->read_stats.pending);
1779 	db_printf("min_reads:         %d\n", isc->read_stats.min);
1780 	db_printf("max_reads:         %d\n", isc->read_stats.max);
1781 	db_printf("reads:             %d\n", isc->read_stats.total);
1782 	db_printf("in_reads:          %d\n", isc->read_stats.in);
1783 	db_printf("out_reads:         %d\n", isc->read_stats.out);
1784 	db_printf("queued_reads:      %d\n", isc->read_stats.queued);
1785 	db_printf("Current Q len      %d\n", biolen(&isc->bio_queue));
1786 	db_printf("pending_writes:    %d\n", isc->write_stats.pending);
1787 	db_printf("min_writes:        %d\n", isc->write_stats.min);
1788 	db_printf("max_writes:        %d\n", isc->write_stats.max);
1789 	db_printf("writes:            %d\n", isc->write_stats.total);
1790 	db_printf("in_writes:         %d\n", isc->write_stats.in);
1791 	db_printf("out_writes:        %d\n", isc->write_stats.out);
1792 	db_printf("queued_writes:     %d\n", isc->write_stats.queued);
1793 	db_printf("Current Q len      %d\n", biolen(&isc->write_queue));
1794 	db_printf("pending_trims:     %d\n", isc->trim_stats.pending);
1795 	db_printf("min_trims:         %d\n", isc->trim_stats.min);
1796 	db_printf("max_trims:         %d\n", isc->trim_stats.max);
1797 	db_printf("trims:             %d\n", isc->trim_stats.total);
1798 	db_printf("in_trims:          %d\n", isc->trim_stats.in);
1799 	db_printf("out_trims:         %d\n", isc->trim_stats.out);
1800 	db_printf("queued_trims:      %d\n", isc->trim_stats.queued);
1801 	db_printf("Current Q len      %d\n", biolen(&isc->trim_queue));
1802 	db_printf("read_bias:         %d\n", isc->read_bias);
1803 	db_printf("current_read_bias: %d\n", isc->current_read_bias);
1804 	db_printf("Trim active?       %s\n",
1805 	    (isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) ? "yes" : "no");
1806 }
1807 #endif
1808 #endif
1809