xref: /freebsd/sys/cam/cam_iosched.c (revision 40427cca7a9ae77b095936fb1954417c290cfb17)
1 /*-
2  * CAM IO Scheduler Interface
3  *
4  * Copyright (c) 2015 Netflix, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification, immediately at the beginning of the file.
13  * 2. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 #include "opt_cam.h"
32 #include "opt_ddb.h"
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/bio.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mutex.h>
45 #include <sys/sbuf.h>
46 #include <sys/sysctl.h>
47 
48 #include <cam/cam.h>
49 #include <cam/cam_ccb.h>
50 #include <cam/cam_periph.h>
51 #include <cam/cam_xpt_periph.h>
52 #include <cam/cam_xpt_internal.h>
53 #include <cam/cam_iosched.h>
54 
55 #include <ddb/ddb.h>
56 
57 static MALLOC_DEFINE(M_CAMSCHED, "CAM I/O Scheduler",
58     "CAM I/O Scheduler buffers");
59 
60 /*
61  * Default I/O scheduler for FreeBSD. This implementation is just a thin-vineer
62  * over the bioq_* interface, with notions of separate calls for normal I/O and
63  * for trims.
64  *
65  * When CAM_IOSCHED_DYNAMIC is defined, the scheduler is enhanced to dynamically
66  * steer the rate of one type of traffic to help other types of traffic (eg
67  * limit writes when read latency deteriorates on SSDs).
68  */
69 
70 #ifdef CAM_IOSCHED_DYNAMIC
71 
72 static int do_dynamic_iosched = 1;
73 TUNABLE_INT("kern.cam.do_dynamic_iosched", &do_dynamic_iosched);
74 SYSCTL_INT(_kern_cam, OID_AUTO, do_dynamic_iosched, CTLFLAG_RD,
75     &do_dynamic_iosched, 1,
76     "Enable Dynamic I/O scheduler optimizations.");
77 
78 /*
79  * For an EMA, with an alpha of alpha, we know
80  * 	alpha = 2 / (N + 1)
81  * or
82  * 	N = 1 + (2 / alpha)
83  * where N is the number of samples that 86% of the current
84  * EMA is derived from.
85  *
86  * So we invent[*] alpha_bits:
87  *	alpha_bits = -log_2(alpha)
88  *	alpha = 2^-alpha_bits
89  * So
90  *	N = 1 + 2^(alpha_bits + 1)
91  *
92  * The default 9 gives a 1025 lookback for 86% of the data.
93  * For a brief intro: https://en.wikipedia.org/wiki/Moving_average
94  *
95  * [*] Steal from the load average code and many other places.
96  * Note: See computation of EMA and EMVAR for acceptable ranges of alpha.
97  */
98 static int alpha_bits = 9;
99 TUNABLE_INT("kern.cam.iosched_alpha_bits", &alpha_bits);
100 SYSCTL_INT(_kern_cam, OID_AUTO, iosched_alpha_bits, CTLFLAG_RW,
101     &alpha_bits, 1,
102     "Bits in EMA's alpha.");
103 
104 struct iop_stats;
105 struct cam_iosched_softc;
106 
107 int iosched_debug = 0;
108 
109 typedef enum {
110 	none = 0,				/* No limits */
111 	queue_depth,			/* Limit how many ops we queue to SIM */
112 	iops,				/* Limit # of IOPS to the drive */
113 	bandwidth,			/* Limit bandwidth to the drive */
114 	limiter_max
115 } io_limiter;
116 
117 static const char *cam_iosched_limiter_names[] =
118     { "none", "queue_depth", "iops", "bandwidth" };
119 
120 /*
121  * Called to initialize the bits of the iop_stats structure relevant to the
122  * limiter. Called just after the limiter is set.
123  */
124 typedef int l_init_t(struct iop_stats *);
125 
126 /*
127  * Called every tick.
128  */
129 typedef int l_tick_t(struct iop_stats *);
130 
131 /*
132  * Called to see if the limiter thinks this IOP can be allowed to
133  * proceed. If so, the limiter assumes that the IOP proceeded
134  * and makes any accounting of it that's needed.
135  */
136 typedef int l_iop_t(struct iop_stats *, struct bio *);
137 
138 /*
139  * Called when an I/O completes so the limiter can update its
140  * accounting. Pending I/Os may complete in any order (even when
141  * sent to the hardware at the same time), so the limiter may not
142  * make any assumptions other than this I/O has completed. If it
143  * returns 1, then xpt_schedule() needs to be called again.
144  */
145 typedef int l_iodone_t(struct iop_stats *, struct bio *);
146 
147 static l_iop_t cam_iosched_qd_iop;
148 static l_iop_t cam_iosched_qd_caniop;
149 static l_iodone_t cam_iosched_qd_iodone;
150 
151 static l_init_t cam_iosched_iops_init;
152 static l_tick_t cam_iosched_iops_tick;
153 static l_iop_t cam_iosched_iops_caniop;
154 static l_iop_t cam_iosched_iops_iop;
155 
156 static l_init_t cam_iosched_bw_init;
157 static l_tick_t cam_iosched_bw_tick;
158 static l_iop_t cam_iosched_bw_caniop;
159 static l_iop_t cam_iosched_bw_iop;
160 
161 struct limswitch {
162 	l_init_t	*l_init;
163 	l_tick_t	*l_tick;
164 	l_iop_t		*l_iop;
165 	l_iop_t		*l_caniop;
166 	l_iodone_t	*l_iodone;
167 } limsw[] =
168 {
169 	{	/* none */
170 		.l_init = NULL,
171 		.l_tick = NULL,
172 		.l_iop = NULL,
173 		.l_iodone= NULL,
174 	},
175 	{	/* queue_depth */
176 		.l_init = NULL,
177 		.l_tick = NULL,
178 		.l_caniop = cam_iosched_qd_caniop,
179 		.l_iop = cam_iosched_qd_iop,
180 		.l_iodone= cam_iosched_qd_iodone,
181 	},
182 	{	/* iops */
183 		.l_init = cam_iosched_iops_init,
184 		.l_tick = cam_iosched_iops_tick,
185 		.l_caniop = cam_iosched_iops_caniop,
186 		.l_iop = cam_iosched_iops_iop,
187 		.l_iodone= NULL,
188 	},
189 	{	/* bandwidth */
190 		.l_init = cam_iosched_bw_init,
191 		.l_tick = cam_iosched_bw_tick,
192 		.l_caniop = cam_iosched_bw_caniop,
193 		.l_iop = cam_iosched_bw_iop,
194 		.l_iodone= NULL,
195 	},
196 };
197 
198 struct iop_stats {
199 	/*
200 	 * sysctl state for this subnode.
201 	 */
202 	struct sysctl_ctx_list	sysctl_ctx;
203 	struct sysctl_oid	*sysctl_tree;
204 
205 	/*
206 	 * Information about the current rate limiters, if any
207 	 */
208 	io_limiter	limiter;	/* How are I/Os being limited */
209 	int		min;		/* Low range of limit */
210 	int		max;		/* High range of limit */
211 	int		current;	/* Current rate limiter */
212 	int		l_value1;	/* per-limiter scratch value 1. */
213 	int		l_value2;	/* per-limiter scratch value 2. */
214 
215 	/*
216 	 * Debug information about counts of I/Os that have gone through the
217 	 * scheduler.
218 	 */
219 	int		pending;	/* I/Os pending in the hardware */
220 	int		queued;		/* number currently in the queue */
221 	int		total;		/* Total for all time -- wraps */
222 	int		in;		/* number queued all time -- wraps */
223 	int		out;		/* number completed all time -- wraps */
224 
225 	/*
226 	 * Statistics on different bits of the process.
227 	 */
228 		/* Exp Moving Average, see alpha_bits for more details */
229 	sbintime_t      ema;
230 	sbintime_t      emvar;
231 	sbintime_t      sd;		/* Last computed sd */
232 
233 	uint32_t	state_flags;
234 #define IOP_RATE_LIMITED		1u
235 
236 #define LAT_BUCKETS 15			/* < 1ms < 2ms ... < 2^(n-1)ms >= 2^(n-1)ms*/
237 	uint64_t	latencies[LAT_BUCKETS];
238 
239 	struct cam_iosched_softc *softc;
240 };
241 
242 
243 typedef enum {
244 	set_max = 0,			/* current = max */
245 	read_latency,			/* Steer read latency by throttling writes */
246 	cl_max				/* Keep last */
247 } control_type;
248 
249 static const char *cam_iosched_control_type_names[] =
250     { "set_max", "read_latency" };
251 
252 struct control_loop {
253 	/*
254 	 * sysctl state for this subnode.
255 	 */
256 	struct sysctl_ctx_list	sysctl_ctx;
257 	struct sysctl_oid	*sysctl_tree;
258 
259 	sbintime_t	next_steer;		/* Time of next steer */
260 	sbintime_t	steer_interval;		/* How often do we steer? */
261 	sbintime_t	lolat;
262 	sbintime_t	hilat;
263 	int		alpha;
264 	control_type	type;			/* What type of control? */
265 	int		last_count;		/* Last I/O count */
266 
267 	struct cam_iosched_softc *softc;
268 };
269 
270 #endif
271 
272 struct cam_iosched_softc {
273 	struct bio_queue_head bio_queue;
274 	struct bio_queue_head trim_queue;
275 				/* scheduler flags < 16, user flags >= 16 */
276 	uint32_t	flags;
277 	int		sort_io_queue;
278 #ifdef CAM_IOSCHED_DYNAMIC
279 	int		read_bias;		/* Read bias setting */
280 	int		current_read_bias;	/* Current read bias state */
281 	int		total_ticks;
282 	int		load;			/* EMA of 'load average' of disk / 2^16 */
283 
284 	struct bio_queue_head write_queue;
285 	struct iop_stats read_stats, write_stats, trim_stats;
286 	struct sysctl_ctx_list	sysctl_ctx;
287 	struct sysctl_oid	*sysctl_tree;
288 
289 	int		quanta;			/* Number of quanta per second */
290 	struct callout	ticker;			/* Callout for our quota system */
291 	struct cam_periph *periph;		/* cam periph associated with this device */
292 	uint32_t	this_frac;		/* Fraction of a second (1024ths) for this tick */
293 	sbintime_t	last_time;		/* Last time we ticked */
294 	struct control_loop cl;
295 #endif
296 };
297 
298 #ifdef CAM_IOSCHED_DYNAMIC
299 /*
300  * helper functions to call the limsw functions.
301  */
302 static int
303 cam_iosched_limiter_init(struct iop_stats *ios)
304 {
305 	int lim = ios->limiter;
306 
307 	/* maybe this should be a kassert */
308 	if (lim < none || lim >= limiter_max)
309 		return EINVAL;
310 
311 	if (limsw[lim].l_init)
312 		return limsw[lim].l_init(ios);
313 
314 	return 0;
315 }
316 
317 static int
318 cam_iosched_limiter_tick(struct iop_stats *ios)
319 {
320 	int lim = ios->limiter;
321 
322 	/* maybe this should be a kassert */
323 	if (lim < none || lim >= limiter_max)
324 		return EINVAL;
325 
326 	if (limsw[lim].l_tick)
327 		return limsw[lim].l_tick(ios);
328 
329 	return 0;
330 }
331 
332 static int
333 cam_iosched_limiter_iop(struct iop_stats *ios, struct bio *bp)
334 {
335 	int lim = ios->limiter;
336 
337 	/* maybe this should be a kassert */
338 	if (lim < none || lim >= limiter_max)
339 		return EINVAL;
340 
341 	if (limsw[lim].l_iop)
342 		return limsw[lim].l_iop(ios, bp);
343 
344 	return 0;
345 }
346 
347 static int
348 cam_iosched_limiter_caniop(struct iop_stats *ios, struct bio *bp)
349 {
350 	int lim = ios->limiter;
351 
352 	/* maybe this should be a kassert */
353 	if (lim < none || lim >= limiter_max)
354 		return EINVAL;
355 
356 	if (limsw[lim].l_caniop)
357 		return limsw[lim].l_caniop(ios, bp);
358 
359 	return 0;
360 }
361 
362 static int
363 cam_iosched_limiter_iodone(struct iop_stats *ios, struct bio *bp)
364 {
365 	int lim = ios->limiter;
366 
367 	/* maybe this should be a kassert */
368 	if (lim < none || lim >= limiter_max)
369 		return 0;
370 
371 	if (limsw[lim].l_iodone)
372 		return limsw[lim].l_iodone(ios, bp);
373 
374 	return 0;
375 }
376 
377 /*
378  * Functions to implement the different kinds of limiters
379  */
380 
381 static int
382 cam_iosched_qd_iop(struct iop_stats *ios, struct bio *bp)
383 {
384 
385 	if (ios->current <= 0 || ios->pending < ios->current)
386 		return 0;
387 
388 	return EAGAIN;
389 }
390 
391 static int
392 cam_iosched_qd_caniop(struct iop_stats *ios, struct bio *bp)
393 {
394 
395 	if (ios->current <= 0 || ios->pending < ios->current)
396 		return 0;
397 
398 	return EAGAIN;
399 }
400 
401 static int
402 cam_iosched_qd_iodone(struct iop_stats *ios, struct bio *bp)
403 {
404 
405 	if (ios->current <= 0 || ios->pending != ios->current)
406 		return 0;
407 
408 	return 1;
409 }
410 
411 static int
412 cam_iosched_iops_init(struct iop_stats *ios)
413 {
414 
415 	ios->l_value1 = ios->current / ios->softc->quanta;
416 	if (ios->l_value1 <= 0)
417 		ios->l_value1 = 1;
418 
419 	return 0;
420 }
421 
422 static int
423 cam_iosched_iops_tick(struct iop_stats *ios)
424 {
425 
426 	ios->l_value1 = (int)((ios->current * (uint64_t)ios->softc->this_frac) >> 16);
427 	if (ios->l_value1 <= 0)
428 		ios->l_value1 = 1;
429 
430 	return 0;
431 }
432 
433 static int
434 cam_iosched_iops_caniop(struct iop_stats *ios, struct bio *bp)
435 {
436 
437 	/*
438 	 * So if we have any more IOPs left, allow it,
439 	 * otherwise wait.
440 	 */
441 	if (ios->l_value1 <= 0)
442 		return EAGAIN;
443 	return 0;
444 }
445 
446 static int
447 cam_iosched_iops_iop(struct iop_stats *ios, struct bio *bp)
448 {
449 	int rv;
450 
451 	rv = cam_iosched_limiter_caniop(ios, bp);
452 	if (rv == 0)
453 		ios->l_value1--;
454 
455 	return rv;
456 }
457 
458 static int
459 cam_iosched_bw_init(struct iop_stats *ios)
460 {
461 
462 	/* ios->current is in kB/s, so scale to bytes */
463 	ios->l_value1 = ios->current * 1000 / ios->softc->quanta;
464 
465 	return 0;
466 }
467 
468 static int
469 cam_iosched_bw_tick(struct iop_stats *ios)
470 {
471 	int bw;
472 
473 	/*
474 	 * If we're in the hole for available quota from
475 	 * the last time, then add the quantum for this.
476 	 * If we have any left over from last quantum,
477 	 * then too bad, that's lost. Also, ios->current
478 	 * is in kB/s, so scale.
479 	 *
480 	 * We also allow up to 4 quanta of credits to
481 	 * accumulate to deal with burstiness. 4 is extremely
482 	 * arbitrary.
483 	 */
484 	bw = (int)((ios->current * 1000ull * (uint64_t)ios->softc->this_frac) >> 16);
485 	if (ios->l_value1 < bw * 4)
486 		ios->l_value1 += bw;
487 
488 	return 0;
489 }
490 
491 static int
492 cam_iosched_bw_caniop(struct iop_stats *ios, struct bio *bp)
493 {
494 	/*
495 	 * So if we have any more bw quota left, allow it,
496 	 * otherwise wait. Note, we'll go negative and that's
497 	 * OK. We'll just get a little less next quota.
498 	 *
499 	 * Note on going negative: that allows us to process
500 	 * requests in order better, since we won't allow
501 	 * shorter reads to get around the long one that we
502 	 * don't have the quota to do just yet. It also prevents
503 	 * starvation by being a little more permissive about
504 	 * what we let through this quantum (to prevent the
505 	 * starvation), at the cost of getting a little less
506 	 * next quantum.
507 	 */
508 	if (ios->l_value1 <= 0)
509 		return EAGAIN;
510 
511 
512 	return 0;
513 }
514 
515 static int
516 cam_iosched_bw_iop(struct iop_stats *ios, struct bio *bp)
517 {
518 	int rv;
519 
520 	rv = cam_iosched_limiter_caniop(ios, bp);
521 	if (rv == 0)
522 		ios->l_value1 -= bp->bio_length;
523 
524 	return rv;
525 }
526 
527 static void cam_iosched_cl_maybe_steer(struct control_loop *clp);
528 
529 static void
530 cam_iosched_ticker(void *arg)
531 {
532 	struct cam_iosched_softc *isc = arg;
533 	sbintime_t now, delta;
534 	int pending;
535 
536 	callout_reset(&isc->ticker, hz / isc->quanta - 1, cam_iosched_ticker, isc);
537 
538 	now = sbinuptime();
539 	delta = now - isc->last_time;
540 	isc->this_frac = (uint32_t)delta >> 16;		/* Note: discards seconds -- should be 0 harmless if not */
541 	isc->last_time = now;
542 
543 	cam_iosched_cl_maybe_steer(&isc->cl);
544 
545 	cam_iosched_limiter_tick(&isc->read_stats);
546 	cam_iosched_limiter_tick(&isc->write_stats);
547 	cam_iosched_limiter_tick(&isc->trim_stats);
548 
549 	cam_iosched_schedule(isc, isc->periph);
550 
551 	/*
552 	 * isc->load is an EMA of the pending I/Os at each tick. The number of
553 	 * pending I/Os is the sum of the I/Os queued to the hardware, and those
554 	 * in the software queue that could be queued to the hardware if there
555 	 * were slots.
556 	 *
557 	 * ios_stats.pending is a count of requests in the SIM right now for
558 	 * each of these types of I/O. So the total pending count is the sum of
559 	 * these I/Os and the sum of the queued I/Os still in the software queue
560 	 * for those operations that aren't being rate limited at the moment.
561 	 *
562 	 * The reason for the rate limiting bit is because those I/Os
563 	 * aren't part of the software queued load (since we could
564 	 * give them to hardware, but choose not to).
565 	 *
566 	 * Note: due to a bug in counting pending TRIM in the device, we
567 	 * don't include them in this count. We count each BIO_DELETE in
568 	 * the pending count, but the periph drivers collapse them down
569 	 * into one TRIM command. That one trim command gets the completion
570 	 * so the counts get off.
571 	 */
572 	pending = isc->read_stats.pending + isc->write_stats.pending /* + isc->trim_stats.pending */;
573 	pending += !!(isc->read_stats.state_flags & IOP_RATE_LIMITED) * isc->read_stats.queued +
574 	    !!(isc->write_stats.state_flags & IOP_RATE_LIMITED) * isc->write_stats.queued /* +
575 	    !!(isc->trim_stats.state_flags & IOP_RATE_LIMITED) * isc->trim_stats.queued */ ;
576 	pending <<= 16;
577 	pending /= isc->periph->path->device->ccbq.total_openings;
578 
579 	isc->load = (pending + (isc->load << 13) - isc->load) >> 13; /* see above: 13 -> 16139 / 200/s = ~81s ~1 minute */
580 
581 	isc->total_ticks++;
582 }
583 
584 
585 static void
586 cam_iosched_cl_init(struct control_loop *clp, struct cam_iosched_softc *isc)
587 {
588 
589 	clp->next_steer = sbinuptime();
590 	clp->softc = isc;
591 	clp->steer_interval = SBT_1S * 5;	/* Let's start out steering every 5s */
592 	clp->lolat = 5 * SBT_1MS;
593 	clp->hilat = 15 * SBT_1MS;
594 	clp->alpha = 20;			/* Alpha == gain. 20 = .2 */
595 	clp->type = set_max;
596 }
597 
598 static void
599 cam_iosched_cl_maybe_steer(struct control_loop *clp)
600 {
601 	struct cam_iosched_softc *isc;
602 	sbintime_t now, lat;
603 	int old;
604 
605 	isc = clp->softc;
606 	now = isc->last_time;
607 	if (now < clp->next_steer)
608 		return;
609 
610 	clp->next_steer = now + clp->steer_interval;
611 	switch (clp->type) {
612 	case set_max:
613 		if (isc->write_stats.current != isc->write_stats.max)
614 			printf("Steering write from %d kBps to %d kBps\n",
615 			    isc->write_stats.current, isc->write_stats.max);
616 		isc->read_stats.current = isc->read_stats.max;
617 		isc->write_stats.current = isc->write_stats.max;
618 		isc->trim_stats.current = isc->trim_stats.max;
619 		break;
620 	case read_latency:
621 		old = isc->write_stats.current;
622 		lat = isc->read_stats.ema;
623 		/*
624 		 * Simple PLL-like engine. Since we're steering to a range for
625 		 * the SP (set point) that makes things a little more
626 		 * complicated. In addition, we're not directly controlling our
627 		 * PV (process variable), the read latency, but instead are
628 		 * manipulating the write bandwidth limit for our MV
629 		 * (manipulation variable), analysis of this code gets a bit
630 		 * messy. Also, the MV is a very noisy control surface for read
631 		 * latency since it is affected by many hidden processes inside
632 		 * the device which change how responsive read latency will be
633 		 * in reaction to changes in write bandwidth. Unlike the classic
634 		 * boiler control PLL. this may result in over-steering while
635 		 * the SSD takes its time to react to the new, lower load. This
636 		 * is why we use a relatively low alpha of between .1 and .25 to
637 		 * compensate for this effect. At .1, it takes ~22 steering
638 		 * intervals to back off by a factor of 10. At .2 it only takes
639 		 * ~10. At .25 it only takes ~8. However some preliminary data
640 		 * from the SSD drives suggests a reasponse time in 10's of
641 		 * seconds before latency drops regardless of the new write
642 		 * rate. Careful observation will be required to tune this
643 		 * effectively.
644 		 *
645 		 * Also, when there's no read traffic, we jack up the write
646 		 * limit too regardless of the last read latency.  10 is
647 		 * somewhat arbitrary.
648 		 */
649 		if (lat < clp->lolat || isc->read_stats.total - clp->last_count < 10)
650 			isc->write_stats.current = isc->write_stats.current *
651 			    (100 + clp->alpha) / 100;	/* Scale up */
652 		else if (lat > clp->hilat)
653 			isc->write_stats.current = isc->write_stats.current *
654 			    (100 - clp->alpha) / 100;	/* Scale down */
655 		clp->last_count = isc->read_stats.total;
656 
657 		/*
658 		 * Even if we don't steer, per se, enforce the min/max limits as
659 		 * those may have changed.
660 		 */
661 		if (isc->write_stats.current < isc->write_stats.min)
662 			isc->write_stats.current = isc->write_stats.min;
663 		if (isc->write_stats.current > isc->write_stats.max)
664 			isc->write_stats.current = isc->write_stats.max;
665 		if (old != isc->write_stats.current && 	iosched_debug)
666 			printf("Steering write from %d kBps to %d kBps due to latency of %jdus\n",
667 			    old, isc->write_stats.current,
668 			    (uintmax_t)((uint64_t)1000000 * (uint32_t)lat) >> 32);
669 		break;
670 	case cl_max:
671 		break;
672 	}
673 }
674 #endif
675 
676 /*
677  * Trim or similar currently pending completion. Should only be set for
678  * those drivers wishing only one Trim active at a time.
679  */
680 #define CAM_IOSCHED_FLAG_TRIM_ACTIVE	(1ul << 0)
681 			/* Callout active, and needs to be torn down */
682 #define CAM_IOSCHED_FLAG_CALLOUT_ACTIVE (1ul << 1)
683 
684 			/* Periph drivers set these flags to indicate work */
685 #define CAM_IOSCHED_FLAG_WORK_FLAGS	((0xffffu) << 16)
686 
687 #ifdef CAM_IOSCHED_DYNAMIC
688 static void
689 cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
690     sbintime_t sim_latency, int cmd, size_t size);
691 #endif
692 
693 static inline int
694 cam_iosched_has_flagged_work(struct cam_iosched_softc *isc)
695 {
696 	return !!(isc->flags & CAM_IOSCHED_FLAG_WORK_FLAGS);
697 }
698 
699 static inline int
700 cam_iosched_has_io(struct cam_iosched_softc *isc)
701 {
702 #ifdef CAM_IOSCHED_DYNAMIC
703 	if (do_dynamic_iosched) {
704 		struct bio *rbp = bioq_first(&isc->bio_queue);
705 		struct bio *wbp = bioq_first(&isc->write_queue);
706 		int can_write = wbp != NULL &&
707 		    cam_iosched_limiter_caniop(&isc->write_stats, wbp) == 0;
708 		int can_read = rbp != NULL &&
709 		    cam_iosched_limiter_caniop(&isc->read_stats, rbp) == 0;
710 		if (iosched_debug > 2) {
711 			printf("can write %d: pending_writes %d max_writes %d\n", can_write, isc->write_stats.pending, isc->write_stats.max);
712 			printf("can read %d: read_stats.pending %d max_reads %d\n", can_read, isc->read_stats.pending, isc->read_stats.max);
713 			printf("Queued reads %d writes %d\n", isc->read_stats.queued, isc->write_stats.queued);
714 		}
715 		return can_read || can_write;
716 	}
717 #endif
718 	return bioq_first(&isc->bio_queue) != NULL;
719 }
720 
721 static inline int
722 cam_iosched_has_more_trim(struct cam_iosched_softc *isc)
723 {
724 	return !(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) &&
725 	    bioq_first(&isc->trim_queue);
726 }
727 
728 #define cam_iosched_sort_queue(isc)	((isc)->sort_io_queue >= 0 ?	\
729     (isc)->sort_io_queue : cam_sort_io_queues)
730 
731 
732 static inline int
733 cam_iosched_has_work(struct cam_iosched_softc *isc)
734 {
735 #ifdef CAM_IOSCHED_DYNAMIC
736 	if (iosched_debug > 2)
737 		printf("has work: %d %d %d\n", cam_iosched_has_io(isc),
738 		    cam_iosched_has_more_trim(isc),
739 		    cam_iosched_has_flagged_work(isc));
740 #endif
741 
742 	return cam_iosched_has_io(isc) ||
743 		cam_iosched_has_more_trim(isc) ||
744 		cam_iosched_has_flagged_work(isc);
745 }
746 
747 #ifdef CAM_IOSCHED_DYNAMIC
748 static void
749 cam_iosched_iop_stats_init(struct cam_iosched_softc *isc, struct iop_stats *ios)
750 {
751 
752 	ios->limiter = none;
753 	cam_iosched_limiter_init(ios);
754 	ios->in = 0;
755 	ios->max = 300000;
756 	ios->min = 1;
757 	ios->out = 0;
758 	ios->pending = 0;
759 	ios->queued = 0;
760 	ios->total = 0;
761 	ios->ema = 0;
762 	ios->emvar = 0;
763 	ios->softc = isc;
764 }
765 
766 static int
767 cam_iosched_limiter_sysctl(SYSCTL_HANDLER_ARGS)
768 {
769 	char buf[16];
770 	struct iop_stats *ios;
771 	struct cam_iosched_softc *isc;
772 	int value, i, error;
773 	const char *p;
774 
775 	ios = arg1;
776 	isc = ios->softc;
777 	value = ios->limiter;
778 	if (value < none || value >= limiter_max)
779 		p = "UNKNOWN";
780 	else
781 		p = cam_iosched_limiter_names[value];
782 
783 	strlcpy(buf, p, sizeof(buf));
784 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
785 	if (error != 0 || req->newptr == NULL)
786 		return error;
787 
788 	cam_periph_lock(isc->periph);
789 
790 	for (i = none; i < limiter_max; i++) {
791 		if (strcmp(buf, cam_iosched_limiter_names[i]) != 0)
792 			continue;
793 		ios->limiter = i;
794 		error = cam_iosched_limiter_init(ios);
795 		if (error != 0) {
796 			ios->limiter = value;
797 			cam_periph_unlock(isc->periph);
798 			return error;
799 		}
800 		/* Note: disk load averate requires ticker to be always running */
801 		callout_reset(&isc->ticker, hz / isc->quanta - 1, cam_iosched_ticker, isc);
802 		isc->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
803 
804 		cam_periph_unlock(isc->periph);
805 		return 0;
806 	}
807 
808 	cam_periph_unlock(isc->periph);
809 	return EINVAL;
810 }
811 
812 static int
813 cam_iosched_control_type_sysctl(SYSCTL_HANDLER_ARGS)
814 {
815 	char buf[16];
816 	struct control_loop *clp;
817 	struct cam_iosched_softc *isc;
818 	int value, i, error;
819 	const char *p;
820 
821 	clp = arg1;
822 	isc = clp->softc;
823 	value = clp->type;
824 	if (value < none || value >= cl_max)
825 		p = "UNKNOWN";
826 	else
827 		p = cam_iosched_control_type_names[value];
828 
829 	strlcpy(buf, p, sizeof(buf));
830 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
831 	if (error != 0 || req->newptr == NULL)
832 		return error;
833 
834 	for (i = set_max; i < cl_max; i++) {
835 		if (strcmp(buf, cam_iosched_control_type_names[i]) != 0)
836 			continue;
837 		cam_periph_lock(isc->periph);
838 		clp->type = i;
839 		cam_periph_unlock(isc->periph);
840 		return 0;
841 	}
842 
843 	return EINVAL;
844 }
845 
846 static int
847 cam_iosched_sbintime_sysctl(SYSCTL_HANDLER_ARGS)
848 {
849 	char buf[16];
850 	sbintime_t value;
851 	int error;
852 	uint64_t us;
853 
854 	value = *(sbintime_t *)arg1;
855 	us = (uint64_t)value / SBT_1US;
856 	snprintf(buf, sizeof(buf), "%ju", (intmax_t)us);
857 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
858 	if (error != 0 || req->newptr == NULL)
859 		return error;
860 	us = strtoul(buf, NULL, 10);
861 	if (us == 0)
862 		return EINVAL;
863 	*(sbintime_t *)arg1 = us * SBT_1US;
864 	return 0;
865 }
866 
867 static int
868 cam_iosched_sysctl_latencies(SYSCTL_HANDLER_ARGS)
869 {
870 	int i, error;
871 	struct sbuf sb;
872 	uint64_t *latencies;
873 
874 	latencies = arg1;
875 	sbuf_new_for_sysctl(&sb, NULL, LAT_BUCKETS * 16, req);
876 
877 	for (i = 0; i < LAT_BUCKETS - 1; i++)
878 		sbuf_printf(&sb, "%jd,", (intmax_t)latencies[i]);
879 	sbuf_printf(&sb, "%jd", (intmax_t)latencies[LAT_BUCKETS - 1]);
880 	error = sbuf_finish(&sb);
881 	sbuf_delete(&sb);
882 
883 	return (error);
884 }
885 
886 static void
887 cam_iosched_iop_stats_sysctl_init(struct cam_iosched_softc *isc, struct iop_stats *ios, char *name)
888 {
889 	struct sysctl_oid_list *n;
890 	struct sysctl_ctx_list *ctx;
891 
892 	ios->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
893 	    SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, name,
894 	    CTLFLAG_RD, 0, name);
895 	n = SYSCTL_CHILDREN(ios->sysctl_tree);
896 	ctx = &ios->sysctl_ctx;
897 
898 	SYSCTL_ADD_UQUAD(ctx, n,
899 	    OID_AUTO, "ema", CTLFLAG_RD,
900 	    &ios->ema,
901 	    "Fast Exponentially Weighted Moving Average");
902 	SYSCTL_ADD_UQUAD(ctx, n,
903 	    OID_AUTO, "emvar", CTLFLAG_RD,
904 	    &ios->emvar,
905 	    "Fast Exponentially Weighted Moving Variance");
906 
907 	SYSCTL_ADD_INT(ctx, n,
908 	    OID_AUTO, "pending", CTLFLAG_RD,
909 	    &ios->pending, 0,
910 	    "Instantaneous # of pending transactions");
911 	SYSCTL_ADD_INT(ctx, n,
912 	    OID_AUTO, "count", CTLFLAG_RD,
913 	    &ios->total, 0,
914 	    "# of transactions submitted to hardware");
915 	SYSCTL_ADD_INT(ctx, n,
916 	    OID_AUTO, "queued", CTLFLAG_RD,
917 	    &ios->queued, 0,
918 	    "# of transactions in the queue");
919 	SYSCTL_ADD_INT(ctx, n,
920 	    OID_AUTO, "in", CTLFLAG_RD,
921 	    &ios->in, 0,
922 	    "# of transactions queued to driver");
923 	SYSCTL_ADD_INT(ctx, n,
924 	    OID_AUTO, "out", CTLFLAG_RD,
925 	    &ios->out, 0,
926 	    "# of transactions completed");
927 
928 	SYSCTL_ADD_PROC(ctx, n,
929 	    OID_AUTO, "limiter", CTLTYPE_STRING | CTLFLAG_RW,
930 	    ios, 0, cam_iosched_limiter_sysctl, "A",
931 	    "Current limiting type.");
932 	SYSCTL_ADD_INT(ctx, n,
933 	    OID_AUTO, "min", CTLFLAG_RW,
934 	    &ios->min, 0,
935 	    "min resource");
936 	SYSCTL_ADD_INT(ctx, n,
937 	    OID_AUTO, "max", CTLFLAG_RW,
938 	    &ios->max, 0,
939 	    "max resource");
940 	SYSCTL_ADD_INT(ctx, n,
941 	    OID_AUTO, "current", CTLFLAG_RW,
942 	    &ios->current, 0,
943 	    "current resource");
944 
945 	SYSCTL_ADD_PROC(ctx, n,
946 	    OID_AUTO, "latencies", CTLTYPE_STRING | CTLFLAG_RD,
947 	    &ios->latencies, 0,
948 	    cam_iosched_sysctl_latencies, "A",
949 	    "Array of power of 2 latency from 1ms to 1.024s");
950 }
951 
952 static void
953 cam_iosched_iop_stats_fini(struct iop_stats *ios)
954 {
955 	if (ios->sysctl_tree)
956 		if (sysctl_ctx_free(&ios->sysctl_ctx) != 0)
957 			printf("can't remove iosched sysctl stats context\n");
958 }
959 
960 static void
961 cam_iosched_cl_sysctl_init(struct cam_iosched_softc *isc)
962 {
963 	struct sysctl_oid_list *n;
964 	struct sysctl_ctx_list *ctx;
965 	struct control_loop *clp;
966 
967 	clp = &isc->cl;
968 	clp->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
969 	    SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, "control",
970 	    CTLFLAG_RD, 0, "Control loop info");
971 	n = SYSCTL_CHILDREN(clp->sysctl_tree);
972 	ctx = &clp->sysctl_ctx;
973 
974 	SYSCTL_ADD_PROC(ctx, n,
975 	    OID_AUTO, "type", CTLTYPE_STRING | CTLFLAG_RW,
976 	    clp, 0, cam_iosched_control_type_sysctl, "A",
977 	    "Control loop algorithm");
978 	SYSCTL_ADD_PROC(ctx, n,
979 	    OID_AUTO, "steer_interval", CTLTYPE_STRING | CTLFLAG_RW,
980 	    &clp->steer_interval, 0, cam_iosched_sbintime_sysctl, "A",
981 	    "How often to steer (in us)");
982 	SYSCTL_ADD_PROC(ctx, n,
983 	    OID_AUTO, "lolat", CTLTYPE_STRING | CTLFLAG_RW,
984 	    &clp->lolat, 0, cam_iosched_sbintime_sysctl, "A",
985 	    "Low water mark for Latency (in us)");
986 	SYSCTL_ADD_PROC(ctx, n,
987 	    OID_AUTO, "hilat", CTLTYPE_STRING | CTLFLAG_RW,
988 	    &clp->hilat, 0, cam_iosched_sbintime_sysctl, "A",
989 	    "Hi water mark for Latency (in us)");
990 	SYSCTL_ADD_INT(ctx, n,
991 	    OID_AUTO, "alpha", CTLFLAG_RW,
992 	    &clp->alpha, 0,
993 	    "Alpha for PLL (x100) aka gain");
994 }
995 
996 static void
997 cam_iosched_cl_sysctl_fini(struct control_loop *clp)
998 {
999 	if (clp->sysctl_tree)
1000 		if (sysctl_ctx_free(&clp->sysctl_ctx) != 0)
1001 			printf("can't remove iosched sysctl control loop context\n");
1002 }
1003 #endif
1004 
1005 /*
1006  * Allocate the iosched structure. This also insulates callers from knowing
1007  * sizeof struct cam_iosched_softc.
1008  */
1009 int
1010 cam_iosched_init(struct cam_iosched_softc **iscp, struct cam_periph *periph)
1011 {
1012 
1013 	*iscp = malloc(sizeof(**iscp), M_CAMSCHED, M_NOWAIT | M_ZERO);
1014 	if (*iscp == NULL)
1015 		return ENOMEM;
1016 #ifdef CAM_IOSCHED_DYNAMIC
1017 	if (iosched_debug)
1018 		printf("CAM IOSCHEDULER Allocating entry at %p\n", *iscp);
1019 #endif
1020 	(*iscp)->sort_io_queue = -1;
1021 	bioq_init(&(*iscp)->bio_queue);
1022 	bioq_init(&(*iscp)->trim_queue);
1023 #ifdef CAM_IOSCHED_DYNAMIC
1024 	if (do_dynamic_iosched) {
1025 		bioq_init(&(*iscp)->write_queue);
1026 		(*iscp)->read_bias = 100;
1027 		(*iscp)->current_read_bias = 100;
1028 		(*iscp)->quanta = min(hz, 200);
1029 		cam_iosched_iop_stats_init(*iscp, &(*iscp)->read_stats);
1030 		cam_iosched_iop_stats_init(*iscp, &(*iscp)->write_stats);
1031 		cam_iosched_iop_stats_init(*iscp, &(*iscp)->trim_stats);
1032 		(*iscp)->trim_stats.max = 1;	/* Trims are special: one at a time for now */
1033 		(*iscp)->last_time = sbinuptime();
1034 		callout_init_mtx(&(*iscp)->ticker, cam_periph_mtx(periph), 0);
1035 		(*iscp)->periph = periph;
1036 		cam_iosched_cl_init(&(*iscp)->cl, *iscp);
1037 		callout_reset(&(*iscp)->ticker, hz / (*iscp)->quanta - 1, cam_iosched_ticker, *iscp);
1038 		(*iscp)->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
1039 	}
1040 #endif
1041 
1042 	return 0;
1043 }
1044 
1045 /*
1046  * Reclaim all used resources. This assumes that other folks have
1047  * drained the requests in the hardware. Maybe an unwise assumption.
1048  */
1049 void
1050 cam_iosched_fini(struct cam_iosched_softc *isc)
1051 {
1052 	if (isc) {
1053 		cam_iosched_flush(isc, NULL, ENXIO);
1054 #ifdef CAM_IOSCHED_DYNAMIC
1055 		cam_iosched_iop_stats_fini(&isc->read_stats);
1056 		cam_iosched_iop_stats_fini(&isc->write_stats);
1057 		cam_iosched_iop_stats_fini(&isc->trim_stats);
1058 		cam_iosched_cl_sysctl_fini(&isc->cl);
1059 		if (isc->sysctl_tree)
1060 			if (sysctl_ctx_free(&isc->sysctl_ctx) != 0)
1061 				printf("can't remove iosched sysctl stats context\n");
1062 		if (isc->flags & CAM_IOSCHED_FLAG_CALLOUT_ACTIVE) {
1063 			callout_drain(&isc->ticker);
1064 			isc->flags &= ~ CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
1065 		}
1066 #endif
1067 		free(isc, M_CAMSCHED);
1068 	}
1069 }
1070 
1071 /*
1072  * After we're sure we're attaching a device, go ahead and add
1073  * hooks for any sysctl we may wish to honor.
1074  */
1075 void cam_iosched_sysctl_init(struct cam_iosched_softc *isc,
1076     struct sysctl_ctx_list *ctx, struct sysctl_oid *node)
1077 {
1078 #ifdef CAM_IOSCHED_DYNAMIC
1079 	struct sysctl_oid_list *n;
1080 #endif
1081 
1082 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(node),
1083 		OID_AUTO, "sort_io_queue", CTLFLAG_RW | CTLFLAG_MPSAFE,
1084 		&isc->sort_io_queue, 0,
1085 		"Sort IO queue to try and optimise disk access patterns");
1086 
1087 #ifdef CAM_IOSCHED_DYNAMIC
1088 	if (!do_dynamic_iosched)
1089 		return;
1090 
1091 	isc->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1092 	    SYSCTL_CHILDREN(node), OID_AUTO, "iosched",
1093 	    CTLFLAG_RD, 0, "I/O scheduler statistics");
1094 	n = SYSCTL_CHILDREN(isc->sysctl_tree);
1095 	ctx = &isc->sysctl_ctx;
1096 
1097 	cam_iosched_iop_stats_sysctl_init(isc, &isc->read_stats, "read");
1098 	cam_iosched_iop_stats_sysctl_init(isc, &isc->write_stats, "write");
1099 	cam_iosched_iop_stats_sysctl_init(isc, &isc->trim_stats, "trim");
1100 	cam_iosched_cl_sysctl_init(isc);
1101 
1102 	SYSCTL_ADD_INT(ctx, n,
1103 	    OID_AUTO, "read_bias", CTLFLAG_RW,
1104 	    &isc->read_bias, 100,
1105 	    "How biased towards read should we be independent of limits");
1106 
1107 	SYSCTL_ADD_INT(ctx, n,
1108 	    OID_AUTO, "quanta", CTLFLAG_RW,
1109 	    &isc->quanta, 200,
1110 	    "How many quanta per second do we slice the I/O up into");
1111 
1112 	SYSCTL_ADD_INT(ctx, n,
1113 	    OID_AUTO, "total_ticks", CTLFLAG_RD,
1114 	    &isc->total_ticks, 0,
1115 	    "Total number of ticks we've done");
1116 
1117 	SYSCTL_ADD_INT(ctx, n,
1118 	    OID_AUTO, "load", CTLFLAG_RD,
1119 	    &isc->load, 0,
1120 	    "scaled load average / 100");
1121 #endif
1122 }
1123 
1124 /*
1125  * Flush outstanding I/O. Consumers of this library don't know all the
1126  * queues we may keep, so this allows all I/O to be flushed in one
1127  * convenient call.
1128  */
1129 void
1130 cam_iosched_flush(struct cam_iosched_softc *isc, struct devstat *stp, int err)
1131 {
1132 	bioq_flush(&isc->bio_queue, stp, err);
1133 	bioq_flush(&isc->trim_queue, stp, err);
1134 #ifdef CAM_IOSCHED_DYNAMIC
1135 	if (do_dynamic_iosched)
1136 		bioq_flush(&isc->write_queue, stp, err);
1137 #endif
1138 }
1139 
1140 #ifdef CAM_IOSCHED_DYNAMIC
1141 static struct bio *
1142 cam_iosched_get_write(struct cam_iosched_softc *isc)
1143 {
1144 	struct bio *bp;
1145 
1146 	/*
1147 	 * We control the write rate by controlling how many requests we send
1148 	 * down to the drive at any one time. Fewer requests limits the
1149 	 * effects of both starvation when the requests take a while and write
1150 	 * amplification when each request is causing more than one write to
1151 	 * the NAND media. Limiting the queue depth like this will also limit
1152 	 * the write throughput and give and reads that want to compete to
1153 	 * compete unfairly.
1154 	 */
1155 	bp = bioq_first(&isc->write_queue);
1156 	if (bp == NULL) {
1157 		if (iosched_debug > 3)
1158 			printf("No writes present in write_queue\n");
1159 		return NULL;
1160 	}
1161 
1162 	/*
1163 	 * If pending read, prefer that based on current read bias
1164 	 * setting.
1165 	 */
1166 	if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
1167 		if (iosched_debug)
1168 			printf("Reads present and current_read_bias is %d queued writes %d queued reads %d\n", isc->current_read_bias, isc->write_stats.queued, isc->read_stats.queued);
1169 		isc->current_read_bias--;
1170 		/* We're not limiting writes, per se, just doing reads first */
1171 		return NULL;
1172 	}
1173 
1174 	/*
1175 	 * See if our current limiter allows this I/O.
1176 	 */
1177 	if (cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
1178 		if (iosched_debug)
1179 			printf("Can't write because limiter says no.\n");
1180 		isc->write_stats.state_flags |= IOP_RATE_LIMITED;
1181 		return NULL;
1182 	}
1183 
1184 	/*
1185 	 * Let's do this: We've passed all the gates and we're a go
1186 	 * to schedule the I/O in the SIM.
1187 	 */
1188 	isc->current_read_bias = isc->read_bias;
1189 	bioq_remove(&isc->write_queue, bp);
1190 	if (bp->bio_cmd == BIO_WRITE) {
1191 		isc->write_stats.queued--;
1192 		isc->write_stats.total++;
1193 		isc->write_stats.pending++;
1194 	}
1195 	if (iosched_debug > 9)
1196 		printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
1197 	isc->write_stats.state_flags &= ~IOP_RATE_LIMITED;
1198 	return bp;
1199 }
1200 #endif
1201 
1202 /*
1203  * Put back a trim that you weren't able to actually schedule this time.
1204  */
1205 void
1206 cam_iosched_put_back_trim(struct cam_iosched_softc *isc, struct bio *bp)
1207 {
1208 	bioq_insert_head(&isc->trim_queue, bp);
1209 #ifdef CAM_IOSCHED_DYNAMIC
1210 	isc->trim_stats.queued++;
1211 	isc->trim_stats.total--;		/* since we put it back, don't double count */
1212 	isc->trim_stats.pending--;
1213 #endif
1214 }
1215 
1216 /*
1217  * gets the next trim from the trim queue.
1218  *
1219  * Assumes we're called with the periph lock held.  It removes this
1220  * trim from the queue and the device must explicitly reinsert it
1221  * should the need arise.
1222  */
1223 struct bio *
1224 cam_iosched_next_trim(struct cam_iosched_softc *isc)
1225 {
1226 	struct bio *bp;
1227 
1228 	bp  = bioq_first(&isc->trim_queue);
1229 	if (bp == NULL)
1230 		return NULL;
1231 	bioq_remove(&isc->trim_queue, bp);
1232 #ifdef CAM_IOSCHED_DYNAMIC
1233 	isc->trim_stats.queued--;
1234 	isc->trim_stats.total++;
1235 	isc->trim_stats.pending++;
1236 #endif
1237 	return bp;
1238 }
1239 
1240 /*
1241  * gets an available trim from the trim queue, if there's no trim
1242  * already pending. It removes this trim from the queue and the device
1243  * must explicitly reinsert it should the need arise.
1244  *
1245  * Assumes we're called with the periph lock held.
1246  */
1247 struct bio *
1248 cam_iosched_get_trim(struct cam_iosched_softc *isc)
1249 {
1250 
1251 	if (!cam_iosched_has_more_trim(isc))
1252 		return NULL;
1253 
1254 	return cam_iosched_next_trim(isc);
1255 }
1256 
1257 /*
1258  * Determine what the next bit of work to do is for the periph. The
1259  * default implementation looks to see if we have trims to do, but no
1260  * trims outstanding. If so, we do that. Otherwise we see if we have
1261  * other work. If we do, then we do that. Otherwise why were we called?
1262  */
1263 struct bio *
1264 cam_iosched_next_bio(struct cam_iosched_softc *isc)
1265 {
1266 	struct bio *bp;
1267 
1268 	/*
1269 	 * See if we have a trim that can be scheduled. We can only send one
1270 	 * at a time down, so this takes that into account.
1271 	 *
1272 	 * XXX newer TRIM commands are queueable. Revisit this when we
1273 	 * implement them.
1274 	 */
1275 	if ((bp = cam_iosched_get_trim(isc)) != NULL)
1276 		return bp;
1277 
1278 #ifdef CAM_IOSCHED_DYNAMIC
1279 	/*
1280 	 * See if we have any pending writes, and room in the queue for them,
1281 	 * and if so, those are next.
1282 	 */
1283 	if (do_dynamic_iosched) {
1284 		if ((bp = cam_iosched_get_write(isc)) != NULL)
1285 			return bp;
1286 	}
1287 #endif
1288 
1289 	/*
1290 	 * next, see if there's other, normal I/O waiting. If so return that.
1291 	 */
1292 	if ((bp = bioq_first(&isc->bio_queue)) == NULL)
1293 		return NULL;
1294 
1295 #ifdef CAM_IOSCHED_DYNAMIC
1296 	/*
1297 	 * For the dynamic scheduler, bio_queue is only for reads, so enforce
1298 	 * the limits here. Enforce only for reads.
1299 	 */
1300 	if (do_dynamic_iosched) {
1301 		if (bp->bio_cmd == BIO_READ &&
1302 		    cam_iosched_limiter_iop(&isc->read_stats, bp) != 0) {
1303 			isc->read_stats.state_flags |= IOP_RATE_LIMITED;
1304 			return NULL;
1305 		}
1306 	}
1307 	isc->read_stats.state_flags &= ~IOP_RATE_LIMITED;
1308 #endif
1309 	bioq_remove(&isc->bio_queue, bp);
1310 #ifdef CAM_IOSCHED_DYNAMIC
1311 	if (do_dynamic_iosched) {
1312 		if (bp->bio_cmd == BIO_READ) {
1313 			isc->read_stats.queued--;
1314 			isc->read_stats.total++;
1315 			isc->read_stats.pending++;
1316 		} else
1317 			printf("Found bio_cmd = %#x\n", bp->bio_cmd);
1318 	}
1319 	if (iosched_debug > 9)
1320 		printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
1321 #endif
1322 	return bp;
1323 }
1324 
1325 /*
1326  * Driver has been given some work to do by the block layer. Tell the
1327  * scheduler about it and have it queue the work up. The scheduler module
1328  * will then return the currently most useful bit of work later, possibly
1329  * deferring work for various reasons.
1330  */
1331 void
1332 cam_iosched_queue_work(struct cam_iosched_softc *isc, struct bio *bp)
1333 {
1334 
1335 	/*
1336 	 * Put all trims on the trim queue sorted, since we know
1337 	 * that the collapsing code requires this. Otherwise put
1338 	 * the work on the bio queue.
1339 	 */
1340 	if (bp->bio_cmd == BIO_DELETE) {
1341 		bioq_disksort(&isc->trim_queue, bp);
1342 #ifdef CAM_IOSCHED_DYNAMIC
1343 		isc->trim_stats.in++;
1344 		isc->trim_stats.queued++;
1345 #endif
1346 	}
1347 #ifdef CAM_IOSCHED_DYNAMIC
1348 	else if (do_dynamic_iosched &&
1349 	    (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_FLUSH)) {
1350 		if (cam_iosched_sort_queue(isc))
1351 			bioq_disksort(&isc->write_queue, bp);
1352 		else
1353 			bioq_insert_tail(&isc->write_queue, bp);
1354 		if (iosched_debug > 9)
1355 			printf("Qw  : %p %#x\n", bp, bp->bio_cmd);
1356 		if (bp->bio_cmd == BIO_WRITE) {
1357 			isc->write_stats.in++;
1358 			isc->write_stats.queued++;
1359 		}
1360 	}
1361 #endif
1362 	else {
1363 		if (cam_iosched_sort_queue(isc))
1364 			bioq_disksort(&isc->bio_queue, bp);
1365 		else
1366 			bioq_insert_tail(&isc->bio_queue, bp);
1367 #ifdef CAM_IOSCHED_DYNAMIC
1368 		if (iosched_debug > 9)
1369 			printf("Qr  : %p %#x\n", bp, bp->bio_cmd);
1370 		if (bp->bio_cmd == BIO_READ) {
1371 			isc->read_stats.in++;
1372 			isc->read_stats.queued++;
1373 		} else if (bp->bio_cmd == BIO_WRITE) {
1374 			isc->write_stats.in++;
1375 			isc->write_stats.queued++;
1376 		}
1377 #endif
1378 	}
1379 }
1380 
1381 /*
1382  * If we have work, get it scheduled. Called with the periph lock held.
1383  */
1384 void
1385 cam_iosched_schedule(struct cam_iosched_softc *isc, struct cam_periph *periph)
1386 {
1387 
1388 	if (cam_iosched_has_work(isc))
1389 		xpt_schedule(periph, CAM_PRIORITY_NORMAL);
1390 }
1391 
1392 /*
1393  * Complete a trim request. Mark that we no longer have one in flight.
1394  */
1395 void
1396 cam_iosched_trim_done(struct cam_iosched_softc *isc)
1397 {
1398 
1399 	isc->flags &= ~CAM_IOSCHED_FLAG_TRIM_ACTIVE;
1400 }
1401 
1402 /*
1403  * Complete a bio. Called before we release the ccb with xpt_release_ccb so we
1404  * might use notes in the ccb for statistics.
1405  */
1406 int
1407 cam_iosched_bio_complete(struct cam_iosched_softc *isc, struct bio *bp,
1408     union ccb *done_ccb)
1409 {
1410 	int retval = 0;
1411 #ifdef CAM_IOSCHED_DYNAMIC
1412 	if (!do_dynamic_iosched)
1413 		return retval;
1414 
1415 	if (iosched_debug > 10)
1416 		printf("done: %p %#x\n", bp, bp->bio_cmd);
1417 	if (bp->bio_cmd == BIO_WRITE) {
1418 		retval = cam_iosched_limiter_iodone(&isc->write_stats, bp);
1419 		isc->write_stats.out++;
1420 		isc->write_stats.pending--;
1421 	} else if (bp->bio_cmd == BIO_READ) {
1422 		retval = cam_iosched_limiter_iodone(&isc->read_stats, bp);
1423 		isc->read_stats.out++;
1424 		isc->read_stats.pending--;
1425 	} else if (bp->bio_cmd == BIO_DELETE) {
1426 		isc->trim_stats.out++;
1427 		isc->trim_stats.pending--;
1428 	} else if (bp->bio_cmd != BIO_FLUSH) {
1429 		if (iosched_debug)
1430 			printf("Completing command with bio_cmd == %#x\n", bp->bio_cmd);
1431 	}
1432 
1433 	if (!(bp->bio_flags & BIO_ERROR))
1434 		cam_iosched_io_metric_update(isc,
1435 		    cam_iosched_sbintime_t(done_ccb->ccb_h.qos.periph_data),
1436 		    bp->bio_cmd, bp->bio_bcount);
1437 #endif
1438 	return retval;
1439 }
1440 
1441 /*
1442  * Tell the io scheduler that you've pushed a trim down into the sim.
1443  * This also tells the I/O scheduler not to push any more trims down, so
1444  * some periphs do not call it if they can cope with multiple trims in flight.
1445  */
1446 void
1447 cam_iosched_submit_trim(struct cam_iosched_softc *isc)
1448 {
1449 
1450 	isc->flags |= CAM_IOSCHED_FLAG_TRIM_ACTIVE;
1451 }
1452 
1453 /*
1454  * Change the sorting policy hint for I/O transactions for this device.
1455  */
1456 void
1457 cam_iosched_set_sort_queue(struct cam_iosched_softc *isc, int val)
1458 {
1459 
1460 	isc->sort_io_queue = val;
1461 }
1462 
1463 int
1464 cam_iosched_has_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1465 {
1466 	return isc->flags & flags;
1467 }
1468 
1469 void
1470 cam_iosched_set_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1471 {
1472 	isc->flags |= flags;
1473 }
1474 
1475 void
1476 cam_iosched_clr_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1477 {
1478 	isc->flags &= ~flags;
1479 }
1480 
1481 #ifdef CAM_IOSCHED_DYNAMIC
1482 /*
1483  * After the method presented in Jack Crenshaw's 1998 article "Integer
1484  * Square Roots," reprinted at
1485  * http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots
1486  * and well worth the read. Briefly, we find the power of 4 that's the
1487  * largest smaller than val. We then check each smaller power of 4 to
1488  * see if val is still bigger. The right shifts at each step divide
1489  * the result by 2 which after successive application winds up
1490  * accumulating the right answer. It could also have been accumulated
1491  * using a separate root counter, but this code is smaller and faster
1492  * than that method. This method is also integer size invariant.
1493  * It returns floor(sqrt((float)val)), or the largest integer less than
1494  * or equal to the square root.
1495  */
1496 static uint64_t
1497 isqrt64(uint64_t val)
1498 {
1499 	uint64_t res = 0;
1500 	uint64_t bit = 1ULL << (sizeof(uint64_t) * NBBY - 2);
1501 
1502 	/*
1503 	 * Find the largest power of 4 smaller than val.
1504 	 */
1505 	while (bit > val)
1506 		bit >>= 2;
1507 
1508 	/*
1509 	 * Accumulate the answer, one bit at a time (we keep moving
1510 	 * them over since 2 is the square root of 4 and we test
1511 	 * powers of 4). We accumulate where we find the bit, but
1512 	 * the successive shifts land the bit in the right place
1513 	 * by the end.
1514 	 */
1515 	while (bit != 0) {
1516 		if (val >= res + bit) {
1517 			val -= res + bit;
1518 			res = (res >> 1) + bit;
1519 		} else
1520 			res >>= 1;
1521 		bit >>= 2;
1522 	}
1523 
1524 	return res;
1525 }
1526 
1527 static sbintime_t latencies[LAT_BUCKETS - 1] = {
1528 	SBT_1MS <<  0,
1529 	SBT_1MS <<  1,
1530 	SBT_1MS <<  2,
1531 	SBT_1MS <<  3,
1532 	SBT_1MS <<  4,
1533 	SBT_1MS <<  5,
1534 	SBT_1MS <<  6,
1535 	SBT_1MS <<  7,
1536 	SBT_1MS <<  8,
1537 	SBT_1MS <<  9,
1538 	SBT_1MS << 10,
1539 	SBT_1MS << 11,
1540 	SBT_1MS << 12,
1541 	SBT_1MS << 13		/* 8.192s */
1542 };
1543 
1544 static void
1545 cam_iosched_update(struct iop_stats *iop, sbintime_t sim_latency)
1546 {
1547 	sbintime_t y, deltasq, delta;
1548 	int i;
1549 
1550 	/*
1551 	 * Keep counts for latency. We do it by power of two buckets.
1552 	 * This helps us spot outlier behavior obscured by averages.
1553 	 */
1554 	for (i = 0; i < LAT_BUCKETS - 1; i++) {
1555 		if (sim_latency < latencies[i]) {
1556 			iop->latencies[i]++;
1557 			break;
1558 		}
1559 	}
1560 	if (i == LAT_BUCKETS - 1)
1561 		iop->latencies[i]++; 	 /* Put all > 1024ms values into the last bucket. */
1562 
1563 	/*
1564 	 * Classic exponentially decaying average with a tiny alpha
1565 	 * (2 ^ -alpha_bits). For more info see the NIST statistical
1566 	 * handbook.
1567 	 *
1568 	 * ema_t = y_t * alpha + ema_t-1 * (1 - alpha)		[nist]
1569 	 * ema_t = y_t * alpha + ema_t-1 - alpha * ema_t-1
1570 	 * ema_t = alpha * y_t - alpha * ema_t-1 + ema_t-1
1571 	 * alpha = 1 / (1 << alpha_bits)
1572 	 * sub e == ema_t-1, b == 1/alpha (== 1 << alpha_bits), d == y_t - ema_t-1
1573 	 *	= y_t/b - e/b + be/b
1574 	 *      = (y_t - e + be) / b
1575 	 *	= (e + d) / b
1576 	 *
1577 	 * Since alpha is a power of two, we can compute this w/o any mult or
1578 	 * division.
1579 	 *
1580 	 * Variance can also be computed. Usually, it would be expressed as follows:
1581 	 *	diff_t = y_t - ema_t-1
1582 	 *	emvar_t = (1 - alpha) * (emavar_t-1 + diff_t^2 * alpha)
1583 	 *	  = emavar_t-1 - alpha * emavar_t-1 + delta_t^2 * alpha - (delta_t * alpha)^2
1584 	 * sub b == 1/alpha (== 1 << alpha_bits), e == emavar_t-1, d = delta_t^2
1585 	 *	  = e - e/b + dd/b + dd/bb
1586 	 *	  = (bbe - be + bdd + dd) / bb
1587 	 *	  = (bbe + b(dd-e) + dd) / bb (which is expanded below bb = 1<<(2*alpha_bits))
1588 	 */
1589 	/*
1590 	 * XXX possible numeric issues
1591 	 *	o We assume right shifted integers do the right thing, since that's
1592 	 *	  implementation defined. You can change the right shifts to / (1LL << alpha).
1593 	 *	o alpha_bits = 9 gives ema ceiling of 23 bits of seconds for ema and 14 bits
1594 	 *	  for emvar. This puts a ceiling of 13 bits on alpha since we need a
1595 	 *	  few tens of seconds of representation.
1596 	 *	o We mitigate alpha issues by never setting it too high.
1597 	 */
1598 	y = sim_latency;
1599 	delta = (y - iop->ema);					/* d */
1600 	iop->ema = ((iop->ema << alpha_bits) + delta) >> alpha_bits;
1601 
1602 	/*
1603 	 * Were we to naively plow ahead at this point, we wind up with many numerical
1604 	 * issues making any SD > ~3ms unreliable. So, we shift right by 12. This leaves
1605 	 * us with microsecond level precision in the input, so the same in the
1606 	 * output. It means we can't overflow deltasq unless delta > 4k seconds. It
1607 	 * also means that emvar can be up 46 bits 40 of which are fraction, which
1608 	 * gives us a way to measure up to ~8s in the SD before the computation goes
1609 	 * unstable. Even the worst hard disk rarely has > 1s service time in the
1610 	 * drive. It does mean we have to shift left 12 bits after taking the
1611 	 * square root to compute the actual standard deviation estimate. This loss of
1612 	 * precision is preferable to needing int128 types to work. The above numbers
1613 	 * assume alpha=9. 10 or 11 are ok, but we start to run into issues at 12,
1614 	 * so 12 or 13 is OK for EMA, EMVAR and SD will be wrong in those cases.
1615 	 */
1616 	delta >>= 12;
1617 	deltasq = delta * delta;				/* dd */
1618 	iop->emvar = ((iop->emvar << (2 * alpha_bits)) +	/* bbe */
1619 	    ((deltasq - iop->emvar) << alpha_bits) +		/* b(dd-e) */
1620 	    deltasq)						/* dd */
1621 	    >> (2 * alpha_bits);				/* div bb */
1622 	iop->sd = (sbintime_t)isqrt64((uint64_t)iop->emvar) << 12;
1623 }
1624 
1625 static void
1626 cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
1627     sbintime_t sim_latency, int cmd, size_t size)
1628 {
1629 	/* xxx Do we need to scale based on the size of the I/O ? */
1630 	switch (cmd) {
1631 	case BIO_READ:
1632 		cam_iosched_update(&isc->read_stats, sim_latency);
1633 		break;
1634 	case BIO_WRITE:
1635 		cam_iosched_update(&isc->write_stats, sim_latency);
1636 		break;
1637 	case BIO_DELETE:
1638 		cam_iosched_update(&isc->trim_stats, sim_latency);
1639 		break;
1640 	default:
1641 		break;
1642 	}
1643 }
1644 
1645 #ifdef DDB
1646 static int biolen(struct bio_queue_head *bq)
1647 {
1648 	int i = 0;
1649 	struct bio *bp;
1650 
1651 	TAILQ_FOREACH(bp, &bq->queue, bio_queue) {
1652 		i++;
1653 	}
1654 	return i;
1655 }
1656 
1657 /*
1658  * Show the internal state of the I/O scheduler.
1659  */
1660 DB_SHOW_COMMAND(iosched, cam_iosched_db_show)
1661 {
1662 	struct cam_iosched_softc *isc;
1663 
1664 	if (!have_addr) {
1665 		db_printf("Need addr\n");
1666 		return;
1667 	}
1668 	isc = (struct cam_iosched_softc *)addr;
1669 	db_printf("pending_reads:     %d\n", isc->read_stats.pending);
1670 	db_printf("min_reads:         %d\n", isc->read_stats.min);
1671 	db_printf("max_reads:         %d\n", isc->read_stats.max);
1672 	db_printf("reads:             %d\n", isc->read_stats.total);
1673 	db_printf("in_reads:          %d\n", isc->read_stats.in);
1674 	db_printf("out_reads:         %d\n", isc->read_stats.out);
1675 	db_printf("queued_reads:      %d\n", isc->read_stats.queued);
1676 	db_printf("Current Q len      %d\n", biolen(&isc->bio_queue));
1677 	db_printf("pending_writes:    %d\n", isc->write_stats.pending);
1678 	db_printf("min_writes:        %d\n", isc->write_stats.min);
1679 	db_printf("max_writes:        %d\n", isc->write_stats.max);
1680 	db_printf("writes:            %d\n", isc->write_stats.total);
1681 	db_printf("in_writes:         %d\n", isc->write_stats.in);
1682 	db_printf("out_writes:        %d\n", isc->write_stats.out);
1683 	db_printf("queued_writes:     %d\n", isc->write_stats.queued);
1684 	db_printf("Current Q len      %d\n", biolen(&isc->write_queue));
1685 	db_printf("pending_trims:     %d\n", isc->trim_stats.pending);
1686 	db_printf("min_trims:         %d\n", isc->trim_stats.min);
1687 	db_printf("max_trims:         %d\n", isc->trim_stats.max);
1688 	db_printf("trims:             %d\n", isc->trim_stats.total);
1689 	db_printf("in_trims:          %d\n", isc->trim_stats.in);
1690 	db_printf("out_trims:         %d\n", isc->trim_stats.out);
1691 	db_printf("queued_trims:      %d\n", isc->trim_stats.queued);
1692 	db_printf("Current Q len      %d\n", biolen(&isc->trim_queue));
1693 	db_printf("read_bias:         %d\n", isc->read_bias);
1694 	db_printf("current_read_bias: %d\n", isc->current_read_bias);
1695 	db_printf("Trim active?       %s\n",
1696 	    (isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) ? "yes" : "no");
1697 }
1698 #endif
1699 #endif
1700