xref: /freebsd/sys/arm64/vmm/vmm_hyp.c (revision 7861ecd18b6f15cfe37fc6f51f6ba89b92398648)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2021 Andrew Turner
5  *
6  * This work was supported by Innovate UK project 105694, "Digital Security
7  * by Design (DSbD) Technology Platform Prototype".
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 #include <sys/types.h>
33 #include <sys/proc.h>
34 
35 #include <machine/armreg.h>
36 
37 #include "arm64.h"
38 #include "hyp.h"
39 
40 struct hypctx;
41 
42 uint64_t VMM_HYP_FUNC(do_call_guest)(struct hypctx *);
43 
44 static void
45 vmm_hyp_reg_store(struct hypctx *hypctx, struct hyp *hyp, bool guest)
46 {
47 	uint64_t dfr0;
48 
49 	/* Store the guest VFP registers */
50 	if (guest) {
51 		/* Store the timer registers */
52 		hypctx->vtimer_cpu.cntkctl_el1 =
53 		    READ_SPECIALREG(EL1_REG(CNTKCTL));
54 		hypctx->vtimer_cpu.virt_timer.cntx_cval_el0 =
55 		    READ_SPECIALREG(EL0_REG(CNTV_CVAL));
56 		hypctx->vtimer_cpu.virt_timer.cntx_ctl_el0 =
57 		    READ_SPECIALREG(EL0_REG(CNTV_CTL));
58 
59 		/* Store the GICv3 registers */
60 		hypctx->vgic_v3_regs.ich_eisr_el2 =
61 		    READ_SPECIALREG(ich_eisr_el2);
62 		hypctx->vgic_v3_regs.ich_elrsr_el2 =
63 		    READ_SPECIALREG(ich_elrsr_el2);
64 		hypctx->vgic_v3_regs.ich_hcr_el2 =
65 		    READ_SPECIALREG(ich_hcr_el2);
66 		hypctx->vgic_v3_regs.ich_misr_el2 =
67 		    READ_SPECIALREG(ich_misr_el2);
68 		hypctx->vgic_v3_regs.ich_vmcr_el2 =
69 		    READ_SPECIALREG(ich_vmcr_el2);
70 		switch (hypctx->vgic_v3_regs.ich_lr_num - 1) {
71 #define	STORE_LR(x)					\
72 	case x:						\
73 		hypctx->vgic_v3_regs.ich_lr_el2[x] =	\
74 		    READ_SPECIALREG(ich_lr ## x ##_el2)
75 		STORE_LR(15);
76 		STORE_LR(14);
77 		STORE_LR(13);
78 		STORE_LR(12);
79 		STORE_LR(11);
80 		STORE_LR(10);
81 		STORE_LR(9);
82 		STORE_LR(8);
83 		STORE_LR(7);
84 		STORE_LR(6);
85 		STORE_LR(5);
86 		STORE_LR(4);
87 		STORE_LR(3);
88 		STORE_LR(2);
89 		STORE_LR(1);
90 		default:
91 		STORE_LR(0);
92 #undef STORE_LR
93 		}
94 
95 		switch (hypctx->vgic_v3_regs.ich_apr_num - 1) {
96 #define	STORE_APR(x)						\
97 	case x:							\
98 		hypctx->vgic_v3_regs.ich_ap0r_el2[x] =		\
99 		    READ_SPECIALREG(ich_ap0r ## x ##_el2);	\
100 		hypctx->vgic_v3_regs.ich_ap1r_el2[x] =		\
101 		    READ_SPECIALREG(ich_ap1r ## x ##_el2)
102 		STORE_APR(3);
103 		STORE_APR(2);
104 		STORE_APR(1);
105 		default:
106 		STORE_APR(0);
107 #undef STORE_APR
108 		}
109 	}
110 
111 	dfr0 = READ_SPECIALREG(id_aa64dfr0_el1);
112 	switch (ID_AA64DFR0_BRPs_VAL(dfr0) - 1) {
113 #define	STORE_DBG_BRP(x)						\
114 	case x:								\
115 		hypctx->dbgbcr_el1[x] =					\
116 		    READ_SPECIALREG(dbgbcr ## x ## _el1);		\
117 		hypctx->dbgbvr_el1[x] =					\
118 		    READ_SPECIALREG(dbgbvr ## x ## _el1)
119 	STORE_DBG_BRP(15);
120 	STORE_DBG_BRP(14);
121 	STORE_DBG_BRP(13);
122 	STORE_DBG_BRP(12);
123 	STORE_DBG_BRP(11);
124 	STORE_DBG_BRP(10);
125 	STORE_DBG_BRP(9);
126 	STORE_DBG_BRP(8);
127 	STORE_DBG_BRP(7);
128 	STORE_DBG_BRP(6);
129 	STORE_DBG_BRP(5);
130 	STORE_DBG_BRP(4);
131 	STORE_DBG_BRP(3);
132 	STORE_DBG_BRP(2);
133 	STORE_DBG_BRP(1);
134 	default:
135 	STORE_DBG_BRP(0);
136 #undef STORE_DBG_BRP
137 	}
138 
139 	switch (ID_AA64DFR0_WRPs_VAL(dfr0) - 1) {
140 #define	STORE_DBG_WRP(x)						\
141 	case x:								\
142 		hypctx->dbgwcr_el1[x] =					\
143 		    READ_SPECIALREG(dbgwcr ## x ## _el1);		\
144 		hypctx->dbgwvr_el1[x] =					\
145 		    READ_SPECIALREG(dbgwvr ## x ## _el1)
146 	STORE_DBG_WRP(15);
147 	STORE_DBG_WRP(14);
148 	STORE_DBG_WRP(13);
149 	STORE_DBG_WRP(12);
150 	STORE_DBG_WRP(11);
151 	STORE_DBG_WRP(10);
152 	STORE_DBG_WRP(9);
153 	STORE_DBG_WRP(8);
154 	STORE_DBG_WRP(7);
155 	STORE_DBG_WRP(6);
156 	STORE_DBG_WRP(5);
157 	STORE_DBG_WRP(4);
158 	STORE_DBG_WRP(3);
159 	STORE_DBG_WRP(2);
160 	STORE_DBG_WRP(1);
161 	default:
162 	STORE_DBG_WRP(0);
163 #undef STORE_DBG_WRP
164 	}
165 
166 	/* Store the PMU registers */
167 	hypctx->pmcr_el0 = READ_SPECIALREG(pmcr_el0);
168 	hypctx->pmccntr_el0 = READ_SPECIALREG(pmccntr_el0);
169 	hypctx->pmccfiltr_el0 = READ_SPECIALREG(pmccfiltr_el0);
170 	hypctx->pmcntenset_el0 = READ_SPECIALREG(pmcntenset_el0);
171 	hypctx->pmintenset_el1 = READ_SPECIALREG(pmintenset_el1);
172 	hypctx->pmovsset_el0 = READ_SPECIALREG(pmovsset_el0);
173 	hypctx->pmuserenr_el0 = READ_SPECIALREG(pmuserenr_el0);
174 	switch ((hypctx->pmcr_el0 & PMCR_N_MASK) >> PMCR_N_SHIFT) {
175 #define	STORE_PMU(x)							\
176 	case (x + 1):							\
177 		hypctx->pmevcntr_el0[x] =				\
178 		    READ_SPECIALREG(pmevcntr ## x ## _el0);		\
179 		hypctx->pmevtyper_el0[x] =				\
180 		    READ_SPECIALREG(pmevtyper ## x ## _el0)
181 	STORE_PMU(30);
182 	STORE_PMU(29);
183 	STORE_PMU(28);
184 	STORE_PMU(27);
185 	STORE_PMU(26);
186 	STORE_PMU(25);
187 	STORE_PMU(24);
188 	STORE_PMU(23);
189 	STORE_PMU(22);
190 	STORE_PMU(21);
191 	STORE_PMU(20);
192 	STORE_PMU(19);
193 	STORE_PMU(18);
194 	STORE_PMU(17);
195 	STORE_PMU(16);
196 	STORE_PMU(15);
197 	STORE_PMU(14);
198 	STORE_PMU(13);
199 	STORE_PMU(12);
200 	STORE_PMU(11);
201 	STORE_PMU(10);
202 	STORE_PMU(9);
203 	STORE_PMU(8);
204 	STORE_PMU(7);
205 	STORE_PMU(6);
206 	STORE_PMU(5);
207 	STORE_PMU(4);
208 	STORE_PMU(3);
209 	STORE_PMU(2);
210 	STORE_PMU(1);
211 	STORE_PMU(0);
212 	default:		/* N == 0 when only PMCCNTR_EL0 is available */
213 		break;
214 #undef STORE_PMU
215 	}
216 
217 	/* Store the special to from the trapframe */
218 	hypctx->tf.tf_sp = READ_SPECIALREG(sp_el1);
219 	hypctx->tf.tf_elr = READ_SPECIALREG(elr_el2);
220 	hypctx->tf.tf_spsr = READ_SPECIALREG(spsr_el2);
221 	if (guest) {
222 		hypctx->tf.tf_esr = READ_SPECIALREG(esr_el2);
223 	}
224 
225 	/* Store the guest special registers */
226 	hypctx->sp_el0 = READ_SPECIALREG(sp_el0);
227 	hypctx->tpidr_el0 = READ_SPECIALREG(tpidr_el0);
228 	hypctx->tpidrro_el0 = READ_SPECIALREG(tpidrro_el0);
229 	hypctx->tpidr_el1 = READ_SPECIALREG(tpidr_el1);
230 
231 	hypctx->actlr_el1 = READ_SPECIALREG(actlr_el1);
232 	hypctx->csselr_el1 = READ_SPECIALREG(csselr_el1);
233 	hypctx->mdccint_el1 = READ_SPECIALREG(mdccint_el1);
234 	hypctx->mdscr_el1 = READ_SPECIALREG(mdscr_el1);
235 	hypctx->par_el1 = READ_SPECIALREG(par_el1);
236 
237 	if (guest_or_nonvhe(guest)) {
238 		hypctx->elr_el1 = READ_SPECIALREG(EL1_REG(ELR));
239 		hypctx->vbar_el1 = READ_SPECIALREG(EL1_REG(VBAR));
240 
241 		hypctx->afsr0_el1 = READ_SPECIALREG(EL1_REG(AFSR0));
242 		hypctx->afsr1_el1 = READ_SPECIALREG(EL1_REG(AFSR1));
243 		hypctx->amair_el1 = READ_SPECIALREG(EL1_REG(AMAIR));
244 		hypctx->contextidr_el1 = READ_SPECIALREG(EL1_REG(CONTEXTIDR));
245 		hypctx->cpacr_el1 = READ_SPECIALREG(EL1_REG(CPACR));
246 		hypctx->esr_el1 = READ_SPECIALREG(EL1_REG(ESR));
247 		hypctx->far_el1 = READ_SPECIALREG(EL1_REG(FAR));
248 		hypctx->mair_el1 = READ_SPECIALREG(EL1_REG(MAIR));
249 		hypctx->sctlr_el1 = READ_SPECIALREG(EL1_REG(SCTLR));
250 		hypctx->spsr_el1 = READ_SPECIALREG(EL1_REG(SPSR));
251 		hypctx->tcr_el1 = READ_SPECIALREG(EL1_REG(TCR));
252 		/* TODO: Support when this is not res0 */
253 		hypctx->tcr2_el1 = 0;
254 		hypctx->ttbr0_el1 = READ_SPECIALREG(EL1_REG(TTBR0));
255 		hypctx->ttbr1_el1 = READ_SPECIALREG(EL1_REG(TTBR1));
256 	}
257 
258 	hypctx->cptr_el2 = READ_SPECIALREG(cptr_el2);
259 	hypctx->hcr_el2 = READ_SPECIALREG(hcr_el2);
260 	hypctx->vpidr_el2 = READ_SPECIALREG(vpidr_el2);
261 	hypctx->vmpidr_el2 = READ_SPECIALREG(vmpidr_el2);
262 }
263 
264 static void
265 vmm_hyp_reg_restore(struct hypctx *hypctx, struct hyp *hyp, bool guest)
266 {
267 	uint64_t dfr0;
268 
269 	/* Restore the special registers */
270 	WRITE_SPECIALREG(hcr_el2, hypctx->hcr_el2);
271 	isb();
272 
273 	WRITE_SPECIALREG(sp_el0, hypctx->sp_el0);
274 	WRITE_SPECIALREG(tpidr_el0, hypctx->tpidr_el0);
275 	WRITE_SPECIALREG(tpidrro_el0, hypctx->tpidrro_el0);
276 	WRITE_SPECIALREG(tpidr_el1, hypctx->tpidr_el1);
277 
278 	WRITE_SPECIALREG(actlr_el1, hypctx->actlr_el1);
279 	WRITE_SPECIALREG(csselr_el1, hypctx->csselr_el1);
280 	WRITE_SPECIALREG(mdccint_el1, hypctx->mdccint_el1);
281 	WRITE_SPECIALREG(mdscr_el1, hypctx->mdscr_el1);
282 	WRITE_SPECIALREG(par_el1, hypctx->par_el1);
283 
284 	if (guest_or_nonvhe(guest)) {
285 		WRITE_SPECIALREG(EL1_REG(ELR), hypctx->elr_el1);
286 		WRITE_SPECIALREG(EL1_REG(VBAR), hypctx->vbar_el1);
287 
288 		WRITE_SPECIALREG(EL1_REG(AFSR0), hypctx->afsr0_el1);
289 		WRITE_SPECIALREG(EL1_REG(AFSR1), hypctx->afsr1_el1);
290 		WRITE_SPECIALREG(EL1_REG(AMAIR), hypctx->amair_el1);
291 		WRITE_SPECIALREG(EL1_REG(CONTEXTIDR), hypctx->contextidr_el1);
292 		WRITE_SPECIALREG(EL1_REG(CPACR), hypctx->cpacr_el1);
293 		WRITE_SPECIALREG(EL1_REG(ESR), hypctx->esr_el1);
294 		WRITE_SPECIALREG(EL1_REG(FAR), hypctx->far_el1);
295 		WRITE_SPECIALREG(EL1_REG(MAIR), hypctx->mair_el1); //
296 
297 		WRITE_SPECIALREG(EL1_REG(SCTLR), hypctx->sctlr_el1);
298 		WRITE_SPECIALREG(EL1_REG(SPSR), hypctx->spsr_el1);
299 		WRITE_SPECIALREG(EL1_REG(TCR), hypctx->tcr_el1);
300 		/* TODO: tcr2_el1 */
301 		WRITE_SPECIALREG(EL1_REG(TTBR0), hypctx->ttbr0_el1);
302 		WRITE_SPECIALREG(EL1_REG(TTBR1), hypctx->ttbr1_el1);
303 	}
304 
305 	WRITE_SPECIALREG(cptr_el2, hypctx->cptr_el2);
306 	WRITE_SPECIALREG(vpidr_el2, hypctx->vpidr_el2);
307 	WRITE_SPECIALREG(vmpidr_el2, hypctx->vmpidr_el2);
308 
309 	/* Load the special regs from the trapframe */
310 	WRITE_SPECIALREG(sp_el1, hypctx->tf.tf_sp);
311 	WRITE_SPECIALREG(elr_el2, hypctx->tf.tf_elr);
312 	WRITE_SPECIALREG(spsr_el2, hypctx->tf.tf_spsr);
313 
314 	/* Restore the PMU registers */
315 	WRITE_SPECIALREG(pmcr_el0, hypctx->pmcr_el0);
316 	WRITE_SPECIALREG(pmccntr_el0, hypctx->pmccntr_el0);
317 	WRITE_SPECIALREG(pmccfiltr_el0, hypctx->pmccfiltr_el0);
318 	/* Clear all events/interrupts then enable them */
319 	WRITE_SPECIALREG(pmcntenclr_el0, 0xfffffffful);
320 	WRITE_SPECIALREG(pmcntenset_el0, hypctx->pmcntenset_el0);
321 	WRITE_SPECIALREG(pmintenclr_el1, 0xfffffffful);
322 	WRITE_SPECIALREG(pmintenset_el1, hypctx->pmintenset_el1);
323 	WRITE_SPECIALREG(pmovsclr_el0, 0xfffffffful);
324 	WRITE_SPECIALREG(pmovsset_el0, hypctx->pmovsset_el0);
325 
326 	switch ((hypctx->pmcr_el0 & PMCR_N_MASK) >> PMCR_N_SHIFT) {
327 #define	LOAD_PMU(x)							\
328 	case (x + 1):							\
329 		WRITE_SPECIALREG(pmevcntr ## x ## _el0,			\
330 		    hypctx->pmevcntr_el0[x]);				\
331 		WRITE_SPECIALREG(pmevtyper ## x ## _el0,		\
332 		    hypctx->pmevtyper_el0[x])
333 	LOAD_PMU(30);
334 	LOAD_PMU(29);
335 	LOAD_PMU(28);
336 	LOAD_PMU(27);
337 	LOAD_PMU(26);
338 	LOAD_PMU(25);
339 	LOAD_PMU(24);
340 	LOAD_PMU(23);
341 	LOAD_PMU(22);
342 	LOAD_PMU(21);
343 	LOAD_PMU(20);
344 	LOAD_PMU(19);
345 	LOAD_PMU(18);
346 	LOAD_PMU(17);
347 	LOAD_PMU(16);
348 	LOAD_PMU(15);
349 	LOAD_PMU(14);
350 	LOAD_PMU(13);
351 	LOAD_PMU(12);
352 	LOAD_PMU(11);
353 	LOAD_PMU(10);
354 	LOAD_PMU(9);
355 	LOAD_PMU(8);
356 	LOAD_PMU(7);
357 	LOAD_PMU(6);
358 	LOAD_PMU(5);
359 	LOAD_PMU(4);
360 	LOAD_PMU(3);
361 	LOAD_PMU(2);
362 	LOAD_PMU(1);
363 	LOAD_PMU(0);
364 	default:		/* N == 0 when only PMCCNTR_EL0 is available */
365 		break;
366 #undef LOAD_PMU
367 	}
368 
369 	dfr0 = READ_SPECIALREG(id_aa64dfr0_el1);
370 	switch (ID_AA64DFR0_BRPs_VAL(dfr0) - 1) {
371 #define	LOAD_DBG_BRP(x)							\
372 	case x:								\
373 		WRITE_SPECIALREG(dbgbcr ## x ## _el1,			\
374 		    hypctx->dbgbcr_el1[x]);				\
375 		WRITE_SPECIALREG(dbgbvr ## x ## _el1,			\
376 		    hypctx->dbgbvr_el1[x])
377 	LOAD_DBG_BRP(15);
378 	LOAD_DBG_BRP(14);
379 	LOAD_DBG_BRP(13);
380 	LOAD_DBG_BRP(12);
381 	LOAD_DBG_BRP(11);
382 	LOAD_DBG_BRP(10);
383 	LOAD_DBG_BRP(9);
384 	LOAD_DBG_BRP(8);
385 	LOAD_DBG_BRP(7);
386 	LOAD_DBG_BRP(6);
387 	LOAD_DBG_BRP(5);
388 	LOAD_DBG_BRP(4);
389 	LOAD_DBG_BRP(3);
390 	LOAD_DBG_BRP(2);
391 	LOAD_DBG_BRP(1);
392 	default:
393 	LOAD_DBG_BRP(0);
394 #undef LOAD_DBG_BRP
395 	}
396 
397 	switch (ID_AA64DFR0_WRPs_VAL(dfr0) - 1) {
398 #define	LOAD_DBG_WRP(x)							\
399 	case x:								\
400 		WRITE_SPECIALREG(dbgwcr ## x ## _el1,			\
401 		    hypctx->dbgwcr_el1[x]);				\
402 		WRITE_SPECIALREG(dbgwvr ## x ## _el1,			\
403 		    hypctx->dbgwvr_el1[x])
404 	LOAD_DBG_WRP(15);
405 	LOAD_DBG_WRP(14);
406 	LOAD_DBG_WRP(13);
407 	LOAD_DBG_WRP(12);
408 	LOAD_DBG_WRP(11);
409 	LOAD_DBG_WRP(10);
410 	LOAD_DBG_WRP(9);
411 	LOAD_DBG_WRP(8);
412 	LOAD_DBG_WRP(7);
413 	LOAD_DBG_WRP(6);
414 	LOAD_DBG_WRP(5);
415 	LOAD_DBG_WRP(4);
416 	LOAD_DBG_WRP(3);
417 	LOAD_DBG_WRP(2);
418 	LOAD_DBG_WRP(1);
419 	default:
420 	LOAD_DBG_WRP(0);
421 #undef LOAD_DBG_WRP
422 	}
423 
424 	if (guest) {
425 		/* Load the timer registers */
426 		WRITE_SPECIALREG(EL1_REG(CNTKCTL),
427 		    hypctx->vtimer_cpu.cntkctl_el1);
428 		WRITE_SPECIALREG(EL0_REG(CNTV_CVAL),
429 		    hypctx->vtimer_cpu.virt_timer.cntx_cval_el0);
430 		WRITE_SPECIALREG(EL0_REG(CNTV_CTL),
431 		    hypctx->vtimer_cpu.virt_timer.cntx_ctl_el0);
432 		WRITE_SPECIALREG(cnthctl_el2, hyp->vtimer.cnthctl_el2);
433 		WRITE_SPECIALREG(cntvoff_el2, hyp->vtimer.cntvoff_el2);
434 
435 		/* Load the GICv3 registers */
436 		WRITE_SPECIALREG(ich_hcr_el2, hypctx->vgic_v3_regs.ich_hcr_el2);
437 		WRITE_SPECIALREG(ich_vmcr_el2,
438 		    hypctx->vgic_v3_regs.ich_vmcr_el2);
439 		switch (hypctx->vgic_v3_regs.ich_lr_num - 1) {
440 #define	LOAD_LR(x)					\
441 	case x:						\
442 		WRITE_SPECIALREG(ich_lr ## x ##_el2,	\
443 		    hypctx->vgic_v3_regs.ich_lr_el2[x])
444 		LOAD_LR(15);
445 		LOAD_LR(14);
446 		LOAD_LR(13);
447 		LOAD_LR(12);
448 		LOAD_LR(11);
449 		LOAD_LR(10);
450 		LOAD_LR(9);
451 		LOAD_LR(8);
452 		LOAD_LR(7);
453 		LOAD_LR(6);
454 		LOAD_LR(5);
455 		LOAD_LR(4);
456 		LOAD_LR(3);
457 		LOAD_LR(2);
458 		LOAD_LR(1);
459 		default:
460 		LOAD_LR(0);
461 #undef LOAD_LR
462 		}
463 
464 		switch (hypctx->vgic_v3_regs.ich_apr_num - 1) {
465 #define	LOAD_APR(x)						\
466 	case x:							\
467 		WRITE_SPECIALREG(ich_ap0r ## x ##_el2,		\
468 		    hypctx->vgic_v3_regs.ich_ap0r_el2[x]);		\
469 		WRITE_SPECIALREG(ich_ap1r ## x ##_el2,		\
470 		    hypctx->vgic_v3_regs.ich_ap1r_el2[x])
471 		LOAD_APR(3);
472 		LOAD_APR(2);
473 		LOAD_APR(1);
474 		default:
475 		LOAD_APR(0);
476 #undef LOAD_APR
477 		}
478 	}
479 }
480 
481 static uint64_t
482 vmm_hyp_call_guest(struct hyp *hyp, struct hypctx *hypctx)
483 {
484 	struct hypctx host_hypctx;
485 	uint64_t cntvoff_el2;
486 	uint64_t ich_hcr_el2, ich_vmcr_el2, cnthctl_el2, cntkctl_el1;
487 	uint64_t ret;
488 	uint64_t s1e1r, hpfar_el2;
489 	bool hpfar_valid;
490 
491 	vmm_hyp_reg_store(&host_hypctx, NULL, false);
492 
493 	/* Save the host special registers */
494 	cnthctl_el2 = READ_SPECIALREG(cnthctl_el2);
495 	cntkctl_el1 = READ_SPECIALREG(cntkctl_el1);
496 	cntvoff_el2 = READ_SPECIALREG(cntvoff_el2);
497 
498 	ich_hcr_el2 = READ_SPECIALREG(ich_hcr_el2);
499 	ich_vmcr_el2 = READ_SPECIALREG(ich_vmcr_el2);
500 
501 	vmm_hyp_reg_restore(hypctx, hyp, true);
502 
503 	/* Load the common hypervisor registers */
504 	WRITE_SPECIALREG(vttbr_el2, hyp->vttbr_el2);
505 
506 	host_hypctx.mdcr_el2 = READ_SPECIALREG(mdcr_el2);
507 	WRITE_SPECIALREG(mdcr_el2, hypctx->mdcr_el2);
508 
509 	/* Call into the guest */
510 	ret = VMM_HYP_FUNC(do_call_guest)(hypctx);
511 
512 	WRITE_SPECIALREG(mdcr_el2, host_hypctx.mdcr_el2);
513 	isb();
514 
515 	/* Store the exit info */
516 	hypctx->exit_info.far_el2 = READ_SPECIALREG(far_el2);
517 	vmm_hyp_reg_store(hypctx, hyp, true);
518 
519 	hpfar_valid = true;
520 	if (ret == EXCP_TYPE_EL1_SYNC) {
521 		switch (ESR_ELx_EXCEPTION(hypctx->tf.tf_esr)) {
522 		case EXCP_INSN_ABORT_L:
523 		case EXCP_DATA_ABORT_L:
524 			/*
525 			 * The hpfar_el2 register is valid for:
526 			 *  - Translation and Access faults.
527 			 *  - Translation, Access, and permission faults on
528 			 *    the translation table walk on the stage 1 tables.
529 			 *  - A stage 2 Address size fault.
530 			 *
531 			 * As we only need it in the first 2 cases we can just
532 			 * exclude it on permission faults that are not from
533 			 * the stage 1 table walk.
534 			 *
535 			 * TODO: Add a case for Arm erratum 834220.
536 			 */
537 			if ((hypctx->tf.tf_esr & ISS_DATA_S1PTW) != 0)
538 				break;
539 			switch (hypctx->tf.tf_esr & ISS_DATA_DFSC_MASK) {
540 			case ISS_DATA_DFSC_PF_L1:
541 			case ISS_DATA_DFSC_PF_L2:
542 			case ISS_DATA_DFSC_PF_L3:
543 				hpfar_valid = false;
544 				break;
545 			}
546 			break;
547 		}
548 	}
549 	if (hpfar_valid) {
550 		hypctx->exit_info.hpfar_el2 = READ_SPECIALREG(hpfar_el2);
551 	} else {
552 		/*
553 		 * TODO: There is a risk the at instruction could cause an
554 		 * exception here. We should handle it & return a failure.
555 		 */
556 		s1e1r =
557 		    arm64_address_translate_s1e1r(hypctx->exit_info.far_el2);
558 		if (PAR_SUCCESS(s1e1r)) {
559 			hpfar_el2 = (s1e1r & PAR_PA_MASK) >> PAR_PA_SHIFT;
560 			hpfar_el2 <<= HPFAR_EL2_FIPA_SHIFT;
561 			hypctx->exit_info.hpfar_el2 = hpfar_el2;
562 		} else {
563 			ret = EXCP_TYPE_REENTER;
564 		}
565 	}
566 
567 	vmm_hyp_reg_restore(&host_hypctx, NULL, false);
568 
569 	/* Restore the host special registers */
570 	WRITE_SPECIALREG(ich_hcr_el2, ich_hcr_el2);
571 	WRITE_SPECIALREG(ich_vmcr_el2, ich_vmcr_el2);
572 
573 	WRITE_SPECIALREG(cnthctl_el2, cnthctl_el2);
574 	WRITE_SPECIALREG(cntkctl_el1, cntkctl_el1);
575 	WRITE_SPECIALREG(cntvoff_el2, cntvoff_el2);
576 
577 	return (ret);
578 }
579 
580 VMM_STATIC uint64_t
581 VMM_HYP_FUNC(enter_guest)(struct hyp *hyp, struct hypctx *hypctx)
582 {
583 	uint64_t ret;
584 
585 	do {
586 		ret = vmm_hyp_call_guest(hyp, hypctx);
587 	} while (ret == EXCP_TYPE_REENTER);
588 
589 	return (ret);
590 }
591 
592 VMM_STATIC uint64_t
593 VMM_HYP_FUNC(read_reg)(uint64_t reg)
594 {
595 	switch (reg) {
596 	case HYP_REG_ICH_VTR:
597 		return (READ_SPECIALREG(ich_vtr_el2));
598 	case HYP_REG_CNTHCTL:
599 		return (READ_SPECIALREG(cnthctl_el2));
600 	}
601 
602 	return (0);
603 }
604 
605 VMM_STATIC void
606 VMM_HYP_FUNC(clean_s2_tlbi)(void)
607 {
608 	dsb(ishst);
609 	__asm __volatile("tlbi alle1is");
610 	dsb(ish);
611 }
612 
613 VMM_STATIC void
614 VMM_HYP_FUNC(s2_tlbi_range)(uint64_t vttbr, vm_offset_t sva, vm_offset_t eva,
615     bool final_only)
616 {
617 	uint64_t end, r, start;
618 	uint64_t host_vttbr;
619 
620 #define	TLBI_VA_SHIFT			12
621 #define	TLBI_VA_MASK			((1ul << 44) - 1)
622 #define	TLBI_VA(addr)			(((addr) >> TLBI_VA_SHIFT) & TLBI_VA_MASK)
623 #define	TLBI_VA_L3_INCR			(L3_SIZE >> TLBI_VA_SHIFT)
624 
625 	/* Switch to the guest vttbr */
626 	/* TODO: Handle Cortex-A57/A72 erratum 131936 */
627 	host_vttbr = READ_SPECIALREG(vttbr_el2);
628 	WRITE_SPECIALREG(vttbr_el2, vttbr);
629 	isb();
630 
631 	/*
632 	 * The CPU can cache the stage 1 + 2 combination so we need to ensure
633 	 * the stage 2 is invalidated first, then when this has completed we
634 	 * invalidate the stage 1 TLB. As we don't know which stage 1 virtual
635 	 * addresses point at the stage 2 IPA we need to invalidate the entire
636 	 * stage 1 TLB.
637 	 */
638 
639 	start = TLBI_VA(sva);
640 	end = TLBI_VA(eva);
641 	for (r = start; r < end; r += TLBI_VA_L3_INCR) {
642 		/* Invalidate the stage 2 TLB entry */
643 		if (final_only)
644 			__asm __volatile("tlbi	ipas2le1is, %0" : : "r"(r));
645 		else
646 			__asm __volatile("tlbi	ipas2e1is, %0" : : "r"(r));
647 	}
648 	/* Ensure the entry has been invalidated */
649 	dsb(ish);
650 	/* Invalidate the stage 1 TLB. */
651 	__asm __volatile("tlbi vmalle1is");
652 	dsb(ish);
653 	isb();
654 
655 	/* Switch back t othe host vttbr */
656 	WRITE_SPECIALREG(vttbr_el2, host_vttbr);
657 	isb();
658 }
659 
660 VMM_STATIC void
661 VMM_HYP_FUNC(s2_tlbi_all)(uint64_t vttbr)
662 {
663 	uint64_t host_vttbr;
664 
665 	/* Switch to the guest vttbr */
666 	/* TODO: Handle Cortex-A57/A72 erratum 131936 */
667 	host_vttbr = READ_SPECIALREG(vttbr_el2);
668 	WRITE_SPECIALREG(vttbr_el2, vttbr);
669 	isb();
670 
671 	__asm __volatile("tlbi vmalls12e1is");
672 	dsb(ish);
673 	isb();
674 
675 	/* Switch back t othe host vttbr */
676 	WRITE_SPECIALREG(vttbr_el2, host_vttbr);
677 	isb();
678 }
679