xref: /freebsd/sys/arm64/vmm/vmm.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2015 Mihai Carabas <mihai.carabas@gmail.com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/cpuset.h>
32 #include <sys/kernel.h>
33 #include <sys/linker.h>
34 #include <sys/lock.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/mutex.h>
38 #include <sys/pcpu.h>
39 #include <sys/proc.h>
40 #include <sys/queue.h>
41 #include <sys/rwlock.h>
42 #include <sys/sched.h>
43 #include <sys/smp.h>
44 #include <sys/sysctl.h>
45 
46 #include <vm/vm.h>
47 #include <vm/vm_object.h>
48 #include <vm/vm_page.h>
49 #include <vm/pmap.h>
50 #include <vm/vm_map.h>
51 #include <vm/vm_extern.h>
52 #include <vm/vm_param.h>
53 
54 #include <machine/armreg.h>
55 #include <machine/cpu.h>
56 #include <machine/fpu.h>
57 #include <machine/machdep.h>
58 #include <machine/pcb.h>
59 #include <machine/smp.h>
60 #include <machine/vm.h>
61 #include <machine/vmparam.h>
62 #include <machine/vmm.h>
63 #include <machine/vmm_instruction_emul.h>
64 
65 #include <dev/pci/pcireg.h>
66 #include <dev/vmm/vmm_dev.h>
67 #include <dev/vmm/vmm_ktr.h>
68 #include <dev/vmm/vmm_stat.h>
69 
70 #include "arm64.h"
71 #include "mmu.h"
72 
73 #include "io/vgic.h"
74 #include "io/vtimer.h"
75 
76 struct vcpu {
77 	int		flags;
78 	enum vcpu_state	state;
79 	struct mtx	mtx;
80 	int		hostcpu;	/* host cpuid this vcpu last ran on */
81 	int		vcpuid;
82 	void		*stats;
83 	struct vm_exit	exitinfo;
84 	uint64_t	nextpc;		/* (x) next instruction to execute */
85 	struct vm	*vm;		/* (o) */
86 	void		*cookie;	/* (i) cpu-specific data */
87 	struct vfpstate	*guestfpu;	/* (a,i) guest fpu state */
88 };
89 
90 #define	vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx))
91 #define	vcpu_lock_init(v)	mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
92 #define	vcpu_lock_destroy(v)	mtx_destroy(&((v)->mtx))
93 #define	vcpu_lock(v)		mtx_lock_spin(&((v)->mtx))
94 #define	vcpu_unlock(v)		mtx_unlock_spin(&((v)->mtx))
95 #define	vcpu_assert_locked(v)	mtx_assert(&((v)->mtx), MA_OWNED)
96 
97 struct mem_seg {
98 	uint64_t	gpa;
99 	size_t		len;
100 	bool		wired;
101 	bool		sysmem;
102 	vm_object_t	object;
103 };
104 #define	VM_MAX_MEMSEGS	3
105 
106 struct mem_map {
107 	vm_paddr_t	gpa;
108 	size_t		len;
109 	vm_ooffset_t	segoff;
110 	int		segid;
111 	int		prot;
112 	int		flags;
113 };
114 #define	VM_MAX_MEMMAPS	4
115 
116 struct vmm_mmio_region {
117 	uint64_t start;
118 	uint64_t end;
119 	mem_region_read_t read;
120 	mem_region_write_t write;
121 };
122 #define	VM_MAX_MMIO_REGIONS	4
123 
124 struct vmm_special_reg {
125 	uint32_t	esr_iss;
126 	uint32_t	esr_mask;
127 	reg_read_t	reg_read;
128 	reg_write_t	reg_write;
129 	void		*arg;
130 };
131 #define	VM_MAX_SPECIAL_REGS	16
132 
133 /*
134  * Initialization:
135  * (o) initialized the first time the VM is created
136  * (i) initialized when VM is created and when it is reinitialized
137  * (x) initialized before use
138  */
139 struct vm {
140 	void		*cookie;		/* (i) cpu-specific data */
141 	volatile cpuset_t active_cpus;		/* (i) active vcpus */
142 	volatile cpuset_t debug_cpus;		/* (i) vcpus stopped for debug */
143 	int		suspend;		/* (i) stop VM execution */
144 	bool		dying;			/* (o) is dying */
145 	volatile cpuset_t suspended_cpus; 	/* (i) suspended vcpus */
146 	volatile cpuset_t halted_cpus;		/* (x) cpus in a hard halt */
147 	struct mem_map	mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */
148 	struct mem_seg	mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */
149 	struct vmspace	*vmspace;		/* (o) guest's address space */
150 	char		name[VM_MAX_NAMELEN];	/* (o) virtual machine name */
151 	struct vcpu	**vcpu;			/* (i) guest vcpus */
152 	struct vmm_mmio_region mmio_region[VM_MAX_MMIO_REGIONS];
153 						/* (o) guest MMIO regions */
154 	struct vmm_special_reg special_reg[VM_MAX_SPECIAL_REGS];
155 	/* The following describe the vm cpu topology */
156 	uint16_t	sockets;		/* (o) num of sockets */
157 	uint16_t	cores;			/* (o) num of cores/socket */
158 	uint16_t	threads;		/* (o) num of threads/core */
159 	uint16_t	maxcpus;		/* (o) max pluggable cpus */
160 	struct sx	mem_segs_lock;		/* (o) */
161 	struct sx	vcpus_init_lock;	/* (o) */
162 };
163 
164 static bool vmm_initialized = false;
165 
166 static int vm_handle_wfi(struct vcpu *vcpu,
167 			 struct vm_exit *vme, bool *retu);
168 
169 static MALLOC_DEFINE(M_VMM, "vmm", "vmm");
170 
171 /* statistics */
172 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
173 
174 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
175 
176 static int vmm_ipinum;
177 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
178     "IPI vector used for vcpu notifications");
179 
180 struct vmm_regs {
181 	uint64_t	id_aa64afr0;
182 	uint64_t	id_aa64afr1;
183 	uint64_t	id_aa64dfr0;
184 	uint64_t	id_aa64dfr1;
185 	uint64_t	id_aa64isar0;
186 	uint64_t	id_aa64isar1;
187 	uint64_t	id_aa64isar2;
188 	uint64_t	id_aa64mmfr0;
189 	uint64_t	id_aa64mmfr1;
190 	uint64_t	id_aa64mmfr2;
191 	uint64_t	id_aa64pfr0;
192 	uint64_t	id_aa64pfr1;
193 };
194 
195 static const struct vmm_regs vmm_arch_regs_masks = {
196 	.id_aa64dfr0 =
197 	    ID_AA64DFR0_CTX_CMPs_MASK |
198 	    ID_AA64DFR0_WRPs_MASK |
199 	    ID_AA64DFR0_BRPs_MASK |
200 	    ID_AA64DFR0_PMUVer_3 |
201 	    ID_AA64DFR0_DebugVer_8,
202 	.id_aa64isar0 =
203 	    ID_AA64ISAR0_TLB_TLBIOSR |
204 	    ID_AA64ISAR0_SHA3_IMPL |
205 	    ID_AA64ISAR0_RDM_IMPL |
206 	    ID_AA64ISAR0_Atomic_IMPL |
207 	    ID_AA64ISAR0_CRC32_BASE |
208 	    ID_AA64ISAR0_SHA2_512 |
209 	    ID_AA64ISAR0_SHA1_BASE |
210 	    ID_AA64ISAR0_AES_PMULL,
211 	.id_aa64mmfr0 =
212 	    ID_AA64MMFR0_TGran4_IMPL |
213 	    ID_AA64MMFR0_TGran64_IMPL |
214 	    ID_AA64MMFR0_TGran16_IMPL |
215 	    ID_AA64MMFR0_ASIDBits_16 |
216 	    ID_AA64MMFR0_PARange_4P,
217 	.id_aa64mmfr1 =
218 	    ID_AA64MMFR1_SpecSEI_IMPL |
219 	    ID_AA64MMFR1_PAN_ATS1E1 |
220 	    ID_AA64MMFR1_HAFDBS_AF,
221 	.id_aa64pfr0 =
222 	    ID_AA64PFR0_GIC_CPUIF_NONE |
223 	    ID_AA64PFR0_AdvSIMD_HP |
224 	    ID_AA64PFR0_FP_HP |
225 	    ID_AA64PFR0_EL3_64 |
226 	    ID_AA64PFR0_EL2_64 |
227 	    ID_AA64PFR0_EL1_64 |
228 	    ID_AA64PFR0_EL0_64,
229 };
230 
231 /* Host registers masked by vmm_arch_regs_masks. */
232 static struct vmm_regs vmm_arch_regs;
233 
234 u_int vm_maxcpu;
235 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
236     &vm_maxcpu, 0, "Maximum number of vCPUs");
237 
238 static void vm_free_memmap(struct vm *vm, int ident);
239 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm);
240 static void vcpu_notify_event_locked(struct vcpu *vcpu);
241 
242 /* global statistics */
243 VMM_STAT(VMEXIT_COUNT, "total number of vm exits");
244 VMM_STAT(VMEXIT_UNKNOWN, "number of vmexits for the unknown exception");
245 VMM_STAT(VMEXIT_WFI, "number of times wfi was intercepted");
246 VMM_STAT(VMEXIT_WFE, "number of times wfe was intercepted");
247 VMM_STAT(VMEXIT_HVC, "number of times hvc was intercepted");
248 VMM_STAT(VMEXIT_MSR, "number of times msr/mrs was intercepted");
249 VMM_STAT(VMEXIT_DATA_ABORT, "number of vmexits for a data abort");
250 VMM_STAT(VMEXIT_INSN_ABORT, "number of vmexits for an instruction abort");
251 VMM_STAT(VMEXIT_UNHANDLED_SYNC, "number of vmexits for an unhandled synchronous exception");
252 VMM_STAT(VMEXIT_IRQ, "number of vmexits for an irq");
253 VMM_STAT(VMEXIT_FIQ, "number of vmexits for an interrupt");
254 VMM_STAT(VMEXIT_BRK, "number of vmexits for a breakpoint exception");
255 VMM_STAT(VMEXIT_SS, "number of vmexits for a single-step exception");
256 VMM_STAT(VMEXIT_UNHANDLED_EL2, "number of vmexits for an unhandled EL2 exception");
257 VMM_STAT(VMEXIT_UNHANDLED, "number of vmexits for an unhandled exception");
258 
259 /*
260  * Upper limit on vm_maxcpu. We could increase this to 28 bits, but this
261  * is a safe value for now.
262  */
263 #define	VM_MAXCPU	MIN(0xffff - 1, CPU_SETSIZE)
264 
265 static int
266 vmm_regs_init(struct vmm_regs *regs, const struct vmm_regs *masks)
267 {
268 #define	_FETCH_KERN_REG(reg, field) do {				\
269 	regs->field = vmm_arch_regs_masks.field;			\
270 	if (!get_kernel_reg_masked(reg, &regs->field, masks->field))	\
271 		regs->field = 0;					\
272 } while (0)
273 	_FETCH_KERN_REG(ID_AA64AFR0_EL1, id_aa64afr0);
274 	_FETCH_KERN_REG(ID_AA64AFR1_EL1, id_aa64afr1);
275 	_FETCH_KERN_REG(ID_AA64DFR0_EL1, id_aa64dfr0);
276 	_FETCH_KERN_REG(ID_AA64DFR1_EL1, id_aa64dfr1);
277 	_FETCH_KERN_REG(ID_AA64ISAR0_EL1, id_aa64isar0);
278 	_FETCH_KERN_REG(ID_AA64ISAR1_EL1, id_aa64isar1);
279 	_FETCH_KERN_REG(ID_AA64ISAR2_EL1, id_aa64isar2);
280 	_FETCH_KERN_REG(ID_AA64MMFR0_EL1, id_aa64mmfr0);
281 	_FETCH_KERN_REG(ID_AA64MMFR1_EL1, id_aa64mmfr1);
282 	_FETCH_KERN_REG(ID_AA64MMFR2_EL1, id_aa64mmfr2);
283 	_FETCH_KERN_REG(ID_AA64PFR0_EL1, id_aa64pfr0);
284 	_FETCH_KERN_REG(ID_AA64PFR1_EL1, id_aa64pfr1);
285 #undef _FETCH_KERN_REG
286 	return (0);
287 }
288 
289 static void
290 vcpu_cleanup(struct vcpu *vcpu, bool destroy)
291 {
292 	vmmops_vcpu_cleanup(vcpu->cookie);
293 	vcpu->cookie = NULL;
294 	if (destroy) {
295 		vmm_stat_free(vcpu->stats);
296 		fpu_save_area_free(vcpu->guestfpu);
297 		vcpu_lock_destroy(vcpu);
298 	}
299 }
300 
301 static struct vcpu *
302 vcpu_alloc(struct vm *vm, int vcpu_id)
303 {
304 	struct vcpu *vcpu;
305 
306 	KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus,
307 	    ("vcpu_alloc: invalid vcpu %d", vcpu_id));
308 
309 	vcpu = malloc(sizeof(*vcpu), M_VMM, M_WAITOK | M_ZERO);
310 	vcpu_lock_init(vcpu);
311 	vcpu->state = VCPU_IDLE;
312 	vcpu->hostcpu = NOCPU;
313 	vcpu->vcpuid = vcpu_id;
314 	vcpu->vm = vm;
315 	vcpu->guestfpu = fpu_save_area_alloc();
316 	vcpu->stats = vmm_stat_alloc();
317 	return (vcpu);
318 }
319 
320 static void
321 vcpu_init(struct vcpu *vcpu)
322 {
323 	vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid);
324 	MPASS(vcpu->cookie != NULL);
325 	fpu_save_area_reset(vcpu->guestfpu);
326 	vmm_stat_init(vcpu->stats);
327 }
328 
329 struct vm_exit *
330 vm_exitinfo(struct vcpu *vcpu)
331 {
332 	return (&vcpu->exitinfo);
333 }
334 
335 static int
336 vmm_init(void)
337 {
338 	int error;
339 
340 	vm_maxcpu = mp_ncpus;
341 	TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu);
342 
343 	if (vm_maxcpu > VM_MAXCPU) {
344 		printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU);
345 		vm_maxcpu = VM_MAXCPU;
346 	}
347 	if (vm_maxcpu == 0)
348 		vm_maxcpu = 1;
349 
350 	error = vmm_regs_init(&vmm_arch_regs, &vmm_arch_regs_masks);
351 	if (error != 0)
352 		return (error);
353 
354 	return (vmmops_modinit(0));
355 }
356 
357 static int
358 vmm_handler(module_t mod, int what, void *arg)
359 {
360 	int error;
361 
362 	switch (what) {
363 	case MOD_LOAD:
364 		/* TODO: if (vmm_is_hw_supported()) { */
365 		error = vmmdev_init();
366 		if (error != 0)
367 			break;
368 		error = vmm_init();
369 		if (error == 0)
370 			vmm_initialized = true;
371 		break;
372 	case MOD_UNLOAD:
373 		/* TODO: if (vmm_is_hw_supported()) { */
374 		error = vmmdev_cleanup();
375 		if (error == 0 && vmm_initialized) {
376 			error = vmmops_modcleanup();
377 			if (error)
378 				vmm_initialized = false;
379 		}
380 		break;
381 	default:
382 		error = 0;
383 		break;
384 	}
385 	return (error);
386 }
387 
388 static moduledata_t vmm_kmod = {
389 	"vmm",
390 	vmm_handler,
391 	NULL
392 };
393 
394 /*
395  * vmm initialization has the following dependencies:
396  *
397  * - HYP initialization requires smp_rendezvous() and therefore must happen
398  *   after SMP is fully functional (after SI_SUB_SMP).
399  * - vmm device initialization requires an initialized devfs.
400  */
401 DECLARE_MODULE(vmm, vmm_kmod, MAX(SI_SUB_SMP, SI_SUB_DEVFS) + 1, SI_ORDER_ANY);
402 MODULE_VERSION(vmm, 1);
403 
404 static void
405 vm_init(struct vm *vm, bool create)
406 {
407 	int i;
408 
409 	vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace));
410 	MPASS(vm->cookie != NULL);
411 
412 	CPU_ZERO(&vm->active_cpus);
413 	CPU_ZERO(&vm->debug_cpus);
414 
415 	vm->suspend = 0;
416 	CPU_ZERO(&vm->suspended_cpus);
417 
418 	memset(vm->mmio_region, 0, sizeof(vm->mmio_region));
419 	memset(vm->special_reg, 0, sizeof(vm->special_reg));
420 
421 	if (!create) {
422 		for (i = 0; i < vm->maxcpus; i++) {
423 			if (vm->vcpu[i] != NULL)
424 				vcpu_init(vm->vcpu[i]);
425 		}
426 	}
427 }
428 
429 void
430 vm_disable_vcpu_creation(struct vm *vm)
431 {
432 	sx_xlock(&vm->vcpus_init_lock);
433 	vm->dying = true;
434 	sx_xunlock(&vm->vcpus_init_lock);
435 }
436 
437 struct vcpu *
438 vm_alloc_vcpu(struct vm *vm, int vcpuid)
439 {
440 	struct vcpu *vcpu;
441 
442 	if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm))
443 		return (NULL);
444 
445 	/* Some interrupt controllers may have a CPU limit */
446 	if (vcpuid >= vgic_max_cpu_count(vm->cookie))
447 		return (NULL);
448 
449 	vcpu = (struct vcpu *)
450 	    atomic_load_acq_ptr((uintptr_t *)&vm->vcpu[vcpuid]);
451 	if (__predict_true(vcpu != NULL))
452 		return (vcpu);
453 
454 	sx_xlock(&vm->vcpus_init_lock);
455 	vcpu = vm->vcpu[vcpuid];
456 	if (vcpu == NULL && !vm->dying) {
457 		vcpu = vcpu_alloc(vm, vcpuid);
458 		vcpu_init(vcpu);
459 
460 		/*
461 		 * Ensure vCPU is fully created before updating pointer
462 		 * to permit unlocked reads above.
463 		 */
464 		atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid],
465 		    (uintptr_t)vcpu);
466 	}
467 	sx_xunlock(&vm->vcpus_init_lock);
468 	return (vcpu);
469 }
470 
471 void
472 vm_slock_vcpus(struct vm *vm)
473 {
474 	sx_slock(&vm->vcpus_init_lock);
475 }
476 
477 void
478 vm_unlock_vcpus(struct vm *vm)
479 {
480 	sx_unlock(&vm->vcpus_init_lock);
481 }
482 
483 int
484 vm_create(const char *name, struct vm **retvm)
485 {
486 	struct vm *vm;
487 	struct vmspace *vmspace;
488 
489 	/*
490 	 * If vmm.ko could not be successfully initialized then don't attempt
491 	 * to create the virtual machine.
492 	 */
493 	if (!vmm_initialized)
494 		return (ENXIO);
495 
496 	if (name == NULL || strlen(name) >= VM_MAX_NAMELEN)
497 		return (EINVAL);
498 
499 	vmspace = vmmops_vmspace_alloc(0, 1ul << 39);
500 	if (vmspace == NULL)
501 		return (ENOMEM);
502 
503 	vm = malloc(sizeof(struct vm), M_VMM, M_WAITOK | M_ZERO);
504 	strcpy(vm->name, name);
505 	vm->vmspace = vmspace;
506 	sx_init(&vm->mem_segs_lock, "vm mem_segs");
507 	sx_init(&vm->vcpus_init_lock, "vm vcpus");
508 
509 	vm->sockets = 1;
510 	vm->cores = 1;			/* XXX backwards compatibility */
511 	vm->threads = 1;		/* XXX backwards compatibility */
512 	vm->maxcpus = vm_maxcpu;
513 
514 	vm->vcpu = malloc(sizeof(*vm->vcpu) * vm->maxcpus, M_VMM,
515 	    M_WAITOK | M_ZERO);
516 
517 	vm_init(vm, true);
518 
519 	*retvm = vm;
520 	return (0);
521 }
522 
523 void
524 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
525     uint16_t *threads, uint16_t *maxcpus)
526 {
527 	*sockets = vm->sockets;
528 	*cores = vm->cores;
529 	*threads = vm->threads;
530 	*maxcpus = vm->maxcpus;
531 }
532 
533 uint16_t
534 vm_get_maxcpus(struct vm *vm)
535 {
536 	return (vm->maxcpus);
537 }
538 
539 int
540 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
541     uint16_t threads, uint16_t maxcpus)
542 {
543 	/* Ignore maxcpus. */
544 	if ((sockets * cores * threads) > vm->maxcpus)
545 		return (EINVAL);
546 	vm->sockets = sockets;
547 	vm->cores = cores;
548 	vm->threads = threads;
549 	return(0);
550 }
551 
552 static void
553 vm_cleanup(struct vm *vm, bool destroy)
554 {
555 	struct mem_map *mm;
556 	pmap_t pmap __diagused;
557 	int i;
558 
559 	if (destroy) {
560 		pmap = vmspace_pmap(vm->vmspace);
561 		sched_pin();
562 		PCPU_SET(curvmpmap, NULL);
563 		sched_unpin();
564 		CPU_FOREACH(i) {
565 			MPASS(cpuid_to_pcpu[i]->pc_curvmpmap != pmap);
566 		}
567 	}
568 
569 	vgic_detach_from_vm(vm->cookie);
570 
571 	for (i = 0; i < vm->maxcpus; i++) {
572 		if (vm->vcpu[i] != NULL)
573 			vcpu_cleanup(vm->vcpu[i], destroy);
574 	}
575 
576 	vmmops_cleanup(vm->cookie);
577 
578 	/*
579 	 * System memory is removed from the guest address space only when
580 	 * the VM is destroyed. This is because the mapping remains the same
581 	 * across VM reset.
582 	 *
583 	 * Device memory can be relocated by the guest (e.g. using PCI BARs)
584 	 * so those mappings are removed on a VM reset.
585 	 */
586 	if (!destroy) {
587 		for (i = 0; i < VM_MAX_MEMMAPS; i++) {
588 			mm = &vm->mem_maps[i];
589 			if (destroy || !sysmem_mapping(vm, mm))
590 				vm_free_memmap(vm, i);
591 		}
592 	}
593 
594 	if (destroy) {
595 		for (i = 0; i < VM_MAX_MEMSEGS; i++)
596 			vm_free_memseg(vm, i);
597 
598 		vmmops_vmspace_free(vm->vmspace);
599 		vm->vmspace = NULL;
600 
601 		for (i = 0; i < vm->maxcpus; i++)
602 			free(vm->vcpu[i], M_VMM);
603 		free(vm->vcpu, M_VMM);
604 		sx_destroy(&vm->vcpus_init_lock);
605 		sx_destroy(&vm->mem_segs_lock);
606 	}
607 }
608 
609 void
610 vm_destroy(struct vm *vm)
611 {
612 	vm_cleanup(vm, true);
613 	free(vm, M_VMM);
614 }
615 
616 int
617 vm_reinit(struct vm *vm)
618 {
619 	int error;
620 
621 	/*
622 	 * A virtual machine can be reset only if all vcpus are suspended.
623 	 */
624 	if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
625 		vm_cleanup(vm, false);
626 		vm_init(vm, false);
627 		error = 0;
628 	} else {
629 		error = EBUSY;
630 	}
631 
632 	return (error);
633 }
634 
635 const char *
636 vm_name(struct vm *vm)
637 {
638 	return (vm->name);
639 }
640 
641 void
642 vm_slock_memsegs(struct vm *vm)
643 {
644 	sx_slock(&vm->mem_segs_lock);
645 }
646 
647 void
648 vm_xlock_memsegs(struct vm *vm)
649 {
650 	sx_xlock(&vm->mem_segs_lock);
651 }
652 
653 void
654 vm_unlock_memsegs(struct vm *vm)
655 {
656 	sx_unlock(&vm->mem_segs_lock);
657 }
658 
659 /*
660  * Return 'true' if 'gpa' is allocated in the guest address space.
661  *
662  * This function is called in the context of a running vcpu which acts as
663  * an implicit lock on 'vm->mem_maps[]'.
664  */
665 bool
666 vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa)
667 {
668 	struct vm *vm = vcpu->vm;
669 	struct mem_map *mm;
670 	int i;
671 
672 #ifdef INVARIANTS
673 	int hostcpu, state;
674 	state = vcpu_get_state(vcpu, &hostcpu);
675 	KASSERT(state == VCPU_RUNNING && hostcpu == curcpu,
676 	    ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu));
677 #endif
678 
679 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
680 		mm = &vm->mem_maps[i];
681 		if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len)
682 			return (true);		/* 'gpa' is sysmem or devmem */
683 	}
684 
685 	return (false);
686 }
687 
688 int
689 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem)
690 {
691 	struct mem_seg *seg;
692 	vm_object_t obj;
693 
694 	sx_assert(&vm->mem_segs_lock, SX_XLOCKED);
695 
696 	if (ident < 0 || ident >= VM_MAX_MEMSEGS)
697 		return (EINVAL);
698 
699 	if (len == 0 || (len & PAGE_MASK))
700 		return (EINVAL);
701 
702 	seg = &vm->mem_segs[ident];
703 	if (seg->object != NULL) {
704 		if (seg->len == len && seg->sysmem == sysmem)
705 			return (EEXIST);
706 		else
707 			return (EINVAL);
708 	}
709 
710 	obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT);
711 	if (obj == NULL)
712 		return (ENOMEM);
713 
714 	seg->len = len;
715 	seg->object = obj;
716 	seg->sysmem = sysmem;
717 	return (0);
718 }
719 
720 int
721 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem,
722     vm_object_t *objptr)
723 {
724 	struct mem_seg *seg;
725 
726 	sx_assert(&vm->mem_segs_lock, SX_LOCKED);
727 
728 	if (ident < 0 || ident >= VM_MAX_MEMSEGS)
729 		return (EINVAL);
730 
731 	seg = &vm->mem_segs[ident];
732 	if (len)
733 		*len = seg->len;
734 	if (sysmem)
735 		*sysmem = seg->sysmem;
736 	if (objptr)
737 		*objptr = seg->object;
738 	return (0);
739 }
740 
741 void
742 vm_free_memseg(struct vm *vm, int ident)
743 {
744 	struct mem_seg *seg;
745 
746 	KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS,
747 	    ("%s: invalid memseg ident %d", __func__, ident));
748 
749 	seg = &vm->mem_segs[ident];
750 	if (seg->object != NULL) {
751 		vm_object_deallocate(seg->object);
752 		bzero(seg, sizeof(struct mem_seg));
753 	}
754 }
755 
756 int
757 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first,
758     size_t len, int prot, int flags)
759 {
760 	struct mem_seg *seg;
761 	struct mem_map *m, *map;
762 	vm_ooffset_t last;
763 	int i, error;
764 
765 	if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0)
766 		return (EINVAL);
767 
768 	if (flags & ~VM_MEMMAP_F_WIRED)
769 		return (EINVAL);
770 
771 	if (segid < 0 || segid >= VM_MAX_MEMSEGS)
772 		return (EINVAL);
773 
774 	seg = &vm->mem_segs[segid];
775 	if (seg->object == NULL)
776 		return (EINVAL);
777 
778 	last = first + len;
779 	if (first < 0 || first >= last || last > seg->len)
780 		return (EINVAL);
781 
782 	if ((gpa | first | last) & PAGE_MASK)
783 		return (EINVAL);
784 
785 	map = NULL;
786 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
787 		m = &vm->mem_maps[i];
788 		if (m->len == 0) {
789 			map = m;
790 			break;
791 		}
792 	}
793 
794 	if (map == NULL)
795 		return (ENOSPC);
796 
797 	error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa,
798 	    len, 0, VMFS_NO_SPACE, prot, prot, 0);
799 	if (error != KERN_SUCCESS)
800 		return (EFAULT);
801 
802 	vm_object_reference(seg->object);
803 
804 	if (flags & VM_MEMMAP_F_WIRED) {
805 		error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len,
806 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
807 		if (error != KERN_SUCCESS) {
808 			vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len);
809 			return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM :
810 			    EFAULT);
811 		}
812 	}
813 
814 	map->gpa = gpa;
815 	map->len = len;
816 	map->segoff = first;
817 	map->segid = segid;
818 	map->prot = prot;
819 	map->flags = flags;
820 	return (0);
821 }
822 
823 int
824 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len)
825 {
826 	struct mem_map *m;
827 	int i;
828 
829 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
830 		m = &vm->mem_maps[i];
831 		if (m->gpa == gpa && m->len == len) {
832 			vm_free_memmap(vm, i);
833 			return (0);
834 		}
835 	}
836 
837 	return (EINVAL);
838 }
839 
840 int
841 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid,
842     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
843 {
844 	struct mem_map *mm, *mmnext;
845 	int i;
846 
847 	mmnext = NULL;
848 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
849 		mm = &vm->mem_maps[i];
850 		if (mm->len == 0 || mm->gpa < *gpa)
851 			continue;
852 		if (mmnext == NULL || mm->gpa < mmnext->gpa)
853 			mmnext = mm;
854 	}
855 
856 	if (mmnext != NULL) {
857 		*gpa = mmnext->gpa;
858 		if (segid)
859 			*segid = mmnext->segid;
860 		if (segoff)
861 			*segoff = mmnext->segoff;
862 		if (len)
863 			*len = mmnext->len;
864 		if (prot)
865 			*prot = mmnext->prot;
866 		if (flags)
867 			*flags = mmnext->flags;
868 		return (0);
869 	} else {
870 		return (ENOENT);
871 	}
872 }
873 
874 static void
875 vm_free_memmap(struct vm *vm, int ident)
876 {
877 	struct mem_map *mm;
878 	int error __diagused;
879 
880 	mm = &vm->mem_maps[ident];
881 	if (mm->len) {
882 		error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa,
883 		    mm->gpa + mm->len);
884 		KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d",
885 		    __func__, error));
886 		bzero(mm, sizeof(struct mem_map));
887 	}
888 }
889 
890 static __inline bool
891 sysmem_mapping(struct vm *vm, struct mem_map *mm)
892 {
893 
894 	if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem)
895 		return (true);
896 	else
897 		return (false);
898 }
899 
900 vm_paddr_t
901 vmm_sysmem_maxaddr(struct vm *vm)
902 {
903 	struct mem_map *mm;
904 	vm_paddr_t maxaddr;
905 	int i;
906 
907 	maxaddr = 0;
908 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
909 		mm = &vm->mem_maps[i];
910 		if (sysmem_mapping(vm, mm)) {
911 			if (maxaddr < mm->gpa + mm->len)
912 				maxaddr = mm->gpa + mm->len;
913 		}
914 	}
915 	return (maxaddr);
916 }
917 
918 int
919 vm_gla2gpa_nofault(struct vcpu *vcpu, struct vm_guest_paging *paging,
920     uint64_t gla, int prot, uint64_t *gpa, int *is_fault)
921 {
922 
923 	vmmops_gla2gpa(vcpu->cookie, paging, gla, prot, gpa, is_fault);
924 	return (0);
925 }
926 
927 static int
928 vmm_reg_raz(struct vcpu *vcpu, uint64_t *rval, void *arg)
929 {
930 	*rval = 0;
931 	return (0);
932 }
933 
934 static int
935 vmm_reg_read_arg(struct vcpu *vcpu, uint64_t *rval, void *arg)
936 {
937 	*rval = *(uint64_t *)arg;
938 	return (0);
939 }
940 
941 static int
942 vmm_reg_wi(struct vcpu *vcpu, uint64_t wval, void *arg)
943 {
944 	return (0);
945 }
946 
947 static const struct vmm_special_reg vmm_special_regs[] = {
948 #define	SPECIAL_REG(_reg, _read, _write)				\
949 	{								\
950 		.esr_iss = ((_reg ## _op0) << ISS_MSR_OP0_SHIFT) |	\
951 		    ((_reg ## _op1) << ISS_MSR_OP1_SHIFT) |		\
952 		    ((_reg ## _CRn) << ISS_MSR_CRn_SHIFT) |		\
953 		    ((_reg ## _CRm) << ISS_MSR_CRm_SHIFT) |		\
954 		    ((_reg ## _op2) << ISS_MSR_OP2_SHIFT),		\
955 		.esr_mask = ISS_MSR_REG_MASK,				\
956 		.reg_read = (_read),					\
957 		.reg_write = (_write),					\
958 		.arg = NULL,						\
959 	}
960 #define	ID_SPECIAL_REG(_reg, _name)					\
961 	{								\
962 		.esr_iss = ((_reg ## _op0) << ISS_MSR_OP0_SHIFT) |	\
963 		    ((_reg ## _op1) << ISS_MSR_OP1_SHIFT) |		\
964 		    ((_reg ## _CRn) << ISS_MSR_CRn_SHIFT) |		\
965 		    ((_reg ## _CRm) << ISS_MSR_CRm_SHIFT) |		\
966 		    ((_reg ## _op2) << ISS_MSR_OP2_SHIFT),		\
967 		.esr_mask = ISS_MSR_REG_MASK,				\
968 		.reg_read = vmm_reg_read_arg,				\
969 		.reg_write = vmm_reg_wi,				\
970 		.arg = &(vmm_arch_regs._name),				\
971 	}
972 
973 	/* ID registers */
974 	ID_SPECIAL_REG(ID_AA64PFR0_EL1, id_aa64pfr0),
975 	ID_SPECIAL_REG(ID_AA64DFR0_EL1, id_aa64dfr0),
976 	ID_SPECIAL_REG(ID_AA64ISAR0_EL1, id_aa64isar0),
977 	ID_SPECIAL_REG(ID_AA64MMFR0_EL1, id_aa64mmfr0),
978 	ID_SPECIAL_REG(ID_AA64MMFR1_EL1, id_aa64mmfr1),
979 
980 	/*
981 	 * All other ID registers are read as zero.
982 	 * They are all in the op0=3, op1=0, CRn=0, CRm={0..7} space.
983 	 */
984 	{
985 		.esr_iss = (3 << ISS_MSR_OP0_SHIFT) |
986 		    (0 << ISS_MSR_OP1_SHIFT) |
987 		    (0 << ISS_MSR_CRn_SHIFT) |
988 		    (0 << ISS_MSR_CRm_SHIFT),
989 		.esr_mask = ISS_MSR_OP0_MASK | ISS_MSR_OP1_MASK |
990 		    ISS_MSR_CRn_MASK | (0x8 << ISS_MSR_CRm_SHIFT),
991 		.reg_read = vmm_reg_raz,
992 		.reg_write = vmm_reg_wi,
993 		.arg = NULL,
994 	},
995 
996 	/* Counter physical registers */
997 	SPECIAL_REG(CNTP_CTL_EL0, vtimer_phys_ctl_read, vtimer_phys_ctl_write),
998 	SPECIAL_REG(CNTP_CVAL_EL0, vtimer_phys_cval_read,
999 	    vtimer_phys_cval_write),
1000 	SPECIAL_REG(CNTP_TVAL_EL0, vtimer_phys_tval_read,
1001 	    vtimer_phys_tval_write),
1002 	SPECIAL_REG(CNTPCT_EL0, vtimer_phys_cnt_read, vtimer_phys_cnt_write),
1003 #undef SPECIAL_REG
1004 };
1005 
1006 void
1007 vm_register_reg_handler(struct vm *vm, uint64_t iss, uint64_t mask,
1008     reg_read_t reg_read, reg_write_t reg_write, void *arg)
1009 {
1010 	int i;
1011 
1012 	for (i = 0; i < nitems(vm->special_reg); i++) {
1013 		if (vm->special_reg[i].esr_iss == 0 &&
1014 		    vm->special_reg[i].esr_mask == 0) {
1015 			vm->special_reg[i].esr_iss = iss;
1016 			vm->special_reg[i].esr_mask = mask;
1017 			vm->special_reg[i].reg_read = reg_read;
1018 			vm->special_reg[i].reg_write = reg_write;
1019 			vm->special_reg[i].arg = arg;
1020 			return;
1021 		}
1022 	}
1023 
1024 	panic("%s: No free special register slot", __func__);
1025 }
1026 
1027 void
1028 vm_deregister_reg_handler(struct vm *vm, uint64_t iss, uint64_t mask)
1029 {
1030 	int i;
1031 
1032 	for (i = 0; i < nitems(vm->special_reg); i++) {
1033 		if (vm->special_reg[i].esr_iss == iss &&
1034 		    vm->special_reg[i].esr_mask == mask) {
1035 			memset(&vm->special_reg[i], 0,
1036 			    sizeof(vm->special_reg[i]));
1037 			return;
1038 		}
1039 	}
1040 
1041 	panic("%s: Invalid special register: iss %lx mask %lx", __func__, iss,
1042 	    mask);
1043 }
1044 
1045 static int
1046 vm_handle_reg_emul(struct vcpu *vcpu, bool *retu)
1047 {
1048 	struct vm *vm;
1049 	struct vm_exit *vme;
1050 	struct vre *vre;
1051 	int i, rv;
1052 
1053 	vm = vcpu->vm;
1054 	vme = &vcpu->exitinfo;
1055 	vre = &vme->u.reg_emul.vre;
1056 
1057 	for (i = 0; i < nitems(vm->special_reg); i++) {
1058 		if (vm->special_reg[i].esr_iss == 0 &&
1059 		    vm->special_reg[i].esr_mask == 0)
1060 			continue;
1061 
1062 		if ((vre->inst_syndrome & vm->special_reg[i].esr_mask) ==
1063 		    vm->special_reg[i].esr_iss) {
1064 			rv = vmm_emulate_register(vcpu, vre,
1065 			    vm->special_reg[i].reg_read,
1066 			    vm->special_reg[i].reg_write,
1067 			    vm->special_reg[i].arg);
1068 			if (rv == 0) {
1069 				*retu = false;
1070 			}
1071 			return (rv);
1072 		}
1073 	}
1074 	for (i = 0; i < nitems(vmm_special_regs); i++) {
1075 		if ((vre->inst_syndrome & vmm_special_regs[i].esr_mask) ==
1076 		    vmm_special_regs[i].esr_iss) {
1077 			rv = vmm_emulate_register(vcpu, vre,
1078 			    vmm_special_regs[i].reg_read,
1079 			    vmm_special_regs[i].reg_write,
1080 			    vmm_special_regs[i].arg);
1081 			if (rv == 0) {
1082 				*retu = false;
1083 			}
1084 			return (rv);
1085 		}
1086 	}
1087 
1088 
1089 	*retu = true;
1090 	return (0);
1091 }
1092 
1093 void
1094 vm_register_inst_handler(struct vm *vm, uint64_t start, uint64_t size,
1095     mem_region_read_t mmio_read, mem_region_write_t mmio_write)
1096 {
1097 	int i;
1098 
1099 	for (i = 0; i < nitems(vm->mmio_region); i++) {
1100 		if (vm->mmio_region[i].start == 0 &&
1101 		    vm->mmio_region[i].end == 0) {
1102 			vm->mmio_region[i].start = start;
1103 			vm->mmio_region[i].end = start + size;
1104 			vm->mmio_region[i].read = mmio_read;
1105 			vm->mmio_region[i].write = mmio_write;
1106 			return;
1107 		}
1108 	}
1109 
1110 	panic("%s: No free MMIO region", __func__);
1111 }
1112 
1113 void
1114 vm_deregister_inst_handler(struct vm *vm, uint64_t start, uint64_t size)
1115 {
1116 	int i;
1117 
1118 	for (i = 0; i < nitems(vm->mmio_region); i++) {
1119 		if (vm->mmio_region[i].start == start &&
1120 		    vm->mmio_region[i].end == start + size) {
1121 			memset(&vm->mmio_region[i], 0,
1122 			    sizeof(vm->mmio_region[i]));
1123 			return;
1124 		}
1125 	}
1126 
1127 	panic("%s: Invalid MMIO region: %lx - %lx", __func__, start,
1128 	    start + size);
1129 }
1130 
1131 static int
1132 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu)
1133 {
1134 	struct vm *vm;
1135 	struct vm_exit *vme;
1136 	struct vie *vie;
1137 	struct hyp *hyp;
1138 	uint64_t fault_ipa;
1139 	struct vm_guest_paging *paging;
1140 	struct vmm_mmio_region *vmr;
1141 	int error, i;
1142 
1143 	vm = vcpu->vm;
1144 	hyp = vm->cookie;
1145 	if (!hyp->vgic_attached)
1146 		goto out_user;
1147 
1148 	vme = &vcpu->exitinfo;
1149 	vie = &vme->u.inst_emul.vie;
1150 	paging = &vme->u.inst_emul.paging;
1151 
1152 	fault_ipa = vme->u.inst_emul.gpa;
1153 
1154 	vmr = NULL;
1155 	for (i = 0; i < nitems(vm->mmio_region); i++) {
1156 		if (vm->mmio_region[i].start <= fault_ipa &&
1157 		    vm->mmio_region[i].end > fault_ipa) {
1158 			vmr = &vm->mmio_region[i];
1159 			break;
1160 		}
1161 	}
1162 	if (vmr == NULL)
1163 		goto out_user;
1164 
1165 	error = vmm_emulate_instruction(vcpu, fault_ipa, vie, paging,
1166 	    vmr->read, vmr->write, retu);
1167 	return (error);
1168 
1169 out_user:
1170 	*retu = true;
1171 	return (0);
1172 }
1173 
1174 int
1175 vm_suspend(struct vm *vm, enum vm_suspend_how how)
1176 {
1177 	int i;
1178 
1179 	if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
1180 		return (EINVAL);
1181 
1182 	if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
1183 		VM_CTR2(vm, "virtual machine already suspended %d/%d",
1184 		    vm->suspend, how);
1185 		return (EALREADY);
1186 	}
1187 
1188 	VM_CTR1(vm, "virtual machine successfully suspended %d", how);
1189 
1190 	/*
1191 	 * Notify all active vcpus that they are now suspended.
1192 	 */
1193 	for (i = 0; i < vm->maxcpus; i++) {
1194 		if (CPU_ISSET(i, &vm->active_cpus))
1195 			vcpu_notify_event(vm_vcpu(vm, i));
1196 	}
1197 
1198 	return (0);
1199 }
1200 
1201 void
1202 vm_exit_suspended(struct vcpu *vcpu, uint64_t pc)
1203 {
1204 	struct vm *vm = vcpu->vm;
1205 	struct vm_exit *vmexit;
1206 
1207 	KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
1208 	    ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
1209 
1210 	vmexit = vm_exitinfo(vcpu);
1211 	vmexit->pc = pc;
1212 	vmexit->inst_length = 4;
1213 	vmexit->exitcode = VM_EXITCODE_SUSPENDED;
1214 	vmexit->u.suspended.how = vm->suspend;
1215 }
1216 
1217 void
1218 vm_exit_debug(struct vcpu *vcpu, uint64_t pc)
1219 {
1220 	struct vm_exit *vmexit;
1221 
1222 	vmexit = vm_exitinfo(vcpu);
1223 	vmexit->pc = pc;
1224 	vmexit->inst_length = 4;
1225 	vmexit->exitcode = VM_EXITCODE_DEBUG;
1226 }
1227 
1228 int
1229 vm_activate_cpu(struct vcpu *vcpu)
1230 {
1231 	struct vm *vm = vcpu->vm;
1232 
1233 	if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
1234 		return (EBUSY);
1235 
1236 	CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus);
1237 	return (0);
1238 
1239 }
1240 
1241 int
1242 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu)
1243 {
1244 	if (vcpu == NULL) {
1245 		vm->debug_cpus = vm->active_cpus;
1246 		for (int i = 0; i < vm->maxcpus; i++) {
1247 			if (CPU_ISSET(i, &vm->active_cpus))
1248 				vcpu_notify_event(vm_vcpu(vm, i));
1249 		}
1250 	} else {
1251 		if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
1252 			return (EINVAL);
1253 
1254 		CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
1255 		vcpu_notify_event(vcpu);
1256 	}
1257 	return (0);
1258 }
1259 
1260 int
1261 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu)
1262 {
1263 
1264 	if (vcpu == NULL) {
1265 		CPU_ZERO(&vm->debug_cpus);
1266 	} else {
1267 		if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus))
1268 			return (EINVAL);
1269 
1270 		CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
1271 	}
1272 	return (0);
1273 }
1274 
1275 int
1276 vcpu_debugged(struct vcpu *vcpu)
1277 {
1278 
1279 	return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus));
1280 }
1281 
1282 cpuset_t
1283 vm_active_cpus(struct vm *vm)
1284 {
1285 
1286 	return (vm->active_cpus);
1287 }
1288 
1289 cpuset_t
1290 vm_debug_cpus(struct vm *vm)
1291 {
1292 
1293 	return (vm->debug_cpus);
1294 }
1295 
1296 cpuset_t
1297 vm_suspended_cpus(struct vm *vm)
1298 {
1299 
1300 	return (vm->suspended_cpus);
1301 }
1302 
1303 
1304 void *
1305 vcpu_stats(struct vcpu *vcpu)
1306 {
1307 
1308 	return (vcpu->stats);
1309 }
1310 
1311 /*
1312  * This function is called to ensure that a vcpu "sees" a pending event
1313  * as soon as possible:
1314  * - If the vcpu thread is sleeping then it is woken up.
1315  * - If the vcpu is running on a different host_cpu then an IPI will be directed
1316  *   to the host_cpu to cause the vcpu to trap into the hypervisor.
1317  */
1318 static void
1319 vcpu_notify_event_locked(struct vcpu *vcpu)
1320 {
1321 	int hostcpu;
1322 
1323 	hostcpu = vcpu->hostcpu;
1324 	if (vcpu->state == VCPU_RUNNING) {
1325 		KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
1326 		if (hostcpu != curcpu) {
1327 			ipi_cpu(hostcpu, vmm_ipinum);
1328 		} else {
1329 			/*
1330 			 * If the 'vcpu' is running on 'curcpu' then it must
1331 			 * be sending a notification to itself (e.g. SELF_IPI).
1332 			 * The pending event will be picked up when the vcpu
1333 			 * transitions back to guest context.
1334 			 */
1335 		}
1336 	} else {
1337 		KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
1338 		    "with hostcpu %d", vcpu->state, hostcpu));
1339 		if (vcpu->state == VCPU_SLEEPING)
1340 			wakeup_one(vcpu);
1341 	}
1342 }
1343 
1344 void
1345 vcpu_notify_event(struct vcpu *vcpu)
1346 {
1347 	vcpu_lock(vcpu);
1348 	vcpu_notify_event_locked(vcpu);
1349 	vcpu_unlock(vcpu);
1350 }
1351 
1352 static void
1353 restore_guest_fpustate(struct vcpu *vcpu)
1354 {
1355 
1356 	/* flush host state to the pcb */
1357 	vfp_save_state(curthread, curthread->td_pcb);
1358 	/* Ensure the VFP state will be re-loaded when exiting the guest */
1359 	PCPU_SET(fpcurthread, NULL);
1360 
1361 	/* restore guest FPU state */
1362 	vfp_enable();
1363 	vfp_restore(vcpu->guestfpu);
1364 
1365 	/*
1366 	 * The FPU is now "dirty" with the guest's state so turn on emulation
1367 	 * to trap any access to the FPU by the host.
1368 	 */
1369 	vfp_disable();
1370 }
1371 
1372 static void
1373 save_guest_fpustate(struct vcpu *vcpu)
1374 {
1375 	if ((READ_SPECIALREG(cpacr_el1) & CPACR_FPEN_MASK) !=
1376 	    CPACR_FPEN_TRAP_ALL1)
1377 		panic("VFP not enabled in host!");
1378 
1379 	/* save guest FPU state */
1380 	vfp_enable();
1381 	vfp_store(vcpu->guestfpu);
1382 	vfp_disable();
1383 
1384 	KASSERT(PCPU_GET(fpcurthread) == NULL,
1385 	    ("%s: fpcurthread set with guest registers", __func__));
1386 }
1387 static int
1388 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate,
1389     bool from_idle)
1390 {
1391 	int error;
1392 
1393 	vcpu_assert_locked(vcpu);
1394 
1395 	/*
1396 	 * State transitions from the vmmdev_ioctl() must always begin from
1397 	 * the VCPU_IDLE state. This guarantees that there is only a single
1398 	 * ioctl() operating on a vcpu at any point.
1399 	 */
1400 	if (from_idle) {
1401 		while (vcpu->state != VCPU_IDLE) {
1402 			vcpu_notify_event_locked(vcpu);
1403 			msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
1404 		}
1405 	} else {
1406 		KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
1407 		    "vcpu idle state"));
1408 	}
1409 
1410 	if (vcpu->state == VCPU_RUNNING) {
1411 		KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
1412 		    "mismatch for running vcpu", curcpu, vcpu->hostcpu));
1413 	} else {
1414 		KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
1415 		    "vcpu that is not running", vcpu->hostcpu));
1416 	}
1417 
1418 	/*
1419 	 * The following state transitions are allowed:
1420 	 * IDLE -> FROZEN -> IDLE
1421 	 * FROZEN -> RUNNING -> FROZEN
1422 	 * FROZEN -> SLEEPING -> FROZEN
1423 	 */
1424 	switch (vcpu->state) {
1425 	case VCPU_IDLE:
1426 	case VCPU_RUNNING:
1427 	case VCPU_SLEEPING:
1428 		error = (newstate != VCPU_FROZEN);
1429 		break;
1430 	case VCPU_FROZEN:
1431 		error = (newstate == VCPU_FROZEN);
1432 		break;
1433 	default:
1434 		error = 1;
1435 		break;
1436 	}
1437 
1438 	if (error)
1439 		return (EBUSY);
1440 
1441 	vcpu->state = newstate;
1442 	if (newstate == VCPU_RUNNING)
1443 		vcpu->hostcpu = curcpu;
1444 	else
1445 		vcpu->hostcpu = NOCPU;
1446 
1447 	if (newstate == VCPU_IDLE)
1448 		wakeup(&vcpu->state);
1449 
1450 	return (0);
1451 }
1452 
1453 static void
1454 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate)
1455 {
1456 	int error;
1457 
1458 	if ((error = vcpu_set_state(vcpu, newstate, false)) != 0)
1459 		panic("Error %d setting state to %d\n", error, newstate);
1460 }
1461 
1462 static void
1463 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate)
1464 {
1465 	int error;
1466 
1467 	if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0)
1468 		panic("Error %d setting state to %d", error, newstate);
1469 }
1470 
1471 int
1472 vm_get_capability(struct vcpu *vcpu, int type, int *retval)
1473 {
1474 	if (type < 0 || type >= VM_CAP_MAX)
1475 		return (EINVAL);
1476 
1477 	return (vmmops_getcap(vcpu->cookie, type, retval));
1478 }
1479 
1480 int
1481 vm_set_capability(struct vcpu *vcpu, int type, int val)
1482 {
1483 	if (type < 0 || type >= VM_CAP_MAX)
1484 		return (EINVAL);
1485 
1486 	return (vmmops_setcap(vcpu->cookie, type, val));
1487 }
1488 
1489 struct vm *
1490 vcpu_vm(struct vcpu *vcpu)
1491 {
1492 	return (vcpu->vm);
1493 }
1494 
1495 int
1496 vcpu_vcpuid(struct vcpu *vcpu)
1497 {
1498 	return (vcpu->vcpuid);
1499 }
1500 
1501 void *
1502 vcpu_get_cookie(struct vcpu *vcpu)
1503 {
1504 	return (vcpu->cookie);
1505 }
1506 
1507 struct vcpu *
1508 vm_vcpu(struct vm *vm, int vcpuid)
1509 {
1510 	return (vm->vcpu[vcpuid]);
1511 }
1512 
1513 int
1514 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle)
1515 {
1516 	int error;
1517 
1518 	vcpu_lock(vcpu);
1519 	error = vcpu_set_state_locked(vcpu, newstate, from_idle);
1520 	vcpu_unlock(vcpu);
1521 
1522 	return (error);
1523 }
1524 
1525 enum vcpu_state
1526 vcpu_get_state(struct vcpu *vcpu, int *hostcpu)
1527 {
1528 	enum vcpu_state state;
1529 
1530 	vcpu_lock(vcpu);
1531 	state = vcpu->state;
1532 	if (hostcpu != NULL)
1533 		*hostcpu = vcpu->hostcpu;
1534 	vcpu_unlock(vcpu);
1535 
1536 	return (state);
1537 }
1538 
1539 static void *
1540 _vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot,
1541     void **cookie)
1542 {
1543 	int i, count, pageoff;
1544 	struct mem_map *mm;
1545 	vm_page_t m;
1546 
1547 	pageoff = gpa & PAGE_MASK;
1548 	if (len > PAGE_SIZE - pageoff)
1549 		panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len);
1550 
1551 	count = 0;
1552 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
1553 		mm = &vm->mem_maps[i];
1554 		if (sysmem_mapping(vm, mm) && gpa >= mm->gpa &&
1555 		    gpa < mm->gpa + mm->len) {
1556 			count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map,
1557 			    trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1);
1558 			break;
1559 		}
1560 	}
1561 
1562 	if (count == 1) {
1563 		*cookie = m;
1564 		return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff));
1565 	} else {
1566 		*cookie = NULL;
1567 		return (NULL);
1568 	}
1569 }
1570 
1571 void *
1572 vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len, int reqprot,
1573 	    void **cookie)
1574 {
1575 #ifdef INVARIANTS
1576 	/*
1577 	 * The current vcpu should be frozen to ensure 'vm_memmap[]'
1578 	 * stability.
1579 	 */
1580 	int state = vcpu_get_state(vcpu, NULL);
1581 	KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d",
1582 	    __func__, state));
1583 #endif
1584 	return (_vm_gpa_hold(vcpu->vm, gpa, len, reqprot, cookie));
1585 }
1586 
1587 void *
1588 vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot,
1589     void **cookie)
1590 {
1591 	sx_assert(&vm->mem_segs_lock, SX_LOCKED);
1592 	return (_vm_gpa_hold(vm, gpa, len, reqprot, cookie));
1593 }
1594 
1595 void
1596 vm_gpa_release(void *cookie)
1597 {
1598 	vm_page_t m = cookie;
1599 
1600 	vm_page_unwire(m, PQ_ACTIVE);
1601 }
1602 
1603 int
1604 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval)
1605 {
1606 
1607 	if (reg >= VM_REG_LAST)
1608 		return (EINVAL);
1609 
1610 	return (vmmops_getreg(vcpu->cookie, reg, retval));
1611 }
1612 
1613 int
1614 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val)
1615 {
1616 	int error;
1617 
1618 	if (reg >= VM_REG_LAST)
1619 		return (EINVAL);
1620 	error = vmmops_setreg(vcpu->cookie, reg, val);
1621 	if (error || reg != VM_REG_GUEST_PC)
1622 		return (error);
1623 
1624 	vcpu->nextpc = val;
1625 
1626 	return (0);
1627 }
1628 
1629 void *
1630 vm_get_cookie(struct vm *vm)
1631 {
1632 	return (vm->cookie);
1633 }
1634 
1635 int
1636 vm_inject_exception(struct vcpu *vcpu, uint64_t esr, uint64_t far)
1637 {
1638 	return (vmmops_exception(vcpu->cookie, esr, far));
1639 }
1640 
1641 int
1642 vm_attach_vgic(struct vm *vm, struct vm_vgic_descr *descr)
1643 {
1644 	return (vgic_attach_to_vm(vm->cookie, descr));
1645 }
1646 
1647 int
1648 vm_assert_irq(struct vm *vm, uint32_t irq)
1649 {
1650 	return (vgic_inject_irq(vm->cookie, -1, irq, true));
1651 }
1652 
1653 int
1654 vm_deassert_irq(struct vm *vm, uint32_t irq)
1655 {
1656 	return (vgic_inject_irq(vm->cookie, -1, irq, false));
1657 }
1658 
1659 int
1660 vm_raise_msi(struct vm *vm, uint64_t msg, uint64_t addr, int bus, int slot,
1661     int func)
1662 {
1663 	/* TODO: Should we raise an SError? */
1664 	return (vgic_inject_msi(vm->cookie, msg, addr));
1665 }
1666 
1667 static int
1668 vm_handle_smccc_call(struct vcpu *vcpu, struct vm_exit *vme, bool *retu)
1669 {
1670 	struct hypctx *hypctx;
1671 	int i;
1672 
1673 	hypctx = vcpu_get_cookie(vcpu);
1674 
1675 	if ((hypctx->tf.tf_esr & ESR_ELx_ISS_MASK) != 0)
1676 		return (1);
1677 
1678 	vme->exitcode = VM_EXITCODE_SMCCC;
1679 	vme->u.smccc_call.func_id = hypctx->tf.tf_x[0];
1680 	for (i = 0; i < nitems(vme->u.smccc_call.args); i++)
1681 		vme->u.smccc_call.args[i] = hypctx->tf.tf_x[i + 1];
1682 
1683 	*retu = true;
1684 	return (0);
1685 }
1686 
1687 static int
1688 vm_handle_wfi(struct vcpu *vcpu, struct vm_exit *vme, bool *retu)
1689 {
1690 	vcpu_lock(vcpu);
1691 	while (1) {
1692 		if (vgic_has_pending_irq(vcpu->cookie))
1693 			break;
1694 
1695 		if (vcpu_should_yield(vcpu))
1696 			break;
1697 
1698 		vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1699 		/*
1700 		 * XXX msleep_spin() cannot be interrupted by signals so
1701 		 * wake up periodically to check pending signals.
1702 		 */
1703 		msleep_spin(vcpu, &vcpu->mtx, "vmidle", hz);
1704 		vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1705 	}
1706 	vcpu_unlock(vcpu);
1707 
1708 	*retu = false;
1709 	return (0);
1710 }
1711 
1712 static int
1713 vm_handle_paging(struct vcpu *vcpu, bool *retu)
1714 {
1715 	struct vm *vm = vcpu->vm;
1716 	struct vm_exit *vme;
1717 	struct vm_map *map;
1718 	uint64_t addr, esr;
1719 	pmap_t pmap;
1720 	int ftype, rv;
1721 
1722 	vme = &vcpu->exitinfo;
1723 
1724 	pmap = vmspace_pmap(vcpu->vm->vmspace);
1725 	addr = vme->u.paging.gpa;
1726 	esr = vme->u.paging.esr;
1727 
1728 	/* The page exists, but the page table needs to be updated. */
1729 	if (pmap_fault(pmap, esr, addr) == KERN_SUCCESS)
1730 		return (0);
1731 
1732 	switch (ESR_ELx_EXCEPTION(esr)) {
1733 	case EXCP_INSN_ABORT_L:
1734 	case EXCP_DATA_ABORT_L:
1735 		ftype = VM_PROT_EXECUTE | VM_PROT_READ | VM_PROT_WRITE;
1736 		break;
1737 	default:
1738 		panic("%s: Invalid exception (esr = %lx)", __func__, esr);
1739 	}
1740 
1741 	map = &vm->vmspace->vm_map;
1742 	rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL);
1743 	if (rv != KERN_SUCCESS)
1744 		return (EFAULT);
1745 
1746 	return (0);
1747 }
1748 
1749 static int
1750 vm_handle_suspend(struct vcpu *vcpu, bool *retu)
1751 {
1752 	struct vm *vm = vcpu->vm;
1753 	int error, i;
1754 	struct thread *td;
1755 
1756 	error = 0;
1757 	td = curthread;
1758 
1759 	CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus);
1760 
1761 	/*
1762 	 * Wait until all 'active_cpus' have suspended themselves.
1763 	 *
1764 	 * Since a VM may be suspended at any time including when one or
1765 	 * more vcpus are doing a rendezvous we need to call the rendezvous
1766 	 * handler while we are waiting to prevent a deadlock.
1767 	 */
1768 	vcpu_lock(vcpu);
1769 	while (error == 0) {
1770 		if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0)
1771 			break;
1772 
1773 		vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1774 		msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
1775 		vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1776 		if (td_ast_pending(td, TDA_SUSPEND)) {
1777 			vcpu_unlock(vcpu);
1778 			error = thread_check_susp(td, false);
1779 			vcpu_lock(vcpu);
1780 		}
1781 	}
1782 	vcpu_unlock(vcpu);
1783 
1784 	/*
1785 	 * Wakeup the other sleeping vcpus and return to userspace.
1786 	 */
1787 	for (i = 0; i < vm->maxcpus; i++) {
1788 		if (CPU_ISSET(i, &vm->suspended_cpus)) {
1789 			vcpu_notify_event(vm_vcpu(vm, i));
1790 		}
1791 	}
1792 
1793 	*retu = true;
1794 	return (error);
1795 }
1796 
1797 int
1798 vm_run(struct vcpu *vcpu)
1799 {
1800 	struct vm *vm = vcpu->vm;
1801 	struct vm_eventinfo evinfo;
1802 	int error, vcpuid;
1803 	struct vm_exit *vme;
1804 	bool retu;
1805 	pmap_t pmap;
1806 
1807 	vcpuid = vcpu->vcpuid;
1808 
1809 	if (!CPU_ISSET(vcpuid, &vm->active_cpus))
1810 		return (EINVAL);
1811 
1812 	if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
1813 		return (EINVAL);
1814 
1815 	pmap = vmspace_pmap(vm->vmspace);
1816 	vme = &vcpu->exitinfo;
1817 	evinfo.rptr = NULL;
1818 	evinfo.sptr = &vm->suspend;
1819 	evinfo.iptr = NULL;
1820 restart:
1821 	critical_enter();
1822 
1823 	restore_guest_fpustate(vcpu);
1824 
1825 	vcpu_require_state(vcpu, VCPU_RUNNING);
1826 	error = vmmops_run(vcpu->cookie, vcpu->nextpc, pmap, &evinfo);
1827 	vcpu_require_state(vcpu, VCPU_FROZEN);
1828 
1829 	save_guest_fpustate(vcpu);
1830 
1831 	critical_exit();
1832 
1833 	if (error == 0) {
1834 		retu = false;
1835 		switch (vme->exitcode) {
1836 		case VM_EXITCODE_INST_EMUL:
1837 			vcpu->nextpc = vme->pc + vme->inst_length;
1838 			error = vm_handle_inst_emul(vcpu, &retu);
1839 			break;
1840 
1841 		case VM_EXITCODE_REG_EMUL:
1842 			vcpu->nextpc = vme->pc + vme->inst_length;
1843 			error = vm_handle_reg_emul(vcpu, &retu);
1844 			break;
1845 
1846 		case VM_EXITCODE_HVC:
1847 			/*
1848 			 * The HVC instruction saves the address for the
1849 			 * next instruction as the return address.
1850 			 */
1851 			vcpu->nextpc = vme->pc;
1852 			/*
1853 			 * The PSCI call can change the exit information in the
1854 			 * case of suspend/reset/poweroff/cpu off/cpu on.
1855 			 */
1856 			error = vm_handle_smccc_call(vcpu, vme, &retu);
1857 			break;
1858 
1859 		case VM_EXITCODE_WFI:
1860 			vcpu->nextpc = vme->pc + vme->inst_length;
1861 			error = vm_handle_wfi(vcpu, vme, &retu);
1862 			break;
1863 
1864 		case VM_EXITCODE_PAGING:
1865 			vcpu->nextpc = vme->pc;
1866 			error = vm_handle_paging(vcpu, &retu);
1867 			break;
1868 
1869 		case VM_EXITCODE_SUSPENDED:
1870 			vcpu->nextpc = vme->pc;
1871 			error = vm_handle_suspend(vcpu, &retu);
1872 			break;
1873 
1874 		default:
1875 			/* Handle in userland */
1876 			vcpu->nextpc = vme->pc;
1877 			retu = true;
1878 			break;
1879 		}
1880 	}
1881 
1882 	if (error == 0 && retu == false)
1883 		goto restart;
1884 
1885 	return (error);
1886 }
1887