xref: /freebsd/sys/arm64/nvidia/tegra210/tegra210_clk_pll.c (revision c66ec88fed842fbaad62c30d510644ceb7bd2d71)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 2020 Michal Meloun <mmel@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/bus.h>
34 #include <sys/lock.h>
35 #include <sys/mutex.h>
36 #include <sys/rman.h>
37 
38 #include <machine/bus.h>
39 
40 #include <dev/extres/clk/clk_div.h>
41 #include <dev/extres/clk/clk_fixed.h>
42 #include <dev/extres/clk/clk_gate.h>
43 #include <dev/extres/clk/clk_mux.h>
44 
45 #include <gnu/dts/include/dt-bindings/clock/tegra210-car.h>
46 #include "tegra210_car.h"
47 
48 #if 0
49 #define dprintf(...) printf(__VA_ARGS__)
50 #else
51 #define dprintf(...)
52 #endif
53 
54 /* All PLLs. */
55 enum pll_type {
56 	PLL_M,
57 	PLL_MB,
58 	PLL_X,
59 	PLL_C,
60 	PLL_C2,
61 	PLL_C3,
62 	PLL_C4,
63 	PLL_P,
64 	PLL_A,
65 	PLL_A1,
66 	PLL_U,
67 	PLL_D,
68 	PLL_D2,
69 	PLL_DP,
70 	PLL_E,
71 	PLL_REFE};
72 /* Flags for PLLs */
73 
74 #define	PLL_FLAG_PDIV_POWER2	0x01		/* P Divider is 2^n */
75 #define	PLL_FLAG_VCO_OUT	0x02		/* Output VCO directly */
76 #define	PLL_FLAG_HAVE_SDM	0x04		/* Have SDM implemented */
77 #define	PLL_FLAG_HAVE_SDA	0x04		/* Have SDA implemented */
78 
79 /* Common base register bits. */
80 #define	PLL_BASE_BYPASS		(1U << 31)
81 #define	PLL_BASE_ENABLE		(1  << 30)
82 #define	PLL_BASE_REFDISABLE	(1  << 29)
83 #define	PLL_BASE_LOCK		(1  << 27)
84 
85 #define	PLLREFE_MISC_LOCK	(1 << 27)
86 
87 #define	PLL_MISC_LOCK_ENABLE	(1 << 18)
88 #define	PLLM_LOCK_ENABLE	(1 << 4)
89 #define PLLMB_LOCK_ENABLE 	(1 << 16)
90 #define	PLLC_LOCK_ENABLE	(1 << 24)
91 #define	PLLC4_LOCK_ENABLE	(1 << 30)
92 #define	PLLA_LOCK_ENABLE	(1 << 28)
93 #define	PLLD2_LOCK_ENABLE	(1 << 30)
94 #define	PLLU_LOCK_ENABLE	(1 << 29)
95 #define	PLLREFE_LOCK_ENABLE	(1 << 30)
96 #define	PLLPD_LOCK_ENABLE	(1 << 30)
97 #define	PLLE_LOCK_ENABLE	(1 << 9)
98 
99 #define	PLLM_IDDQ_BIT		5
100 #define	PLLMB_IDDQ_BIT		17
101 #define	PLLC_IDDQ_BIT		27
102 #define	PLLC4_IDDQ_BIT		18
103 #define	PLLP_IDDQ_BIT		3
104 #define	PLLA_IDDQ_BIT		25
105 #define	PLLA1_IDDQ_BIT		27
106 #define	PLLU_IDDQ_BIT		31
107 #define	PLLD_IDDQ_BIT		20
108 #define	PLLD2_IDDQ_BIT		18
109 #define	PLLX_IDDQ_BIT		3
110 #define	PLLREFE_IDDQ_BIT	24
111 #define	PLLDP_IDDQ_BIT		18
112 
113 
114 #define	PLL_LOCK_TIMEOUT	5000
115 
116 /* Post divider <-> register value mapping. */
117 struct pdiv_table {
118 	uint32_t divider;	/* real divider */
119 	uint32_t value;		/* register value */
120 };
121 
122 /* Bits definition of M, N and P fields. */
123 struct mnp_bits {
124 	uint32_t	m_width;
125 	uint32_t	n_width;
126 	uint32_t	p_width;
127 	uint32_t	m_shift;
128 	uint32_t	n_shift;
129 	uint32_t	p_shift;
130 };
131 
132 struct clk_pll_def {
133 	struct clknode_init_def	clkdef;
134 	enum pll_type		type;
135 	uint32_t		base_reg;
136 	uint32_t		misc_reg;
137 	uint32_t		lock_enable;
138 	uint32_t		iddq_reg;
139 	uint32_t		iddq_mask;
140 	uint32_t		flags;
141 	struct pdiv_table 	*pdiv_table;
142 	struct mnp_bits		mnp_bits;
143 };
144 
145 #define	PLIST(x) static const char *x[]
146 
147 #define	PLL(_id, cname, pname)						\
148 	.clkdef.id = _id,						\
149 	.clkdef.name = cname,						\
150 	.clkdef.parent_names = (const char *[]){pname},			\
151 	.clkdef.parent_cnt = 1,						\
152 	.clkdef.flags = CLK_NODE_STATIC_STRINGS
153 
154 /* multiplexer for pll sources. */
155 #define	MUX(_id, cname, plists, o, s, w)				\
156 {									\
157 	.clkdef.id = _id,						\
158 	.clkdef.name = cname,						\
159 	.clkdef.parent_names = plists,					\
160 	.clkdef.parent_cnt = nitems(plists),				\
161 	.clkdef.flags = CLK_NODE_STATIC_STRINGS,			\
162 	.offset = o,							\
163 	.shift  = s,							\
164 	.width = w,							\
165 }
166 
167 /* Fractional divider (7.1) for PLL branch. */
168 #define	DIV7_1(_id, cname, plist, o, s)					\
169 {									\
170 	.clkdef.id = _id,						\
171 	.clkdef.name = cname,						\
172 	.clkdef.parent_names = (const char *[]){plist},			\
173 	.clkdef.parent_cnt = 1,						\
174 	.clkdef.flags =  CLK_NODE_STATIC_STRINGS,			\
175 	.offset = o,							\
176 	.i_shift = (s) + 1,						\
177 	.i_width = 7,							\
178 	.f_shift = s,							\
179 	.f_width = 1,							\
180 }
181 
182 /* P divider (2^n). for PLL branch. */
183 #define	DIV5_E(_id, cname, plist, o, s)					\
184 {									\
185 	.clkdef.id = _id,						\
186 	.clkdef.name = cname,						\
187 	.clkdef.parent_names = (const char *[]){plist},			\
188 	.clkdef.parent_cnt = 1,						\
189 	.clkdef.flags =  CLK_NODE_STATIC_STRINGS,			\
190 	.offset = o,							\
191 	.i_shift = s,							\
192 	.i_width = 5,							\
193 }
194 
195 /* P divider (2^n). for PLL branch. */
196 #define	DIV_TB(_id, cname, plist, o, s, n, table)			\
197 {									\
198 	.clkdef.id = _id,						\
199 	.clkdef.name = cname,						\
200 	.clkdef.parent_names = (const char *[]){plist},			\
201 	.clkdef.parent_cnt = 1,						\
202 	.clkdef.flags =  CLK_NODE_STATIC_STRINGS,			\
203 	.div_flags = CLK_DIV_WITH_TABLE | CLK_DIV_ZERO_BASED,		\
204 	.offset = o,							\
205 	.i_shift = s,							\
206 	.i_width = n,							\
207 	.div_table = table,						\
208 }
209 
210 /* Standard gate. */
211 #define	GATE(_id, cname, plist, o, s)					\
212 {									\
213 	.clkdef.id = _id,						\
214 	.clkdef.name = cname,						\
215 	.clkdef.parent_names = (const char *[]){plist},			\
216 	.clkdef.parent_cnt = 1,						\
217 	.clkdef.flags = CLK_NODE_STATIC_STRINGS,			\
218 	.offset = o,							\
219 	.shift = s,							\
220 	.mask = 1,							\
221 	.on_value = 1,							\
222 	.off_value = 0,							\
223 }
224 /* Gate for PLL branch. */
225 #define	GATE_PLL(_id, cname, plist, o, s)				\
226 {									\
227 	.clkdef.id = _id,						\
228 	.clkdef.name = cname,						\
229 	.clkdef.parent_names = (const char *[]){plist},			\
230 	.clkdef.parent_cnt = 1,						\
231 	.clkdef.flags = CLK_NODE_STATIC_STRINGS,			\
232 	.offset = o,							\
233 	.shift = s,							\
234 	.mask = 3,							\
235 	.on_value = 3,							\
236 	.off_value = 0,							\
237 }
238 
239 /* Fixed rate multipier/divider. */
240 #define	FACT(_id, cname, pname, _mult, _div)				\
241 {									\
242 	.clkdef.id = _id,						\
243 	.clkdef.name = cname,						\
244 	.clkdef.parent_names = (const char *[]){pname},			\
245 	.clkdef.parent_cnt = 1,						\
246 	.clkdef.flags = CLK_NODE_STATIC_STRINGS,			\
247 	.mult = _mult,							\
248 	.div = _div,							\
249 }
250 
251 static struct pdiv_table qlin_map[] = {
252 	{ 1,  0},
253 	{ 2,  1},
254 	{ 3,  2},
255 	{ 4,  3},
256 	{ 5,  4},
257 	{ 6,  5},
258 	{ 8,  6},
259 	{ 9,  7},
260 	{10,  8},
261 	{12,  9},
262 	{15, 10},
263 	{16, 11},
264 	{18, 12},
265 	{20, 13},
266 	{24, 14},
267 	{30, 15},
268 	{32, 16},
269 	{ 0,  0},
270 };
271 
272 static struct clk_pll_def pll_clks[] = {
273 /* PLLM: 880 MHz Clock source for EMC 2x clock */
274 	{
275 		PLL(TEGRA210_CLK_PLL_M, "pllM_out0", "osc"),
276 		.type = PLL_M,
277 		.base_reg = PLLM_BASE,
278 		.misc_reg = PLLM_MISC2,
279 		.lock_enable = PLLM_LOCK_ENABLE,
280 		.iddq_reg = PLLM_MISC2,
281 		.iddq_mask = 1 << PLLM_IDDQ_BIT,
282 		.pdiv_table = qlin_map,
283 		.mnp_bits = {8, 8, 5, 0, 8, 20},
284 	},
285 /* PLLMB: 880 MHz Clock source for EMC 2x clock */
286 	{
287 		PLL(TEGRA210_CLK_PLL_M, "pllMB_out0", "osc"),
288 		.type = PLL_MB,
289 		.base_reg = PLLMB_BASE,
290 		.misc_reg = PLLMB_MISC1,
291 		.lock_enable = PLLMB_LOCK_ENABLE,
292 		.iddq_reg = PLLMB_MISC1,
293 		.iddq_mask = 1 << PLLMB_IDDQ_BIT,
294 		.pdiv_table = qlin_map,
295 		.mnp_bits = {8, 8, 5, 0, 8, 20},
296 	},
297 /* PLLX: 1GHz Clock source for the fast CPU cluster and the shadow CPU */
298 	{
299 		PLL(TEGRA210_CLK_PLL_X, "pllX_out0", "osc_div_clk"),
300 		.type = PLL_X,
301 		.base_reg = PLLX_BASE,
302 		.misc_reg = PLLX_MISC,
303 		.lock_enable = PLL_MISC_LOCK_ENABLE,
304 		.iddq_reg = PLLX_MISC_3,
305 		.iddq_mask = 1 << PLLX_IDDQ_BIT,
306 		.pdiv_table = qlin_map,
307 		.mnp_bits = {8, 8, 5, 0, 8, 20},
308 	},
309 /* PLLC: 510 MHz Clock source for camera use */
310 	{
311 		PLL(TEGRA210_CLK_PLL_C, "pllC_out0", "osc_div_clk"),
312 		.type = PLL_C,
313 		.base_reg = PLLC_BASE,
314 		.misc_reg = PLLC_MISC_0,
315 		.iddq_reg = PLLC_MISC_1,
316 		.iddq_mask = 1 << PLLC_IDDQ_BIT,
317 		.pdiv_table = qlin_map,
318 		.mnp_bits = {8, 8, 5, 0, 10, 20},
319 	},
320 /* PLLC2: 510 MHz Clock source for SE, VIC, TSECB, NVJPG scaling */
321 	{
322 		PLL(TEGRA210_CLK_PLL_C2, "pllC2_out0", "osc_div_clk"),
323 		.type = PLL_C2,
324 		.base_reg = PLLC2_BASE,
325 		.misc_reg = PLLC2_MISC_0,
326 		.iddq_reg = PLLC2_MISC_1,
327 		.iddq_mask = 1 << PLLC_IDDQ_BIT,
328 		.pdiv_table = qlin_map,
329 		.mnp_bits = {8, 8, 5, 0, 10, 20},
330 	},
331 /* PLLC3: 510 MHz Clock source for NVENC, NVDEC scaling */
332 	{
333 		PLL(TEGRA210_CLK_PLL_C3, "pllC3_out0", "osc_div_clk"),
334 		.type = PLL_C3,
335 		.base_reg = PLLC3_BASE,
336 		.misc_reg = PLLC3_MISC_0,
337 		.lock_enable = PLL_MISC_LOCK_ENABLE,
338 		.iddq_reg = PLLC3_MISC_1,
339 		.iddq_mask = 1 << PLLC_IDDQ_BIT,
340 		.mnp_bits = {8, 8, 5, 0, 10, 20},
341 	},
342 /* PLLC4: 600 MHz Clock source for SD/eMMC ans system busses */
343 	{
344 		PLL(TEGRA210_CLK_PLL_C4, "pllC4", "pllC4_src"),
345 		.type = PLL_C4,
346 		.flags = PLL_FLAG_VCO_OUT,
347 		.base_reg = PLLC4_BASE,
348 		.misc_reg = PLLC4_MISC,
349 		.lock_enable = PLLC4_LOCK_ENABLE,
350 		.iddq_reg = PLLC4_BASE,
351 		.iddq_mask = 1 << PLLC4_IDDQ_BIT,
352 		.pdiv_table = qlin_map,
353 		.mnp_bits = {8, 8, 5, 0, 8, 19},
354 	},
355 /* PLLP: 408 MHz Clock source for most peripherals */
356 	{
357 		/*
358 		 * VCO is directly exposed as pllP_out0, P div is used for
359 		 * pllP_out2
360 		 */
361 		PLL(TEGRA210_CLK_PLL_P, "pllP_out0", "osc_div_clk"),
362 		.type = PLL_P,
363 		.flags = PLL_FLAG_VCO_OUT,
364 		.base_reg = PLLP_BASE,
365 		.misc_reg = PLLP_MISC,
366 		.lock_enable = PLL_MISC_LOCK_ENABLE,
367 		.iddq_reg = PLLP_MISC,
368 		.iddq_mask = 1 << PLLA_IDDQ_BIT,
369 		.mnp_bits = {8, 8, 5,  0, 10, 20},
370 	},
371 /* PLLA: Audio clock for precise codec sampling */
372 	{
373 		PLL(TEGRA210_CLK_PLL_A, "pllA", "osc_div_clk"),
374 		.type = PLL_A,
375 		.base_reg = PLLA_BASE,
376 		.misc_reg = PLLA_MISC,
377 		.lock_enable = PLLA_LOCK_ENABLE,
378 		.iddq_reg = PLLA_BASE,
379 		.iddq_mask = 1 << PLLA_IDDQ_BIT,
380 		.pdiv_table = qlin_map,
381 		.mnp_bits = {8, 8, 5, 0, 8, 20},
382 	},
383 /* PLLA1: Audio clock for ADSP */
384 	{
385 		PLL(TEGRA210_CLK_PLL_A1, "pllA1_out0", "osc_div_clk"),
386 		.type = PLL_A1,
387 		.base_reg = PLLA1_BASE,
388 		.misc_reg = PLLA1_MISC_1,
389 		.iddq_reg = PLLA1_MISC_1,
390 		.iddq_mask = 1 << PLLA_IDDQ_BIT,
391 		.pdiv_table = qlin_map,
392 		.mnp_bits = {8, 8, 5, 0, 8, 20},
393 	},
394 /* PLLU: 480 MHz Clock source for USB PHY, provides 12/60/480 MHz */
395 	{
396 		PLL(TEGRA210_CLK_PLL_U, "pllU", "osc_div_clk"),
397 		.type = PLL_U,
398 		.flags = PLL_FLAG_VCO_OUT | PLL_FLAG_HAVE_SDA,
399 		.base_reg = PLLU_BASE,
400 		.misc_reg = PLLU_MISC,
401 		.lock_enable = PLLU_LOCK_ENABLE,
402 		.iddq_reg = PLLU_MISC,
403 		.iddq_mask = 1 << PLLU_IDDQ_BIT,
404 		.pdiv_table = qlin_map,
405 		.mnp_bits = {8, 8, 5, 0, 8, 16},
406 	},
407 /* PLLD: 594 MHz Clock sources for the DSI and display subsystem */
408 	{
409 		PLL(TEGRA210_CLK_PLL_D, "pllD_out", "osc_div_clk"),
410 		.type = PLL_D,
411 		.flags = PLL_FLAG_PDIV_POWER2,
412 		.base_reg = PLLD_BASE,
413 		.misc_reg = PLLD_MISC,
414 		.lock_enable = PLL_MISC_LOCK_ENABLE,
415 		.iddq_reg = PLLA1_MISC_1,
416 		.iddq_mask = 1 << PLLA_IDDQ_BIT,
417 		.mnp_bits = {8, 8, 3, 0, 11, 20},
418 	},
419 /* PLLD2: 594 MHz Clock sources for the DSI and display subsystem */
420 	{
421 		PLL(TEGRA210_CLK_PLL_D2, "pllD2_out", "pllD2_src"),
422 		.type = PLL_D2,
423 		.flags = PLL_FLAG_HAVE_SDM,
424 		.base_reg = PLLD2_BASE,
425 		.misc_reg = PLLD2_MISC,
426 		.lock_enable = PLLD2_LOCK_ENABLE,
427 		.iddq_reg = PLLD2_BASE,
428 		.iddq_mask =  1 << PLLD_IDDQ_BIT,
429 		.pdiv_table = qlin_map,
430 		.mnp_bits = {8, 8, 5, 0, 8, 19},
431 	},
432 /* PLLREFE: 624 Mhz*/
433 	{
434 		PLL(0, "pllREFE", "osc_div_clk"),
435 		.type = PLL_REFE,
436 		.flags = PLL_FLAG_VCO_OUT,
437 		.base_reg = PLLREFE_BASE,
438 		.misc_reg = PLLREFE_MISC,
439 		.lock_enable = PLLREFE_LOCK_ENABLE,
440 		.iddq_reg = PLLREFE_MISC,
441 		.iddq_mask = 1 << PLLREFE_IDDQ_BIT,
442 		.pdiv_table = qlin_map,
443 		.mnp_bits = {8, 8, 5, 0, 8, 16},
444 	},
445 /* PLLE: 100 MHz reference clock for PCIe/SATA/USB 3.0 (spread spectrum) */
446 	{
447 		PLL(TEGRA210_CLK_PLL_E, "pllE_out0", "pllE_src"),
448 		.type = PLL_E,
449 		.base_reg = PLLE_BASE,
450 		.misc_reg = PLLE_MISC,
451 		.lock_enable = PLLE_LOCK_ENABLE,
452 		.pdiv_table = qlin_map,
453 		.mnp_bits = {8, 8, 5, 0, 8, 24},
454 	},
455 /* PLLDP: 270 MHz Clock source fordisplay SOR (spread spectrum) */
456 	{
457 		PLL(0, "pllDP_out0", "pllDP_src"),
458 		.type = PLL_DP,
459 		.flags = PLL_FLAG_HAVE_SDM,
460 		.base_reg = PLLDP_BASE,
461 		.misc_reg = PLLDP_MISC,
462 		.lock_enable = PLLPD_LOCK_ENABLE,
463 		.iddq_reg = PLLDP_BASE,
464 		.iddq_mask =  1 << PLLDP_IDDQ_BIT,
465 		.pdiv_table = qlin_map,
466 		.mnp_bits = {8, 8, 5, 0, 8, 19},
467 	},
468 };
469 
470 /* Fixed rate dividers. */
471 static struct clk_fixed_def tegra210_pll_fdivs[] = {
472 	FACT(0, "pllP_UD", "pllP_out0", 1, 1),
473 	FACT(0, "pllC_UD", "pllC_out0", 1, 1),
474 	FACT(0, "pllD_UD", "pllD_out0", 1, 1),
475 	FACT(0, "pllM_UD", "pllM_out0", 1, 1),
476 	FACT(0, "pllMB_UD", "pllMB_out0", 1, 1),
477 	FACT(TEGRA210_CLK_PLL_D_OUT0, "pllD_out0", "pllD_out", 1, 2),
478 
479 	FACT(0, "pllC4_out1", "pllC4", 1, 3),
480 	FACT(0, "pllC4_out2", "pllC4", 1, 5),
481 	FACT(0, "pllD2_out0", "pllD2_out", 1, 2),
482 
483 	/* Aliases used in super mux. */
484 	FACT(0, "pllX_out0_alias", "pllX_out0", 1, 1),
485 	FACT(0, "dfllCPU_out_alias", "dfllCPU_out", 1, 1),
486 };
487 
488 /* MUXes for PLL sources. */
489 PLIST(mux_pll_srcs) = {"osc_div_clk", NULL, "pllP_out0", NULL}; /* FIXME */
490 PLIST(mux_plle_src1) = {"osc_div_clk", "pllP_out0"};
491 PLIST(mux_plle_src) = {"pllE_src1", "pllREFE_out0"};
492 static struct clk_mux_def tegra210_pll_sources[] = {
493 	/* Core clocks. */
494 	MUX(0, "pllD2_src", mux_pll_srcs, PLLD2_BASE, 25, 2),
495 	MUX(0, "pllDP_src", mux_pll_srcs, PLLDP_BASE, 25, 2),
496 	MUX(0, "pllC4_src", mux_pll_srcs, PLLC4_BASE, 25, 2),
497 	MUX(0, "pllE_src1", mux_plle_src1, PLLE_AUX, 2, 1),
498 	MUX(0, "pllE_src",  mux_plle_src, PLLE_AUX, 28, 1),
499 };
500 
501 /* Gates for PLL branches. */
502 static struct clk_gate_def tegra210_pll_gates[] = {
503 	/* Core clocks. */
504 	GATE_PLL(0, "pllC_out1", "pllC_out1_div", PLLC_OUT, 0),
505 
506 	GATE_PLL(0, "pllP_out1", "pllP_out1_div", PLLP_OUTA, 0),
507 	GATE_PLL(0, "pllP_out3", "pllP_out3_div", PLLP_OUTB, 0),
508 	GATE_PLL(TEGRA210_CLK_PLL_P_OUT4, "pllP_out4", "pllP_out4_div", PLLP_OUTB, 16),
509 	GATE_PLL(0, "pllP_out5", "pllP_out5_div", PLLP_OUTC, 16),
510 
511 	GATE_PLL(0, "pllU_out1", "pllU_out1_div", PLLU_OUTA, 0),
512 	GATE_PLL(0, "pllU_out2", "pllU_out2_div", PLLU_OUTA, 16),
513 	GATE(0, "pllU_480", "pllU", PLLU_BASE, 22),
514 	GATE(0, "pllU_60", "pllU_out2", PLLU_BASE, 23),
515 	GATE(0, "pllU_48", "pllU_out1", PLLU_BASE, 25),
516 
517 	GATE_PLL(0, "pllREFE_out1", "pllREFE_out1_div", PLLREFE_OUT, 0),
518 	GATE_PLL(0, "pllC4_out3", "pllC4_out3_div", PLLC4_OUT, 0),
519 
520 	GATE_PLL(0, "pllA_out0", "pllA_out0_div", PLLA_OUT, 0),
521 };
522 
523 struct clk_div_table tegra210_pll_pdiv_tbl[] = {
524 	/* value , divider */
525 	{ 0,  1 },
526 	{ 1,  2 },
527 	{ 2,  3 },
528 	{ 3,  4 },
529 	{ 4,  5 },
530 	{ 5,  6 },
531 	{ 6,  8 },
532 	{ 7, 10 },
533 	{ 8, 12 },
534 	{ 9, 16 },
535 	{10, 12 },
536 	{11, 16 },
537 	{12, 20 },
538 	{13, 24 },
539 	{14, 32 },
540 	{ 0,  0 },
541 };
542 
543 /* Dividers for PLL branches. */
544 static struct clk_div_def tegra210_pll_divs[] = {
545 	/* Core clocks. */
546 	DIV7_1(0, "pllC_out1_div",    "pllC_out0",  PLLC_OUT, 8),
547 
548 	DIV7_1(0, "pllP_out1_div",    "pllP_out0",  PLLP_OUTA, 8),
549 	DIV_TB(0, "pllP_out2",        "pllP_out0",  PLLP_BASE, 20, 5, tegra210_pll_pdiv_tbl),
550 	DIV7_1(0, "pllP_out3_div",    "pllP_out0",  PLLP_OUTB, 8),
551 	DIV7_1(0, "pllP_out4_div",    "pllP_out0",  PLLP_OUTB, 24),
552 	DIV7_1(0, "pllP_out5_div",    "pllP_out0",  PLLP_OUTC, 24),
553 
554 	DIV_TB(0, "pllU_out0",        "pllU",       PLLU_BASE, 16, 5, tegra210_pll_pdiv_tbl),
555 	DIV7_1(0, "pllU_out1_div",    "pllU_out0",  PLLU_OUTA, 8),
556 	DIV7_1(0, "pllU_out2_div",    "pllU_out0",  PLLU_OUTA, 24),
557 
558 	DIV_TB(0, "pllREFE_out0",     "pllREFE",    PLLREFE_BASE, 16, 5, tegra210_pll_pdiv_tbl),
559 	DIV7_1(0, "pllREFE_out1_div", "pllREFE",    PLLREFE_OUT, 8),
560 
561 	DIV_TB(TEGRA210_CLK_PLL_C4_OUT0,
562 	          "pllC4_out0",       "pllC4",      PLLC4_BASE, 19, 5, tegra210_pll_pdiv_tbl),
563 	DIV7_1(0, "pllC4_out3_div",   "pllC4_out0", PLLC4_OUT, 8),
564 
565 	DIV7_1(0, "pllA_out0_div",    "pllA",       PLLA_OUT, 8),
566 
567 };
568 
569 static int tegra210_pll_init(struct clknode *clk, device_t dev);
570 static int tegra210_pll_set_gate(struct clknode *clk, bool enable);
571 static int tegra210_pll_recalc(struct clknode *clk, uint64_t *freq);
572 static int tegra210_pll_set_freq(struct clknode *clknode, uint64_t fin,
573     uint64_t *fout, int flags, int *stop);
574 struct pll_sc {
575 	device_t		clkdev;
576 	enum pll_type		type;
577 	uint32_t		base_reg;
578 	uint32_t		misc_reg;
579 	uint32_t		lock_enable;
580 	uint32_t		iddq_reg;
581 	uint32_t		iddq_mask;
582 	uint32_t		flags;
583 	struct pdiv_table 	*pdiv_table;
584 	struct mnp_bits		mnp_bits;
585 };
586 
587 static clknode_method_t tegra210_pll_methods[] = {
588 	/* Device interface */
589 	CLKNODEMETHOD(clknode_init,		tegra210_pll_init),
590 	CLKNODEMETHOD(clknode_set_gate,		tegra210_pll_set_gate),
591 	CLKNODEMETHOD(clknode_recalc_freq,	tegra210_pll_recalc),
592 	CLKNODEMETHOD(clknode_set_freq,		tegra210_pll_set_freq),
593 	CLKNODEMETHOD_END
594 };
595 DEFINE_CLASS_1(tegra210_pll, tegra210_pll_class, tegra210_pll_methods,
596    sizeof(struct pll_sc), clknode_class);
597 
598 static int
599 pll_enable(struct pll_sc *sc)
600 {
601 	uint32_t reg;
602 
603 
604 	RD4(sc, sc->base_reg, &reg);
605 	if (sc->type != PLL_E)
606 		reg &= ~PLL_BASE_BYPASS;
607 	reg |= PLL_BASE_ENABLE;
608 	WR4(sc, sc->base_reg, reg);
609 	return (0);
610 }
611 
612 static int
613 pll_disable(struct pll_sc *sc)
614 {
615 	uint32_t reg;
616 
617 	RD4(sc, sc->base_reg, &reg);
618 	if (sc->type != PLL_E)
619 		reg |= PLL_BASE_BYPASS;
620 	reg &= ~PLL_BASE_ENABLE;
621 	WR4(sc, sc->base_reg, reg);
622 	return (0);
623 }
624 
625 static uint32_t
626 pdiv_to_reg(struct pll_sc *sc, uint32_t p_div)
627 {
628 	struct pdiv_table *tbl;
629 
630 	tbl = sc->pdiv_table;
631 	if (tbl == NULL) {
632 		if (sc->flags & PLL_FLAG_PDIV_POWER2)
633 			return (ffs(p_div) - 1);
634 		else
635 			return (p_div);
636 	}
637 
638 	while (tbl->divider != 0) {
639 		if (p_div <= tbl->divider)
640 			return (tbl->value);
641 		tbl++;
642 	}
643 	return (0xFFFFFFFF);
644 }
645 
646 static uint32_t
647 reg_to_pdiv(struct pll_sc *sc, uint32_t reg)
648 {
649 	struct pdiv_table *tbl;
650 
651 	tbl = sc->pdiv_table;
652 	if (tbl == NULL) {
653 		if (sc->flags & PLL_FLAG_PDIV_POWER2)
654 			return (1 << reg);
655 		else
656 			return (reg == 0 ? 1: reg);
657 	}
658 	while (tbl->divider) {
659 		if (reg == tbl->value)
660 			return (tbl->divider);
661 		tbl++;
662 	}
663 	return (0);
664 }
665 
666 static uint32_t
667 get_masked(uint32_t val, uint32_t shift, uint32_t width)
668 {
669 
670 	return ((val >> shift) & ((1 << width) - 1));
671 }
672 
673 static uint32_t
674 set_masked(uint32_t val, uint32_t v, uint32_t shift, uint32_t width)
675 {
676 
677 	val &= ~(((1 << width) - 1) << shift);
678 	val |= (v & ((1 << width) - 1)) << shift;
679 	return (val);
680 }
681 
682 static void
683 get_divisors(struct pll_sc *sc, uint32_t *m, uint32_t *n, uint32_t *p)
684 {
685 	uint32_t val;
686 	struct mnp_bits *mnp_bits;
687 
688 	mnp_bits = &sc->mnp_bits;
689 	RD4(sc, sc->base_reg, &val);
690 	*m = get_masked(val, mnp_bits->m_shift, mnp_bits->m_width);
691 	*n = get_masked(val, mnp_bits->n_shift, mnp_bits->n_width);
692 	*p = get_masked(val, mnp_bits->p_shift, mnp_bits->p_width);
693 }
694 
695 static uint32_t
696 set_divisors(struct pll_sc *sc, uint32_t val, uint32_t m, uint32_t n,
697     uint32_t p)
698 {
699 	struct mnp_bits *mnp_bits;
700 
701 	mnp_bits = &sc->mnp_bits;
702 	val = set_masked(val, m, mnp_bits->m_shift, mnp_bits->m_width);
703 	val = set_masked(val, n, mnp_bits->n_shift, mnp_bits->n_width);
704 	val = set_masked(val, p, mnp_bits->p_shift, mnp_bits->p_width);
705 	return (val);
706 }
707 
708 static bool
709 is_locked(struct pll_sc *sc)
710 {
711 	uint32_t reg;
712 
713 	switch (sc->type) {
714 	case PLL_REFE:
715 		RD4(sc, sc->misc_reg, &reg);
716 		reg &=  PLLREFE_MISC_LOCK;
717 		break;
718 
719 	case PLL_E:
720 		RD4(sc, sc->misc_reg, &reg);
721 		reg &= PLLE_MISC_LOCK;
722 		break;
723 
724 	default:
725 		RD4(sc, sc->base_reg, &reg);
726 		reg &= PLL_BASE_LOCK;
727 		break;
728 	}
729 	return (reg != 0);
730 }
731 
732 static int
733 wait_for_lock(struct pll_sc *sc)
734 {
735 	int i;
736 
737 	for (i = PLL_LOCK_TIMEOUT / 10; i > 0; i--) {
738 		if (is_locked(sc))
739 			break;
740 		DELAY(10);
741 	}
742 	if (i <= 0) {
743 		printf("PLL lock timeout\n");
744 		return (ETIMEDOUT);
745 	}
746 	return (0);
747 }
748 
749 static int
750 plle_enable(struct pll_sc *sc)
751 {
752 	uint32_t reg;
753 	int rv;
754 	struct mnp_bits *mnp_bits;
755 	uint32_t pll_m = 2;
756 	uint32_t pll_n = 125;
757 	uint32_t pll_cml = 14;
758 
759 	mnp_bits = &sc->mnp_bits;
760 
761 	/* Disable lock override. */
762 	RD4(sc, sc->base_reg, &reg);
763 	reg &= ~PLLE_BASE_LOCK_OVERRIDE;
764 	WR4(sc, sc->base_reg, reg);
765 
766 	/* Enable SW control */
767 	RD4(sc, PLLE_AUX, &reg);
768 	reg |= PLLE_AUX_ENABLE_SWCTL;
769 	reg &= ~PLLE_AUX_SEQ_ENABLE;
770 	WR4(sc, PLLE_AUX, reg);
771 	DELAY(10);
772 
773 	RD4(sc, sc->misc_reg, &reg);
774 	reg |= PLLE_MISC_LOCK_ENABLE;
775 	reg |= PLLE_MISC_IDDQ_SWCTL;
776 	reg &= ~PLLE_MISC_IDDQ_OVERRIDE_VALUE;
777 	reg |= PLLE_MISC_PTS;
778 	reg &= ~PLLE_MISC_VREG_BG_CTRL(~0);
779 	reg &= ~PLLE_MISC_VREG_CTRL(~0);
780 	WR4(sc, sc->misc_reg, reg);
781 	DELAY(10);
782 
783 	RD4(sc, PLLE_SS_CNTL, &reg);
784 	reg |= PLLE_SS_CNTL_DISABLE;
785 	WR4(sc, PLLE_SS_CNTL, reg);
786 
787 	RD4(sc, sc->base_reg, &reg);
788 	reg = set_divisors(sc, reg, pll_m, pll_n, pll_cml);
789 	WR4(sc, sc->base_reg, reg);
790 	DELAY(10);
791 
792 	pll_enable(sc);
793 	rv = wait_for_lock(sc);
794 	if (rv != 0)
795 		return (rv);
796 
797 	RD4(sc, PLLE_SS_CNTL, &reg);
798 	reg &= ~PLLE_SS_CNTL_SSCINCINTRV(~0);
799 	reg &= ~PLLE_SS_CNTL_SSCINC(~0);
800 	reg &= ~PLLE_SS_CNTL_SSCINVERT;
801 	reg &= ~PLLE_SS_CNTL_SSCCENTER;
802 	reg &= ~PLLE_SS_CNTL_SSCMAX(~0);
803 	reg |= PLLE_SS_CNTL_SSCINCINTRV(0x23);
804 	reg |= PLLE_SS_CNTL_SSCINC(0x1);
805 	reg |= PLLE_SS_CNTL_SSCMAX(0x21);
806 	WR4(sc, PLLE_SS_CNTL, reg);
807 	reg &= ~PLLE_SS_CNTL_SSCBYP;
808 	reg &= ~PLLE_SS_CNTL_BYPASS_SS;
809 	WR4(sc, PLLE_SS_CNTL, reg);
810 	DELAY(10);
811 
812 	reg &= ~PLLE_SS_CNTL_INTERP_RESET;
813 	WR4(sc, PLLE_SS_CNTL, reg);
814 	DELAY(10);
815 
816 	/* HW control of brick pll. */
817 	RD4(sc, sc->misc_reg, &reg);
818 	reg &= ~PLLE_MISC_IDDQ_SWCTL;
819 	WR4(sc, sc->misc_reg, reg);
820 
821 	RD4(sc, PLLE_AUX, &reg);
822 	reg |= PLLE_AUX_USE_LOCKDET;
823 	reg |= PLLE_AUX_SS_SEQ_INCLUDE;
824 	reg &= ~PLLE_AUX_ENABLE_SWCTL;
825 	reg &= ~PLLE_AUX_SS_SWCTL;
826 	WR4(sc, PLLE_AUX, reg);
827 	reg |= PLLE_AUX_SEQ_START_STATE;
828 	DELAY(10);
829 	reg |= PLLE_AUX_SEQ_ENABLE;
830 	WR4(sc, PLLE_AUX, reg);
831 
832 	/* Enable and start XUSBIO PLL HW control*/
833 	RD4(sc, XUSBIO_PLL_CFG0, &reg);
834 	reg &= ~XUSBIO_PLL_CFG0_CLK_ENABLE_SWCTL;
835 	reg &= ~XUSBIO_PLL_CFG0_PADPLL_RESET_SWCTL;
836 	reg |= XUSBIO_PLL_CFG0_PADPLL_USE_LOCKDET;
837 	reg |= XUSBIO_PLL_CFG0_PADPLL_SLEEP_IDDQ;
838 	reg &= ~XUSBIO_PLL_CFG0_SEQ_ENABLE;
839 	WR4(sc, XUSBIO_PLL_CFG0, reg);
840 	DELAY(10);
841 
842 	reg |= XUSBIO_PLL_CFG0_SEQ_ENABLE;
843 	WR4(sc, XUSBIO_PLL_CFG0, reg);
844 
845 
846 	/* Enable and start SATA PLL HW control */
847 	RD4(sc, SATA_PLL_CFG0, &reg);
848 	reg &= ~SATA_PLL_CFG0_PADPLL_RESET_SWCTL;
849 	reg &= ~SATA_PLL_CFG0_PADPLL_RESET_OVERRIDE_VALUE;
850 	reg |=  SATA_PLL_CFG0_PADPLL_USE_LOCKDET;
851 	reg |=  SATA_PLL_CFG0_PADPLL_SLEEP_IDDQ;
852 	reg &= ~SATA_PLL_CFG0_SEQ_IN_SWCTL;
853 	reg &= ~SATA_PLL_CFG0_SEQ_RESET_INPUT_VALUE;
854 	reg &= ~SATA_PLL_CFG0_SEQ_LANE_PD_INPUT_VALUE;
855 	reg &= ~SATA_PLL_CFG0_SEQ_PADPLL_PD_INPUT_VALUE;
856 	reg &= ~SATA_PLL_CFG0_SEQ_ENABLE;
857 	WR4(sc, SATA_PLL_CFG0, reg);
858 	DELAY(10);
859 	reg |= SATA_PLL_CFG0_SEQ_ENABLE;
860 	WR4(sc, SATA_PLL_CFG0, reg);
861 
862 	/* Enable HW control of PCIe PLL. */
863 	RD4(sc, PCIE_PLL_CFG, &reg);
864 	reg |= PCIE_PLL_CFG_SEQ_ENABLE;
865 	WR4(sc, PCIE_PLL_CFG, reg);
866 
867 	return (0);
868 }
869 
870 static int
871 tegra210_pll_set_gate(struct clknode *clknode, bool enable)
872 {
873 	int rv;
874 	struct pll_sc *sc;
875 
876 	sc = clknode_get_softc(clknode);
877 	if (enable == 0) {
878 		rv = pll_disable(sc);
879 		return(rv);
880 	}
881 
882 	if (sc->type == PLL_E)
883 		rv = plle_enable(sc);
884 	else
885 		rv = pll_enable(sc);
886 	return (rv);
887 }
888 
889 static int
890 pll_set_std(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags,
891     uint32_t m, uint32_t n, uint32_t p)
892 {
893 	uint32_t reg;
894 	struct mnp_bits *mnp_bits;
895 	int rv;
896 
897 	mnp_bits = &sc->mnp_bits;
898 	if (m >= (1 << mnp_bits->m_width))
899 		return (ERANGE);
900 	if (n >= (1 << mnp_bits->n_width))
901 		return (ERANGE);
902 	if (pdiv_to_reg(sc, p) >= (1 << mnp_bits->p_width))
903 		return (ERANGE);
904 
905 	if (flags & CLK_SET_DRYRUN) {
906 		if (((flags & (CLK_SET_ROUND_UP | CLK_SET_ROUND_DOWN)) == 0) &&
907 		    (*fout != (((fin / m) * n) /p)))
908 			return (ERANGE);
909 
910 		*fout = ((fin / m) * n) /p;
911 
912 		return (0);
913 	}
914 
915 	pll_disable(sc);
916 
917 	/* take pll out of IDDQ */
918 	if (sc->iddq_reg != 0)
919 		MD4(sc, sc->iddq_reg, sc->iddq_mask, 0);
920 
921 	RD4(sc, sc->base_reg, &reg);
922 	reg = set_masked(reg, m, mnp_bits->m_shift, mnp_bits->m_width);
923 	reg = set_masked(reg, n, mnp_bits->n_shift, mnp_bits->n_width);
924 	reg = set_masked(reg, pdiv_to_reg(sc, p), mnp_bits->p_shift,
925 	    mnp_bits->p_width);
926 	WR4(sc, sc->base_reg, reg);
927 
928 	/* Enable PLL. */
929 	RD4(sc, sc->base_reg, &reg);
930 	reg |= PLL_BASE_ENABLE;
931 	WR4(sc, sc->base_reg, reg);
932 
933 	/* Enable lock detection. */
934 	RD4(sc, sc->misc_reg, &reg);
935 	reg |= sc->lock_enable;
936 	WR4(sc, sc->misc_reg, reg);
937 
938 	rv = wait_for_lock(sc);
939 	if (rv != 0) {
940 		/* Disable PLL */
941 		RD4(sc, sc->base_reg, &reg);
942 		reg &= ~PLL_BASE_ENABLE;
943 		WR4(sc, sc->base_reg, reg);
944 		return (rv);
945 	}
946 	RD4(sc, sc->misc_reg, &reg);
947 
948 	pll_enable(sc);
949 	*fout = ((fin / m) * n) / p;
950 	return 0;
951 }
952 
953 static int
954 plla_set_freq(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags)
955 {
956 	uint32_t m, n, p;
957 
958 	p = 1;
959 	m = 3;
960 	n = (*fout * p * m + fin / 2)/ fin;
961 	dprintf("%s: m: %d, n: %d, p: %d\n", __func__, m, n, p);
962 	return (pll_set_std(sc,  fin, fout, flags, m, n, p));
963 }
964 
965 static int
966 pllc_set_freq(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags)
967 {
968 	uint32_t m, n, p;
969 
970 	p = 2;
971 	m = 3;
972 	n = (*fout * p * m + fin / 2)/ fin;
973 	dprintf("%s: m: %d, n: %d, p: %d\n", __func__, m, n, p);
974 	return (pll_set_std( sc, fin, fout, flags, m, n, p));
975 }
976 
977 static int
978 pllc4_set_freq(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags)
979 {
980 	uint32_t m, n, p;
981 
982 	p = 1;
983 	m = 4;
984 	n = (*fout * p * m + fin / 2)/ fin;
985 	dprintf("%s: m: %d, n: %d, p: %d\n", __func__, m, n, p);
986 	return (pll_set_std( sc, fin, fout, flags, m, n, p));
987 }
988 
989 static int
990 plldp_set_freq(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags)
991 {
992 	uint32_t m, n, p;
993 
994 	p = 1;
995 	m = 4;
996 	n = (*fout * p * m + fin / 2)/ fin;
997 	dprintf("%s: m: %d, n: %d, p: %d\n", __func__, m, n, p);
998 	return (pll_set_std( sc, fin, fout, flags, m, n, p));
999 }
1000 
1001 
1002 /*
1003  * PLLD2 is used as source for pixel clock for HDMI.
1004  * We must be able to set it frequency very flexibly and
1005  * precisely (within 5% tolerance limit allowed by HDMI specs).
1006  *
1007  * For this reason, it is necessary to search the full state space.
1008  * Fortunately, thanks to early cycle terminations, performance
1009  * is within acceptable limits.
1010  */
1011 #define	PLLD2_PFD_MIN		  12000000 	/* 12 MHz */
1012 #define	PLLD2_PFD_MAX		  38400000	/* 38.4 MHz */
1013 #define	PLLD2_VCO_MIN	  	 750000000	/* 750 MHz */
1014 #define	PLLD2_VCO_MAX		1500000000	/* 1.5 GHz */
1015 
1016 static int
1017 plld2_set_freq(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags)
1018 {
1019 	uint32_t m, n, p;
1020 	uint32_t best_m, best_n, best_p;
1021 	uint64_t vco, pfd;
1022 	int64_t err, best_err;
1023 	struct mnp_bits *mnp_bits;
1024 	struct pdiv_table *tbl;
1025 	int p_idx, rv;
1026 
1027 	mnp_bits = &sc->mnp_bits;
1028 	tbl = sc->pdiv_table;
1029 	best_err = INT64_MAX;
1030 
1031 	for (p_idx = 0; tbl[p_idx].divider != 0; p_idx++) {
1032 		p = tbl[p_idx].divider;
1033 
1034 		/* Check constraints */
1035 		vco = *fout * p;
1036 		if (vco < PLLD2_VCO_MIN)
1037 			continue;
1038 		if (vco > PLLD2_VCO_MAX)
1039 			break;
1040 
1041 		for (m = 1; m < (1 << mnp_bits->m_width); m++) {
1042 			n = (*fout * p * m + fin / 2) / fin;
1043 
1044 			/* Check constraints */
1045 			if (n == 0)
1046 				continue;
1047 			if (n >= (1 << mnp_bits->n_width))
1048 				break;
1049 			vco = (fin * n) / m;
1050 			if (vco > PLLD2_VCO_MAX || vco < PLLD2_VCO_MIN)
1051 				continue;
1052 			pfd = fin / m;
1053 			if (pfd > PLLD2_PFD_MAX || vco < PLLD2_PFD_MIN)
1054 				continue;
1055 
1056 			/* Constraints passed, save best result */
1057 			err = *fout - vco / p;
1058 			if (err < 0)
1059 				err = -err;
1060 			if (err < best_err) {
1061 				best_err = err;
1062 				best_p = p;
1063 				best_m = m;
1064 				best_n = n;
1065 			}
1066 			if (err == 0)
1067 				goto done;
1068 		}
1069 	}
1070 done:
1071 	/*
1072 	 * HDMI specification allows 5% pixel clock tolerance,
1073 	 * we will by a slightly stricter
1074 	 */
1075 	if (best_err > ((*fout * 100) / 4))
1076 		return (ERANGE);
1077 
1078 	if (flags & CLK_SET_DRYRUN)
1079 		return (0);
1080 	rv = pll_set_std(sc, fin, fout, flags, best_m, best_n, best_p);
1081 	/* XXXX Panic for rv == ERANGE ? */
1082 	return (rv);
1083 }
1084 
1085 static int
1086 pllrefe_set_freq(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags)
1087 {
1088 	uint32_t m, n, p;
1089 
1090 	m = 1;
1091 	p = 1;
1092 	n = *fout * p * m / fin;
1093 	dprintf("%s: m: %d, n: %d, p: %d\n", __func__, m, n, p);
1094 	return (pll_set_std(sc, fin, fout, flags, m, n, p));
1095 }
1096 
1097 #define	PLLX_PFD_MIN   12000000LL	/* 12 MHz */
1098 #define	PLLX_PFD_MAX   38400000LL	/* 38.4 MHz */
1099 #define	PLLX_VCO_MIN  900000000LL	/* 0.9 GHz */
1100 #define	PLLX_VCO_MAX 3000000000LL	/* 3 GHz */
1101 
1102 static int
1103 pllx_set_freq(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags)
1104 {
1105 	struct mnp_bits *mnp_bits;
1106 	uint32_t m, n, p;
1107 	uint32_t old_m, old_n, old_p;
1108 	uint32_t reg;
1109 	int i, rv;
1110 
1111 	mnp_bits = &sc->mnp_bits;
1112 
1113 	get_divisors(sc, &old_m, &old_n, &old_p);
1114 	old_p = reg_to_pdiv(sc, old_p);
1115 
1116 	/* Pre-divider is fixed, Compute post-divider */
1117 	m = old_m;
1118 	p = 1;
1119 	while ((*fout * p)  < PLLX_VCO_MIN)
1120 		p++;
1121 	if ((*fout * p) > PLLX_VCO_MAX)
1122 		return (ERANGE);
1123 
1124 	n = (*fout * p * m + fin / 2) / fin;
1125 	dprintf("%s: m: %d, n: %d, p: %d\n", __func__, m, n, p);
1126 
1127 	if (m >= (1 << mnp_bits->m_width))
1128 		return (ERANGE);
1129 	if (n >= (1 << mnp_bits->n_width))
1130 		return (ERANGE);
1131 	if (pdiv_to_reg(sc, p) >= (1 << mnp_bits->p_width))
1132 		return (ERANGE);
1133 
1134 	if (flags & CLK_SET_DRYRUN) {
1135 		if (((flags & (CLK_SET_ROUND_UP | CLK_SET_ROUND_DOWN)) == 0) &&
1136 		    (*fout != (((fin / m) * n) /p)))
1137 			return (ERANGE);
1138 		*fout = ((fin / m) * n) /p;
1139 		return (0);
1140 	}
1141 
1142 	/* If new post-divider is bigger that original, set it now. */
1143 	if (p < old_p) {
1144 		RD4(sc, sc->base_reg, &reg);
1145 		reg = set_masked(reg, pdiv_to_reg(sc, p), mnp_bits->p_shift,
1146 		    mnp_bits->p_width);
1147 		WR4(sc, sc->base_reg, reg);
1148 	}
1149 	DELAY(100);
1150 
1151 	/* vvv Program dynamic VCO ramp. vvv */
1152 	/* 1 - disable dynamic ramp mode. */
1153 	RD4(sc, PLLX_MISC_2, &reg);
1154 	reg &= ~PLLX_MISC_2_EN_DYNRAMP;
1155 	WR4(sc, PLLX_MISC_2, reg);
1156 
1157 	/* 2 - Setup new ndiv. */
1158 	RD4(sc, PLLX_MISC_2, &reg);
1159 	reg &= ~PLLX_MISC_2_NDIV_NEW(~0);
1160 	reg |= PLLX_MISC_2_NDIV_NEW(n);
1161 	WR4(sc, PLLX_MISC_2, reg);
1162 
1163 	/* 3 - enable dynamic ramp. */
1164 	RD4(sc, PLLX_MISC_2, &reg);
1165 	reg |= PLLX_MISC_2_EN_DYNRAMP;
1166 	WR4(sc, PLLX_MISC_2, reg);
1167 
1168 	/* 4 - wait for done. */
1169 	for (i = PLL_LOCK_TIMEOUT / 10; i > 0; i--) {
1170 		RD4(sc, PLLX_MISC_2, &reg);
1171 		if (reg & PLLX_MISC_2_DYNRAMP_DONE)
1172 			break;
1173 		DELAY(10);
1174 	}
1175 	if (i <= 0) {
1176 		printf("PLL X dynamic ramp timedout\n");
1177 		return (ETIMEDOUT);
1178 	}
1179 
1180 	/* 5 - copy new ndiv to base register. */
1181 	RD4(sc, sc->base_reg, &reg);
1182 	reg = set_masked(reg, n, mnp_bits->n_shift,
1183 	    mnp_bits->n_width);
1184 	WR4(sc, sc->base_reg, reg);
1185 
1186 	/* 6 - disable dynamic ramp mode. */
1187 	RD4(sc, PLLX_MISC_2, &reg);
1188 	reg &= ~PLLX_MISC_2_EN_DYNRAMP;
1189 	WR4(sc, PLLX_MISC_2, reg);
1190 
1191 	rv = wait_for_lock(sc);
1192 	if (rv != 0) {
1193 		printf("PLL X is not locked !!\n");
1194 	}
1195 	/* ^^^ Dynamic ramp done. ^^^ */
1196 
1197 	/* If new post-divider is smaller that original, set it. */
1198 	if (p > old_p) {
1199 		RD4(sc, sc->base_reg, &reg);
1200 		reg = set_masked(reg, pdiv_to_reg(sc, p), mnp_bits->p_shift,
1201 		    mnp_bits->p_width);
1202 		WR4(sc, sc->base_reg, reg);
1203 	}
1204 
1205 	*fout = ((fin / m) * n) / p;
1206 	return (0);
1207 }
1208 
1209 /* Simplified setup for 38.4 MHz clock. */
1210 #define PLLX_STEP_A  0x04
1211 #define PLLX_STEP_B  0x05
1212 static int
1213 pllx_init(struct pll_sc *sc)
1214 {
1215 	uint32_t reg;
1216 
1217 	RD4(sc, PLLX_MISC, &reg);
1218 	reg = PLLX_MISC_LOCK_ENABLE;
1219 	WR4(sc, PLLX_MISC, reg);
1220 
1221 	/* Setup dynamic ramp. */
1222 	reg = 0;
1223 	reg |= PLLX_MISC_2_DYNRAMP_STEPA(PLLX_STEP_A);
1224 	reg |= PLLX_MISC_2_DYNRAMP_STEPB(PLLX_STEP_B);
1225 	WR4(sc, PLLX_MISC_2, reg);
1226 
1227 	/* Disable SDM. */
1228 	reg = 0;
1229 	WR4(sc, PLLX_MISC_4, reg);
1230 	WR4(sc, PLLX_MISC_5, reg);
1231 
1232 	return (0);
1233 }
1234 
1235 static int
1236 tegra210_pll_set_freq(struct clknode *clknode, uint64_t fin, uint64_t *fout,
1237     int flags, int *stop)
1238 {
1239 	*stop = 1;
1240 	int rv;
1241 	struct pll_sc *sc;
1242 
1243 	sc = clknode_get_softc(clknode);
1244 	dprintf("%s: %s requested freq: %lu, input freq: %lu\n", __func__,
1245 	   clknode_get_name(clknode), *fout, fin);
1246 	switch (sc->type) {
1247 	case PLL_A:
1248 		rv = plla_set_freq(sc, fin, fout, flags);
1249 		break;
1250 
1251 	case PLL_C:
1252 	case PLL_C2:
1253 	case PLL_C3:
1254 		rv = pllc_set_freq(sc, fin, fout, flags);
1255 		break;
1256 
1257 	case PLL_C4:
1258 		rv = pllc4_set_freq(sc, fin, fout, flags);
1259 		break;
1260 
1261 	case PLL_D2:
1262 		rv = plld2_set_freq(sc, fin, fout, flags);
1263 		break;
1264 
1265 	case PLL_DP:
1266 		rv = plldp_set_freq(sc, fin, fout, flags);
1267 		break;
1268 
1269 	case PLL_REFE:
1270 		rv = pllrefe_set_freq(sc, fin, fout, flags);
1271 		break;
1272 
1273 	case PLL_X:
1274 		rv = pllx_set_freq(sc, fin, fout, flags);
1275 		break;
1276 
1277 	case PLL_U:
1278 		if (*fout == 480000000)  /* PLLU is fixed to 480 MHz */
1279 			rv = 0;
1280 		else
1281 			rv = ERANGE;
1282 		break;
1283 	default:
1284 		rv = ENXIO;
1285 		break;
1286 	}
1287 
1288 	return (rv);
1289 }
1290 
1291 
1292 static int
1293 tegra210_pll_init(struct clknode *clk, device_t dev)
1294 {
1295 	struct pll_sc *sc;
1296 	uint32_t reg, rv;
1297 
1298 	sc = clknode_get_softc(clk);
1299 
1300 	if (sc->type == PLL_X) {
1301 		rv = pllx_init(sc);
1302 		if (rv != 0)
1303 			return (rv);
1304 	}
1305 
1306 	/* If PLL is enabled, enable lock detect too. */
1307 	RD4(sc, sc->base_reg, &reg);
1308 	if (reg & PLL_BASE_ENABLE) {
1309 		RD4(sc, sc->misc_reg, &reg);
1310 		reg |= sc->lock_enable;
1311 		WR4(sc, sc->misc_reg, reg);
1312 	}
1313 	if (sc->type == PLL_REFE) {
1314 		RD4(sc, sc->misc_reg, &reg);
1315 		reg &= ~(1 << 29);	/* Disable lock override */
1316 		WR4(sc, sc->misc_reg, reg);
1317 	}
1318 	clknode_init_parent_idx(clk, 0);
1319 	return(0);
1320 }
1321 
1322 static int
1323 tegra210_pll_recalc(struct clknode *clk, uint64_t *freq)
1324 {
1325 	struct pll_sc *sc;
1326 	uint32_t m, n, p, pr;
1327 	uint32_t reg, misc_reg;
1328 	int locked;
1329 
1330 	sc = clknode_get_softc(clk);
1331 
1332 	RD4(sc, sc->base_reg, &reg);
1333 	RD4(sc, sc->misc_reg, &misc_reg);
1334 
1335 	get_divisors(sc, &m, &n, &pr);
1336 
1337 	/* If VCO is directlu exposed, P divider is handled by external node */
1338 	if (sc->flags & PLL_FLAG_VCO_OUT)
1339 		p = 1;
1340 	else
1341 		p = reg_to_pdiv(sc, pr);
1342 
1343 	locked = is_locked(sc);
1344 
1345 	dprintf("%s: %s (0x%08x, 0x%08x) - m: %d, n: %d, p: %d (%d): "
1346 	    "e: %d, r: %d, o: %d - %s\n", __func__,
1347 	    clknode_get_name(clk), reg, misc_reg, m, n, p, pr,
1348 	    (reg >> 30) & 1, (reg >> 29) & 1, (reg >> 28) & 1,
1349 	    locked ? "locked" : "unlocked");
1350 
1351 	if ((m == 0) || (n == 0) || (p == 0)) {
1352 		*freq = 0;
1353 		return (EINVAL);
1354 	}
1355 	if (!locked) {
1356 		*freq = 0;
1357 		return (0);
1358 	}
1359 	*freq = ((*freq / m) * n) / p;
1360 	return (0);
1361 }
1362 
1363 static int
1364 pll_register(struct clkdom *clkdom, struct clk_pll_def *clkdef)
1365 {
1366 	struct clknode *clk;
1367 	struct pll_sc *sc;
1368 
1369 	clk = clknode_create(clkdom, &tegra210_pll_class, &clkdef->clkdef);
1370 	if (clk == NULL)
1371 		return (ENXIO);
1372 
1373 	sc = clknode_get_softc(clk);
1374 	sc->clkdev = clknode_get_device(clk);
1375 	sc->type = clkdef->type;
1376 	sc->base_reg = clkdef->base_reg;
1377 	sc->misc_reg = clkdef->misc_reg;
1378 	sc->lock_enable = clkdef->lock_enable;
1379 	sc->iddq_reg = clkdef->iddq_reg;
1380 	sc->iddq_mask = clkdef->iddq_mask;
1381 	sc->flags = clkdef->flags;
1382 	sc->pdiv_table = clkdef->pdiv_table;
1383 	sc->mnp_bits = clkdef->mnp_bits;
1384 	clknode_register(clkdom, clk);
1385 	return (0);
1386 }
1387 
1388 static void config_utmi_pll(struct tegra210_car_softc *sc)
1389 {
1390 	uint32_t reg;
1391 	/*
1392 	 * XXX Simplified UTMIP settings for 38.4MHz base clock.
1393 	 */
1394 #define	ENABLE_DELAY_COUNT 	0x00
1395 #define	STABLE_COUNT		0x00
1396 #define	ACTIVE_DELAY_COUNT	0x06
1397 #define	XTAL_FREQ_COUNT		0x80
1398 
1399 	CLKDEV_READ_4(sc->dev, UTMIPLL_HW_PWRDN_CFG0, &reg);
1400 	reg &= ~UTMIPLL_HW_PWRDN_CFG0_IDDQ_OVERRIDE;
1401 	CLKDEV_WRITE_4(sc->dev, UTMIPLL_HW_PWRDN_CFG0, reg);
1402 
1403 	CLKDEV_READ_4(sc->dev, UTMIP_PLL_CFG2, &reg);
1404 	reg &= ~UTMIP_PLL_CFG2_STABLE_COUNT(~0);
1405 	reg |= UTMIP_PLL_CFG2_STABLE_COUNT(STABLE_COUNT);
1406 	reg &= ~UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(~0);
1407 	reg |= UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(ACTIVE_DELAY_COUNT);
1408 	CLKDEV_WRITE_4(sc->dev, UTMIP_PLL_CFG2, reg);
1409 
1410 	CLKDEV_READ_4(sc->dev, UTMIP_PLL_CFG1, &reg);
1411 	reg &= ~UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(~0);
1412 	reg |= UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(ENABLE_DELAY_COUNT);
1413 	reg &= ~UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(~0);
1414 	reg |= UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(XTAL_FREQ_COUNT);
1415 	reg |= UTMIP_PLL_CFG1_FORCE_PLLU_POWERUP;
1416 	CLKDEV_WRITE_4(sc->dev, UTMIP_PLL_CFG1, reg);
1417 
1418 	reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERDOWN;
1419 	reg |= UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERUP;
1420 	CLKDEV_WRITE_4(sc->dev, UTMIP_PLL_CFG1, reg);
1421 	DELAY(20);
1422 
1423 	/* Setup samplers. */
1424 	CLKDEV_READ_4(sc->dev, UTMIP_PLL_CFG2, &reg);
1425 	reg |= UTMIP_PLL_CFG2_FORCE_PD_SAMP_A_POWERUP;
1426 	reg |= UTMIP_PLL_CFG2_FORCE_PD_SAMP_B_POWERUP;
1427 	reg |= UTMIP_PLL_CFG2_FORCE_PD_SAMP_D_POWERUP;
1428 	reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_A_POWERDOWN;
1429 	reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_B_POWERDOWN;
1430 	reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_D_POWERDOWN;
1431 	CLKDEV_WRITE_4(sc->dev, UTMIP_PLL_CFG2, reg);
1432 
1433 	/* Powerup UTMIP. */
1434 	CLKDEV_READ_4(sc->dev, UTMIP_PLL_CFG1, &reg);
1435 	reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERUP;
1436 	reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERDOWN;
1437 	CLKDEV_WRITE_4(sc->dev, UTMIP_PLL_CFG1, reg);
1438 	DELAY(10);
1439 
1440 	/* Prepare UTMIP sequencer. */
1441 	CLKDEV_READ_4(sc->dev, UTMIPLL_HW_PWRDN_CFG0, &reg);
1442 	reg |= UTMIPLL_HW_PWRDN_CFG0_USE_LOCKDET;
1443 	reg &= ~UTMIPLL_HW_PWRDN_CFG0_CLK_ENABLE_SWCTL;
1444 	CLKDEV_WRITE_4(sc->dev, UTMIPLL_HW_PWRDN_CFG0, reg);
1445 	DELAY(10);
1446 
1447 	CLKDEV_READ_4(sc->dev, XUSB_PLL_CFG0, &reg);
1448 	reg &= ~XUSB_PLL_CFG0_UTMIPLL_LOCK_DLY;
1449 	CLKDEV_WRITE_4(sc->dev, XUSB_PLL_CFG0, reg);
1450 	DELAY(10);
1451 
1452 	/* HW control of UTMIPLL. */
1453 	CLKDEV_READ_4(sc->dev, UTMIPLL_HW_PWRDN_CFG0, &reg);
1454 	reg |= UTMIPLL_HW_PWRDN_CFG0_SEQ_ENABLE;
1455 	CLKDEV_WRITE_4(sc->dev, UTMIPLL_HW_PWRDN_CFG0, reg);
1456 }
1457 
1458 void
1459 tegra210_init_plls(struct tegra210_car_softc *sc)
1460 {
1461 	int i, rv;
1462 
1463 	for (i = 0; i < nitems(tegra210_pll_sources); i++) {
1464 		rv = clknode_mux_register(sc->clkdom, tegra210_pll_sources + i);
1465 		if (rv != 0)
1466 			panic("clk_mux_register failed");
1467 	}
1468 
1469 	for (i = 0; i < nitems(pll_clks); i++) {
1470 		rv = pll_register(sc->clkdom, pll_clks + i);
1471 		if (rv != 0)
1472 			panic("pll_register failed");
1473 	}
1474 
1475 	config_utmi_pll(sc);
1476 
1477 	for (i = 0; i < nitems(tegra210_pll_fdivs); i++) {
1478 		rv = clknode_fixed_register(sc->clkdom, tegra210_pll_fdivs + i);
1479 		if (rv != 0)
1480 			panic("clk_fixed_register failed");
1481 	}
1482 
1483 	for (i = 0; i < nitems(tegra210_pll_gates); i++) {
1484 		rv = clknode_gate_register(sc->clkdom, tegra210_pll_gates + i);
1485 		if (rv != 0)
1486 			panic("clk_gate_register failed");
1487 	}
1488 
1489 	for (i = 0; i < nitems(tegra210_pll_divs); i++) {
1490 		rv = clknode_div_register(sc->clkdom, tegra210_pll_divs + i);
1491 		if (rv != 0)
1492 			panic("clk_div_register failed");
1493 	}
1494 }
1495