xref: /freebsd/sys/arm64/iommu/smmu.c (revision 924226fba12cc9a228c73b956e1b7fa24c60b055)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2019-2020 Ruslan Bukin <br@bsdpad.com>
5  *
6  * This software was developed by SRI International and the University of
7  * Cambridge Computer Laboratory (Department of Computer Science and
8  * Technology) under DARPA contract HR0011-18-C-0016 ("ECATS"), as part of the
9  * DARPA SSITH research programme.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Hardware overview.
35  *
36  * An incoming transaction from a peripheral device has an address, size,
37  * attributes and StreamID.
38  *
39  * In case of PCI-based devices, StreamID is a PCI rid.
40  *
41  * The StreamID is used to select a Stream Table Entry (STE) in a Stream table,
42  * which contains per-device configuration.
43  *
44  * Stream table is a linear or 2-level walk table (this driver supports both).
45  * Note that a linear table could occupy 1GB or more of memory depending on
46  * sid_bits value.
47  *
48  * STE is used to locate a Context Descriptor, which is a struct in memory
49  * that describes stages of translation, translation table type, pointer to
50  * level 0 of page tables, ASID, etc.
51  *
52  * Hardware supports two stages of translation: Stage1 (S1) and Stage2 (S2):
53  *  o S1 is used for the host machine traffic translation
54  *  o S2 is for a hypervisor
55  *
56  * This driver enables S1 stage with standard AArch64 page tables.
57  *
58  * Note that SMMU does not share TLB with a main CPU.
59  * Command queue is used by this driver to Invalidate SMMU TLB, STE cache.
60  *
61  * An arm64 SoC could have more than one SMMU instance.
62  * ACPI IORT table describes which SMMU unit is assigned for a particular
63  * peripheral device.
64  *
65  * Queues.
66  *
67  * Register interface and Memory-based circular buffer queues are used
68  * to inferface SMMU.
69  *
70  * These are a Command queue for commands to send to the SMMU and an Event
71  * queue for event/fault reports from the SMMU. Optionally PRI queue is
72  * designed for PCIe page requests reception.
73  *
74  * Note that not every hardware supports PRI services. For instance they were
75  * not found in Neoverse N1 SDP machine.
76  * (This drivers does not implement PRI queue.)
77  *
78  * All SMMU queues are arranged as circular buffers in memory. They are used
79  * in a producer-consumer fashion so that an output queue contains data
80  * produced by the SMMU and consumed by software.
81  * An input queue contains data produced by software, consumed by the SMMU.
82  *
83  * Interrupts.
84  *
85  * Interrupts are not required by this driver for normal operation.
86  * The standard wired interrupt is only triggered when an event comes from
87  * the SMMU, which is only in a case of errors (e.g. translation fault).
88  */
89 
90 #include "opt_platform.h"
91 #include "opt_acpi.h"
92 
93 #include <sys/cdefs.h>
94 __FBSDID("$FreeBSD$");
95 
96 #include <sys/param.h>
97 #include <sys/bitstring.h>
98 #include <sys/bus.h>
99 #include <sys/kernel.h>
100 #include <sys/malloc.h>
101 #include <sys/mutex.h>
102 #include <sys/rman.h>
103 #include <sys/lock.h>
104 #include <sys/sysctl.h>
105 #include <sys/tree.h>
106 #include <sys/taskqueue.h>
107 #include <vm/vm.h>
108 #include <vm/vm_page.h>
109 #ifdef DEV_ACPI
110 #include <contrib/dev/acpica/include/acpi.h>
111 #include <dev/acpica/acpivar.h>
112 #endif
113 #include <dev/pci/pcireg.h>
114 #include <dev/pci/pcivar.h>
115 #include <dev/iommu/iommu.h>
116 #include <arm64/iommu/iommu_pmap.h>
117 
118 #include <machine/bus.h>
119 
120 #ifdef FDT
121 #include <dev/fdt/fdt_common.h>
122 #include <dev/ofw/ofw_bus.h>
123 #include <dev/ofw/ofw_bus_subr.h>
124 #endif
125 
126 #include "iommu.h"
127 #include "iommu_if.h"
128 
129 #include "smmureg.h"
130 #include "smmuvar.h"
131 
132 #define	STRTAB_L1_SZ_SHIFT	20
133 #define	STRTAB_SPLIT		8
134 
135 #define	STRTAB_L1_DESC_L2PTR_M	(0x3fffffffffff << 6)
136 #define	STRTAB_L1_DESC_DWORDS	1
137 
138 #define	STRTAB_STE_DWORDS	8
139 
140 #define	CMDQ_ENTRY_DWORDS	2
141 #define	EVTQ_ENTRY_DWORDS	4
142 #define	PRIQ_ENTRY_DWORDS	2
143 
144 #define	CD_DWORDS		8
145 
146 #define	Q_WRP(q, p)		((p) & (1 << (q)->size_log2))
147 #define	Q_IDX(q, p)		((p) & ((1 << (q)->size_log2) - 1))
148 #define	Q_OVF(p)		((p) & (1 << 31)) /* Event queue overflowed */
149 
150 #define	SMMU_Q_ALIGN		(64 * 1024)
151 
152 static struct resource_spec smmu_spec[] = {
153 	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
154 	{ SYS_RES_IRQ, 0, RF_ACTIVE },
155 	{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_OPTIONAL },
156 	{ SYS_RES_IRQ, 2, RF_ACTIVE },
157 	{ SYS_RES_IRQ, 3, RF_ACTIVE },
158 	RESOURCE_SPEC_END
159 };
160 
161 MALLOC_DEFINE(M_SMMU, "SMMU", SMMU_DEVSTR);
162 
163 #define	dprintf(fmt, ...)
164 
165 struct smmu_event {
166 	int ident;
167 	char *str;
168 	char *msg;
169 };
170 
171 static struct smmu_event events[] = {
172 	{ 0x01, "F_UUT",
173 		"Unsupported Upstream Transaction."},
174 	{ 0x02, "C_BAD_STREAMID",
175 		"Transaction StreamID out of range."},
176 	{ 0x03, "F_STE_FETCH",
177 		"Fetch of STE caused external abort."},
178 	{ 0x04, "C_BAD_STE",
179 		"Used STE invalid."},
180 	{ 0x05, "F_BAD_ATS_TREQ",
181 		"Address Translation Request disallowed for a StreamID "
182 		"and a PCIe ATS Translation Request received."},
183 	{ 0x06, "F_STREAM_DISABLED",
184 		"The STE of a transaction marks non-substream transactions "
185 		"disabled."},
186 	{ 0x07, "F_TRANSL_FORBIDDEN",
187 		"An incoming PCIe transaction is marked Translated but "
188 		"SMMU bypass is disallowed for this StreamID."},
189 	{ 0x08, "C_BAD_SUBSTREAMID",
190 		"Incoming SubstreamID present, but configuration is invalid."},
191 	{ 0x09, "F_CD_FETCH",
192 		"Fetch of CD caused external abort."},
193 	{ 0x0a, "C_BAD_CD",
194 		"Fetched CD invalid."},
195 	{ 0x0b, "F_WALK_EABT",
196 		"An external abort occurred fetching (or updating) "
197 		"a translation table descriptor."},
198 	{ 0x10, "F_TRANSLATION",
199 		"Translation fault."},
200 	{ 0x11, "F_ADDR_SIZE",
201 		"Address Size fault."},
202 	{ 0x12, "F_ACCESS",
203 		"Access flag fault due to AF == 0 in a page or block TTD."},
204 	{ 0x13, "F_PERMISSION",
205 		"Permission fault occurred on page access."},
206 	{ 0x20, "F_TLB_CONFLICT",
207 		"A TLB conflict occurred because of the transaction."},
208 	{ 0x21, "F_CFG_CONFLICT",
209 		"A configuration cache conflict occurred due to "
210 		"the transaction."},
211 	{ 0x24, "E_PAGE_REQUEST",
212 		"Speculative page request hint."},
213 	{ 0x25, "F_VMS_FETCH",
214 		"Fetch of VMS caused external abort."},
215 	{ 0, NULL, NULL },
216 };
217 
218 static int
219 smmu_q_has_space(struct smmu_queue *q)
220 {
221 
222 	/*
223 	 * See 6.3.27 SMMU_CMDQ_PROD
224 	 *
225 	 * There is space in the queue for additional commands if:
226 	 *  SMMU_CMDQ_CONS.RD != SMMU_CMDQ_PROD.WR ||
227 	 *  SMMU_CMDQ_CONS.RD_WRAP == SMMU_CMDQ_PROD.WR_WRAP
228 	 */
229 
230 	if (Q_IDX(q, q->lc.cons) != Q_IDX(q, q->lc.prod) ||
231 	    Q_WRP(q, q->lc.cons) == Q_WRP(q, q->lc.prod))
232 		return (1);
233 
234 	return (0);
235 }
236 
237 static int
238 smmu_q_empty(struct smmu_queue *q)
239 {
240 
241 	if (Q_IDX(q, q->lc.cons) == Q_IDX(q, q->lc.prod) &&
242 	    Q_WRP(q, q->lc.cons) == Q_WRP(q, q->lc.prod))
243 		return (1);
244 
245 	return (0);
246 }
247 
248 static int __unused
249 smmu_q_consumed(struct smmu_queue *q, uint32_t prod)
250 {
251 
252 	if ((Q_WRP(q, q->lc.cons) == Q_WRP(q, prod)) &&
253 	    (Q_IDX(q, q->lc.cons) >= Q_IDX(q, prod)))
254 		return (1);
255 
256 	if ((Q_WRP(q, q->lc.cons) != Q_WRP(q, prod)) &&
257 	    (Q_IDX(q, q->lc.cons) <= Q_IDX(q, prod)))
258 		return (1);
259 
260 	return (0);
261 }
262 
263 static uint32_t
264 smmu_q_inc_cons(struct smmu_queue *q)
265 {
266 	uint32_t cons;
267 	uint32_t val;
268 
269 	cons = (Q_WRP(q, q->lc.cons) | Q_IDX(q, q->lc.cons)) + 1;
270 	val = (Q_OVF(q->lc.cons) | Q_WRP(q, cons) | Q_IDX(q, cons));
271 
272 	return (val);
273 }
274 
275 static uint32_t
276 smmu_q_inc_prod(struct smmu_queue *q)
277 {
278 	uint32_t prod;
279 	uint32_t val;
280 
281 	prod = (Q_WRP(q, q->lc.prod) | Q_IDX(q, q->lc.prod)) + 1;
282 	val = (Q_OVF(q->lc.prod) | Q_WRP(q, prod) | Q_IDX(q, prod));
283 
284 	return (val);
285 }
286 
287 static int
288 smmu_write_ack(struct smmu_softc *sc, uint32_t reg,
289     uint32_t reg_ack, uint32_t val)
290 {
291 	uint32_t v;
292 	int timeout;
293 
294 	timeout = 100000;
295 
296 	bus_write_4(sc->res[0], reg, val);
297 
298 	do {
299 		v = bus_read_4(sc->res[0], reg_ack);
300 		if (v == val)
301 			break;
302 	} while (timeout--);
303 
304 	if (timeout <= 0) {
305 		device_printf(sc->dev, "Failed to write reg.\n");
306 		return (-1);
307 	}
308 
309 	return (0);
310 }
311 
312 static inline int
313 ilog2(long x)
314 {
315 
316 	KASSERT(x > 0 && powerof2(x), ("%s: invalid arg %ld", __func__, x));
317 
318 	return (flsl(x) - 1);
319 }
320 
321 static int
322 smmu_init_queue(struct smmu_softc *sc, struct smmu_queue *q,
323     uint32_t prod_off, uint32_t cons_off, uint32_t dwords)
324 {
325 	int sz;
326 
327 	sz = (1 << q->size_log2) * dwords * 8;
328 
329 	/* Set up the command circular buffer */
330 	q->vaddr = contigmalloc(sz, M_SMMU,
331 	    M_WAITOK | M_ZERO, 0, (1ul << 48) - 1, SMMU_Q_ALIGN, 0);
332 	if (q->vaddr == NULL) {
333 		device_printf(sc->dev, "failed to allocate %d bytes\n", sz);
334 		return (-1);
335 	}
336 
337 	q->prod_off = prod_off;
338 	q->cons_off = cons_off;
339 	q->paddr = vtophys(q->vaddr);
340 
341 	q->base = CMDQ_BASE_RA | EVENTQ_BASE_WA | PRIQ_BASE_WA;
342 	q->base |= q->paddr & Q_BASE_ADDR_M;
343 	q->base |= q->size_log2 << Q_LOG2SIZE_S;
344 
345 	return (0);
346 }
347 
348 static int
349 smmu_init_queues(struct smmu_softc *sc)
350 {
351 	int err;
352 
353 	/* Command queue. */
354 	err = smmu_init_queue(sc, &sc->cmdq,
355 	    SMMU_CMDQ_PROD, SMMU_CMDQ_CONS, CMDQ_ENTRY_DWORDS);
356 	if (err)
357 		return (ENXIO);
358 
359 	/* Event queue. */
360 	err = smmu_init_queue(sc, &sc->evtq,
361 	    SMMU_EVENTQ_PROD, SMMU_EVENTQ_CONS, EVTQ_ENTRY_DWORDS);
362 	if (err)
363 		return (ENXIO);
364 
365 	if (!(sc->features & SMMU_FEATURE_PRI))
366 		return (0);
367 
368 	/* PRI queue. */
369 	err = smmu_init_queue(sc, &sc->priq,
370 	    SMMU_PRIQ_PROD, SMMU_PRIQ_CONS, PRIQ_ENTRY_DWORDS);
371 	if (err)
372 		return (ENXIO);
373 
374 	return (0);
375 }
376 
377 /*
378  * Dump 2LVL or linear STE.
379  */
380 static void
381 smmu_dump_ste(struct smmu_softc *sc, int sid)
382 {
383 	struct smmu_strtab *strtab;
384 	struct l1_desc *l1_desc;
385 	uint64_t *ste, *l1;
386 	int i;
387 
388 	strtab = &sc->strtab;
389 
390 	if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE) {
391 		i = sid >> STRTAB_SPLIT;
392 		l1 = (void *)((uint64_t)strtab->vaddr +
393 		    STRTAB_L1_DESC_DWORDS * 8 * i);
394 		device_printf(sc->dev, "L1 ste == %lx\n", l1[0]);
395 
396 		l1_desc = &strtab->l1[i];
397 		ste = l1_desc->va;
398 		if (ste == NULL) /* L2 is not initialized */
399 			return;
400 	} else {
401 		ste = (void *)((uint64_t)strtab->vaddr +
402 		    sid * (STRTAB_STE_DWORDS << 3));
403 	}
404 
405 	/* Dump L2 or linear STE. */
406 	for (i = 0; i < STRTAB_STE_DWORDS; i++)
407 		device_printf(sc->dev, "ste[%d] == %lx\n", i, ste[i]);
408 }
409 
410 static void __unused
411 smmu_dump_cd(struct smmu_softc *sc, struct smmu_cd *cd)
412 {
413 	uint64_t *vaddr;
414 	int i;
415 
416 	device_printf(sc->dev, "%s\n", __func__);
417 
418 	vaddr = cd->vaddr;
419 	for (i = 0; i < CD_DWORDS; i++)
420 		device_printf(sc->dev, "cd[%d] == %lx\n", i, vaddr[i]);
421 }
422 
423 static void
424 smmu_evtq_dequeue(struct smmu_softc *sc, uint32_t *evt)
425 {
426 	struct smmu_queue *evtq;
427 	void *entry_addr;
428 
429 	evtq = &sc->evtq;
430 
431 	evtq->lc.val = bus_read_8(sc->res[0], evtq->prod_off);
432 	entry_addr = (void *)((uint64_t)evtq->vaddr +
433 	    evtq->lc.cons * EVTQ_ENTRY_DWORDS * 8);
434 	memcpy(evt, entry_addr, EVTQ_ENTRY_DWORDS * 8);
435 	evtq->lc.cons = smmu_q_inc_cons(evtq);
436 	bus_write_4(sc->res[0], evtq->cons_off, evtq->lc.cons);
437 }
438 
439 static void
440 smmu_print_event(struct smmu_softc *sc, uint32_t *evt)
441 {
442 	struct smmu_event *ev;
443 	uintptr_t input_addr;
444 	uint8_t event_id;
445 	device_t dev;
446 	int sid;
447 	int i;
448 
449 	dev = sc->dev;
450 
451 	ev = NULL;
452 	event_id = evt[0] & 0xff;
453 	for (i = 0; events[i].ident != 0; i++) {
454 		if (events[i].ident == event_id) {
455 			ev = &events[i];
456 			break;
457 		}
458 	}
459 
460 	sid = evt[1];
461 	input_addr = evt[5];
462 	input_addr <<= 32;
463 	input_addr |= evt[4];
464 
465 	if (smmu_quirks_check(dev, sid, event_id, input_addr)) {
466 		/* The event is known. Don't print anything. */
467 		return;
468 	}
469 
470 	if (ev) {
471 		device_printf(sc->dev,
472 		    "Event %s (%s) received.\n", ev->str, ev->msg);
473 	} else
474 		device_printf(sc->dev, "Event 0x%x received\n", event_id);
475 
476 	device_printf(sc->dev, "SID %x, Input Address: %jx\n",
477 	    sid, input_addr);
478 
479 	for (i = 0; i < 8; i++)
480 		device_printf(sc->dev, "evt[%d] %x\n", i, evt[i]);
481 
482 	smmu_dump_ste(sc, sid);
483 }
484 
485 static void
486 make_cmd(struct smmu_softc *sc, uint64_t *cmd,
487     struct smmu_cmdq_entry *entry)
488 {
489 
490 	memset(cmd, 0, CMDQ_ENTRY_DWORDS * 8);
491 	cmd[0] = entry->opcode << CMD_QUEUE_OPCODE_S;
492 
493 	switch (entry->opcode) {
494 	case CMD_TLBI_NH_VA:
495 		cmd[0] |= (uint64_t)entry->tlbi.asid << TLBI_0_ASID_S;
496 		cmd[1] = entry->tlbi.addr & TLBI_1_ADDR_M;
497 		if (entry->tlbi.leaf) {
498 			/*
499 			 * Leaf flag means that only cached entries
500 			 * for the last level of translation table walk
501 			 * are required to be invalidated.
502 			 */
503 			cmd[1] |= TLBI_1_LEAF;
504 		}
505 		break;
506 	case CMD_TLBI_NH_ASID:
507 		cmd[0] |= (uint64_t)entry->tlbi.asid << TLBI_0_ASID_S;
508 		break;
509 	case CMD_TLBI_NSNH_ALL:
510 	case CMD_TLBI_NH_ALL:
511 	case CMD_TLBI_EL2_ALL:
512 		break;
513 	case CMD_CFGI_CD:
514 		cmd[0] |= ((uint64_t)entry->cfgi.ssid << CFGI_0_SSID_S);
515 		/* FALLTROUGH */
516 	case CMD_CFGI_STE:
517 		cmd[0] |= ((uint64_t)entry->cfgi.sid << CFGI_0_STE_SID_S);
518 		cmd[1] |= ((uint64_t)entry->cfgi.leaf << CFGI_1_LEAF_S);
519 		break;
520 	case CMD_CFGI_STE_RANGE:
521 		cmd[1] = (31 << CFGI_1_STE_RANGE_S);
522 		break;
523 	case CMD_SYNC:
524 		cmd[0] |= SYNC_0_MSH_IS | SYNC_0_MSIATTR_OIWB;
525 		if (entry->sync.msiaddr) {
526 			cmd[0] |= SYNC_0_CS_SIG_IRQ;
527 			cmd[1] |= (entry->sync.msiaddr & SYNC_1_MSIADDRESS_M);
528 		} else
529 			cmd[0] |= SYNC_0_CS_SIG_SEV;
530 		break;
531 	case CMD_PREFETCH_CONFIG:
532 		cmd[0] |= ((uint64_t)entry->prefetch.sid << PREFETCH_0_SID_S);
533 		break;
534 	};
535 }
536 
537 static void
538 smmu_cmdq_enqueue_cmd(struct smmu_softc *sc, struct smmu_cmdq_entry *entry)
539 {
540 	uint64_t cmd[CMDQ_ENTRY_DWORDS];
541 	struct smmu_queue *cmdq;
542 	void *entry_addr;
543 
544 	cmdq = &sc->cmdq;
545 
546 	make_cmd(sc, cmd, entry);
547 
548 	SMMU_LOCK(sc);
549 
550 	/* Ensure that a space is available. */
551 	do {
552 		cmdq->lc.cons = bus_read_4(sc->res[0], cmdq->cons_off);
553 	} while (smmu_q_has_space(cmdq) == 0);
554 
555 	/* Write the command to the current prod entry. */
556 	entry_addr = (void *)((uint64_t)cmdq->vaddr +
557 	    Q_IDX(cmdq, cmdq->lc.prod) * CMDQ_ENTRY_DWORDS * 8);
558 	memcpy(entry_addr, cmd, CMDQ_ENTRY_DWORDS * 8);
559 
560 	/* Increment prod index. */
561 	cmdq->lc.prod = smmu_q_inc_prod(cmdq);
562 	bus_write_4(sc->res[0], cmdq->prod_off, cmdq->lc.prod);
563 
564 	SMMU_UNLOCK(sc);
565 }
566 
567 static void __unused
568 smmu_poll_until_consumed(struct smmu_softc *sc, struct smmu_queue *q)
569 {
570 
571 	while (1) {
572 		q->lc.val = bus_read_8(sc->res[0], q->prod_off);
573 		if (smmu_q_empty(q))
574 			break;
575 		cpu_spinwait();
576 	}
577 }
578 
579 static int
580 smmu_sync(struct smmu_softc *sc)
581 {
582 	struct smmu_cmdq_entry cmd;
583 	struct smmu_queue *q;
584 	uint32_t *base;
585 	int timeout;
586 	int prod;
587 
588 	q = &sc->cmdq;
589 	prod = q->lc.prod;
590 
591 	/* Enqueue sync command. */
592 	cmd.opcode = CMD_SYNC;
593 	cmd.sync.msiaddr = q->paddr + Q_IDX(q, prod) * CMDQ_ENTRY_DWORDS * 8;
594 	smmu_cmdq_enqueue_cmd(sc, &cmd);
595 
596 	/* Wait for the sync completion. */
597 	base = (void *)((uint64_t)q->vaddr +
598 	    Q_IDX(q, prod) * CMDQ_ENTRY_DWORDS * 8);
599 
600 	/*
601 	 * It takes around 200 loops (6 instructions each)
602 	 * on Neoverse N1 to complete the sync.
603 	 */
604 	timeout = 10000;
605 
606 	do {
607 		if (*base == 0) {
608 			/* MSI write completed. */
609 			break;
610 		}
611 		cpu_spinwait();
612 	} while (timeout--);
613 
614 	if (timeout < 0)
615 		device_printf(sc->dev, "Failed to sync\n");
616 
617 	return (0);
618 }
619 
620 static int
621 smmu_sync_cd(struct smmu_softc *sc, int sid, int ssid, bool leaf)
622 {
623 	struct smmu_cmdq_entry cmd;
624 
625 	cmd.opcode = CMD_CFGI_CD;
626 	cmd.cfgi.sid = sid;
627 	cmd.cfgi.ssid = ssid;
628 	cmd.cfgi.leaf = leaf;
629 	smmu_cmdq_enqueue_cmd(sc, &cmd);
630 
631 	return (0);
632 }
633 
634 static void
635 smmu_invalidate_all_sid(struct smmu_softc *sc)
636 {
637 	struct smmu_cmdq_entry cmd;
638 
639 	/* Invalidate cached config */
640 	cmd.opcode = CMD_CFGI_STE_RANGE;
641 	smmu_cmdq_enqueue_cmd(sc, &cmd);
642 	smmu_sync(sc);
643 }
644 
645 static void
646 smmu_tlbi_all(struct smmu_softc *sc)
647 {
648 	struct smmu_cmdq_entry cmd;
649 
650 	/* Invalidate entire TLB */
651 	cmd.opcode = CMD_TLBI_NSNH_ALL;
652 	smmu_cmdq_enqueue_cmd(sc, &cmd);
653 	smmu_sync(sc);
654 }
655 
656 static void
657 smmu_tlbi_asid(struct smmu_softc *sc, uint16_t asid)
658 {
659 	struct smmu_cmdq_entry cmd;
660 
661 	/* Invalidate TLB for an ASID. */
662 	cmd.opcode = CMD_TLBI_NH_ASID;
663 	cmd.tlbi.asid = asid;
664 	smmu_cmdq_enqueue_cmd(sc, &cmd);
665 	smmu_sync(sc);
666 }
667 
668 static void
669 smmu_tlbi_va(struct smmu_softc *sc, vm_offset_t va, uint16_t asid)
670 {
671 	struct smmu_cmdq_entry cmd;
672 
673 	/* Invalidate specific range */
674 	cmd.opcode = CMD_TLBI_NH_VA;
675 	cmd.tlbi.asid = asid;
676 	cmd.tlbi.vmid = 0;
677 	cmd.tlbi.leaf = true; /* We change only L3. */
678 	cmd.tlbi.addr = va;
679 	smmu_cmdq_enqueue_cmd(sc, &cmd);
680 }
681 
682 static void
683 smmu_invalidate_sid(struct smmu_softc *sc, uint32_t sid)
684 {
685 	struct smmu_cmdq_entry cmd;
686 
687 	/* Invalidate cached config */
688 	cmd.opcode = CMD_CFGI_STE;
689 	cmd.cfgi.sid = sid;
690 	smmu_cmdq_enqueue_cmd(sc, &cmd);
691 	smmu_sync(sc);
692 }
693 
694 static void
695 smmu_prefetch_sid(struct smmu_softc *sc, uint32_t sid)
696 {
697 	struct smmu_cmdq_entry cmd;
698 
699 	cmd.opcode = CMD_PREFETCH_CONFIG;
700 	cmd.prefetch.sid = sid;
701 	smmu_cmdq_enqueue_cmd(sc, &cmd);
702 	smmu_sync(sc);
703 }
704 
705 /*
706  * Init STE in bypass mode. Traffic is not translated for the sid.
707  */
708 static void
709 smmu_init_ste_bypass(struct smmu_softc *sc, uint32_t sid, uint64_t *ste)
710 {
711 	uint64_t val;
712 
713 	val = STE0_VALID | STE0_CONFIG_BYPASS;
714 
715 	ste[1] = STE1_SHCFG_INCOMING | STE1_EATS_FULLATS;
716 	ste[2] = 0;
717 	ste[3] = 0;
718 	ste[4] = 0;
719 	ste[5] = 0;
720 	ste[6] = 0;
721 	ste[7] = 0;
722 
723 	smmu_invalidate_sid(sc, sid);
724 	ste[0] = val;
725 	dsb(sy);
726 	smmu_invalidate_sid(sc, sid);
727 
728 	smmu_prefetch_sid(sc, sid);
729 }
730 
731 /*
732  * Enable Stage1 (S1) translation for the sid.
733  */
734 static int
735 smmu_init_ste_s1(struct smmu_softc *sc, struct smmu_cd *cd,
736     uint32_t sid, uint64_t *ste)
737 {
738 	uint64_t val;
739 
740 	val = STE0_VALID;
741 
742 	/* S1 */
743 	ste[1] = STE1_EATS_FULLATS	|
744 		 STE1_S1CSH_IS		|
745 		 STE1_S1CIR_WBRA	|
746 		 STE1_S1COR_WBRA	|
747 		 STE1_STRW_NS_EL1;
748 	ste[2] = 0;
749 	ste[3] = 0;
750 	ste[4] = 0;
751 	ste[5] = 0;
752 	ste[6] = 0;
753 	ste[7] = 0;
754 
755 	if (sc->features & SMMU_FEATURE_STALL &&
756 	    ((sc->features & SMMU_FEATURE_STALL_FORCE) == 0))
757 		ste[1] |= STE1_S1STALLD;
758 
759 	/* Configure STE */
760 	val |= (cd->paddr & STE0_S1CONTEXTPTR_M);
761 	val |= STE0_CONFIG_S1_TRANS;
762 
763 	smmu_invalidate_sid(sc, sid);
764 
765 	/* The STE[0] has to be written in a single blast, last of all. */
766 	ste[0] = val;
767 	dsb(sy);
768 
769 	smmu_invalidate_sid(sc, sid);
770 	smmu_sync_cd(sc, sid, 0, true);
771 	smmu_invalidate_sid(sc, sid);
772 
773 	/* The sid will be used soon most likely. */
774 	smmu_prefetch_sid(sc, sid);
775 
776 	return (0);
777 }
778 
779 static uint64_t *
780 smmu_get_ste_addr(struct smmu_softc *sc, int sid)
781 {
782 	struct smmu_strtab *strtab;
783 	struct l1_desc *l1_desc;
784 	uint64_t *addr;
785 
786 	strtab = &sc->strtab;
787 
788 	if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE) {
789 		l1_desc = &strtab->l1[sid >> STRTAB_SPLIT];
790 		addr = l1_desc->va;
791 		addr += (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
792 	} else {
793 		addr = (void *)((uint64_t)strtab->vaddr +
794 		    STRTAB_STE_DWORDS * 8 * sid);
795 	};
796 
797 	return (addr);
798 }
799 
800 static int
801 smmu_init_ste(struct smmu_softc *sc, struct smmu_cd *cd, int sid, bool bypass)
802 {
803 	uint64_t *addr;
804 
805 	addr = smmu_get_ste_addr(sc, sid);
806 
807 	if (bypass)
808 		smmu_init_ste_bypass(sc, sid, addr);
809 	else
810 		smmu_init_ste_s1(sc, cd, sid, addr);
811 
812 	smmu_sync(sc);
813 
814 	return (0);
815 }
816 
817 static void
818 smmu_deinit_ste(struct smmu_softc *sc, int sid)
819 {
820 	uint64_t *ste;
821 
822 	ste = smmu_get_ste_addr(sc, sid);
823 	ste[0] = 0;
824 
825 	smmu_invalidate_sid(sc, sid);
826 	smmu_sync_cd(sc, sid, 0, true);
827 	smmu_invalidate_sid(sc, sid);
828 
829 	smmu_sync(sc);
830 }
831 
832 static int
833 smmu_init_cd(struct smmu_softc *sc, struct smmu_domain *domain)
834 {
835 	vm_paddr_t paddr;
836 	uint64_t *ptr;
837 	uint64_t val;
838 	vm_size_t size;
839 	struct smmu_cd *cd;
840 	pmap_t p;
841 
842 	size = 1 * (CD_DWORDS << 3);
843 
844 	p = &domain->p;
845 	cd = domain->cd = malloc(sizeof(struct smmu_cd),
846 	    M_SMMU, M_WAITOK | M_ZERO);
847 
848 	cd->vaddr = contigmalloc(size, M_SMMU,
849 	    M_WAITOK | M_ZERO,	/* flags */
850 	    0,			/* low */
851 	    (1ul << 40) - 1,	/* high */
852 	    size,		/* alignment */
853 	    0);			/* boundary */
854 	if (cd->vaddr == NULL) {
855 		device_printf(sc->dev, "Failed to allocate CD\n");
856 		return (ENXIO);
857 	}
858 
859 	cd->size = size;
860 	cd->paddr = vtophys(cd->vaddr);
861 
862 	ptr = cd->vaddr;
863 
864 	val = CD0_VALID;
865 	val |= CD0_AA64;
866 	val |= CD0_R;
867 	val |= CD0_A;
868 	val |= CD0_ASET;
869 	val |= (uint64_t)domain->asid << CD0_ASID_S;
870 	val |= CD0_TG0_4KB;
871 	val |= CD0_EPD1; /* Disable TT1 */
872 	val |= ((64 - sc->ias) << CD0_T0SZ_S);
873 	val |= CD0_IPS_48BITS;
874 
875 	paddr = p->pm_l0_paddr & CD1_TTB0_M;
876 	KASSERT(paddr == p->pm_l0_paddr, ("bad allocation 1"));
877 
878 	ptr[1] = paddr;
879 	ptr[2] = 0;
880 	ptr[3] = MAIR_ATTR(MAIR_DEVICE_nGnRnE, VM_MEMATTR_DEVICE)	|
881 		 MAIR_ATTR(MAIR_NORMAL_NC, VM_MEMATTR_UNCACHEABLE)	|
882 		 MAIR_ATTR(MAIR_NORMAL_WB, VM_MEMATTR_WRITE_BACK)	|
883 		 MAIR_ATTR(MAIR_NORMAL_WT, VM_MEMATTR_WRITE_THROUGH);
884 
885 	/* Install the CD. */
886 	ptr[0] = val;
887 
888 	return (0);
889 }
890 
891 static int
892 smmu_init_strtab_linear(struct smmu_softc *sc)
893 {
894 	struct smmu_strtab *strtab;
895 	vm_paddr_t base;
896 	uint32_t size;
897 	uint64_t reg;
898 
899 	strtab = &sc->strtab;
900 	strtab->num_l1_entries = (1 << sc->sid_bits);
901 
902 	size = strtab->num_l1_entries * (STRTAB_STE_DWORDS << 3);
903 
904 	if (bootverbose)
905 		device_printf(sc->dev,
906 		    "%s: linear strtab size %d, num_l1_entries %d\n",
907 		    __func__, size, strtab->num_l1_entries);
908 
909 	strtab->vaddr = contigmalloc(size, M_SMMU,
910 	    M_WAITOK | M_ZERO,	/* flags */
911 	    0,			/* low */
912 	    (1ul << 48) - 1,	/* high */
913 	    size,		/* alignment */
914 	    0);			/* boundary */
915 	if (strtab->vaddr == NULL) {
916 		device_printf(sc->dev, "failed to allocate strtab\n");
917 		return (ENXIO);
918 	}
919 
920 	reg = STRTAB_BASE_CFG_FMT_LINEAR;
921 	reg |= sc->sid_bits << STRTAB_BASE_CFG_LOG2SIZE_S;
922 	strtab->base_cfg = (uint32_t)reg;
923 
924 	base = vtophys(strtab->vaddr);
925 
926 	reg = base & STRTAB_BASE_ADDR_M;
927 	KASSERT(reg == base, ("bad allocation 2"));
928 	reg |= STRTAB_BASE_RA;
929 	strtab->base = reg;
930 
931 	return (0);
932 }
933 
934 static int
935 smmu_init_strtab_2lvl(struct smmu_softc *sc)
936 {
937 	struct smmu_strtab *strtab;
938 	vm_paddr_t base;
939 	uint64_t reg_base;
940 	uint32_t l1size;
941 	uint32_t size;
942 	uint32_t reg;
943 	int sz;
944 
945 	strtab = &sc->strtab;
946 
947 	size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
948 	size = min(size, sc->sid_bits - STRTAB_SPLIT);
949 	strtab->num_l1_entries = (1 << size);
950 	size += STRTAB_SPLIT;
951 
952 	l1size = strtab->num_l1_entries * (STRTAB_L1_DESC_DWORDS << 3);
953 
954 	if (bootverbose)
955 		device_printf(sc->dev,
956 		    "%s: size %d, l1 entries %d, l1size %d\n",
957 		    __func__, size, strtab->num_l1_entries, l1size);
958 
959 	strtab->vaddr = contigmalloc(l1size, M_SMMU,
960 	    M_WAITOK | M_ZERO,	/* flags */
961 	    0,			/* low */
962 	    (1ul << 48) - 1,	/* high */
963 	    l1size,		/* alignment */
964 	    0);			/* boundary */
965 	if (strtab->vaddr == NULL) {
966 		device_printf(sc->dev, "Failed to allocate 2lvl strtab.\n");
967 		return (ENOMEM);
968 	}
969 
970 	sz = strtab->num_l1_entries * sizeof(struct l1_desc);
971 
972 	strtab->l1 = malloc(sz, M_SMMU, M_WAITOK | M_ZERO);
973 	if (strtab->l1 == NULL) {
974 		contigfree(strtab->vaddr, l1size, M_SMMU);
975 		return (ENOMEM);
976 	}
977 
978 	reg = STRTAB_BASE_CFG_FMT_2LVL;
979 	reg |= size << STRTAB_BASE_CFG_LOG2SIZE_S;
980 	reg |= STRTAB_SPLIT << STRTAB_BASE_CFG_SPLIT_S;
981 	strtab->base_cfg = (uint32_t)reg;
982 
983 	base = vtophys(strtab->vaddr);
984 
985 	reg_base = base & STRTAB_BASE_ADDR_M;
986 	KASSERT(reg_base == base, ("bad allocation 3"));
987 	reg_base |= STRTAB_BASE_RA;
988 	strtab->base = reg_base;
989 
990 	return (0);
991 }
992 
993 static int
994 smmu_init_strtab(struct smmu_softc *sc)
995 {
996 	int error;
997 
998 	if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE)
999 		error = smmu_init_strtab_2lvl(sc);
1000 	else
1001 		error = smmu_init_strtab_linear(sc);
1002 
1003 	return (error);
1004 }
1005 
1006 static int
1007 smmu_init_l1_entry(struct smmu_softc *sc, int sid)
1008 {
1009 	struct smmu_strtab *strtab;
1010 	struct l1_desc *l1_desc;
1011 	uint64_t *addr;
1012 	uint64_t val;
1013 	size_t size;
1014 	int i;
1015 
1016 	strtab = &sc->strtab;
1017 	l1_desc = &strtab->l1[sid >> STRTAB_SPLIT];
1018 	if (l1_desc->va) {
1019 		/* Already allocated. */
1020 		return (0);
1021 	}
1022 
1023 	size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1024 
1025 	l1_desc->span = STRTAB_SPLIT + 1;
1026 	l1_desc->size = size;
1027 	l1_desc->va = contigmalloc(size, M_SMMU,
1028 	    M_WAITOK | M_ZERO,	/* flags */
1029 	    0,			/* low */
1030 	    (1ul << 48) - 1,	/* high */
1031 	    size,		/* alignment */
1032 	    0);			/* boundary */
1033 	if (l1_desc->va == NULL) {
1034 		device_printf(sc->dev, "failed to allocate l2 entry\n");
1035 		return (ENXIO);
1036 	}
1037 
1038 	l1_desc->pa = vtophys(l1_desc->va);
1039 
1040 	i = sid >> STRTAB_SPLIT;
1041 	addr = (void *)((uint64_t)strtab->vaddr +
1042 	    STRTAB_L1_DESC_DWORDS * 8 * i);
1043 
1044 	/* Install the L1 entry. */
1045 	val = l1_desc->pa & STRTAB_L1_DESC_L2PTR_M;
1046 	KASSERT(val == l1_desc->pa, ("bad allocation 4"));
1047 	val |= l1_desc->span;
1048 	*addr = val;
1049 
1050 	return (0);
1051 }
1052 
1053 static void __unused
1054 smmu_deinit_l1_entry(struct smmu_softc *sc, int sid)
1055 {
1056 	struct smmu_strtab *strtab;
1057 	struct l1_desc *l1_desc;
1058 	uint64_t *addr;
1059 	int i;
1060 
1061 	strtab = &sc->strtab;
1062 
1063 	i = sid >> STRTAB_SPLIT;
1064 	addr = (void *)((uint64_t)strtab->vaddr +
1065 	    STRTAB_L1_DESC_DWORDS * 8 * i);
1066 	*addr = 0;
1067 
1068 	l1_desc = &strtab->l1[sid >> STRTAB_SPLIT];
1069 	contigfree(l1_desc->va, l1_desc->size, M_SMMU);
1070 }
1071 
1072 static int
1073 smmu_disable(struct smmu_softc *sc)
1074 {
1075 	uint32_t reg;
1076 	int error;
1077 
1078 	/* Disable SMMU */
1079 	reg = bus_read_4(sc->res[0], SMMU_CR0);
1080 	reg &= ~CR0_SMMUEN;
1081 	error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1082 	if (error)
1083 		device_printf(sc->dev, "Could not disable SMMU.\n");
1084 
1085 	return (0);
1086 }
1087 
1088 static int
1089 smmu_event_intr(void *arg)
1090 {
1091 	uint32_t evt[EVTQ_ENTRY_DWORDS * 2];
1092 	struct smmu_softc *sc;
1093 
1094 	sc = arg;
1095 
1096 	do {
1097 		smmu_evtq_dequeue(sc, evt);
1098 		smmu_print_event(sc, evt);
1099 	} while (!smmu_q_empty(&sc->evtq));
1100 
1101 	return (FILTER_HANDLED);
1102 }
1103 
1104 static int __unused
1105 smmu_sync_intr(void *arg)
1106 {
1107 	struct smmu_softc *sc;
1108 
1109 	sc = arg;
1110 
1111 	device_printf(sc->dev, "%s\n", __func__);
1112 
1113 	return (FILTER_HANDLED);
1114 }
1115 
1116 static int
1117 smmu_gerr_intr(void *arg)
1118 {
1119 	struct smmu_softc *sc;
1120 
1121 	sc = arg;
1122 
1123 	device_printf(sc->dev, "SMMU Global Error\n");
1124 
1125 	return (FILTER_HANDLED);
1126 }
1127 
1128 static int
1129 smmu_enable_interrupts(struct smmu_softc *sc)
1130 {
1131 	uint32_t reg;
1132 	int error;
1133 
1134 	/* Disable MSI. */
1135 	bus_write_8(sc->res[0], SMMU_GERROR_IRQ_CFG0, 0);
1136 	bus_write_4(sc->res[0], SMMU_GERROR_IRQ_CFG1, 0);
1137 	bus_write_4(sc->res[0], SMMU_GERROR_IRQ_CFG2, 0);
1138 
1139 	bus_write_8(sc->res[0], SMMU_EVENTQ_IRQ_CFG0, 0);
1140 	bus_write_4(sc->res[0], SMMU_EVENTQ_IRQ_CFG1, 0);
1141 	bus_write_4(sc->res[0], SMMU_EVENTQ_IRQ_CFG2, 0);
1142 
1143 	if (sc->features & CR0_PRIQEN) {
1144 		bus_write_8(sc->res[0], SMMU_PRIQ_IRQ_CFG0, 0);
1145 		bus_write_4(sc->res[0], SMMU_PRIQ_IRQ_CFG1, 0);
1146 		bus_write_4(sc->res[0], SMMU_PRIQ_IRQ_CFG2, 0);
1147 	}
1148 
1149 	/* Disable any interrupts. */
1150 	error = smmu_write_ack(sc, SMMU_IRQ_CTRL, SMMU_IRQ_CTRLACK, 0);
1151 	if (error) {
1152 		device_printf(sc->dev, "Could not disable interrupts.\n");
1153 		return (ENXIO);
1154 	}
1155 
1156 	/* Enable interrupts. */
1157 	reg = IRQ_CTRL_EVENTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
1158 	if (sc->features & SMMU_FEATURE_PRI)
1159 		reg |= IRQ_CTRL_PRIQ_IRQEN;
1160 
1161 	error = smmu_write_ack(sc, SMMU_IRQ_CTRL, SMMU_IRQ_CTRLACK, reg);
1162 	if (error) {
1163 		device_printf(sc->dev, "Could not enable interrupts.\n");
1164 		return (ENXIO);
1165 	}
1166 
1167 	return (0);
1168 }
1169 
1170 #ifdef DEV_ACPI
1171 static void
1172 smmu_configure_intr(struct smmu_softc *sc, struct resource *res)
1173 {
1174 	struct intr_map_data_acpi *ad;
1175 	struct intr_map_data *data;
1176 
1177 	data = rman_get_virtual(res);
1178 	KASSERT(data != NULL, ("data is NULL"));
1179 
1180 	if (data->type == INTR_MAP_DATA_ACPI) {
1181 		ad = (struct intr_map_data_acpi *)data;
1182 		ad->trig = INTR_TRIGGER_EDGE;
1183 		ad->pol = INTR_POLARITY_HIGH;
1184 	}
1185 }
1186 #endif
1187 
1188 static int
1189 smmu_setup_interrupts(struct smmu_softc *sc)
1190 {
1191 	device_t dev;
1192 	int error;
1193 
1194 	dev = sc->dev;
1195 
1196 #ifdef DEV_ACPI
1197 	/*
1198 	 * Configure SMMU interrupts as EDGE triggered manually
1199 	 * as ACPI tables carries no information for that.
1200 	 */
1201 	smmu_configure_intr(sc, sc->res[1]);
1202 	/* PRIQ is not in use. */
1203 	smmu_configure_intr(sc, sc->res[3]);
1204 	smmu_configure_intr(sc, sc->res[4]);
1205 #endif
1206 
1207 	error = bus_setup_intr(dev, sc->res[1], INTR_TYPE_MISC,
1208 	    smmu_event_intr, NULL, sc, &sc->intr_cookie[0]);
1209 	if (error) {
1210 		device_printf(dev, "Couldn't setup Event interrupt handler\n");
1211 		return (ENXIO);
1212 	}
1213 
1214 	error = bus_setup_intr(dev, sc->res[4], INTR_TYPE_MISC,
1215 	    smmu_gerr_intr, NULL, sc, &sc->intr_cookie[2]);
1216 	if (error) {
1217 		device_printf(dev, "Couldn't setup Gerr interrupt handler\n");
1218 		return (ENXIO);
1219 	}
1220 
1221 	return (0);
1222 }
1223 
1224 static int
1225 smmu_reset(struct smmu_softc *sc)
1226 {
1227 	struct smmu_cmdq_entry cmd;
1228 	struct smmu_strtab *strtab;
1229 	int error;
1230 	int reg;
1231 
1232 	reg = bus_read_4(sc->res[0], SMMU_CR0);
1233 
1234 	if (reg & CR0_SMMUEN)
1235 		device_printf(sc->dev,
1236 		    "%s: Warning: SMMU is enabled\n", __func__);
1237 
1238 	error = smmu_disable(sc);
1239 	if (error)
1240 		device_printf(sc->dev,
1241 		    "%s: Could not disable SMMU.\n", __func__);
1242 
1243 	if (smmu_enable_interrupts(sc) != 0) {
1244 		device_printf(sc->dev, "Could not enable interrupts.\n");
1245 		return (ENXIO);
1246 	}
1247 
1248 	reg = CR1_TABLE_SH_IS	|
1249 	      CR1_TABLE_OC_WBC	|
1250 	      CR1_TABLE_IC_WBC	|
1251 	      CR1_QUEUE_SH_IS	|
1252 	      CR1_QUEUE_OC_WBC	|
1253 	      CR1_QUEUE_IC_WBC;
1254 	bus_write_4(sc->res[0], SMMU_CR1, reg);
1255 
1256 	reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
1257 	bus_write_4(sc->res[0], SMMU_CR2, reg);
1258 
1259 	/* Stream table. */
1260 	strtab = &sc->strtab;
1261 	bus_write_8(sc->res[0], SMMU_STRTAB_BASE, strtab->base);
1262 	bus_write_4(sc->res[0], SMMU_STRTAB_BASE_CFG, strtab->base_cfg);
1263 
1264 	/* Command queue. */
1265 	bus_write_8(sc->res[0], SMMU_CMDQ_BASE, sc->cmdq.base);
1266 	bus_write_4(sc->res[0], SMMU_CMDQ_PROD, sc->cmdq.lc.prod);
1267 	bus_write_4(sc->res[0], SMMU_CMDQ_CONS, sc->cmdq.lc.cons);
1268 
1269 	reg = CR0_CMDQEN;
1270 	error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1271 	if (error) {
1272 		device_printf(sc->dev, "Could not enable command queue\n");
1273 		return (ENXIO);
1274 	}
1275 
1276 	/* Invalidate cached configuration. */
1277 	smmu_invalidate_all_sid(sc);
1278 
1279 	if (sc->features & SMMU_FEATURE_HYP) {
1280 		cmd.opcode = CMD_TLBI_EL2_ALL;
1281 		smmu_cmdq_enqueue_cmd(sc, &cmd);
1282 	};
1283 
1284 	/* Invalidate TLB. */
1285 	smmu_tlbi_all(sc);
1286 
1287 	/* Event queue */
1288 	bus_write_8(sc->res[0], SMMU_EVENTQ_BASE, sc->evtq.base);
1289 	bus_write_4(sc->res[0], SMMU_EVENTQ_PROD, sc->evtq.lc.prod);
1290 	bus_write_4(sc->res[0], SMMU_EVENTQ_CONS, sc->evtq.lc.cons);
1291 
1292 	reg |= CR0_EVENTQEN;
1293 	error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1294 	if (error) {
1295 		device_printf(sc->dev, "Could not enable event queue\n");
1296 		return (ENXIO);
1297 	}
1298 
1299 	if (sc->features & SMMU_FEATURE_PRI) {
1300 		/* PRI queue */
1301 		bus_write_8(sc->res[0], SMMU_PRIQ_BASE, sc->priq.base);
1302 		bus_write_4(sc->res[0], SMMU_PRIQ_PROD, sc->priq.lc.prod);
1303 		bus_write_4(sc->res[0], SMMU_PRIQ_CONS, sc->priq.lc.cons);
1304 
1305 		reg |= CR0_PRIQEN;
1306 		error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1307 		if (error) {
1308 			device_printf(sc->dev, "Could not enable PRI queue\n");
1309 			return (ENXIO);
1310 		}
1311 	}
1312 
1313 	if (sc->features & SMMU_FEATURE_ATS) {
1314 		reg |= CR0_ATSCHK;
1315 		error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1316 		if (error) {
1317 			device_printf(sc->dev, "Could not enable ATS check.\n");
1318 			return (ENXIO);
1319 		}
1320 	}
1321 
1322 	reg |= CR0_SMMUEN;
1323 	error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1324 	if (error) {
1325 		device_printf(sc->dev, "Could not enable SMMU.\n");
1326 		return (ENXIO);
1327 	}
1328 
1329 	return (0);
1330 }
1331 
1332 static int
1333 smmu_check_features(struct smmu_softc *sc)
1334 {
1335 	uint32_t reg;
1336 	uint32_t val;
1337 
1338 	sc->features = 0;
1339 
1340 	reg = bus_read_4(sc->res[0], SMMU_IDR0);
1341 
1342 	if (reg & IDR0_ST_LVL_2) {
1343 		if (bootverbose)
1344 			device_printf(sc->dev,
1345 			    "2-level stream table supported.\n");
1346 		sc->features |= SMMU_FEATURE_2_LVL_STREAM_TABLE;
1347 	}
1348 
1349 	if (reg & IDR0_CD2L) {
1350 		if (bootverbose)
1351 			device_printf(sc->dev,
1352 			    "2-level CD table supported.\n");
1353 		sc->features |= SMMU_FEATURE_2_LVL_CD;
1354 	}
1355 
1356 	switch (reg & IDR0_TTENDIAN_M) {
1357 	case IDR0_TTENDIAN_MIXED:
1358 		if (bootverbose)
1359 			device_printf(sc->dev, "Mixed endianess supported.\n");
1360 		sc->features |= SMMU_FEATURE_TT_LE;
1361 		sc->features |= SMMU_FEATURE_TT_BE;
1362 		break;
1363 	case IDR0_TTENDIAN_LITTLE:
1364 		if (bootverbose)
1365 			device_printf(sc->dev,
1366 			    "Little endian supported only.\n");
1367 		sc->features |= SMMU_FEATURE_TT_LE;
1368 		break;
1369 	case IDR0_TTENDIAN_BIG:
1370 		if (bootverbose)
1371 			device_printf(sc->dev, "Big endian supported only.\n");
1372 		sc->features |= SMMU_FEATURE_TT_BE;
1373 		break;
1374 	default:
1375 		device_printf(sc->dev, "Unsupported endianness.\n");
1376 		return (ENXIO);
1377 	}
1378 
1379 	if (reg & IDR0_SEV)
1380 		sc->features |= SMMU_FEATURE_SEV;
1381 
1382 	if (reg & IDR0_MSI) {
1383 		if (bootverbose)
1384 			device_printf(sc->dev, "MSI feature present.\n");
1385 		sc->features |= SMMU_FEATURE_MSI;
1386 	}
1387 
1388 	if (reg & IDR0_HYP) {
1389 		if (bootverbose)
1390 			device_printf(sc->dev, "HYP feature present.\n");
1391 		sc->features |= SMMU_FEATURE_HYP;
1392 	}
1393 
1394 	if (reg & IDR0_ATS)
1395 		sc->features |= SMMU_FEATURE_ATS;
1396 
1397 	if (reg & IDR0_PRI)
1398 		sc->features |= SMMU_FEATURE_PRI;
1399 
1400 	switch (reg & IDR0_STALL_MODEL_M) {
1401 	case IDR0_STALL_MODEL_FORCE:
1402 		/* Stall is forced. */
1403 		sc->features |= SMMU_FEATURE_STALL_FORCE;
1404 		/* FALLTHROUGH */
1405 	case IDR0_STALL_MODEL_STALL:
1406 		sc->features |= SMMU_FEATURE_STALL;
1407 		break;
1408 	}
1409 
1410 	/* Grab translation stages supported. */
1411 	if (reg & IDR0_S1P) {
1412 		if (bootverbose)
1413 			device_printf(sc->dev,
1414 			    "Stage 1 translation supported.\n");
1415 		sc->features |= SMMU_FEATURE_S1P;
1416 	}
1417 	if (reg & IDR0_S2P) {
1418 		if (bootverbose)
1419 			device_printf(sc->dev,
1420 			    "Stage 2 translation supported.\n");
1421 		sc->features |= SMMU_FEATURE_S2P;
1422 	}
1423 
1424 	switch (reg & IDR0_TTF_M) {
1425 	case IDR0_TTF_ALL:
1426 	case IDR0_TTF_AA64:
1427 		sc->ias = 40;
1428 		break;
1429 	default:
1430 		device_printf(sc->dev, "No AArch64 table format support.\n");
1431 		return (ENXIO);
1432 	}
1433 
1434 	if (reg & IDR0_ASID16)
1435 		sc->asid_bits = 16;
1436 	else
1437 		sc->asid_bits = 8;
1438 
1439 	if (bootverbose)
1440 		device_printf(sc->dev, "ASID bits %d\n", sc->asid_bits);
1441 
1442 	if (reg & IDR0_VMID16)
1443 		sc->vmid_bits = 16;
1444 	else
1445 		sc->vmid_bits = 8;
1446 
1447 	reg = bus_read_4(sc->res[0], SMMU_IDR1);
1448 
1449 	if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
1450 		device_printf(sc->dev,
1451 		    "Embedded implementations not supported by this driver.\n");
1452 		return (ENXIO);
1453 	}
1454 
1455 	val = (reg & IDR1_CMDQS_M) >> IDR1_CMDQS_S;
1456 	sc->cmdq.size_log2 = val;
1457 	if (bootverbose)
1458 		device_printf(sc->dev, "CMD queue bits %d\n", val);
1459 
1460 	val = (reg & IDR1_EVENTQS_M) >> IDR1_EVENTQS_S;
1461 	sc->evtq.size_log2 = val;
1462 	if (bootverbose)
1463 		device_printf(sc->dev, "EVENT queue bits %d\n", val);
1464 
1465 	if (sc->features & SMMU_FEATURE_PRI) {
1466 		val = (reg & IDR1_PRIQS_M) >> IDR1_PRIQS_S;
1467 		sc->priq.size_log2 = val;
1468 		if (bootverbose)
1469 			device_printf(sc->dev, "PRI queue bits %d\n", val);
1470 	}
1471 
1472 	sc->ssid_bits = (reg & IDR1_SSIDSIZE_M) >> IDR1_SSIDSIZE_S;
1473 	sc->sid_bits = (reg & IDR1_SIDSIZE_M) >> IDR1_SIDSIZE_S;
1474 
1475 	if (sc->sid_bits <= STRTAB_SPLIT)
1476 		sc->features &= ~SMMU_FEATURE_2_LVL_STREAM_TABLE;
1477 
1478 	if (bootverbose) {
1479 		device_printf(sc->dev, "SSID bits %d\n", sc->ssid_bits);
1480 		device_printf(sc->dev, "SID bits %d\n", sc->sid_bits);
1481 	}
1482 
1483 	/* IDR3 */
1484 	reg = bus_read_4(sc->res[0], SMMU_IDR3);
1485 	if (reg & IDR3_RIL)
1486 		sc->features |= SMMU_FEATURE_RANGE_INV;
1487 
1488 	/* IDR5 */
1489 	reg = bus_read_4(sc->res[0], SMMU_IDR5);
1490 
1491 	switch (reg & IDR5_OAS_M) {
1492 	case IDR5_OAS_32:
1493 		sc->oas = 32;
1494 		break;
1495 	case IDR5_OAS_36:
1496 		sc->oas = 36;
1497 		break;
1498 	case IDR5_OAS_40:
1499 		sc->oas = 40;
1500 		break;
1501 	case IDR5_OAS_42:
1502 		sc->oas = 42;
1503 		break;
1504 	case IDR5_OAS_44:
1505 		sc->oas = 44;
1506 		break;
1507 	case IDR5_OAS_48:
1508 		sc->oas = 48;
1509 		break;
1510 	case IDR5_OAS_52:
1511 		sc->oas = 52;
1512 		break;
1513 	}
1514 
1515 	sc->pgsizes = 0;
1516 	if (reg & IDR5_GRAN64K)
1517 		sc->pgsizes |= 64 * 1024;
1518 	if (reg & IDR5_GRAN16K)
1519 		sc->pgsizes |= 16 * 1024;
1520 	if (reg & IDR5_GRAN4K)
1521 		sc->pgsizes |= 4 * 1024;
1522 
1523 	if ((reg & IDR5_VAX_M) == IDR5_VAX_52)
1524 		sc->features |= SMMU_FEATURE_VAX;
1525 
1526 	return (0);
1527 }
1528 
1529 static void
1530 smmu_init_asids(struct smmu_softc *sc)
1531 {
1532 
1533 	sc->asid_set_size = (1 << sc->asid_bits);
1534 	sc->asid_set = bit_alloc(sc->asid_set_size, M_SMMU, M_WAITOK);
1535 	mtx_init(&sc->asid_set_mutex, "asid set", NULL, MTX_SPIN);
1536 }
1537 
1538 static int
1539 smmu_asid_alloc(struct smmu_softc *sc, int *new_asid)
1540 {
1541 
1542 	mtx_lock_spin(&sc->asid_set_mutex);
1543 	bit_ffc(sc->asid_set, sc->asid_set_size, new_asid);
1544 	if (*new_asid == -1) {
1545 		mtx_unlock_spin(&sc->asid_set_mutex);
1546 		return (ENOMEM);
1547 	}
1548 	bit_set(sc->asid_set, *new_asid);
1549 	mtx_unlock_spin(&sc->asid_set_mutex);
1550 
1551 	return (0);
1552 }
1553 
1554 static void
1555 smmu_asid_free(struct smmu_softc *sc, int asid)
1556 {
1557 
1558 	mtx_lock_spin(&sc->asid_set_mutex);
1559 	bit_clear(sc->asid_set, asid);
1560 	mtx_unlock_spin(&sc->asid_set_mutex);
1561 }
1562 
1563 /*
1564  * Device interface.
1565  */
1566 int
1567 smmu_attach(device_t dev)
1568 {
1569 	struct smmu_softc *sc;
1570 	int error;
1571 
1572 	sc = device_get_softc(dev);
1573 	sc->dev = dev;
1574 
1575 	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->dev), "smmu", MTX_DEF);
1576 
1577 	error = smmu_setup_interrupts(sc);
1578 	if (error) {
1579 		bus_release_resources(dev, smmu_spec, sc->res);
1580 		return (ENXIO);
1581 	}
1582 
1583 	error = smmu_check_features(sc);
1584 	if (error) {
1585 		device_printf(dev, "Some features are required "
1586 		    "but not supported by hardware.\n");
1587 		return (ENXIO);
1588 	}
1589 
1590 	smmu_init_asids(sc);
1591 
1592 	error = smmu_init_queues(sc);
1593 	if (error) {
1594 		device_printf(dev, "Couldn't allocate queues.\n");
1595 		return (ENXIO);
1596 	}
1597 
1598 	error = smmu_init_strtab(sc);
1599 	if (error) {
1600 		device_printf(dev, "Couldn't allocate strtab.\n");
1601 		return (ENXIO);
1602 	}
1603 
1604 	error = smmu_reset(sc);
1605 	if (error) {
1606 		device_printf(dev, "Couldn't reset SMMU.\n");
1607 		return (ENXIO);
1608 	}
1609 
1610 	return (0);
1611 }
1612 
1613 int
1614 smmu_detach(device_t dev)
1615 {
1616 	struct smmu_softc *sc;
1617 
1618 	sc = device_get_softc(dev);
1619 
1620 	bus_release_resources(dev, smmu_spec, sc->res);
1621 
1622 	return (0);
1623 }
1624 
1625 static int
1626 smmu_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1627 {
1628 	struct smmu_softc *sc;
1629 
1630 	sc = device_get_softc(dev);
1631 
1632 	device_printf(sc->dev, "%s\n", __func__);
1633 
1634 	return (ENOENT);
1635 }
1636 
1637 static int
1638 smmu_unmap(device_t dev, struct iommu_domain *iodom,
1639     vm_offset_t va, bus_size_t size)
1640 {
1641 	struct smmu_domain *domain;
1642 	struct smmu_softc *sc;
1643 	int err;
1644 	int i;
1645 
1646 	sc = device_get_softc(dev);
1647 
1648 	domain = (struct smmu_domain *)iodom;
1649 
1650 	err = 0;
1651 
1652 	dprintf("%s: %lx, %ld, domain %d\n", __func__, va, size, domain->asid);
1653 
1654 	for (i = 0; i < size; i += PAGE_SIZE) {
1655 		if (pmap_smmu_remove(&domain->p, va) == 0) {
1656 			/* pmap entry removed, invalidate TLB. */
1657 			smmu_tlbi_va(sc, va, domain->asid);
1658 		} else {
1659 			err = ENOENT;
1660 			break;
1661 		}
1662 		va += PAGE_SIZE;
1663 	}
1664 
1665 	smmu_sync(sc);
1666 
1667 	return (err);
1668 }
1669 
1670 static int
1671 smmu_map(device_t dev, struct iommu_domain *iodom,
1672     vm_offset_t va, vm_page_t *ma, vm_size_t size,
1673     vm_prot_t prot)
1674 {
1675 	struct smmu_domain *domain;
1676 	struct smmu_softc *sc;
1677 	vm_paddr_t pa;
1678 	int error;
1679 	int i;
1680 
1681 	sc = device_get_softc(dev);
1682 
1683 	domain = (struct smmu_domain *)iodom;
1684 
1685 	dprintf("%s: %lx -> %lx, %ld, domain %d\n", __func__, va, pa, size,
1686 	    domain->asid);
1687 
1688 	for (i = 0; size > 0; size -= PAGE_SIZE) {
1689 		pa = VM_PAGE_TO_PHYS(ma[i++]);
1690 		error = pmap_smmu_enter(&domain->p, va, pa, prot, 0);
1691 		if (error)
1692 			return (error);
1693 		smmu_tlbi_va(sc, va, domain->asid);
1694 		va += PAGE_SIZE;
1695 	}
1696 
1697 	smmu_sync(sc);
1698 
1699 	return (0);
1700 }
1701 
1702 static struct iommu_domain *
1703 smmu_domain_alloc(device_t dev, struct iommu_unit *iommu)
1704 {
1705 	struct smmu_domain *domain;
1706 	struct smmu_unit *unit;
1707 	struct smmu_softc *sc;
1708 	int error;
1709 	int new_asid;
1710 
1711 	sc = device_get_softc(dev);
1712 
1713 	unit = (struct smmu_unit *)iommu;
1714 
1715 	domain = malloc(sizeof(*domain), M_SMMU, M_WAITOK | M_ZERO);
1716 
1717 	error = smmu_asid_alloc(sc, &new_asid);
1718 	if (error) {
1719 		free(domain, M_SMMU);
1720 		device_printf(sc->dev,
1721 		    "Could not allocate ASID for a new domain.\n");
1722 		return (NULL);
1723 	}
1724 
1725 	domain->asid = (uint16_t)new_asid;
1726 
1727 	iommu_pmap_pinit(&domain->p);
1728 	PMAP_LOCK_INIT(&domain->p);
1729 
1730 	error = smmu_init_cd(sc, domain);
1731 	if (error) {
1732 		free(domain, M_SMMU);
1733 		device_printf(sc->dev, "Could not initialize CD\n");
1734 		return (NULL);
1735 	}
1736 
1737 	smmu_tlbi_asid(sc, domain->asid);
1738 
1739 	LIST_INIT(&domain->ctx_list);
1740 
1741 	IOMMU_LOCK(iommu);
1742 	LIST_INSERT_HEAD(&unit->domain_list, domain, next);
1743 	IOMMU_UNLOCK(iommu);
1744 
1745 	return (&domain->iodom);
1746 }
1747 
1748 static void
1749 smmu_domain_free(device_t dev, struct iommu_domain *iodom)
1750 {
1751 	struct smmu_domain *domain;
1752 	struct smmu_softc *sc;
1753 	struct smmu_cd *cd;
1754 
1755 	sc = device_get_softc(dev);
1756 
1757 	domain = (struct smmu_domain *)iodom;
1758 
1759 	LIST_REMOVE(domain, next);
1760 
1761 	cd = domain->cd;
1762 
1763 	iommu_pmap_remove_pages(&domain->p);
1764 	iommu_pmap_release(&domain->p);
1765 
1766 	smmu_tlbi_asid(sc, domain->asid);
1767 	smmu_asid_free(sc, domain->asid);
1768 
1769 	contigfree(cd->vaddr, cd->size, M_SMMU);
1770 	free(cd, M_SMMU);
1771 
1772 	free(domain, M_SMMU);
1773 }
1774 
1775 static int
1776 smmu_set_buswide(device_t dev, struct smmu_domain *domain,
1777     struct smmu_ctx *ctx)
1778 {
1779 	struct smmu_softc *sc;
1780 	int i;
1781 
1782 	sc = device_get_softc(dev);
1783 
1784 	for (i = 0; i < PCI_SLOTMAX; i++)
1785 		smmu_init_ste(sc, domain->cd, (ctx->sid | i), ctx->bypass);
1786 
1787 	return (0);
1788 }
1789 
1790 #ifdef DEV_ACPI
1791 static int
1792 smmu_pci_get_sid_acpi(device_t child, u_int *xref0, u_int *sid0)
1793 {
1794 	uint16_t rid;
1795 	u_int xref;
1796 	int seg;
1797 	int err;
1798 	int sid;
1799 
1800 	seg = pci_get_domain(child);
1801 	rid = pci_get_rid(child);
1802 
1803 	err = acpi_iort_map_pci_smmuv3(seg, rid, &xref, &sid);
1804 	if (err == 0) {
1805 		if (sid0)
1806 			*sid0 = sid;
1807 		if (xref0)
1808 			*xref0 = xref;
1809 	}
1810 
1811 	return (err);
1812 }
1813 #endif
1814 
1815 #ifdef FDT
1816 static int
1817 smmu_pci_get_sid_fdt(device_t child, u_int *xref0, u_int *sid0)
1818 {
1819 	struct pci_id_ofw_iommu pi;
1820 	uint64_t base, size;
1821 	phandle_t node;
1822 	u_int xref;
1823 	int err;
1824 
1825 	err = pci_get_id(child, PCI_ID_OFW_IOMMU, (uintptr_t *)&pi);
1826 	if (err == 0) {
1827 		/* Our xref is memory base address. */
1828 		node = OF_node_from_xref(pi.xref);
1829 		fdt_regsize(node, &base, &size);
1830 		xref = base;
1831 
1832 		if (sid0)
1833 			*sid0 = pi.id;
1834 		if (xref0)
1835 			*xref0 = xref;
1836 	}
1837 
1838 	return (err);
1839 }
1840 #endif
1841 
1842 static struct iommu_ctx *
1843 smmu_ctx_alloc(device_t dev, struct iommu_domain *iodom, device_t child,
1844     bool disabled)
1845 {
1846 	struct smmu_domain *domain;
1847 	struct smmu_ctx *ctx;
1848 
1849 	domain = (struct smmu_domain *)iodom;
1850 
1851 	ctx = malloc(sizeof(struct smmu_ctx), M_SMMU, M_WAITOK | M_ZERO);
1852 	ctx->dev = child;
1853 	ctx->domain = domain;
1854 	if (disabled)
1855 		ctx->bypass = true;
1856 
1857 	IOMMU_DOMAIN_LOCK(iodom);
1858 	LIST_INSERT_HEAD(&domain->ctx_list, ctx, next);
1859 	IOMMU_DOMAIN_UNLOCK(iodom);
1860 
1861 	return (&ctx->ioctx);
1862 }
1863 
1864 static int
1865 smmu_ctx_init(device_t dev, struct iommu_ctx *ioctx)
1866 {
1867 	struct smmu_domain *domain;
1868 	struct iommu_domain *iodom;
1869 	struct smmu_softc *sc;
1870 	struct smmu_ctx *ctx;
1871 	devclass_t pci_class;
1872 	u_int sid;
1873 	int err;
1874 
1875 	ctx = (struct smmu_ctx *)ioctx;
1876 
1877 	sc = device_get_softc(dev);
1878 
1879 	domain = ctx->domain;
1880 	iodom = (struct iommu_domain *)domain;
1881 
1882 	pci_class = devclass_find("pci");
1883 	if (device_get_devclass(device_get_parent(ctx->dev)) == pci_class) {
1884 #ifdef DEV_ACPI
1885 		err = smmu_pci_get_sid_acpi(ctx->dev, NULL, &sid);
1886 #else
1887 		err = smmu_pci_get_sid_fdt(ctx->dev, NULL, &sid);
1888 #endif
1889 		if (err)
1890 			return (err);
1891 
1892 		ioctx->rid = pci_get_rid(dev);
1893 		ctx->sid = sid;
1894 		ctx->vendor = pci_get_vendor(ctx->dev);
1895 		ctx->device = pci_get_device(ctx->dev);
1896 	}
1897 
1898 	if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE) {
1899 		err = smmu_init_l1_entry(sc, ctx->sid);
1900 		if (err)
1901 			return (err);
1902 	}
1903 
1904 	/*
1905 	 * Neoverse N1 SDP:
1906 	 * 0x800 xhci
1907 	 * 0x700 re
1908 	 * 0x600 sata
1909 	 */
1910 
1911 	smmu_init_ste(sc, domain->cd, ctx->sid, ctx->bypass);
1912 
1913 	if (device_get_devclass(device_get_parent(ctx->dev)) == pci_class)
1914 		if (iommu_is_buswide_ctx(iodom->iommu, pci_get_bus(ctx->dev)))
1915 			smmu_set_buswide(dev, domain, ctx);
1916 
1917 	return (0);
1918 }
1919 
1920 static void
1921 smmu_ctx_free(device_t dev, struct iommu_ctx *ioctx)
1922 {
1923 	struct smmu_softc *sc;
1924 	struct smmu_ctx *ctx;
1925 
1926 	IOMMU_ASSERT_LOCKED(ioctx->domain->iommu);
1927 
1928 	sc = device_get_softc(dev);
1929 	ctx = (struct smmu_ctx *)ioctx;
1930 
1931 	smmu_deinit_ste(sc, ctx->sid);
1932 
1933 	LIST_REMOVE(ctx, next);
1934 
1935 	free(ctx, M_SMMU);
1936 }
1937 
1938 struct smmu_ctx *
1939 smmu_ctx_lookup_by_sid(device_t dev, u_int sid)
1940 {
1941 	struct smmu_softc *sc;
1942 	struct smmu_domain *domain;
1943 	struct smmu_unit *unit;
1944 	struct smmu_ctx *ctx;
1945 
1946 	sc = device_get_softc(dev);
1947 
1948 	unit = &sc->unit;
1949 
1950 	LIST_FOREACH(domain, &unit->domain_list, next) {
1951 		LIST_FOREACH(ctx, &domain->ctx_list, next) {
1952 			if (ctx->sid == sid)
1953 				return (ctx);
1954 		}
1955 	}
1956 
1957 	return (NULL);
1958 }
1959 
1960 static struct iommu_ctx *
1961 smmu_ctx_lookup(device_t dev, device_t child)
1962 {
1963 	struct iommu_unit *iommu __diagused;
1964 	struct smmu_softc *sc;
1965 	struct smmu_domain *domain;
1966 	struct smmu_unit *unit;
1967 	struct smmu_ctx *ctx;
1968 
1969 	sc = device_get_softc(dev);
1970 
1971 	unit = &sc->unit;
1972 	iommu = &unit->iommu;
1973 
1974 	IOMMU_ASSERT_LOCKED(iommu);
1975 
1976 	LIST_FOREACH(domain, &unit->domain_list, next) {
1977 		IOMMU_DOMAIN_LOCK(&domain->iodom);
1978 		LIST_FOREACH(ctx, &domain->ctx_list, next) {
1979 			if (ctx->dev == child) {
1980 				IOMMU_DOMAIN_UNLOCK(&domain->iodom);
1981 				return (&ctx->ioctx);
1982 			}
1983 		}
1984 		IOMMU_DOMAIN_UNLOCK(&domain->iodom);
1985 	}
1986 
1987 	return (NULL);
1988 }
1989 
1990 static int
1991 smmu_find(device_t dev, device_t child)
1992 {
1993 	struct smmu_softc *sc;
1994 	u_int xref;
1995 	int err;
1996 
1997 	sc = device_get_softc(dev);
1998 
1999 #ifdef DEV_ACPI
2000 	err = smmu_pci_get_sid_acpi(child, &xref, NULL);
2001 #else
2002 	err = smmu_pci_get_sid_fdt(child, &xref, NULL);
2003 #endif
2004 	if (err)
2005 		return (ENOENT);
2006 
2007 	/* Check if xref is ours. */
2008 	if (xref != sc->xref)
2009 		return (EFAULT);
2010 
2011 	return (0);
2012 }
2013 
2014 #ifdef FDT
2015 static int
2016 smmu_ofw_md_data(device_t dev, struct iommu_ctx *ioctx, pcell_t *cells,
2017     int ncells)
2018 {
2019 	struct smmu_ctx *ctx;
2020 
2021 	ctx = (struct smmu_ctx *)ioctx;
2022 
2023 	if (ncells != 1)
2024 		return (-1);
2025 
2026 	ctx->sid = cells[0];
2027 
2028 	return (0);
2029 }
2030 #endif
2031 
2032 static device_method_t smmu_methods[] = {
2033 	/* Device interface */
2034 	DEVMETHOD(device_detach,	smmu_detach),
2035 
2036 	/* SMMU interface */
2037 	DEVMETHOD(iommu_find,		smmu_find),
2038 	DEVMETHOD(iommu_map,		smmu_map),
2039 	DEVMETHOD(iommu_unmap,		smmu_unmap),
2040 	DEVMETHOD(iommu_domain_alloc,	smmu_domain_alloc),
2041 	DEVMETHOD(iommu_domain_free,	smmu_domain_free),
2042 	DEVMETHOD(iommu_ctx_alloc,	smmu_ctx_alloc),
2043 	DEVMETHOD(iommu_ctx_init,	smmu_ctx_init),
2044 	DEVMETHOD(iommu_ctx_free,	smmu_ctx_free),
2045 	DEVMETHOD(iommu_ctx_lookup,	smmu_ctx_lookup),
2046 #ifdef FDT
2047 	DEVMETHOD(iommu_ofw_md_data,	smmu_ofw_md_data),
2048 #endif
2049 
2050 	/* Bus interface */
2051 	DEVMETHOD(bus_read_ivar,	smmu_read_ivar),
2052 
2053 	/* End */
2054 	DEVMETHOD_END
2055 };
2056 
2057 DEFINE_CLASS_0(smmu, smmu_driver, smmu_methods, sizeof(struct smmu_softc));
2058