1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2019-2020 Ruslan Bukin <br@bsdpad.com> 5 * 6 * This software was developed by SRI International and the University of 7 * Cambridge Computer Laboratory (Department of Computer Science and 8 * Technology) under DARPA contract HR0011-18-C-0016 ("ECATS"), as part of the 9 * DARPA SSITH research programme. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Hardware overview. 35 * 36 * An incoming transaction from a peripheral device has an address, size, 37 * attributes and StreamID. 38 * 39 * In case of PCI-based devices, StreamID is a PCI rid. 40 * 41 * The StreamID is used to select a Stream Table Entry (STE) in a Stream table, 42 * which contains per-device configuration. 43 * 44 * Stream table is a linear or 2-level walk table (this driver supports both). 45 * Note that a linear table could occupy 1GB or more of memory depending on 46 * sid_bits value. 47 * 48 * STE is used to locate a Context Descriptor, which is a struct in memory 49 * that describes stages of translation, translation table type, pointer to 50 * level 0 of page tables, ASID, etc. 51 * 52 * Hardware supports two stages of translation: Stage1 (S1) and Stage2 (S2): 53 * o S1 is used for the host machine traffic translation 54 * o S2 is for a hypervisor 55 * 56 * This driver enables S1 stage with standard AArch64 page tables. 57 * 58 * Note that SMMU does not share TLB with a main CPU. 59 * Command queue is used by this driver to Invalidate SMMU TLB, STE cache. 60 * 61 * An arm64 SoC could have more than one SMMU instance. 62 * ACPI IORT table describes which SMMU unit is assigned for a particular 63 * peripheral device. 64 * 65 * Queues. 66 * 67 * Register interface and Memory-based circular buffer queues are used 68 * to interface SMMU. 69 * 70 * These are a Command queue for commands to send to the SMMU and an Event 71 * queue for event/fault reports from the SMMU. Optionally PRI queue is 72 * designed for PCIe page requests reception. 73 * 74 * Note that not every hardware supports PRI services. For instance they were 75 * not found in Neoverse N1 SDP machine. 76 * (This drivers does not implement PRI queue.) 77 * 78 * All SMMU queues are arranged as circular buffers in memory. They are used 79 * in a producer-consumer fashion so that an output queue contains data 80 * produced by the SMMU and consumed by software. 81 * An input queue contains data produced by software, consumed by the SMMU. 82 * 83 * Interrupts. 84 * 85 * Interrupts are not required by this driver for normal operation. 86 * The standard wired interrupt is only triggered when an event comes from 87 * the SMMU, which is only in a case of errors (e.g. translation fault). 88 */ 89 90 #include "opt_platform.h" 91 #include "opt_acpi.h" 92 93 #include <sys/cdefs.h> 94 __FBSDID("$FreeBSD$"); 95 96 #include <sys/param.h> 97 #include <sys/bitstring.h> 98 #include <sys/bus.h> 99 #include <sys/kernel.h> 100 #include <sys/malloc.h> 101 #include <sys/mutex.h> 102 #include <sys/rman.h> 103 #include <sys/lock.h> 104 #include <sys/sysctl.h> 105 #include <sys/tree.h> 106 #include <sys/taskqueue.h> 107 #include <vm/vm.h> 108 #include <vm/vm_page.h> 109 #ifdef DEV_ACPI 110 #include <contrib/dev/acpica/include/acpi.h> 111 #include <dev/acpica/acpivar.h> 112 #endif 113 #include <dev/pci/pcireg.h> 114 #include <dev/pci/pcivar.h> 115 #include <dev/iommu/iommu.h> 116 #include <arm64/iommu/iommu_pmap.h> 117 118 #include <machine/bus.h> 119 120 #ifdef FDT 121 #include <dev/fdt/fdt_common.h> 122 #include <dev/ofw/ofw_bus.h> 123 #include <dev/ofw/ofw_bus_subr.h> 124 #endif 125 126 #include "iommu.h" 127 #include "iommu_if.h" 128 129 #include "smmureg.h" 130 #include "smmuvar.h" 131 132 #define STRTAB_L1_SZ_SHIFT 20 133 #define STRTAB_SPLIT 8 134 135 #define STRTAB_L1_DESC_L2PTR_M (0x3fffffffffff << 6) 136 #define STRTAB_L1_DESC_DWORDS 1 137 138 #define STRTAB_STE_DWORDS 8 139 140 #define CMDQ_ENTRY_DWORDS 2 141 #define EVTQ_ENTRY_DWORDS 4 142 #define PRIQ_ENTRY_DWORDS 2 143 144 #define CD_DWORDS 8 145 146 #define Q_WRP(q, p) ((p) & (1 << (q)->size_log2)) 147 #define Q_IDX(q, p) ((p) & ((1 << (q)->size_log2) - 1)) 148 #define Q_OVF(p) ((p) & (1 << 31)) /* Event queue overflowed */ 149 150 #define SMMU_Q_ALIGN (64 * 1024) 151 152 #define MAXADDR_48BIT 0xFFFFFFFFFFFFUL 153 #define MAXADDR_52BIT 0xFFFFFFFFFFFFFUL 154 155 static struct resource_spec smmu_spec[] = { 156 { SYS_RES_MEMORY, 0, RF_ACTIVE }, 157 { SYS_RES_IRQ, 0, RF_ACTIVE }, 158 { SYS_RES_IRQ, 1, RF_ACTIVE | RF_OPTIONAL }, 159 { SYS_RES_IRQ, 2, RF_ACTIVE }, 160 { SYS_RES_IRQ, 3, RF_ACTIVE }, 161 RESOURCE_SPEC_END 162 }; 163 164 MALLOC_DEFINE(M_SMMU, "SMMU", SMMU_DEVSTR); 165 166 #define dprintf(fmt, ...) 167 168 struct smmu_event { 169 int ident; 170 char *str; 171 char *msg; 172 }; 173 174 static struct smmu_event events[] = { 175 { 0x01, "F_UUT", 176 "Unsupported Upstream Transaction."}, 177 { 0x02, "C_BAD_STREAMID", 178 "Transaction StreamID out of range."}, 179 { 0x03, "F_STE_FETCH", 180 "Fetch of STE caused external abort."}, 181 { 0x04, "C_BAD_STE", 182 "Used STE invalid."}, 183 { 0x05, "F_BAD_ATS_TREQ", 184 "Address Translation Request disallowed for a StreamID " 185 "and a PCIe ATS Translation Request received."}, 186 { 0x06, "F_STREAM_DISABLED", 187 "The STE of a transaction marks non-substream transactions " 188 "disabled."}, 189 { 0x07, "F_TRANSL_FORBIDDEN", 190 "An incoming PCIe transaction is marked Translated but " 191 "SMMU bypass is disallowed for this StreamID."}, 192 { 0x08, "C_BAD_SUBSTREAMID", 193 "Incoming SubstreamID present, but configuration is invalid."}, 194 { 0x09, "F_CD_FETCH", 195 "Fetch of CD caused external abort."}, 196 { 0x0a, "C_BAD_CD", 197 "Fetched CD invalid."}, 198 { 0x0b, "F_WALK_EABT", 199 "An external abort occurred fetching (or updating) " 200 "a translation table descriptor."}, 201 { 0x10, "F_TRANSLATION", 202 "Translation fault."}, 203 { 0x11, "F_ADDR_SIZE", 204 "Address Size fault."}, 205 { 0x12, "F_ACCESS", 206 "Access flag fault due to AF == 0 in a page or block TTD."}, 207 { 0x13, "F_PERMISSION", 208 "Permission fault occurred on page access."}, 209 { 0x20, "F_TLB_CONFLICT", 210 "A TLB conflict occurred because of the transaction."}, 211 { 0x21, "F_CFG_CONFLICT", 212 "A configuration cache conflict occurred due to " 213 "the transaction."}, 214 { 0x24, "E_PAGE_REQUEST", 215 "Speculative page request hint."}, 216 { 0x25, "F_VMS_FETCH", 217 "Fetch of VMS caused external abort."}, 218 { 0, NULL, NULL }, 219 }; 220 221 static int 222 smmu_q_has_space(struct smmu_queue *q) 223 { 224 225 /* 226 * See 6.3.27 SMMU_CMDQ_PROD 227 * 228 * There is space in the queue for additional commands if: 229 * SMMU_CMDQ_CONS.RD != SMMU_CMDQ_PROD.WR || 230 * SMMU_CMDQ_CONS.RD_WRAP == SMMU_CMDQ_PROD.WR_WRAP 231 */ 232 233 if (Q_IDX(q, q->lc.cons) != Q_IDX(q, q->lc.prod) || 234 Q_WRP(q, q->lc.cons) == Q_WRP(q, q->lc.prod)) 235 return (1); 236 237 return (0); 238 } 239 240 static int 241 smmu_q_empty(struct smmu_queue *q) 242 { 243 244 if (Q_IDX(q, q->lc.cons) == Q_IDX(q, q->lc.prod) && 245 Q_WRP(q, q->lc.cons) == Q_WRP(q, q->lc.prod)) 246 return (1); 247 248 return (0); 249 } 250 251 static int __unused 252 smmu_q_consumed(struct smmu_queue *q, uint32_t prod) 253 { 254 255 if ((Q_WRP(q, q->lc.cons) == Q_WRP(q, prod)) && 256 (Q_IDX(q, q->lc.cons) >= Q_IDX(q, prod))) 257 return (1); 258 259 if ((Q_WRP(q, q->lc.cons) != Q_WRP(q, prod)) && 260 (Q_IDX(q, q->lc.cons) <= Q_IDX(q, prod))) 261 return (1); 262 263 return (0); 264 } 265 266 static uint32_t 267 smmu_q_inc_cons(struct smmu_queue *q) 268 { 269 uint32_t cons; 270 uint32_t val; 271 272 cons = (Q_WRP(q, q->lc.cons) | Q_IDX(q, q->lc.cons)) + 1; 273 val = (Q_OVF(q->lc.cons) | Q_WRP(q, cons) | Q_IDX(q, cons)); 274 275 return (val); 276 } 277 278 static uint32_t 279 smmu_q_inc_prod(struct smmu_queue *q) 280 { 281 uint32_t prod; 282 uint32_t val; 283 284 prod = (Q_WRP(q, q->lc.prod) | Q_IDX(q, q->lc.prod)) + 1; 285 val = (Q_OVF(q->lc.prod) | Q_WRP(q, prod) | Q_IDX(q, prod)); 286 287 return (val); 288 } 289 290 static int 291 smmu_write_ack(struct smmu_softc *sc, uint32_t reg, 292 uint32_t reg_ack, uint32_t val) 293 { 294 uint32_t v; 295 int timeout; 296 297 timeout = 100000; 298 299 bus_write_4(sc->res[0], reg, val); 300 301 do { 302 v = bus_read_4(sc->res[0], reg_ack); 303 if (v == val) 304 break; 305 } while (timeout--); 306 307 if (timeout <= 0) { 308 device_printf(sc->dev, "Failed to write reg.\n"); 309 return (-1); 310 } 311 312 return (0); 313 } 314 315 static inline int 316 ilog2(long x) 317 { 318 319 KASSERT(x > 0 && powerof2(x), ("%s: invalid arg %ld", __func__, x)); 320 321 return (flsl(x) - 1); 322 } 323 324 static int 325 smmu_init_queue(struct smmu_softc *sc, struct smmu_queue *q, 326 uint32_t prod_off, uint32_t cons_off, uint32_t dwords) 327 { 328 int sz; 329 330 sz = (1 << q->size_log2) * dwords * 8; 331 332 /* Set up the command circular buffer */ 333 q->vaddr = contigmalloc(sz, M_SMMU, 334 M_WAITOK | M_ZERO, 0, (1ul << 48) - 1, SMMU_Q_ALIGN, 0); 335 if (q->vaddr == NULL) { 336 device_printf(sc->dev, "failed to allocate %d bytes\n", sz); 337 return (-1); 338 } 339 340 q->prod_off = prod_off; 341 q->cons_off = cons_off; 342 q->paddr = vtophys(q->vaddr); 343 344 q->base = CMDQ_BASE_RA | EVENTQ_BASE_WA | PRIQ_BASE_WA; 345 q->base |= q->paddr & Q_BASE_ADDR_M; 346 q->base |= q->size_log2 << Q_LOG2SIZE_S; 347 348 return (0); 349 } 350 351 static int 352 smmu_init_queues(struct smmu_softc *sc) 353 { 354 int err; 355 356 /* Command queue. */ 357 err = smmu_init_queue(sc, &sc->cmdq, 358 SMMU_CMDQ_PROD, SMMU_CMDQ_CONS, CMDQ_ENTRY_DWORDS); 359 if (err) 360 return (ENXIO); 361 362 /* Event queue. */ 363 err = smmu_init_queue(sc, &sc->evtq, 364 SMMU_EVENTQ_PROD, SMMU_EVENTQ_CONS, EVTQ_ENTRY_DWORDS); 365 if (err) 366 return (ENXIO); 367 368 if (!(sc->features & SMMU_FEATURE_PRI)) 369 return (0); 370 371 /* PRI queue. */ 372 err = smmu_init_queue(sc, &sc->priq, 373 SMMU_PRIQ_PROD, SMMU_PRIQ_CONS, PRIQ_ENTRY_DWORDS); 374 if (err) 375 return (ENXIO); 376 377 return (0); 378 } 379 380 /* 381 * Dump 2LVL or linear STE. 382 */ 383 static void 384 smmu_dump_ste(struct smmu_softc *sc, int sid) 385 { 386 struct smmu_strtab *strtab; 387 struct l1_desc *l1_desc; 388 uint64_t *ste, *l1; 389 int i; 390 391 strtab = &sc->strtab; 392 393 if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE) { 394 i = sid >> STRTAB_SPLIT; 395 l1 = (void *)((uint64_t)strtab->vaddr + 396 STRTAB_L1_DESC_DWORDS * 8 * i); 397 device_printf(sc->dev, "L1 ste == %lx\n", l1[0]); 398 399 l1_desc = &strtab->l1[i]; 400 ste = l1_desc->va; 401 if (ste == NULL) /* L2 is not initialized */ 402 return; 403 } else { 404 ste = (void *)((uint64_t)strtab->vaddr + 405 sid * (STRTAB_STE_DWORDS << 3)); 406 } 407 408 /* Dump L2 or linear STE. */ 409 for (i = 0; i < STRTAB_STE_DWORDS; i++) 410 device_printf(sc->dev, "ste[%d] == %lx\n", i, ste[i]); 411 } 412 413 static void __unused 414 smmu_dump_cd(struct smmu_softc *sc, struct smmu_cd *cd) 415 { 416 uint64_t *vaddr; 417 int i; 418 419 device_printf(sc->dev, "%s\n", __func__); 420 421 vaddr = cd->vaddr; 422 for (i = 0; i < CD_DWORDS; i++) 423 device_printf(sc->dev, "cd[%d] == %lx\n", i, vaddr[i]); 424 } 425 426 static void 427 smmu_evtq_dequeue(struct smmu_softc *sc, uint32_t *evt) 428 { 429 struct smmu_queue *evtq; 430 void *entry_addr; 431 432 evtq = &sc->evtq; 433 434 evtq->lc.val = bus_read_8(sc->res[0], evtq->prod_off); 435 entry_addr = (void *)((uint64_t)evtq->vaddr + 436 evtq->lc.cons * EVTQ_ENTRY_DWORDS * 8); 437 memcpy(evt, entry_addr, EVTQ_ENTRY_DWORDS * 8); 438 evtq->lc.cons = smmu_q_inc_cons(evtq); 439 bus_write_4(sc->res[0], evtq->cons_off, evtq->lc.cons); 440 } 441 442 static void 443 smmu_print_event(struct smmu_softc *sc, uint32_t *evt) 444 { 445 struct smmu_event *ev; 446 uintptr_t input_addr; 447 uint8_t event_id; 448 device_t dev; 449 int sid; 450 int i; 451 452 dev = sc->dev; 453 454 ev = NULL; 455 event_id = evt[0] & 0xff; 456 for (i = 0; events[i].ident != 0; i++) { 457 if (events[i].ident == event_id) { 458 ev = &events[i]; 459 break; 460 } 461 } 462 463 sid = evt[1]; 464 input_addr = evt[5]; 465 input_addr <<= 32; 466 input_addr |= evt[4]; 467 468 if (smmu_quirks_check(dev, sid, event_id, input_addr)) { 469 /* The event is known. Don't print anything. */ 470 return; 471 } 472 473 if (ev) { 474 device_printf(sc->dev, 475 "Event %s (%s) received.\n", ev->str, ev->msg); 476 } else 477 device_printf(sc->dev, "Event 0x%x received\n", event_id); 478 479 device_printf(sc->dev, "SID %x, Input Address: %jx\n", 480 sid, input_addr); 481 482 for (i = 0; i < 8; i++) 483 device_printf(sc->dev, "evt[%d] %x\n", i, evt[i]); 484 485 smmu_dump_ste(sc, sid); 486 } 487 488 static void 489 make_cmd(struct smmu_softc *sc, uint64_t *cmd, 490 struct smmu_cmdq_entry *entry) 491 { 492 493 memset(cmd, 0, CMDQ_ENTRY_DWORDS * 8); 494 cmd[0] = entry->opcode << CMD_QUEUE_OPCODE_S; 495 496 switch (entry->opcode) { 497 case CMD_TLBI_NH_VA: 498 cmd[0] |= (uint64_t)entry->tlbi.asid << TLBI_0_ASID_S; 499 cmd[1] = entry->tlbi.addr & TLBI_1_ADDR_M; 500 if (entry->tlbi.leaf) { 501 /* 502 * Leaf flag means that only cached entries 503 * for the last level of translation table walk 504 * are required to be invalidated. 505 */ 506 cmd[1] |= TLBI_1_LEAF; 507 } 508 break; 509 case CMD_TLBI_NH_ASID: 510 cmd[0] |= (uint64_t)entry->tlbi.asid << TLBI_0_ASID_S; 511 break; 512 case CMD_TLBI_NSNH_ALL: 513 case CMD_TLBI_NH_ALL: 514 case CMD_TLBI_EL2_ALL: 515 break; 516 case CMD_CFGI_CD: 517 cmd[0] |= ((uint64_t)entry->cfgi.ssid << CFGI_0_SSID_S); 518 /* FALLTROUGH */ 519 case CMD_CFGI_STE: 520 cmd[0] |= ((uint64_t)entry->cfgi.sid << CFGI_0_STE_SID_S); 521 cmd[1] |= ((uint64_t)entry->cfgi.leaf << CFGI_1_LEAF_S); 522 break; 523 case CMD_CFGI_STE_RANGE: 524 cmd[1] = (31 << CFGI_1_STE_RANGE_S); 525 break; 526 case CMD_SYNC: 527 cmd[0] |= SYNC_0_MSH_IS | SYNC_0_MSIATTR_OIWB; 528 if (entry->sync.msiaddr) { 529 cmd[0] |= SYNC_0_CS_SIG_IRQ; 530 cmd[1] |= (entry->sync.msiaddr & SYNC_1_MSIADDRESS_M); 531 } else 532 cmd[0] |= SYNC_0_CS_SIG_SEV; 533 break; 534 case CMD_PREFETCH_CONFIG: 535 cmd[0] |= ((uint64_t)entry->prefetch.sid << PREFETCH_0_SID_S); 536 break; 537 }; 538 } 539 540 static void 541 smmu_cmdq_enqueue_cmd(struct smmu_softc *sc, struct smmu_cmdq_entry *entry) 542 { 543 uint64_t cmd[CMDQ_ENTRY_DWORDS]; 544 struct smmu_queue *cmdq; 545 void *entry_addr; 546 547 cmdq = &sc->cmdq; 548 549 make_cmd(sc, cmd, entry); 550 551 SMMU_LOCK(sc); 552 553 /* Ensure that a space is available. */ 554 do { 555 cmdq->lc.cons = bus_read_4(sc->res[0], cmdq->cons_off); 556 } while (smmu_q_has_space(cmdq) == 0); 557 558 /* Write the command to the current prod entry. */ 559 entry_addr = (void *)((uint64_t)cmdq->vaddr + 560 Q_IDX(cmdq, cmdq->lc.prod) * CMDQ_ENTRY_DWORDS * 8); 561 memcpy(entry_addr, cmd, CMDQ_ENTRY_DWORDS * 8); 562 563 /* Increment prod index. */ 564 cmdq->lc.prod = smmu_q_inc_prod(cmdq); 565 bus_write_4(sc->res[0], cmdq->prod_off, cmdq->lc.prod); 566 567 SMMU_UNLOCK(sc); 568 } 569 570 static void __unused 571 smmu_poll_until_consumed(struct smmu_softc *sc, struct smmu_queue *q) 572 { 573 574 while (1) { 575 q->lc.val = bus_read_8(sc->res[0], q->prod_off); 576 if (smmu_q_empty(q)) 577 break; 578 cpu_spinwait(); 579 } 580 } 581 582 static int 583 smmu_sync(struct smmu_softc *sc) 584 { 585 struct smmu_cmdq_entry cmd; 586 struct smmu_queue *q; 587 uint32_t *base; 588 int timeout; 589 int prod; 590 591 q = &sc->cmdq; 592 prod = q->lc.prod; 593 594 /* Enqueue sync command. */ 595 cmd.opcode = CMD_SYNC; 596 cmd.sync.msiaddr = q->paddr + Q_IDX(q, prod) * CMDQ_ENTRY_DWORDS * 8; 597 smmu_cmdq_enqueue_cmd(sc, &cmd); 598 599 /* Wait for the sync completion. */ 600 base = (void *)((uint64_t)q->vaddr + 601 Q_IDX(q, prod) * CMDQ_ENTRY_DWORDS * 8); 602 603 /* 604 * It takes around 200 loops (6 instructions each) 605 * on Neoverse N1 to complete the sync. 606 */ 607 timeout = 10000; 608 609 do { 610 if (*base == 0) { 611 /* MSI write completed. */ 612 break; 613 } 614 cpu_spinwait(); 615 } while (timeout--); 616 617 if (timeout < 0) 618 device_printf(sc->dev, "Failed to sync\n"); 619 620 return (0); 621 } 622 623 static int 624 smmu_sync_cd(struct smmu_softc *sc, int sid, int ssid, bool leaf) 625 { 626 struct smmu_cmdq_entry cmd; 627 628 cmd.opcode = CMD_CFGI_CD; 629 cmd.cfgi.sid = sid; 630 cmd.cfgi.ssid = ssid; 631 cmd.cfgi.leaf = leaf; 632 smmu_cmdq_enqueue_cmd(sc, &cmd); 633 634 return (0); 635 } 636 637 static void 638 smmu_invalidate_all_sid(struct smmu_softc *sc) 639 { 640 struct smmu_cmdq_entry cmd; 641 642 /* Invalidate cached config */ 643 cmd.opcode = CMD_CFGI_STE_RANGE; 644 smmu_cmdq_enqueue_cmd(sc, &cmd); 645 smmu_sync(sc); 646 } 647 648 static void 649 smmu_tlbi_all(struct smmu_softc *sc) 650 { 651 struct smmu_cmdq_entry cmd; 652 653 /* Invalidate entire TLB */ 654 cmd.opcode = CMD_TLBI_NSNH_ALL; 655 smmu_cmdq_enqueue_cmd(sc, &cmd); 656 smmu_sync(sc); 657 } 658 659 static void 660 smmu_tlbi_asid(struct smmu_softc *sc, uint16_t asid) 661 { 662 struct smmu_cmdq_entry cmd; 663 664 /* Invalidate TLB for an ASID. */ 665 cmd.opcode = CMD_TLBI_NH_ASID; 666 cmd.tlbi.asid = asid; 667 smmu_cmdq_enqueue_cmd(sc, &cmd); 668 smmu_sync(sc); 669 } 670 671 static void 672 smmu_tlbi_va(struct smmu_softc *sc, vm_offset_t va, uint16_t asid) 673 { 674 struct smmu_cmdq_entry cmd; 675 676 /* Invalidate specific range */ 677 cmd.opcode = CMD_TLBI_NH_VA; 678 cmd.tlbi.asid = asid; 679 cmd.tlbi.vmid = 0; 680 cmd.tlbi.leaf = true; /* We change only L3. */ 681 cmd.tlbi.addr = va; 682 smmu_cmdq_enqueue_cmd(sc, &cmd); 683 } 684 685 static void 686 smmu_invalidate_sid(struct smmu_softc *sc, uint32_t sid) 687 { 688 struct smmu_cmdq_entry cmd; 689 690 /* Invalidate cached config */ 691 cmd.opcode = CMD_CFGI_STE; 692 cmd.cfgi.sid = sid; 693 smmu_cmdq_enqueue_cmd(sc, &cmd); 694 smmu_sync(sc); 695 } 696 697 static void 698 smmu_prefetch_sid(struct smmu_softc *sc, uint32_t sid) 699 { 700 struct smmu_cmdq_entry cmd; 701 702 cmd.opcode = CMD_PREFETCH_CONFIG; 703 cmd.prefetch.sid = sid; 704 smmu_cmdq_enqueue_cmd(sc, &cmd); 705 smmu_sync(sc); 706 } 707 708 /* 709 * Init STE in bypass mode. Traffic is not translated for the sid. 710 */ 711 static void 712 smmu_init_ste_bypass(struct smmu_softc *sc, uint32_t sid, uint64_t *ste) 713 { 714 uint64_t val; 715 716 val = STE0_VALID | STE0_CONFIG_BYPASS; 717 718 ste[1] = STE1_SHCFG_INCOMING | STE1_EATS_FULLATS; 719 ste[2] = 0; 720 ste[3] = 0; 721 ste[4] = 0; 722 ste[5] = 0; 723 ste[6] = 0; 724 ste[7] = 0; 725 726 smmu_invalidate_sid(sc, sid); 727 ste[0] = val; 728 dsb(sy); 729 smmu_invalidate_sid(sc, sid); 730 731 smmu_prefetch_sid(sc, sid); 732 } 733 734 /* 735 * Enable Stage1 (S1) translation for the sid. 736 */ 737 static int 738 smmu_init_ste_s1(struct smmu_softc *sc, struct smmu_cd *cd, 739 uint32_t sid, uint64_t *ste) 740 { 741 uint64_t val; 742 743 val = STE0_VALID; 744 745 /* S1 */ 746 ste[1] = STE1_EATS_FULLATS | 747 STE1_S1CSH_IS | 748 STE1_S1CIR_WBRA | 749 STE1_S1COR_WBRA | 750 STE1_STRW_NS_EL1; 751 ste[2] = 0; 752 ste[3] = 0; 753 ste[4] = 0; 754 ste[5] = 0; 755 ste[6] = 0; 756 ste[7] = 0; 757 758 if (sc->features & SMMU_FEATURE_STALL && 759 ((sc->features & SMMU_FEATURE_STALL_FORCE) == 0)) 760 ste[1] |= STE1_S1STALLD; 761 762 /* Configure STE */ 763 val |= (cd->paddr & STE0_S1CONTEXTPTR_M); 764 val |= STE0_CONFIG_S1_TRANS; 765 766 smmu_invalidate_sid(sc, sid); 767 768 /* The STE[0] has to be written in a single blast, last of all. */ 769 ste[0] = val; 770 dsb(sy); 771 772 smmu_invalidate_sid(sc, sid); 773 smmu_sync_cd(sc, sid, 0, true); 774 smmu_invalidate_sid(sc, sid); 775 776 /* The sid will be used soon most likely. */ 777 smmu_prefetch_sid(sc, sid); 778 779 return (0); 780 } 781 782 static uint64_t * 783 smmu_get_ste_addr(struct smmu_softc *sc, int sid) 784 { 785 struct smmu_strtab *strtab; 786 struct l1_desc *l1_desc; 787 uint64_t *addr; 788 789 strtab = &sc->strtab; 790 791 if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE) { 792 l1_desc = &strtab->l1[sid >> STRTAB_SPLIT]; 793 addr = l1_desc->va; 794 addr += (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS; 795 } else { 796 addr = (void *)((uint64_t)strtab->vaddr + 797 STRTAB_STE_DWORDS * 8 * sid); 798 }; 799 800 return (addr); 801 } 802 803 static int 804 smmu_init_ste(struct smmu_softc *sc, struct smmu_cd *cd, int sid, bool bypass) 805 { 806 uint64_t *addr; 807 808 addr = smmu_get_ste_addr(sc, sid); 809 810 if (bypass) 811 smmu_init_ste_bypass(sc, sid, addr); 812 else 813 smmu_init_ste_s1(sc, cd, sid, addr); 814 815 smmu_sync(sc); 816 817 return (0); 818 } 819 820 static void 821 smmu_deinit_ste(struct smmu_softc *sc, int sid) 822 { 823 uint64_t *ste; 824 825 ste = smmu_get_ste_addr(sc, sid); 826 ste[0] = 0; 827 828 smmu_invalidate_sid(sc, sid); 829 smmu_sync_cd(sc, sid, 0, true); 830 smmu_invalidate_sid(sc, sid); 831 832 smmu_sync(sc); 833 } 834 835 static int 836 smmu_init_cd(struct smmu_softc *sc, struct smmu_domain *domain) 837 { 838 vm_paddr_t paddr; 839 uint64_t *ptr; 840 uint64_t val; 841 vm_size_t size; 842 struct smmu_cd *cd; 843 struct smmu_pmap *p; 844 845 size = 1 * (CD_DWORDS << 3); 846 847 p = &domain->p; 848 cd = domain->cd = malloc(sizeof(struct smmu_cd), 849 M_SMMU, M_WAITOK | M_ZERO); 850 851 cd->vaddr = contigmalloc(size, M_SMMU, 852 M_WAITOK | M_ZERO, /* flags */ 853 0, /* low */ 854 (1ul << 40) - 1, /* high */ 855 size, /* alignment */ 856 0); /* boundary */ 857 if (cd->vaddr == NULL) { 858 device_printf(sc->dev, "Failed to allocate CD\n"); 859 return (ENXIO); 860 } 861 862 cd->size = size; 863 cd->paddr = vtophys(cd->vaddr); 864 865 ptr = cd->vaddr; 866 867 val = CD0_VALID; 868 val |= CD0_AA64; 869 val |= CD0_R; 870 val |= CD0_A; 871 val |= CD0_ASET; 872 val |= (uint64_t)domain->asid << CD0_ASID_S; 873 val |= CD0_TG0_4KB; 874 val |= CD0_EPD1; /* Disable TT1 */ 875 val |= ((64 - sc->ias) << CD0_T0SZ_S); 876 val |= CD0_IPS_48BITS; 877 878 paddr = p->sp_l0_paddr & CD1_TTB0_M; 879 KASSERT(paddr == p->sp_l0_paddr, ("bad allocation 1")); 880 881 ptr[1] = paddr; 882 ptr[2] = 0; 883 ptr[3] = MAIR_ATTR(MAIR_DEVICE_nGnRnE, VM_MEMATTR_DEVICE) | 884 MAIR_ATTR(MAIR_NORMAL_NC, VM_MEMATTR_UNCACHEABLE) | 885 MAIR_ATTR(MAIR_NORMAL_WB, VM_MEMATTR_WRITE_BACK) | 886 MAIR_ATTR(MAIR_NORMAL_WT, VM_MEMATTR_WRITE_THROUGH); 887 888 /* Install the CD. */ 889 ptr[0] = val; 890 891 return (0); 892 } 893 894 static int 895 smmu_init_strtab_linear(struct smmu_softc *sc) 896 { 897 struct smmu_strtab *strtab; 898 vm_paddr_t base; 899 uint32_t size; 900 uint64_t reg; 901 902 strtab = &sc->strtab; 903 strtab->num_l1_entries = (1 << sc->sid_bits); 904 905 size = strtab->num_l1_entries * (STRTAB_STE_DWORDS << 3); 906 907 if (bootverbose) 908 device_printf(sc->dev, 909 "%s: linear strtab size %d, num_l1_entries %d\n", 910 __func__, size, strtab->num_l1_entries); 911 912 strtab->vaddr = contigmalloc(size, M_SMMU, 913 M_WAITOK | M_ZERO, /* flags */ 914 0, /* low */ 915 (1ul << 48) - 1, /* high */ 916 size, /* alignment */ 917 0); /* boundary */ 918 if (strtab->vaddr == NULL) { 919 device_printf(sc->dev, "failed to allocate strtab\n"); 920 return (ENXIO); 921 } 922 923 reg = STRTAB_BASE_CFG_FMT_LINEAR; 924 reg |= sc->sid_bits << STRTAB_BASE_CFG_LOG2SIZE_S; 925 strtab->base_cfg = (uint32_t)reg; 926 927 base = vtophys(strtab->vaddr); 928 929 reg = base & STRTAB_BASE_ADDR_M; 930 KASSERT(reg == base, ("bad allocation 2")); 931 reg |= STRTAB_BASE_RA; 932 strtab->base = reg; 933 934 return (0); 935 } 936 937 static int 938 smmu_init_strtab_2lvl(struct smmu_softc *sc) 939 { 940 struct smmu_strtab *strtab; 941 vm_paddr_t base; 942 uint64_t reg_base; 943 uint32_t l1size; 944 uint32_t size; 945 uint32_t reg; 946 int sz; 947 948 strtab = &sc->strtab; 949 950 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3); 951 size = min(size, sc->sid_bits - STRTAB_SPLIT); 952 strtab->num_l1_entries = (1 << size); 953 size += STRTAB_SPLIT; 954 955 l1size = strtab->num_l1_entries * (STRTAB_L1_DESC_DWORDS << 3); 956 957 if (bootverbose) 958 device_printf(sc->dev, 959 "%s: size %d, l1 entries %d, l1size %d\n", 960 __func__, size, strtab->num_l1_entries, l1size); 961 962 strtab->vaddr = contigmalloc(l1size, M_SMMU, 963 M_WAITOK | M_ZERO, /* flags */ 964 0, /* low */ 965 (1ul << 48) - 1, /* high */ 966 l1size, /* alignment */ 967 0); /* boundary */ 968 if (strtab->vaddr == NULL) { 969 device_printf(sc->dev, "Failed to allocate 2lvl strtab.\n"); 970 return (ENOMEM); 971 } 972 973 sz = strtab->num_l1_entries * sizeof(struct l1_desc); 974 975 strtab->l1 = malloc(sz, M_SMMU, M_WAITOK | M_ZERO); 976 if (strtab->l1 == NULL) { 977 contigfree(strtab->vaddr, l1size, M_SMMU); 978 return (ENOMEM); 979 } 980 981 reg = STRTAB_BASE_CFG_FMT_2LVL; 982 reg |= size << STRTAB_BASE_CFG_LOG2SIZE_S; 983 reg |= STRTAB_SPLIT << STRTAB_BASE_CFG_SPLIT_S; 984 strtab->base_cfg = (uint32_t)reg; 985 986 base = vtophys(strtab->vaddr); 987 988 reg_base = base & STRTAB_BASE_ADDR_M; 989 KASSERT(reg_base == base, ("bad allocation 3")); 990 reg_base |= STRTAB_BASE_RA; 991 strtab->base = reg_base; 992 993 return (0); 994 } 995 996 static int 997 smmu_init_strtab(struct smmu_softc *sc) 998 { 999 int error; 1000 1001 if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE) 1002 error = smmu_init_strtab_2lvl(sc); 1003 else 1004 error = smmu_init_strtab_linear(sc); 1005 1006 return (error); 1007 } 1008 1009 static int 1010 smmu_init_l1_entry(struct smmu_softc *sc, int sid) 1011 { 1012 struct smmu_strtab *strtab; 1013 struct l1_desc *l1_desc; 1014 uint64_t *addr; 1015 uint64_t val; 1016 size_t size; 1017 int i; 1018 1019 strtab = &sc->strtab; 1020 l1_desc = &strtab->l1[sid >> STRTAB_SPLIT]; 1021 if (l1_desc->va) { 1022 /* Already allocated. */ 1023 return (0); 1024 } 1025 1026 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3); 1027 1028 l1_desc->span = STRTAB_SPLIT + 1; 1029 l1_desc->size = size; 1030 l1_desc->va = contigmalloc(size, M_SMMU, 1031 M_WAITOK | M_ZERO, /* flags */ 1032 0, /* low */ 1033 (1ul << 48) - 1, /* high */ 1034 size, /* alignment */ 1035 0); /* boundary */ 1036 if (l1_desc->va == NULL) { 1037 device_printf(sc->dev, "failed to allocate l2 entry\n"); 1038 return (ENXIO); 1039 } 1040 1041 l1_desc->pa = vtophys(l1_desc->va); 1042 1043 i = sid >> STRTAB_SPLIT; 1044 addr = (void *)((uint64_t)strtab->vaddr + 1045 STRTAB_L1_DESC_DWORDS * 8 * i); 1046 1047 /* Install the L1 entry. */ 1048 val = l1_desc->pa & STRTAB_L1_DESC_L2PTR_M; 1049 KASSERT(val == l1_desc->pa, ("bad allocation 4")); 1050 val |= l1_desc->span; 1051 *addr = val; 1052 1053 return (0); 1054 } 1055 1056 static void __unused 1057 smmu_deinit_l1_entry(struct smmu_softc *sc, int sid) 1058 { 1059 struct smmu_strtab *strtab; 1060 struct l1_desc *l1_desc; 1061 uint64_t *addr; 1062 int i; 1063 1064 strtab = &sc->strtab; 1065 1066 i = sid >> STRTAB_SPLIT; 1067 addr = (void *)((uint64_t)strtab->vaddr + 1068 STRTAB_L1_DESC_DWORDS * 8 * i); 1069 *addr = 0; 1070 1071 l1_desc = &strtab->l1[sid >> STRTAB_SPLIT]; 1072 contigfree(l1_desc->va, l1_desc->size, M_SMMU); 1073 } 1074 1075 static int 1076 smmu_disable(struct smmu_softc *sc) 1077 { 1078 uint32_t reg; 1079 int error; 1080 1081 /* Disable SMMU */ 1082 reg = bus_read_4(sc->res[0], SMMU_CR0); 1083 reg &= ~CR0_SMMUEN; 1084 error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg); 1085 if (error) 1086 device_printf(sc->dev, "Could not disable SMMU.\n"); 1087 1088 return (0); 1089 } 1090 1091 static int 1092 smmu_event_intr(void *arg) 1093 { 1094 uint32_t evt[EVTQ_ENTRY_DWORDS * 2]; 1095 struct smmu_softc *sc; 1096 1097 sc = arg; 1098 1099 do { 1100 smmu_evtq_dequeue(sc, evt); 1101 smmu_print_event(sc, evt); 1102 } while (!smmu_q_empty(&sc->evtq)); 1103 1104 return (FILTER_HANDLED); 1105 } 1106 1107 static int __unused 1108 smmu_sync_intr(void *arg) 1109 { 1110 struct smmu_softc *sc; 1111 1112 sc = arg; 1113 1114 device_printf(sc->dev, "%s\n", __func__); 1115 1116 return (FILTER_HANDLED); 1117 } 1118 1119 static int 1120 smmu_gerr_intr(void *arg) 1121 { 1122 struct smmu_softc *sc; 1123 1124 sc = arg; 1125 1126 device_printf(sc->dev, "SMMU Global Error\n"); 1127 1128 return (FILTER_HANDLED); 1129 } 1130 1131 static int 1132 smmu_enable_interrupts(struct smmu_softc *sc) 1133 { 1134 uint32_t reg; 1135 int error; 1136 1137 /* Disable MSI. */ 1138 bus_write_8(sc->res[0], SMMU_GERROR_IRQ_CFG0, 0); 1139 bus_write_4(sc->res[0], SMMU_GERROR_IRQ_CFG1, 0); 1140 bus_write_4(sc->res[0], SMMU_GERROR_IRQ_CFG2, 0); 1141 1142 bus_write_8(sc->res[0], SMMU_EVENTQ_IRQ_CFG0, 0); 1143 bus_write_4(sc->res[0], SMMU_EVENTQ_IRQ_CFG1, 0); 1144 bus_write_4(sc->res[0], SMMU_EVENTQ_IRQ_CFG2, 0); 1145 1146 if (sc->features & CR0_PRIQEN) { 1147 bus_write_8(sc->res[0], SMMU_PRIQ_IRQ_CFG0, 0); 1148 bus_write_4(sc->res[0], SMMU_PRIQ_IRQ_CFG1, 0); 1149 bus_write_4(sc->res[0], SMMU_PRIQ_IRQ_CFG2, 0); 1150 } 1151 1152 /* Disable any interrupts. */ 1153 error = smmu_write_ack(sc, SMMU_IRQ_CTRL, SMMU_IRQ_CTRLACK, 0); 1154 if (error) { 1155 device_printf(sc->dev, "Could not disable interrupts.\n"); 1156 return (ENXIO); 1157 } 1158 1159 /* Enable interrupts. */ 1160 reg = IRQ_CTRL_EVENTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN; 1161 if (sc->features & SMMU_FEATURE_PRI) 1162 reg |= IRQ_CTRL_PRIQ_IRQEN; 1163 1164 error = smmu_write_ack(sc, SMMU_IRQ_CTRL, SMMU_IRQ_CTRLACK, reg); 1165 if (error) { 1166 device_printf(sc->dev, "Could not enable interrupts.\n"); 1167 return (ENXIO); 1168 } 1169 1170 return (0); 1171 } 1172 1173 #ifdef DEV_ACPI 1174 static void 1175 smmu_configure_intr(struct smmu_softc *sc, struct resource *res) 1176 { 1177 struct intr_map_data_acpi *ad; 1178 struct intr_map_data *data; 1179 1180 data = rman_get_virtual(res); 1181 KASSERT(data != NULL, ("data is NULL")); 1182 1183 if (data->type == INTR_MAP_DATA_ACPI) { 1184 ad = (struct intr_map_data_acpi *)data; 1185 ad->trig = INTR_TRIGGER_EDGE; 1186 ad->pol = INTR_POLARITY_HIGH; 1187 } 1188 } 1189 #endif 1190 1191 static int 1192 smmu_setup_interrupts(struct smmu_softc *sc) 1193 { 1194 device_t dev; 1195 int error; 1196 1197 dev = sc->dev; 1198 1199 #ifdef DEV_ACPI 1200 /* 1201 * Configure SMMU interrupts as EDGE triggered manually 1202 * as ACPI tables carries no information for that. 1203 */ 1204 smmu_configure_intr(sc, sc->res[1]); 1205 /* PRIQ is not in use. */ 1206 smmu_configure_intr(sc, sc->res[3]); 1207 smmu_configure_intr(sc, sc->res[4]); 1208 #endif 1209 1210 error = bus_setup_intr(dev, sc->res[1], INTR_TYPE_MISC, 1211 smmu_event_intr, NULL, sc, &sc->intr_cookie[0]); 1212 if (error) { 1213 device_printf(dev, "Couldn't setup Event interrupt handler\n"); 1214 return (ENXIO); 1215 } 1216 1217 error = bus_setup_intr(dev, sc->res[4], INTR_TYPE_MISC, 1218 smmu_gerr_intr, NULL, sc, &sc->intr_cookie[2]); 1219 if (error) { 1220 device_printf(dev, "Couldn't setup Gerr interrupt handler\n"); 1221 return (ENXIO); 1222 } 1223 1224 return (0); 1225 } 1226 1227 static int 1228 smmu_reset(struct smmu_softc *sc) 1229 { 1230 struct smmu_cmdq_entry cmd; 1231 struct smmu_strtab *strtab; 1232 int error; 1233 int reg; 1234 1235 reg = bus_read_4(sc->res[0], SMMU_CR0); 1236 1237 if (reg & CR0_SMMUEN) 1238 device_printf(sc->dev, 1239 "%s: Warning: SMMU is enabled\n", __func__); 1240 1241 error = smmu_disable(sc); 1242 if (error) 1243 device_printf(sc->dev, 1244 "%s: Could not disable SMMU.\n", __func__); 1245 1246 if (smmu_enable_interrupts(sc) != 0) { 1247 device_printf(sc->dev, "Could not enable interrupts.\n"); 1248 return (ENXIO); 1249 } 1250 1251 reg = CR1_TABLE_SH_IS | 1252 CR1_TABLE_OC_WBC | 1253 CR1_TABLE_IC_WBC | 1254 CR1_QUEUE_SH_IS | 1255 CR1_QUEUE_OC_WBC | 1256 CR1_QUEUE_IC_WBC; 1257 bus_write_4(sc->res[0], SMMU_CR1, reg); 1258 1259 reg = CR2_PTM | CR2_RECINVSID | CR2_E2H; 1260 bus_write_4(sc->res[0], SMMU_CR2, reg); 1261 1262 /* Stream table. */ 1263 strtab = &sc->strtab; 1264 bus_write_8(sc->res[0], SMMU_STRTAB_BASE, strtab->base); 1265 bus_write_4(sc->res[0], SMMU_STRTAB_BASE_CFG, strtab->base_cfg); 1266 1267 /* Command queue. */ 1268 bus_write_8(sc->res[0], SMMU_CMDQ_BASE, sc->cmdq.base); 1269 bus_write_4(sc->res[0], SMMU_CMDQ_PROD, sc->cmdq.lc.prod); 1270 bus_write_4(sc->res[0], SMMU_CMDQ_CONS, sc->cmdq.lc.cons); 1271 1272 reg = CR0_CMDQEN; 1273 error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg); 1274 if (error) { 1275 device_printf(sc->dev, "Could not enable command queue\n"); 1276 return (ENXIO); 1277 } 1278 1279 /* Invalidate cached configuration. */ 1280 smmu_invalidate_all_sid(sc); 1281 1282 if (sc->features & SMMU_FEATURE_HYP) { 1283 cmd.opcode = CMD_TLBI_EL2_ALL; 1284 smmu_cmdq_enqueue_cmd(sc, &cmd); 1285 }; 1286 1287 /* Invalidate TLB. */ 1288 smmu_tlbi_all(sc); 1289 1290 /* Event queue */ 1291 bus_write_8(sc->res[0], SMMU_EVENTQ_BASE, sc->evtq.base); 1292 bus_write_4(sc->res[0], SMMU_EVENTQ_PROD, sc->evtq.lc.prod); 1293 bus_write_4(sc->res[0], SMMU_EVENTQ_CONS, sc->evtq.lc.cons); 1294 1295 reg |= CR0_EVENTQEN; 1296 error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg); 1297 if (error) { 1298 device_printf(sc->dev, "Could not enable event queue\n"); 1299 return (ENXIO); 1300 } 1301 1302 if (sc->features & SMMU_FEATURE_PRI) { 1303 /* PRI queue */ 1304 bus_write_8(sc->res[0], SMMU_PRIQ_BASE, sc->priq.base); 1305 bus_write_4(sc->res[0], SMMU_PRIQ_PROD, sc->priq.lc.prod); 1306 bus_write_4(sc->res[0], SMMU_PRIQ_CONS, sc->priq.lc.cons); 1307 1308 reg |= CR0_PRIQEN; 1309 error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg); 1310 if (error) { 1311 device_printf(sc->dev, "Could not enable PRI queue\n"); 1312 return (ENXIO); 1313 } 1314 } 1315 1316 if (sc->features & SMMU_FEATURE_ATS) { 1317 reg |= CR0_ATSCHK; 1318 error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg); 1319 if (error) { 1320 device_printf(sc->dev, "Could not enable ATS check.\n"); 1321 return (ENXIO); 1322 } 1323 } 1324 1325 reg |= CR0_SMMUEN; 1326 error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg); 1327 if (error) { 1328 device_printf(sc->dev, "Could not enable SMMU.\n"); 1329 return (ENXIO); 1330 } 1331 1332 return (0); 1333 } 1334 1335 static int 1336 smmu_check_features(struct smmu_softc *sc) 1337 { 1338 uint32_t reg; 1339 uint32_t val; 1340 1341 sc->features = 0; 1342 1343 reg = bus_read_4(sc->res[0], SMMU_IDR0); 1344 1345 if (reg & IDR0_ST_LVL_2) { 1346 if (bootverbose) 1347 device_printf(sc->dev, 1348 "2-level stream table supported.\n"); 1349 sc->features |= SMMU_FEATURE_2_LVL_STREAM_TABLE; 1350 } 1351 1352 if (reg & IDR0_CD2L) { 1353 if (bootverbose) 1354 device_printf(sc->dev, 1355 "2-level CD table supported.\n"); 1356 sc->features |= SMMU_FEATURE_2_LVL_CD; 1357 } 1358 1359 switch (reg & IDR0_TTENDIAN_M) { 1360 case IDR0_TTENDIAN_MIXED: 1361 if (bootverbose) 1362 device_printf(sc->dev, "Mixed endianess supported.\n"); 1363 sc->features |= SMMU_FEATURE_TT_LE; 1364 sc->features |= SMMU_FEATURE_TT_BE; 1365 break; 1366 case IDR0_TTENDIAN_LITTLE: 1367 if (bootverbose) 1368 device_printf(sc->dev, 1369 "Little endian supported only.\n"); 1370 sc->features |= SMMU_FEATURE_TT_LE; 1371 break; 1372 case IDR0_TTENDIAN_BIG: 1373 if (bootverbose) 1374 device_printf(sc->dev, "Big endian supported only.\n"); 1375 sc->features |= SMMU_FEATURE_TT_BE; 1376 break; 1377 default: 1378 device_printf(sc->dev, "Unsupported endianness.\n"); 1379 return (ENXIO); 1380 } 1381 1382 if (reg & IDR0_SEV) 1383 sc->features |= SMMU_FEATURE_SEV; 1384 1385 if (reg & IDR0_MSI) { 1386 if (bootverbose) 1387 device_printf(sc->dev, "MSI feature present.\n"); 1388 sc->features |= SMMU_FEATURE_MSI; 1389 } 1390 1391 if (reg & IDR0_HYP) { 1392 if (bootverbose) 1393 device_printf(sc->dev, "HYP feature present.\n"); 1394 sc->features |= SMMU_FEATURE_HYP; 1395 } 1396 1397 if (reg & IDR0_ATS) 1398 sc->features |= SMMU_FEATURE_ATS; 1399 1400 if (reg & IDR0_PRI) 1401 sc->features |= SMMU_FEATURE_PRI; 1402 1403 switch (reg & IDR0_STALL_MODEL_M) { 1404 case IDR0_STALL_MODEL_FORCE: 1405 /* Stall is forced. */ 1406 sc->features |= SMMU_FEATURE_STALL_FORCE; 1407 /* FALLTHROUGH */ 1408 case IDR0_STALL_MODEL_STALL: 1409 sc->features |= SMMU_FEATURE_STALL; 1410 break; 1411 } 1412 1413 /* Grab translation stages supported. */ 1414 if (reg & IDR0_S1P) { 1415 if (bootverbose) 1416 device_printf(sc->dev, 1417 "Stage 1 translation supported.\n"); 1418 sc->features |= SMMU_FEATURE_S1P; 1419 } 1420 if (reg & IDR0_S2P) { 1421 if (bootverbose) 1422 device_printf(sc->dev, 1423 "Stage 2 translation supported.\n"); 1424 sc->features |= SMMU_FEATURE_S2P; 1425 } 1426 1427 switch (reg & IDR0_TTF_M) { 1428 case IDR0_TTF_ALL: 1429 case IDR0_TTF_AA64: 1430 sc->ias = 40; 1431 break; 1432 default: 1433 device_printf(sc->dev, "No AArch64 table format support.\n"); 1434 return (ENXIO); 1435 } 1436 1437 if (reg & IDR0_ASID16) 1438 sc->asid_bits = 16; 1439 else 1440 sc->asid_bits = 8; 1441 1442 if (bootverbose) 1443 device_printf(sc->dev, "ASID bits %d\n", sc->asid_bits); 1444 1445 if (reg & IDR0_VMID16) 1446 sc->vmid_bits = 16; 1447 else 1448 sc->vmid_bits = 8; 1449 1450 reg = bus_read_4(sc->res[0], SMMU_IDR1); 1451 1452 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) { 1453 device_printf(sc->dev, 1454 "Embedded implementations not supported by this driver.\n"); 1455 return (ENXIO); 1456 } 1457 1458 val = (reg & IDR1_CMDQS_M) >> IDR1_CMDQS_S; 1459 sc->cmdq.size_log2 = val; 1460 if (bootverbose) 1461 device_printf(sc->dev, "CMD queue bits %d\n", val); 1462 1463 val = (reg & IDR1_EVENTQS_M) >> IDR1_EVENTQS_S; 1464 sc->evtq.size_log2 = val; 1465 if (bootverbose) 1466 device_printf(sc->dev, "EVENT queue bits %d\n", val); 1467 1468 if (sc->features & SMMU_FEATURE_PRI) { 1469 val = (reg & IDR1_PRIQS_M) >> IDR1_PRIQS_S; 1470 sc->priq.size_log2 = val; 1471 if (bootverbose) 1472 device_printf(sc->dev, "PRI queue bits %d\n", val); 1473 } 1474 1475 sc->ssid_bits = (reg & IDR1_SSIDSIZE_M) >> IDR1_SSIDSIZE_S; 1476 sc->sid_bits = (reg & IDR1_SIDSIZE_M) >> IDR1_SIDSIZE_S; 1477 1478 if (sc->sid_bits <= STRTAB_SPLIT) 1479 sc->features &= ~SMMU_FEATURE_2_LVL_STREAM_TABLE; 1480 1481 if (bootverbose) { 1482 device_printf(sc->dev, "SSID bits %d\n", sc->ssid_bits); 1483 device_printf(sc->dev, "SID bits %d\n", sc->sid_bits); 1484 } 1485 1486 /* IDR3 */ 1487 reg = bus_read_4(sc->res[0], SMMU_IDR3); 1488 if (reg & IDR3_RIL) 1489 sc->features |= SMMU_FEATURE_RANGE_INV; 1490 1491 /* IDR5 */ 1492 reg = bus_read_4(sc->res[0], SMMU_IDR5); 1493 1494 switch (reg & IDR5_OAS_M) { 1495 case IDR5_OAS_32: 1496 sc->oas = 32; 1497 break; 1498 case IDR5_OAS_36: 1499 sc->oas = 36; 1500 break; 1501 case IDR5_OAS_40: 1502 sc->oas = 40; 1503 break; 1504 case IDR5_OAS_42: 1505 sc->oas = 42; 1506 break; 1507 case IDR5_OAS_44: 1508 sc->oas = 44; 1509 break; 1510 case IDR5_OAS_48: 1511 sc->oas = 48; 1512 break; 1513 case IDR5_OAS_52: 1514 sc->oas = 52; 1515 break; 1516 } 1517 1518 sc->pgsizes = 0; 1519 if (reg & IDR5_GRAN64K) 1520 sc->pgsizes |= 64 * 1024; 1521 if (reg & IDR5_GRAN16K) 1522 sc->pgsizes |= 16 * 1024; 1523 if (reg & IDR5_GRAN4K) 1524 sc->pgsizes |= 4 * 1024; 1525 1526 if ((reg & IDR5_VAX_M) == IDR5_VAX_52) 1527 sc->features |= SMMU_FEATURE_VAX; 1528 1529 return (0); 1530 } 1531 1532 static void 1533 smmu_init_asids(struct smmu_softc *sc) 1534 { 1535 1536 sc->asid_set_size = (1 << sc->asid_bits); 1537 sc->asid_set = bit_alloc(sc->asid_set_size, M_SMMU, M_WAITOK); 1538 mtx_init(&sc->asid_set_mutex, "asid set", NULL, MTX_SPIN); 1539 } 1540 1541 static int 1542 smmu_asid_alloc(struct smmu_softc *sc, int *new_asid) 1543 { 1544 1545 mtx_lock_spin(&sc->asid_set_mutex); 1546 bit_ffc(sc->asid_set, sc->asid_set_size, new_asid); 1547 if (*new_asid == -1) { 1548 mtx_unlock_spin(&sc->asid_set_mutex); 1549 return (ENOMEM); 1550 } 1551 bit_set(sc->asid_set, *new_asid); 1552 mtx_unlock_spin(&sc->asid_set_mutex); 1553 1554 return (0); 1555 } 1556 1557 static void 1558 smmu_asid_free(struct smmu_softc *sc, int asid) 1559 { 1560 1561 mtx_lock_spin(&sc->asid_set_mutex); 1562 bit_clear(sc->asid_set, asid); 1563 mtx_unlock_spin(&sc->asid_set_mutex); 1564 } 1565 1566 /* 1567 * Device interface. 1568 */ 1569 int 1570 smmu_attach(device_t dev) 1571 { 1572 struct smmu_softc *sc; 1573 int error; 1574 1575 sc = device_get_softc(dev); 1576 sc->dev = dev; 1577 1578 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->dev), "smmu", MTX_DEF); 1579 1580 error = smmu_setup_interrupts(sc); 1581 if (error) { 1582 bus_release_resources(dev, smmu_spec, sc->res); 1583 return (ENXIO); 1584 } 1585 1586 error = smmu_check_features(sc); 1587 if (error) { 1588 device_printf(dev, "Some features are required " 1589 "but not supported by hardware.\n"); 1590 return (ENXIO); 1591 } 1592 1593 smmu_init_asids(sc); 1594 1595 error = smmu_init_queues(sc); 1596 if (error) { 1597 device_printf(dev, "Couldn't allocate queues.\n"); 1598 return (ENXIO); 1599 } 1600 1601 error = smmu_init_strtab(sc); 1602 if (error) { 1603 device_printf(dev, "Couldn't allocate strtab.\n"); 1604 return (ENXIO); 1605 } 1606 1607 error = smmu_reset(sc); 1608 if (error) { 1609 device_printf(dev, "Couldn't reset SMMU.\n"); 1610 return (ENXIO); 1611 } 1612 1613 return (0); 1614 } 1615 1616 int 1617 smmu_detach(device_t dev) 1618 { 1619 struct smmu_softc *sc; 1620 1621 sc = device_get_softc(dev); 1622 1623 bus_release_resources(dev, smmu_spec, sc->res); 1624 1625 return (0); 1626 } 1627 1628 static int 1629 smmu_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) 1630 { 1631 struct smmu_softc *sc; 1632 1633 sc = device_get_softc(dev); 1634 1635 device_printf(sc->dev, "%s\n", __func__); 1636 1637 return (ENOENT); 1638 } 1639 1640 static int 1641 smmu_unmap(device_t dev, struct iommu_domain *iodom, 1642 vm_offset_t va, bus_size_t size) 1643 { 1644 struct smmu_domain *domain; 1645 struct smmu_softc *sc; 1646 int err; 1647 int i; 1648 1649 sc = device_get_softc(dev); 1650 1651 domain = (struct smmu_domain *)iodom; 1652 1653 err = 0; 1654 1655 dprintf("%s: %lx, %ld, domain %d\n", __func__, va, size, domain->asid); 1656 1657 for (i = 0; i < size; i += PAGE_SIZE) { 1658 if (smmu_pmap_remove(&domain->p, va) == 0) { 1659 /* pmap entry removed, invalidate TLB. */ 1660 smmu_tlbi_va(sc, va, domain->asid); 1661 } else { 1662 err = ENOENT; 1663 break; 1664 } 1665 va += PAGE_SIZE; 1666 } 1667 1668 smmu_sync(sc); 1669 1670 return (err); 1671 } 1672 1673 static int 1674 smmu_map(device_t dev, struct iommu_domain *iodom, 1675 vm_offset_t va, vm_page_t *ma, vm_size_t size, 1676 vm_prot_t prot) 1677 { 1678 struct smmu_domain *domain; 1679 struct smmu_softc *sc; 1680 vm_paddr_t pa; 1681 int error; 1682 int i; 1683 1684 sc = device_get_softc(dev); 1685 1686 domain = (struct smmu_domain *)iodom; 1687 1688 dprintf("%s: %lx -> %lx, %ld, domain %d\n", __func__, va, pa, size, 1689 domain->asid); 1690 1691 for (i = 0; size > 0; size -= PAGE_SIZE) { 1692 pa = VM_PAGE_TO_PHYS(ma[i++]); 1693 error = smmu_pmap_enter(&domain->p, va, pa, prot, 0); 1694 if (error) 1695 return (error); 1696 smmu_tlbi_va(sc, va, domain->asid); 1697 va += PAGE_SIZE; 1698 } 1699 1700 smmu_sync(sc); 1701 1702 return (0); 1703 } 1704 1705 static struct iommu_domain * 1706 smmu_domain_alloc(device_t dev, struct iommu_unit *iommu) 1707 { 1708 struct iommu_domain *iodom; 1709 struct smmu_domain *domain; 1710 struct smmu_unit *unit; 1711 struct smmu_softc *sc; 1712 int error; 1713 int new_asid; 1714 1715 sc = device_get_softc(dev); 1716 1717 unit = (struct smmu_unit *)iommu; 1718 1719 domain = malloc(sizeof(*domain), M_SMMU, M_WAITOK | M_ZERO); 1720 1721 error = smmu_asid_alloc(sc, &new_asid); 1722 if (error) { 1723 free(domain, M_SMMU); 1724 device_printf(sc->dev, 1725 "Could not allocate ASID for a new domain.\n"); 1726 return (NULL); 1727 } 1728 1729 domain->asid = (uint16_t)new_asid; 1730 1731 smmu_pmap_pinit(&domain->p); 1732 1733 error = smmu_init_cd(sc, domain); 1734 if (error) { 1735 free(domain, M_SMMU); 1736 device_printf(sc->dev, "Could not initialize CD\n"); 1737 return (NULL); 1738 } 1739 1740 smmu_tlbi_asid(sc, domain->asid); 1741 1742 LIST_INIT(&domain->ctx_list); 1743 1744 IOMMU_LOCK(iommu); 1745 LIST_INSERT_HEAD(&unit->domain_list, domain, next); 1746 IOMMU_UNLOCK(iommu); 1747 1748 iodom = &domain->iodom; 1749 1750 /* 1751 * Use 48-bit address space regardless of VAX bit 1752 * as we need 64k IOMMU_PAGE_SIZE for 52-bit space. 1753 */ 1754 iodom->end = MAXADDR_48BIT; 1755 1756 return (iodom); 1757 } 1758 1759 static void 1760 smmu_domain_free(device_t dev, struct iommu_domain *iodom) 1761 { 1762 struct smmu_domain *domain; 1763 struct smmu_softc *sc; 1764 struct smmu_cd *cd; 1765 1766 sc = device_get_softc(dev); 1767 1768 domain = (struct smmu_domain *)iodom; 1769 1770 LIST_REMOVE(domain, next); 1771 1772 cd = domain->cd; 1773 1774 smmu_pmap_remove_pages(&domain->p); 1775 smmu_pmap_release(&domain->p); 1776 1777 smmu_tlbi_asid(sc, domain->asid); 1778 smmu_asid_free(sc, domain->asid); 1779 1780 contigfree(cd->vaddr, cd->size, M_SMMU); 1781 free(cd, M_SMMU); 1782 1783 free(domain, M_SMMU); 1784 } 1785 1786 static int 1787 smmu_set_buswide(device_t dev, struct smmu_domain *domain, 1788 struct smmu_ctx *ctx) 1789 { 1790 struct smmu_softc *sc; 1791 int i; 1792 1793 sc = device_get_softc(dev); 1794 1795 for (i = 0; i < PCI_SLOTMAX; i++) 1796 smmu_init_ste(sc, domain->cd, (ctx->sid | i), ctx->bypass); 1797 1798 return (0); 1799 } 1800 1801 static int 1802 smmu_pci_get_sid(device_t child, u_int *xref0, u_int *sid0) 1803 { 1804 struct pci_id_ofw_iommu pi; 1805 int err; 1806 1807 err = pci_get_id(child, PCI_ID_OFW_IOMMU, (uintptr_t *)&pi); 1808 if (err == 0) { 1809 if (sid0) 1810 *sid0 = pi.id; 1811 if (xref0) 1812 *xref0 = pi.xref; 1813 } 1814 1815 return (err); 1816 } 1817 1818 static struct iommu_ctx * 1819 smmu_ctx_alloc(device_t dev, struct iommu_domain *iodom, device_t child, 1820 bool disabled) 1821 { 1822 struct smmu_domain *domain; 1823 struct smmu_ctx *ctx; 1824 1825 domain = (struct smmu_domain *)iodom; 1826 1827 ctx = malloc(sizeof(struct smmu_ctx), M_SMMU, M_WAITOK | M_ZERO); 1828 ctx->dev = child; 1829 ctx->domain = domain; 1830 if (disabled) 1831 ctx->bypass = true; 1832 1833 IOMMU_DOMAIN_LOCK(iodom); 1834 LIST_INSERT_HEAD(&domain->ctx_list, ctx, next); 1835 IOMMU_DOMAIN_UNLOCK(iodom); 1836 1837 return (&ctx->ioctx); 1838 } 1839 1840 static int 1841 smmu_ctx_init(device_t dev, struct iommu_ctx *ioctx) 1842 { 1843 struct smmu_domain *domain; 1844 struct iommu_domain *iodom; 1845 struct smmu_softc *sc; 1846 struct smmu_ctx *ctx; 1847 devclass_t pci_class; 1848 u_int sid; 1849 int err; 1850 1851 ctx = (struct smmu_ctx *)ioctx; 1852 1853 sc = device_get_softc(dev); 1854 1855 domain = ctx->domain; 1856 iodom = (struct iommu_domain *)domain; 1857 1858 pci_class = devclass_find("pci"); 1859 if (device_get_devclass(device_get_parent(ctx->dev)) == pci_class) { 1860 err = smmu_pci_get_sid(ctx->dev, NULL, &sid); 1861 if (err) 1862 return (err); 1863 1864 ioctx->rid = pci_get_rid(dev); 1865 ctx->sid = sid; 1866 ctx->vendor = pci_get_vendor(ctx->dev); 1867 ctx->device = pci_get_device(ctx->dev); 1868 } 1869 1870 if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE) { 1871 err = smmu_init_l1_entry(sc, ctx->sid); 1872 if (err) 1873 return (err); 1874 } 1875 1876 /* 1877 * Neoverse N1 SDP: 1878 * 0x800 xhci 1879 * 0x700 re 1880 * 0x600 sata 1881 */ 1882 1883 smmu_init_ste(sc, domain->cd, ctx->sid, ctx->bypass); 1884 1885 if (device_get_devclass(device_get_parent(ctx->dev)) == pci_class) 1886 if (iommu_is_buswide_ctx(iodom->iommu, pci_get_bus(ctx->dev))) 1887 smmu_set_buswide(dev, domain, ctx); 1888 1889 return (0); 1890 } 1891 1892 static void 1893 smmu_ctx_free(device_t dev, struct iommu_ctx *ioctx) 1894 { 1895 struct smmu_softc *sc; 1896 struct smmu_ctx *ctx; 1897 1898 IOMMU_ASSERT_LOCKED(ioctx->domain->iommu); 1899 1900 sc = device_get_softc(dev); 1901 ctx = (struct smmu_ctx *)ioctx; 1902 1903 smmu_deinit_ste(sc, ctx->sid); 1904 1905 LIST_REMOVE(ctx, next); 1906 1907 free(ctx, M_SMMU); 1908 } 1909 1910 struct smmu_ctx * 1911 smmu_ctx_lookup_by_sid(device_t dev, u_int sid) 1912 { 1913 struct smmu_softc *sc; 1914 struct smmu_domain *domain; 1915 struct smmu_unit *unit; 1916 struct smmu_ctx *ctx; 1917 1918 sc = device_get_softc(dev); 1919 1920 unit = &sc->unit; 1921 1922 LIST_FOREACH(domain, &unit->domain_list, next) { 1923 LIST_FOREACH(ctx, &domain->ctx_list, next) { 1924 if (ctx->sid == sid) 1925 return (ctx); 1926 } 1927 } 1928 1929 return (NULL); 1930 } 1931 1932 static struct iommu_ctx * 1933 smmu_ctx_lookup(device_t dev, device_t child) 1934 { 1935 struct iommu_unit *iommu __diagused; 1936 struct smmu_softc *sc; 1937 struct smmu_domain *domain; 1938 struct smmu_unit *unit; 1939 struct smmu_ctx *ctx; 1940 1941 sc = device_get_softc(dev); 1942 1943 unit = &sc->unit; 1944 iommu = &unit->iommu; 1945 1946 IOMMU_ASSERT_LOCKED(iommu); 1947 1948 LIST_FOREACH(domain, &unit->domain_list, next) { 1949 IOMMU_DOMAIN_LOCK(&domain->iodom); 1950 LIST_FOREACH(ctx, &domain->ctx_list, next) { 1951 if (ctx->dev == child) { 1952 IOMMU_DOMAIN_UNLOCK(&domain->iodom); 1953 return (&ctx->ioctx); 1954 } 1955 } 1956 IOMMU_DOMAIN_UNLOCK(&domain->iodom); 1957 } 1958 1959 return (NULL); 1960 } 1961 1962 static int 1963 smmu_find(device_t dev, device_t child) 1964 { 1965 struct smmu_softc *sc; 1966 u_int xref; 1967 int err; 1968 1969 sc = device_get_softc(dev); 1970 1971 err = smmu_pci_get_sid(child, &xref, NULL); 1972 if (err) 1973 return (ENOENT); 1974 1975 /* Check if xref is ours. */ 1976 if (xref != sc->xref) 1977 return (EFAULT); 1978 1979 return (0); 1980 } 1981 1982 #ifdef FDT 1983 static int 1984 smmu_ofw_md_data(device_t dev, struct iommu_ctx *ioctx, pcell_t *cells, 1985 int ncells) 1986 { 1987 struct smmu_ctx *ctx; 1988 1989 ctx = (struct smmu_ctx *)ioctx; 1990 1991 if (ncells != 1) 1992 return (-1); 1993 1994 ctx->sid = cells[0]; 1995 1996 return (0); 1997 } 1998 #endif 1999 2000 static device_method_t smmu_methods[] = { 2001 /* Device interface */ 2002 DEVMETHOD(device_detach, smmu_detach), 2003 2004 /* SMMU interface */ 2005 DEVMETHOD(iommu_find, smmu_find), 2006 DEVMETHOD(iommu_map, smmu_map), 2007 DEVMETHOD(iommu_unmap, smmu_unmap), 2008 DEVMETHOD(iommu_domain_alloc, smmu_domain_alloc), 2009 DEVMETHOD(iommu_domain_free, smmu_domain_free), 2010 DEVMETHOD(iommu_ctx_alloc, smmu_ctx_alloc), 2011 DEVMETHOD(iommu_ctx_init, smmu_ctx_init), 2012 DEVMETHOD(iommu_ctx_free, smmu_ctx_free), 2013 DEVMETHOD(iommu_ctx_lookup, smmu_ctx_lookup), 2014 #ifdef FDT 2015 DEVMETHOD(iommu_ofw_md_data, smmu_ofw_md_data), 2016 #endif 2017 2018 /* Bus interface */ 2019 DEVMETHOD(bus_read_ivar, smmu_read_ivar), 2020 2021 /* End */ 2022 DEVMETHOD_END 2023 }; 2024 2025 DEFINE_CLASS_0(smmu, smmu_driver, smmu_methods, sizeof(struct smmu_softc)); 2026