xref: /freebsd/sys/arm64/iommu/smmu.c (revision 1b9cfd6a625dc82611846cb9a53c1886f7af3758)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2019-2020 Ruslan Bukin <br@bsdpad.com>
5  *
6  * This software was developed by SRI International and the University of
7  * Cambridge Computer Laboratory (Department of Computer Science and
8  * Technology) under DARPA contract HR0011-18-C-0016 ("ECATS"), as part of the
9  * DARPA SSITH research programme.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Hardware overview.
35  *
36  * An incoming transaction from a peripheral device has an address, size,
37  * attributes and StreamID.
38  *
39  * In case of PCI-based devices, StreamID is a PCI rid.
40  *
41  * The StreamID is used to select a Stream Table Entry (STE) in a Stream table,
42  * which contains per-device configuration.
43  *
44  * Stream table is a linear or 2-level walk table (this driver supports both).
45  * Note that a linear table could occupy 1GB or more of memory depending on
46  * sid_bits value.
47  *
48  * STE is used to locate a Context Descriptor, which is a struct in memory
49  * that describes stages of translation, translation table type, pointer to
50  * level 0 of page tables, ASID, etc.
51  *
52  * Hardware supports two stages of translation: Stage1 (S1) and Stage2 (S2):
53  *  o S1 is used for the host machine traffic translation
54  *  o S2 is for a hypervisor
55  *
56  * This driver enables S1 stage with standard AArch64 page tables.
57  *
58  * Note that SMMU does not share TLB with a main CPU.
59  * Command queue is used by this driver to Invalidate SMMU TLB, STE cache.
60  *
61  * An arm64 SoC could have more than one SMMU instance.
62  * ACPI IORT table describes which SMMU unit is assigned for a particular
63  * peripheral device.
64  *
65  * Queues.
66  *
67  * Register interface and Memory-based circular buffer queues are used
68  * to interface SMMU.
69  *
70  * These are a Command queue for commands to send to the SMMU and an Event
71  * queue for event/fault reports from the SMMU. Optionally PRI queue is
72  * designed for PCIe page requests reception.
73  *
74  * Note that not every hardware supports PRI services. For instance they were
75  * not found in Neoverse N1 SDP machine.
76  * (This drivers does not implement PRI queue.)
77  *
78  * All SMMU queues are arranged as circular buffers in memory. They are used
79  * in a producer-consumer fashion so that an output queue contains data
80  * produced by the SMMU and consumed by software.
81  * An input queue contains data produced by software, consumed by the SMMU.
82  *
83  * Interrupts.
84  *
85  * Interrupts are not required by this driver for normal operation.
86  * The standard wired interrupt is only triggered when an event comes from
87  * the SMMU, which is only in a case of errors (e.g. translation fault).
88  */
89 
90 #include "opt_platform.h"
91 #include "opt_acpi.h"
92 
93 #include <sys/param.h>
94 #include <sys/bitstring.h>
95 #include <sys/bus.h>
96 #include <sys/kernel.h>
97 #include <sys/malloc.h>
98 #include <sys/mutex.h>
99 #include <sys/rman.h>
100 #include <sys/lock.h>
101 #include <sys/sysctl.h>
102 #include <sys/tree.h>
103 #include <sys/taskqueue.h>
104 #include <vm/vm.h>
105 #include <vm/vm_page.h>
106 #ifdef DEV_ACPI
107 #include <contrib/dev/acpica/include/acpi.h>
108 #include <dev/acpica/acpivar.h>
109 #endif
110 #include <dev/pci/pcireg.h>
111 #include <dev/pci/pcivar.h>
112 #include <dev/iommu/iommu.h>
113 #include <arm64/iommu/iommu_pmap.h>
114 
115 #include <machine/bus.h>
116 
117 #ifdef FDT
118 #include <dev/fdt/fdt_common.h>
119 #include <dev/ofw/ofw_bus.h>
120 #include <dev/ofw/ofw_bus_subr.h>
121 #endif
122 
123 #include "iommu.h"
124 #include "iommu_if.h"
125 
126 #include "smmureg.h"
127 #include "smmuvar.h"
128 
129 #define	STRTAB_L1_SZ_SHIFT	20
130 #define	STRTAB_SPLIT		8
131 
132 #define	STRTAB_L1_DESC_L2PTR_M	(0x3fffffffffff << 6)
133 #define	STRTAB_L1_DESC_DWORDS	1
134 
135 #define	STRTAB_STE_DWORDS	8
136 
137 #define	CMDQ_ENTRY_DWORDS	2
138 #define	EVTQ_ENTRY_DWORDS	4
139 #define	PRIQ_ENTRY_DWORDS	2
140 
141 #define	CD_DWORDS		8
142 
143 #define	Q_WRP(q, p)		((p) & (1 << (q)->size_log2))
144 #define	Q_IDX(q, p)		((p) & ((1 << (q)->size_log2) - 1))
145 #define	Q_OVF(p)		((p) & (1 << 31)) /* Event queue overflowed */
146 
147 #define	SMMU_Q_ALIGN		(64 * 1024)
148 
149 #define		MAXADDR_48BIT	0xFFFFFFFFFFFFUL
150 #define		MAXADDR_52BIT	0xFFFFFFFFFFFFFUL
151 
152 static struct resource_spec smmu_spec[] = {
153 	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
154 	{ SYS_RES_IRQ, 0, RF_ACTIVE },
155 	{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_OPTIONAL },
156 	{ SYS_RES_IRQ, 2, RF_ACTIVE },
157 	{ SYS_RES_IRQ, 3, RF_ACTIVE },
158 	RESOURCE_SPEC_END
159 };
160 
161 MALLOC_DEFINE(M_SMMU, "SMMU", SMMU_DEVSTR);
162 
163 #define	dprintf(fmt, ...)
164 
165 struct smmu_event {
166 	int ident;
167 	char *str;
168 	char *msg;
169 };
170 
171 static struct smmu_event events[] = {
172 	{ 0x01, "F_UUT",
173 		"Unsupported Upstream Transaction."},
174 	{ 0x02, "C_BAD_STREAMID",
175 		"Transaction StreamID out of range."},
176 	{ 0x03, "F_STE_FETCH",
177 		"Fetch of STE caused external abort."},
178 	{ 0x04, "C_BAD_STE",
179 		"Used STE invalid."},
180 	{ 0x05, "F_BAD_ATS_TREQ",
181 		"Address Translation Request disallowed for a StreamID "
182 		"and a PCIe ATS Translation Request received."},
183 	{ 0x06, "F_STREAM_DISABLED",
184 		"The STE of a transaction marks non-substream transactions "
185 		"disabled."},
186 	{ 0x07, "F_TRANSL_FORBIDDEN",
187 		"An incoming PCIe transaction is marked Translated but "
188 		"SMMU bypass is disallowed for this StreamID."},
189 	{ 0x08, "C_BAD_SUBSTREAMID",
190 		"Incoming SubstreamID present, but configuration is invalid."},
191 	{ 0x09, "F_CD_FETCH",
192 		"Fetch of CD caused external abort."},
193 	{ 0x0a, "C_BAD_CD",
194 		"Fetched CD invalid."},
195 	{ 0x0b, "F_WALK_EABT",
196 		"An external abort occurred fetching (or updating) "
197 		"a translation table descriptor."},
198 	{ 0x10, "F_TRANSLATION",
199 		"Translation fault."},
200 	{ 0x11, "F_ADDR_SIZE",
201 		"Address Size fault."},
202 	{ 0x12, "F_ACCESS",
203 		"Access flag fault due to AF == 0 in a page or block TTD."},
204 	{ 0x13, "F_PERMISSION",
205 		"Permission fault occurred on page access."},
206 	{ 0x20, "F_TLB_CONFLICT",
207 		"A TLB conflict occurred because of the transaction."},
208 	{ 0x21, "F_CFG_CONFLICT",
209 		"A configuration cache conflict occurred due to "
210 		"the transaction."},
211 	{ 0x24, "E_PAGE_REQUEST",
212 		"Speculative page request hint."},
213 	{ 0x25, "F_VMS_FETCH",
214 		"Fetch of VMS caused external abort."},
215 	{ 0, NULL, NULL },
216 };
217 
218 static int
219 smmu_q_has_space(struct smmu_queue *q)
220 {
221 
222 	/*
223 	 * See 6.3.27 SMMU_CMDQ_PROD
224 	 *
225 	 * There is space in the queue for additional commands if:
226 	 *  SMMU_CMDQ_CONS.RD != SMMU_CMDQ_PROD.WR ||
227 	 *  SMMU_CMDQ_CONS.RD_WRAP == SMMU_CMDQ_PROD.WR_WRAP
228 	 */
229 
230 	if (Q_IDX(q, q->lc.cons) != Q_IDX(q, q->lc.prod) ||
231 	    Q_WRP(q, q->lc.cons) == Q_WRP(q, q->lc.prod))
232 		return (1);
233 
234 	return (0);
235 }
236 
237 static int
238 smmu_q_empty(struct smmu_queue *q)
239 {
240 
241 	if (Q_IDX(q, q->lc.cons) == Q_IDX(q, q->lc.prod) &&
242 	    Q_WRP(q, q->lc.cons) == Q_WRP(q, q->lc.prod))
243 		return (1);
244 
245 	return (0);
246 }
247 
248 static int __unused
249 smmu_q_consumed(struct smmu_queue *q, uint32_t prod)
250 {
251 
252 	if ((Q_WRP(q, q->lc.cons) == Q_WRP(q, prod)) &&
253 	    (Q_IDX(q, q->lc.cons) >= Q_IDX(q, prod)))
254 		return (1);
255 
256 	if ((Q_WRP(q, q->lc.cons) != Q_WRP(q, prod)) &&
257 	    (Q_IDX(q, q->lc.cons) <= Q_IDX(q, prod)))
258 		return (1);
259 
260 	return (0);
261 }
262 
263 static uint32_t
264 smmu_q_inc_cons(struct smmu_queue *q)
265 {
266 	uint32_t cons;
267 	uint32_t val;
268 
269 	cons = (Q_WRP(q, q->lc.cons) | Q_IDX(q, q->lc.cons)) + 1;
270 	val = (Q_OVF(q->lc.cons) | Q_WRP(q, cons) | Q_IDX(q, cons));
271 
272 	return (val);
273 }
274 
275 static uint32_t
276 smmu_q_inc_prod(struct smmu_queue *q)
277 {
278 	uint32_t prod;
279 	uint32_t val;
280 
281 	prod = (Q_WRP(q, q->lc.prod) | Q_IDX(q, q->lc.prod)) + 1;
282 	val = (Q_OVF(q->lc.prod) | Q_WRP(q, prod) | Q_IDX(q, prod));
283 
284 	return (val);
285 }
286 
287 static int
288 smmu_write_ack(struct smmu_softc *sc, uint32_t reg,
289     uint32_t reg_ack, uint32_t val)
290 {
291 	uint32_t v;
292 	int timeout;
293 
294 	timeout = 100000;
295 
296 	bus_write_4(sc->res[0], reg, val);
297 
298 	do {
299 		v = bus_read_4(sc->res[0], reg_ack);
300 		if (v == val)
301 			break;
302 	} while (timeout--);
303 
304 	if (timeout <= 0) {
305 		device_printf(sc->dev, "Failed to write reg.\n");
306 		return (-1);
307 	}
308 
309 	return (0);
310 }
311 
312 static int
313 smmu_init_queue(struct smmu_softc *sc, struct smmu_queue *q,
314     uint32_t prod_off, uint32_t cons_off, uint32_t dwords)
315 {
316 	int sz;
317 
318 	sz = (1 << q->size_log2) * dwords * 8;
319 
320 	/* Set up the command circular buffer */
321 	q->vaddr = contigmalloc(sz, M_SMMU,
322 	    M_WAITOK | M_ZERO, 0, (1ul << 48) - 1, SMMU_Q_ALIGN, 0);
323 	if (q->vaddr == NULL) {
324 		device_printf(sc->dev, "failed to allocate %d bytes\n", sz);
325 		return (-1);
326 	}
327 
328 	q->prod_off = prod_off;
329 	q->cons_off = cons_off;
330 	q->paddr = vtophys(q->vaddr);
331 
332 	q->base = CMDQ_BASE_RA | EVENTQ_BASE_WA | PRIQ_BASE_WA;
333 	q->base |= q->paddr & Q_BASE_ADDR_M;
334 	q->base |= q->size_log2 << Q_LOG2SIZE_S;
335 
336 	return (0);
337 }
338 
339 static int
340 smmu_init_queues(struct smmu_softc *sc)
341 {
342 	int err;
343 
344 	/* Command queue. */
345 	err = smmu_init_queue(sc, &sc->cmdq,
346 	    SMMU_CMDQ_PROD, SMMU_CMDQ_CONS, CMDQ_ENTRY_DWORDS);
347 	if (err)
348 		return (ENXIO);
349 
350 	/* Event queue. */
351 	err = smmu_init_queue(sc, &sc->evtq,
352 	    SMMU_EVENTQ_PROD, SMMU_EVENTQ_CONS, EVTQ_ENTRY_DWORDS);
353 	if (err)
354 		return (ENXIO);
355 
356 	if (!(sc->features & SMMU_FEATURE_PRI))
357 		return (0);
358 
359 	/* PRI queue. */
360 	err = smmu_init_queue(sc, &sc->priq,
361 	    SMMU_PRIQ_PROD, SMMU_PRIQ_CONS, PRIQ_ENTRY_DWORDS);
362 	if (err)
363 		return (ENXIO);
364 
365 	return (0);
366 }
367 
368 /*
369  * Dump 2LVL or linear STE.
370  */
371 static void
372 smmu_dump_ste(struct smmu_softc *sc, int sid)
373 {
374 	struct smmu_strtab *strtab;
375 	struct l1_desc *l1_desc;
376 	uint64_t *ste, *l1;
377 	int i;
378 
379 	strtab = &sc->strtab;
380 
381 	if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE) {
382 		i = sid >> STRTAB_SPLIT;
383 		l1 = (void *)((uint64_t)strtab->vaddr +
384 		    STRTAB_L1_DESC_DWORDS * 8 * i);
385 		device_printf(sc->dev, "L1 ste == %lx\n", l1[0]);
386 
387 		l1_desc = &strtab->l1[i];
388 		ste = l1_desc->va;
389 		if (ste == NULL) /* L2 is not initialized */
390 			return;
391 	} else {
392 		ste = (void *)((uint64_t)strtab->vaddr +
393 		    sid * (STRTAB_STE_DWORDS << 3));
394 	}
395 
396 	/* Dump L2 or linear STE. */
397 	for (i = 0; i < STRTAB_STE_DWORDS; i++)
398 		device_printf(sc->dev, "ste[%d] == %lx\n", i, ste[i]);
399 }
400 
401 static void __unused
402 smmu_dump_cd(struct smmu_softc *sc, struct smmu_cd *cd)
403 {
404 	uint64_t *vaddr;
405 	int i;
406 
407 	device_printf(sc->dev, "%s\n", __func__);
408 
409 	vaddr = cd->vaddr;
410 	for (i = 0; i < CD_DWORDS; i++)
411 		device_printf(sc->dev, "cd[%d] == %lx\n", i, vaddr[i]);
412 }
413 
414 static void
415 smmu_evtq_dequeue(struct smmu_softc *sc, uint32_t *evt)
416 {
417 	struct smmu_queue *evtq;
418 	void *entry_addr;
419 
420 	evtq = &sc->evtq;
421 
422 	evtq->lc.val = bus_read_8(sc->res[0], evtq->prod_off);
423 	entry_addr = (void *)((uint64_t)evtq->vaddr +
424 	    evtq->lc.cons * EVTQ_ENTRY_DWORDS * 8);
425 	memcpy(evt, entry_addr, EVTQ_ENTRY_DWORDS * 8);
426 	evtq->lc.cons = smmu_q_inc_cons(evtq);
427 	bus_write_4(sc->res[0], evtq->cons_off, evtq->lc.cons);
428 }
429 
430 static void
431 smmu_print_event(struct smmu_softc *sc, uint32_t *evt)
432 {
433 	struct smmu_event *ev;
434 	uintptr_t input_addr;
435 	uint8_t event_id;
436 	device_t dev;
437 	int sid;
438 	int i;
439 
440 	dev = sc->dev;
441 
442 	ev = NULL;
443 	event_id = evt[0] & 0xff;
444 	for (i = 0; events[i].ident != 0; i++) {
445 		if (events[i].ident == event_id) {
446 			ev = &events[i];
447 			break;
448 		}
449 	}
450 
451 	sid = evt[1];
452 	input_addr = evt[5];
453 	input_addr <<= 32;
454 	input_addr |= evt[4];
455 
456 	if (smmu_quirks_check(dev, sid, event_id, input_addr)) {
457 		/* The event is known. Don't print anything. */
458 		return;
459 	}
460 
461 	if (ev) {
462 		device_printf(sc->dev,
463 		    "Event %s (%s) received.\n", ev->str, ev->msg);
464 	} else
465 		device_printf(sc->dev, "Event 0x%x received\n", event_id);
466 
467 	device_printf(sc->dev, "SID %x, Input Address: %jx\n",
468 	    sid, input_addr);
469 
470 	for (i = 0; i < 8; i++)
471 		device_printf(sc->dev, "evt[%d] %x\n", i, evt[i]);
472 
473 	smmu_dump_ste(sc, sid);
474 }
475 
476 static void
477 make_cmd(struct smmu_softc *sc, uint64_t *cmd,
478     struct smmu_cmdq_entry *entry)
479 {
480 
481 	memset(cmd, 0, CMDQ_ENTRY_DWORDS * 8);
482 	cmd[0] = entry->opcode << CMD_QUEUE_OPCODE_S;
483 
484 	switch (entry->opcode) {
485 	case CMD_TLBI_NH_VA:
486 		cmd[0] |= (uint64_t)entry->tlbi.asid << TLBI_0_ASID_S;
487 		cmd[1] = entry->tlbi.addr & TLBI_1_ADDR_M;
488 		if (entry->tlbi.leaf) {
489 			/*
490 			 * Leaf flag means that only cached entries
491 			 * for the last level of translation table walk
492 			 * are required to be invalidated.
493 			 */
494 			cmd[1] |= TLBI_1_LEAF;
495 		}
496 		break;
497 	case CMD_TLBI_NH_ASID:
498 		cmd[0] |= (uint64_t)entry->tlbi.asid << TLBI_0_ASID_S;
499 		break;
500 	case CMD_TLBI_NSNH_ALL:
501 	case CMD_TLBI_NH_ALL:
502 	case CMD_TLBI_EL2_ALL:
503 		break;
504 	case CMD_CFGI_CD:
505 		cmd[0] |= ((uint64_t)entry->cfgi.ssid << CFGI_0_SSID_S);
506 		/* FALLTROUGH */
507 	case CMD_CFGI_STE:
508 		cmd[0] |= ((uint64_t)entry->cfgi.sid << CFGI_0_STE_SID_S);
509 		cmd[1] |= ((uint64_t)entry->cfgi.leaf << CFGI_1_LEAF_S);
510 		break;
511 	case CMD_CFGI_STE_RANGE:
512 		cmd[1] = (31 << CFGI_1_STE_RANGE_S);
513 		break;
514 	case CMD_SYNC:
515 		cmd[0] |= SYNC_0_MSH_IS | SYNC_0_MSIATTR_OIWB;
516 		if (entry->sync.msiaddr) {
517 			cmd[0] |= SYNC_0_CS_SIG_IRQ;
518 			cmd[1] |= (entry->sync.msiaddr & SYNC_1_MSIADDRESS_M);
519 		} else
520 			cmd[0] |= SYNC_0_CS_SIG_SEV;
521 		break;
522 	case CMD_PREFETCH_CONFIG:
523 		cmd[0] |= ((uint64_t)entry->prefetch.sid << PREFETCH_0_SID_S);
524 		break;
525 	};
526 }
527 
528 static void
529 smmu_cmdq_enqueue_cmd(struct smmu_softc *sc, struct smmu_cmdq_entry *entry)
530 {
531 	uint64_t cmd[CMDQ_ENTRY_DWORDS];
532 	struct smmu_queue *cmdq;
533 	void *entry_addr;
534 
535 	cmdq = &sc->cmdq;
536 
537 	make_cmd(sc, cmd, entry);
538 
539 	SMMU_LOCK(sc);
540 
541 	/* Ensure that a space is available. */
542 	do {
543 		cmdq->lc.cons = bus_read_4(sc->res[0], cmdq->cons_off);
544 	} while (smmu_q_has_space(cmdq) == 0);
545 
546 	/* Write the command to the current prod entry. */
547 	entry_addr = (void *)((uint64_t)cmdq->vaddr +
548 	    Q_IDX(cmdq, cmdq->lc.prod) * CMDQ_ENTRY_DWORDS * 8);
549 	memcpy(entry_addr, cmd, CMDQ_ENTRY_DWORDS * 8);
550 
551 	/* Increment prod index. */
552 	cmdq->lc.prod = smmu_q_inc_prod(cmdq);
553 	bus_write_4(sc->res[0], cmdq->prod_off, cmdq->lc.prod);
554 
555 	SMMU_UNLOCK(sc);
556 }
557 
558 static void __unused
559 smmu_poll_until_consumed(struct smmu_softc *sc, struct smmu_queue *q)
560 {
561 
562 	while (1) {
563 		q->lc.val = bus_read_8(sc->res[0], q->prod_off);
564 		if (smmu_q_empty(q))
565 			break;
566 		cpu_spinwait();
567 	}
568 }
569 
570 static int
571 smmu_sync(struct smmu_softc *sc)
572 {
573 	struct smmu_cmdq_entry cmd;
574 	struct smmu_queue *q;
575 	uint32_t *base;
576 	int timeout;
577 	int prod;
578 
579 	q = &sc->cmdq;
580 	prod = q->lc.prod;
581 
582 	/* Enqueue sync command. */
583 	cmd.opcode = CMD_SYNC;
584 	cmd.sync.msiaddr = q->paddr + Q_IDX(q, prod) * CMDQ_ENTRY_DWORDS * 8;
585 	smmu_cmdq_enqueue_cmd(sc, &cmd);
586 
587 	/* Wait for the sync completion. */
588 	base = (void *)((uint64_t)q->vaddr +
589 	    Q_IDX(q, prod) * CMDQ_ENTRY_DWORDS * 8);
590 
591 	/*
592 	 * It takes around 200 loops (6 instructions each)
593 	 * on Neoverse N1 to complete the sync.
594 	 */
595 	timeout = 10000;
596 
597 	do {
598 		if (*base == 0) {
599 			/* MSI write completed. */
600 			break;
601 		}
602 		cpu_spinwait();
603 	} while (timeout--);
604 
605 	if (timeout < 0)
606 		device_printf(sc->dev, "Failed to sync\n");
607 
608 	return (0);
609 }
610 
611 static int
612 smmu_sync_cd(struct smmu_softc *sc, int sid, int ssid, bool leaf)
613 {
614 	struct smmu_cmdq_entry cmd;
615 
616 	cmd.opcode = CMD_CFGI_CD;
617 	cmd.cfgi.sid = sid;
618 	cmd.cfgi.ssid = ssid;
619 	cmd.cfgi.leaf = leaf;
620 	smmu_cmdq_enqueue_cmd(sc, &cmd);
621 
622 	return (0);
623 }
624 
625 static void
626 smmu_invalidate_all_sid(struct smmu_softc *sc)
627 {
628 	struct smmu_cmdq_entry cmd;
629 
630 	/* Invalidate cached config */
631 	cmd.opcode = CMD_CFGI_STE_RANGE;
632 	smmu_cmdq_enqueue_cmd(sc, &cmd);
633 	smmu_sync(sc);
634 }
635 
636 static void
637 smmu_tlbi_all(struct smmu_softc *sc)
638 {
639 	struct smmu_cmdq_entry cmd;
640 
641 	/* Invalidate entire TLB */
642 	cmd.opcode = CMD_TLBI_NSNH_ALL;
643 	smmu_cmdq_enqueue_cmd(sc, &cmd);
644 	smmu_sync(sc);
645 }
646 
647 static void
648 smmu_tlbi_asid(struct smmu_softc *sc, uint16_t asid)
649 {
650 	struct smmu_cmdq_entry cmd;
651 
652 	/* Invalidate TLB for an ASID. */
653 	cmd.opcode = CMD_TLBI_NH_ASID;
654 	cmd.tlbi.asid = asid;
655 	smmu_cmdq_enqueue_cmd(sc, &cmd);
656 	smmu_sync(sc);
657 }
658 
659 static void
660 smmu_tlbi_va(struct smmu_softc *sc, vm_offset_t va, uint16_t asid)
661 {
662 	struct smmu_cmdq_entry cmd;
663 
664 	/* Invalidate specific range */
665 	cmd.opcode = CMD_TLBI_NH_VA;
666 	cmd.tlbi.asid = asid;
667 	cmd.tlbi.vmid = 0;
668 	cmd.tlbi.leaf = true; /* We change only L3. */
669 	cmd.tlbi.addr = va;
670 	smmu_cmdq_enqueue_cmd(sc, &cmd);
671 }
672 
673 static void
674 smmu_invalidate_sid(struct smmu_softc *sc, uint32_t sid)
675 {
676 	struct smmu_cmdq_entry cmd;
677 
678 	/* Invalidate cached config */
679 	cmd.opcode = CMD_CFGI_STE;
680 	cmd.cfgi.sid = sid;
681 	smmu_cmdq_enqueue_cmd(sc, &cmd);
682 	smmu_sync(sc);
683 }
684 
685 static void
686 smmu_prefetch_sid(struct smmu_softc *sc, uint32_t sid)
687 {
688 	struct smmu_cmdq_entry cmd;
689 
690 	cmd.opcode = CMD_PREFETCH_CONFIG;
691 	cmd.prefetch.sid = sid;
692 	smmu_cmdq_enqueue_cmd(sc, &cmd);
693 	smmu_sync(sc);
694 }
695 
696 /*
697  * Init STE in bypass mode. Traffic is not translated for the sid.
698  */
699 static void
700 smmu_init_ste_bypass(struct smmu_softc *sc, uint32_t sid, uint64_t *ste)
701 {
702 	uint64_t val;
703 
704 	val = STE0_VALID | STE0_CONFIG_BYPASS;
705 
706 	ste[1] = STE1_SHCFG_INCOMING | STE1_EATS_FULLATS;
707 	ste[2] = 0;
708 	ste[3] = 0;
709 	ste[4] = 0;
710 	ste[5] = 0;
711 	ste[6] = 0;
712 	ste[7] = 0;
713 
714 	smmu_invalidate_sid(sc, sid);
715 	ste[0] = val;
716 	dsb(sy);
717 	smmu_invalidate_sid(sc, sid);
718 
719 	smmu_prefetch_sid(sc, sid);
720 }
721 
722 /*
723  * Enable Stage1 (S1) translation for the sid.
724  */
725 static int
726 smmu_init_ste_s1(struct smmu_softc *sc, struct smmu_cd *cd,
727     uint32_t sid, uint64_t *ste)
728 {
729 	uint64_t val;
730 
731 	val = STE0_VALID;
732 
733 	/* S1 */
734 	ste[1] = STE1_EATS_FULLATS	|
735 		 STE1_S1CSH_IS		|
736 		 STE1_S1CIR_WBRA	|
737 		 STE1_S1COR_WBRA	|
738 		 STE1_STRW_NS_EL1;
739 	ste[2] = 0;
740 	ste[3] = 0;
741 	ste[4] = 0;
742 	ste[5] = 0;
743 	ste[6] = 0;
744 	ste[7] = 0;
745 
746 	if (sc->features & SMMU_FEATURE_STALL &&
747 	    ((sc->features & SMMU_FEATURE_STALL_FORCE) == 0))
748 		ste[1] |= STE1_S1STALLD;
749 
750 	/* Configure STE */
751 	val |= (cd->paddr & STE0_S1CONTEXTPTR_M);
752 	val |= STE0_CONFIG_S1_TRANS;
753 
754 	smmu_invalidate_sid(sc, sid);
755 
756 	/* The STE[0] has to be written in a single blast, last of all. */
757 	ste[0] = val;
758 	dsb(sy);
759 
760 	smmu_invalidate_sid(sc, sid);
761 	smmu_sync_cd(sc, sid, 0, true);
762 	smmu_invalidate_sid(sc, sid);
763 
764 	/* The sid will be used soon most likely. */
765 	smmu_prefetch_sid(sc, sid);
766 
767 	return (0);
768 }
769 
770 static uint64_t *
771 smmu_get_ste_addr(struct smmu_softc *sc, int sid)
772 {
773 	struct smmu_strtab *strtab;
774 	struct l1_desc *l1_desc;
775 	uint64_t *addr;
776 
777 	strtab = &sc->strtab;
778 
779 	if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE) {
780 		l1_desc = &strtab->l1[sid >> STRTAB_SPLIT];
781 		addr = l1_desc->va;
782 		addr += (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
783 	} else {
784 		addr = (void *)((uint64_t)strtab->vaddr +
785 		    STRTAB_STE_DWORDS * 8 * sid);
786 	};
787 
788 	return (addr);
789 }
790 
791 static int
792 smmu_init_ste(struct smmu_softc *sc, struct smmu_cd *cd, int sid, bool bypass)
793 {
794 	uint64_t *addr;
795 
796 	addr = smmu_get_ste_addr(sc, sid);
797 
798 	if (bypass)
799 		smmu_init_ste_bypass(sc, sid, addr);
800 	else
801 		smmu_init_ste_s1(sc, cd, sid, addr);
802 
803 	smmu_sync(sc);
804 
805 	return (0);
806 }
807 
808 static void
809 smmu_deinit_ste(struct smmu_softc *sc, int sid)
810 {
811 	uint64_t *ste;
812 
813 	ste = smmu_get_ste_addr(sc, sid);
814 	ste[0] = 0;
815 
816 	smmu_invalidate_sid(sc, sid);
817 	smmu_sync_cd(sc, sid, 0, true);
818 	smmu_invalidate_sid(sc, sid);
819 
820 	smmu_sync(sc);
821 }
822 
823 static int
824 smmu_init_cd(struct smmu_softc *sc, struct smmu_domain *domain)
825 {
826 	vm_paddr_t paddr;
827 	uint64_t *ptr;
828 	uint64_t val;
829 	vm_size_t size;
830 	struct smmu_cd *cd;
831 	struct smmu_pmap *p;
832 
833 	size = 1 * (CD_DWORDS << 3);
834 
835 	p = &domain->p;
836 	cd = domain->cd = malloc(sizeof(struct smmu_cd),
837 	    M_SMMU, M_WAITOK | M_ZERO);
838 
839 	cd->vaddr = contigmalloc(size, M_SMMU,
840 	    M_WAITOK | M_ZERO,	/* flags */
841 	    0,			/* low */
842 	    (1ul << 40) - 1,	/* high */
843 	    size,		/* alignment */
844 	    0);			/* boundary */
845 	if (cd->vaddr == NULL) {
846 		device_printf(sc->dev, "Failed to allocate CD\n");
847 		return (ENXIO);
848 	}
849 
850 	cd->paddr = vtophys(cd->vaddr);
851 
852 	ptr = cd->vaddr;
853 
854 	val = CD0_VALID;
855 	val |= CD0_AA64;
856 	val |= CD0_R;
857 	val |= CD0_A;
858 	val |= CD0_ASET;
859 	val |= (uint64_t)domain->asid << CD0_ASID_S;
860 	val |= CD0_TG0_4KB;
861 	val |= CD0_EPD1; /* Disable TT1 */
862 	val |= ((64 - sc->ias) << CD0_T0SZ_S);
863 	val |= CD0_IPS_48BITS;
864 
865 	paddr = p->sp_l0_paddr & CD1_TTB0_M;
866 	KASSERT(paddr == p->sp_l0_paddr, ("bad allocation 1"));
867 
868 	ptr[1] = paddr;
869 	ptr[2] = 0;
870 	ptr[3] = MAIR_ATTR(MAIR_DEVICE_nGnRnE, VM_MEMATTR_DEVICE)	|
871 		 MAIR_ATTR(MAIR_NORMAL_NC, VM_MEMATTR_UNCACHEABLE)	|
872 		 MAIR_ATTR(MAIR_NORMAL_WB, VM_MEMATTR_WRITE_BACK)	|
873 		 MAIR_ATTR(MAIR_NORMAL_WT, VM_MEMATTR_WRITE_THROUGH);
874 
875 	/* Install the CD. */
876 	ptr[0] = val;
877 
878 	return (0);
879 }
880 
881 static int
882 smmu_init_strtab_linear(struct smmu_softc *sc)
883 {
884 	struct smmu_strtab *strtab;
885 	vm_paddr_t base;
886 	uint32_t size;
887 	uint64_t reg;
888 
889 	strtab = &sc->strtab;
890 	strtab->num_l1_entries = (1 << sc->sid_bits);
891 
892 	size = strtab->num_l1_entries * (STRTAB_STE_DWORDS << 3);
893 
894 	if (bootverbose)
895 		device_printf(sc->dev,
896 		    "%s: linear strtab size %d, num_l1_entries %d\n",
897 		    __func__, size, strtab->num_l1_entries);
898 
899 	strtab->vaddr = contigmalloc(size, M_SMMU,
900 	    M_WAITOK | M_ZERO,	/* flags */
901 	    0,			/* low */
902 	    (1ul << 48) - 1,	/* high */
903 	    size,		/* alignment */
904 	    0);			/* boundary */
905 	if (strtab->vaddr == NULL) {
906 		device_printf(sc->dev, "failed to allocate strtab\n");
907 		return (ENXIO);
908 	}
909 
910 	reg = STRTAB_BASE_CFG_FMT_LINEAR;
911 	reg |= sc->sid_bits << STRTAB_BASE_CFG_LOG2SIZE_S;
912 	strtab->base_cfg = (uint32_t)reg;
913 
914 	base = vtophys(strtab->vaddr);
915 
916 	reg = base & STRTAB_BASE_ADDR_M;
917 	KASSERT(reg == base, ("bad allocation 2"));
918 	reg |= STRTAB_BASE_RA;
919 	strtab->base = reg;
920 
921 	return (0);
922 }
923 
924 static int
925 smmu_init_strtab_2lvl(struct smmu_softc *sc)
926 {
927 	struct smmu_strtab *strtab;
928 	vm_paddr_t base;
929 	uint64_t reg_base;
930 	uint32_t l1size;
931 	uint32_t size;
932 	uint32_t reg;
933 	int sz;
934 
935 	strtab = &sc->strtab;
936 
937 	size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
938 	size = min(size, sc->sid_bits - STRTAB_SPLIT);
939 	strtab->num_l1_entries = (1 << size);
940 	size += STRTAB_SPLIT;
941 
942 	l1size = strtab->num_l1_entries * (STRTAB_L1_DESC_DWORDS << 3);
943 
944 	if (bootverbose)
945 		device_printf(sc->dev,
946 		    "%s: size %d, l1 entries %d, l1size %d\n",
947 		    __func__, size, strtab->num_l1_entries, l1size);
948 
949 	strtab->vaddr = contigmalloc(l1size, M_SMMU,
950 	    M_WAITOK | M_ZERO,	/* flags */
951 	    0,			/* low */
952 	    (1ul << 48) - 1,	/* high */
953 	    l1size,		/* alignment */
954 	    0);			/* boundary */
955 	if (strtab->vaddr == NULL) {
956 		device_printf(sc->dev, "Failed to allocate 2lvl strtab.\n");
957 		return (ENOMEM);
958 	}
959 
960 	sz = strtab->num_l1_entries * sizeof(struct l1_desc);
961 
962 	strtab->l1 = malloc(sz, M_SMMU, M_WAITOK | M_ZERO);
963 
964 	reg = STRTAB_BASE_CFG_FMT_2LVL;
965 	reg |= size << STRTAB_BASE_CFG_LOG2SIZE_S;
966 	reg |= STRTAB_SPLIT << STRTAB_BASE_CFG_SPLIT_S;
967 	strtab->base_cfg = (uint32_t)reg;
968 
969 	base = vtophys(strtab->vaddr);
970 
971 	reg_base = base & STRTAB_BASE_ADDR_M;
972 	KASSERT(reg_base == base, ("bad allocation 3"));
973 	reg_base |= STRTAB_BASE_RA;
974 	strtab->base = reg_base;
975 
976 	return (0);
977 }
978 
979 static int
980 smmu_init_strtab(struct smmu_softc *sc)
981 {
982 	int error;
983 
984 	if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE)
985 		error = smmu_init_strtab_2lvl(sc);
986 	else
987 		error = smmu_init_strtab_linear(sc);
988 
989 	return (error);
990 }
991 
992 static int
993 smmu_init_l1_entry(struct smmu_softc *sc, int sid)
994 {
995 	struct smmu_strtab *strtab;
996 	struct l1_desc *l1_desc;
997 	uint64_t *addr;
998 	uint64_t val;
999 	size_t size;
1000 	int i;
1001 
1002 	strtab = &sc->strtab;
1003 	l1_desc = &strtab->l1[sid >> STRTAB_SPLIT];
1004 	if (l1_desc->va) {
1005 		/* Already allocated. */
1006 		return (0);
1007 	}
1008 
1009 	size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1010 
1011 	l1_desc->span = STRTAB_SPLIT + 1;
1012 	l1_desc->va = contigmalloc(size, M_SMMU,
1013 	    M_WAITOK | M_ZERO,	/* flags */
1014 	    0,			/* low */
1015 	    (1ul << 48) - 1,	/* high */
1016 	    size,		/* alignment */
1017 	    0);			/* boundary */
1018 	if (l1_desc->va == NULL) {
1019 		device_printf(sc->dev, "failed to allocate l2 entry\n");
1020 		return (ENXIO);
1021 	}
1022 
1023 	l1_desc->pa = vtophys(l1_desc->va);
1024 
1025 	i = sid >> STRTAB_SPLIT;
1026 	addr = (void *)((uint64_t)strtab->vaddr +
1027 	    STRTAB_L1_DESC_DWORDS * 8 * i);
1028 
1029 	/* Install the L1 entry. */
1030 	val = l1_desc->pa & STRTAB_L1_DESC_L2PTR_M;
1031 	KASSERT(val == l1_desc->pa, ("bad allocation 4"));
1032 	val |= l1_desc->span;
1033 	*addr = val;
1034 
1035 	return (0);
1036 }
1037 
1038 static void __unused
1039 smmu_deinit_l1_entry(struct smmu_softc *sc, int sid)
1040 {
1041 	struct smmu_strtab *strtab;
1042 	struct l1_desc *l1_desc;
1043 	uint64_t *addr;
1044 	int i;
1045 
1046 	strtab = &sc->strtab;
1047 
1048 	i = sid >> STRTAB_SPLIT;
1049 	addr = (void *)((uint64_t)strtab->vaddr +
1050 	    STRTAB_L1_DESC_DWORDS * 8 * i);
1051 	*addr = 0;
1052 
1053 	l1_desc = &strtab->l1[sid >> STRTAB_SPLIT];
1054 	free(l1_desc->va, M_SMMU);
1055 }
1056 
1057 static int
1058 smmu_disable(struct smmu_softc *sc)
1059 {
1060 	uint32_t reg;
1061 	int error;
1062 
1063 	/* Disable SMMU */
1064 	reg = bus_read_4(sc->res[0], SMMU_CR0);
1065 	reg &= ~CR0_SMMUEN;
1066 	error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1067 	if (error)
1068 		device_printf(sc->dev, "Could not disable SMMU.\n");
1069 
1070 	return (0);
1071 }
1072 
1073 static int
1074 smmu_event_intr(void *arg)
1075 {
1076 	uint32_t evt[EVTQ_ENTRY_DWORDS * 2];
1077 	struct smmu_softc *sc;
1078 
1079 	sc = arg;
1080 
1081 	do {
1082 		smmu_evtq_dequeue(sc, evt);
1083 		smmu_print_event(sc, evt);
1084 	} while (!smmu_q_empty(&sc->evtq));
1085 
1086 	return (FILTER_HANDLED);
1087 }
1088 
1089 static int __unused
1090 smmu_sync_intr(void *arg)
1091 {
1092 	struct smmu_softc *sc;
1093 
1094 	sc = arg;
1095 
1096 	device_printf(sc->dev, "%s\n", __func__);
1097 
1098 	return (FILTER_HANDLED);
1099 }
1100 
1101 static int
1102 smmu_gerr_intr(void *arg)
1103 {
1104 	struct smmu_softc *sc;
1105 
1106 	sc = arg;
1107 
1108 	device_printf(sc->dev, "SMMU Global Error\n");
1109 
1110 	return (FILTER_HANDLED);
1111 }
1112 
1113 static int
1114 smmu_enable_interrupts(struct smmu_softc *sc)
1115 {
1116 	uint32_t reg;
1117 	int error;
1118 
1119 	/* Disable MSI. */
1120 	bus_write_8(sc->res[0], SMMU_GERROR_IRQ_CFG0, 0);
1121 	bus_write_4(sc->res[0], SMMU_GERROR_IRQ_CFG1, 0);
1122 	bus_write_4(sc->res[0], SMMU_GERROR_IRQ_CFG2, 0);
1123 
1124 	bus_write_8(sc->res[0], SMMU_EVENTQ_IRQ_CFG0, 0);
1125 	bus_write_4(sc->res[0], SMMU_EVENTQ_IRQ_CFG1, 0);
1126 	bus_write_4(sc->res[0], SMMU_EVENTQ_IRQ_CFG2, 0);
1127 
1128 	if (sc->features & CR0_PRIQEN) {
1129 		bus_write_8(sc->res[0], SMMU_PRIQ_IRQ_CFG0, 0);
1130 		bus_write_4(sc->res[0], SMMU_PRIQ_IRQ_CFG1, 0);
1131 		bus_write_4(sc->res[0], SMMU_PRIQ_IRQ_CFG2, 0);
1132 	}
1133 
1134 	/* Disable any interrupts. */
1135 	error = smmu_write_ack(sc, SMMU_IRQ_CTRL, SMMU_IRQ_CTRLACK, 0);
1136 	if (error) {
1137 		device_printf(sc->dev, "Could not disable interrupts.\n");
1138 		return (ENXIO);
1139 	}
1140 
1141 	/* Enable interrupts. */
1142 	reg = IRQ_CTRL_EVENTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
1143 	if (sc->features & SMMU_FEATURE_PRI)
1144 		reg |= IRQ_CTRL_PRIQ_IRQEN;
1145 
1146 	error = smmu_write_ack(sc, SMMU_IRQ_CTRL, SMMU_IRQ_CTRLACK, reg);
1147 	if (error) {
1148 		device_printf(sc->dev, "Could not enable interrupts.\n");
1149 		return (ENXIO);
1150 	}
1151 
1152 	return (0);
1153 }
1154 
1155 #ifdef DEV_ACPI
1156 static void
1157 smmu_configure_intr(struct smmu_softc *sc, struct resource *res)
1158 {
1159 	struct intr_map_data_acpi *ad;
1160 	struct intr_map_data *data;
1161 
1162 	data = rman_get_virtual(res);
1163 	KASSERT(data != NULL, ("data is NULL"));
1164 
1165 	if (data->type == INTR_MAP_DATA_ACPI) {
1166 		ad = (struct intr_map_data_acpi *)data;
1167 		ad->trig = INTR_TRIGGER_EDGE;
1168 		ad->pol = INTR_POLARITY_HIGH;
1169 	}
1170 }
1171 #endif
1172 
1173 static int
1174 smmu_setup_interrupts(struct smmu_softc *sc)
1175 {
1176 	device_t dev;
1177 	int error;
1178 
1179 	dev = sc->dev;
1180 
1181 #ifdef DEV_ACPI
1182 	/*
1183 	 * Configure SMMU interrupts as EDGE triggered manually
1184 	 * as ACPI tables carries no information for that.
1185 	 */
1186 	smmu_configure_intr(sc, sc->res[1]);
1187 	/* PRIQ is not in use. */
1188 	smmu_configure_intr(sc, sc->res[3]);
1189 	smmu_configure_intr(sc, sc->res[4]);
1190 #endif
1191 
1192 	error = bus_setup_intr(dev, sc->res[1], INTR_TYPE_MISC,
1193 	    smmu_event_intr, NULL, sc, &sc->intr_cookie[0]);
1194 	if (error) {
1195 		device_printf(dev, "Couldn't setup Event interrupt handler\n");
1196 		return (ENXIO);
1197 	}
1198 
1199 	error = bus_setup_intr(dev, sc->res[4], INTR_TYPE_MISC,
1200 	    smmu_gerr_intr, NULL, sc, &sc->intr_cookie[2]);
1201 	if (error) {
1202 		device_printf(dev, "Couldn't setup Gerr interrupt handler\n");
1203 		return (ENXIO);
1204 	}
1205 
1206 	return (0);
1207 }
1208 
1209 static int
1210 smmu_reset(struct smmu_softc *sc)
1211 {
1212 	struct smmu_cmdq_entry cmd;
1213 	struct smmu_strtab *strtab;
1214 	int error;
1215 	int reg;
1216 
1217 	reg = bus_read_4(sc->res[0], SMMU_CR0);
1218 
1219 	if (reg & CR0_SMMUEN)
1220 		device_printf(sc->dev,
1221 		    "%s: Warning: SMMU is enabled\n", __func__);
1222 
1223 	error = smmu_disable(sc);
1224 	if (error)
1225 		device_printf(sc->dev,
1226 		    "%s: Could not disable SMMU.\n", __func__);
1227 
1228 	if (smmu_enable_interrupts(sc) != 0) {
1229 		device_printf(sc->dev, "Could not enable interrupts.\n");
1230 		return (ENXIO);
1231 	}
1232 
1233 	reg = CR1_TABLE_SH_IS	|
1234 	      CR1_TABLE_OC_WBC	|
1235 	      CR1_TABLE_IC_WBC	|
1236 	      CR1_QUEUE_SH_IS	|
1237 	      CR1_QUEUE_OC_WBC	|
1238 	      CR1_QUEUE_IC_WBC;
1239 	bus_write_4(sc->res[0], SMMU_CR1, reg);
1240 
1241 	reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
1242 	bus_write_4(sc->res[0], SMMU_CR2, reg);
1243 
1244 	/* Stream table. */
1245 	strtab = &sc->strtab;
1246 	bus_write_8(sc->res[0], SMMU_STRTAB_BASE, strtab->base);
1247 	bus_write_4(sc->res[0], SMMU_STRTAB_BASE_CFG, strtab->base_cfg);
1248 
1249 	/* Command queue. */
1250 	bus_write_8(sc->res[0], SMMU_CMDQ_BASE, sc->cmdq.base);
1251 	bus_write_4(sc->res[0], SMMU_CMDQ_PROD, sc->cmdq.lc.prod);
1252 	bus_write_4(sc->res[0], SMMU_CMDQ_CONS, sc->cmdq.lc.cons);
1253 
1254 	reg = CR0_CMDQEN;
1255 	error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1256 	if (error) {
1257 		device_printf(sc->dev, "Could not enable command queue\n");
1258 		return (ENXIO);
1259 	}
1260 
1261 	/* Invalidate cached configuration. */
1262 	smmu_invalidate_all_sid(sc);
1263 
1264 	if (sc->features & SMMU_FEATURE_HYP) {
1265 		cmd.opcode = CMD_TLBI_EL2_ALL;
1266 		smmu_cmdq_enqueue_cmd(sc, &cmd);
1267 	};
1268 
1269 	/* Invalidate TLB. */
1270 	smmu_tlbi_all(sc);
1271 
1272 	/* Event queue */
1273 	bus_write_8(sc->res[0], SMMU_EVENTQ_BASE, sc->evtq.base);
1274 	bus_write_4(sc->res[0], SMMU_EVENTQ_PROD, sc->evtq.lc.prod);
1275 	bus_write_4(sc->res[0], SMMU_EVENTQ_CONS, sc->evtq.lc.cons);
1276 
1277 	reg |= CR0_EVENTQEN;
1278 	error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1279 	if (error) {
1280 		device_printf(sc->dev, "Could not enable event queue\n");
1281 		return (ENXIO);
1282 	}
1283 
1284 	if (sc->features & SMMU_FEATURE_PRI) {
1285 		/* PRI queue */
1286 		bus_write_8(sc->res[0], SMMU_PRIQ_BASE, sc->priq.base);
1287 		bus_write_4(sc->res[0], SMMU_PRIQ_PROD, sc->priq.lc.prod);
1288 		bus_write_4(sc->res[0], SMMU_PRIQ_CONS, sc->priq.lc.cons);
1289 
1290 		reg |= CR0_PRIQEN;
1291 		error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1292 		if (error) {
1293 			device_printf(sc->dev, "Could not enable PRI queue\n");
1294 			return (ENXIO);
1295 		}
1296 	}
1297 
1298 	if (sc->features & SMMU_FEATURE_ATS) {
1299 		reg |= CR0_ATSCHK;
1300 		error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1301 		if (error) {
1302 			device_printf(sc->dev, "Could not enable ATS check.\n");
1303 			return (ENXIO);
1304 		}
1305 	}
1306 
1307 	reg |= CR0_SMMUEN;
1308 	error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1309 	if (error) {
1310 		device_printf(sc->dev, "Could not enable SMMU.\n");
1311 		return (ENXIO);
1312 	}
1313 
1314 	return (0);
1315 }
1316 
1317 static int
1318 smmu_check_features(struct smmu_softc *sc)
1319 {
1320 	uint32_t reg;
1321 	uint32_t val;
1322 
1323 	sc->features = 0;
1324 
1325 	reg = bus_read_4(sc->res[0], SMMU_IDR0);
1326 
1327 	if (reg & IDR0_ST_LVL_2) {
1328 		if (bootverbose)
1329 			device_printf(sc->dev,
1330 			    "2-level stream table supported.\n");
1331 		sc->features |= SMMU_FEATURE_2_LVL_STREAM_TABLE;
1332 	}
1333 
1334 	if (reg & IDR0_CD2L) {
1335 		if (bootverbose)
1336 			device_printf(sc->dev,
1337 			    "2-level CD table supported.\n");
1338 		sc->features |= SMMU_FEATURE_2_LVL_CD;
1339 	}
1340 
1341 	switch (reg & IDR0_TTENDIAN_M) {
1342 	case IDR0_TTENDIAN_MIXED:
1343 		if (bootverbose)
1344 			device_printf(sc->dev, "Mixed endianness supported.\n");
1345 		sc->features |= SMMU_FEATURE_TT_LE;
1346 		sc->features |= SMMU_FEATURE_TT_BE;
1347 		break;
1348 	case IDR0_TTENDIAN_LITTLE:
1349 		if (bootverbose)
1350 			device_printf(sc->dev,
1351 			    "Little endian supported only.\n");
1352 		sc->features |= SMMU_FEATURE_TT_LE;
1353 		break;
1354 	case IDR0_TTENDIAN_BIG:
1355 		if (bootverbose)
1356 			device_printf(sc->dev, "Big endian supported only.\n");
1357 		sc->features |= SMMU_FEATURE_TT_BE;
1358 		break;
1359 	default:
1360 		device_printf(sc->dev, "Unsupported endianness.\n");
1361 		return (ENXIO);
1362 	}
1363 
1364 	if (reg & IDR0_SEV)
1365 		sc->features |= SMMU_FEATURE_SEV;
1366 
1367 	if (reg & IDR0_MSI) {
1368 		if (bootverbose)
1369 			device_printf(sc->dev, "MSI feature present.\n");
1370 		sc->features |= SMMU_FEATURE_MSI;
1371 	}
1372 
1373 	if (reg & IDR0_HYP) {
1374 		if (bootverbose)
1375 			device_printf(sc->dev, "HYP feature present.\n");
1376 		sc->features |= SMMU_FEATURE_HYP;
1377 	}
1378 
1379 	if (reg & IDR0_ATS)
1380 		sc->features |= SMMU_FEATURE_ATS;
1381 
1382 	if (reg & IDR0_PRI)
1383 		sc->features |= SMMU_FEATURE_PRI;
1384 
1385 	switch (reg & IDR0_STALL_MODEL_M) {
1386 	case IDR0_STALL_MODEL_FORCE:
1387 		/* Stall is forced. */
1388 		sc->features |= SMMU_FEATURE_STALL_FORCE;
1389 		/* FALLTHROUGH */
1390 	case IDR0_STALL_MODEL_STALL:
1391 		sc->features |= SMMU_FEATURE_STALL;
1392 		break;
1393 	}
1394 
1395 	/* Grab translation stages supported. */
1396 	if (reg & IDR0_S1P) {
1397 		if (bootverbose)
1398 			device_printf(sc->dev,
1399 			    "Stage 1 translation supported.\n");
1400 		sc->features |= SMMU_FEATURE_S1P;
1401 	}
1402 	if (reg & IDR0_S2P) {
1403 		if (bootverbose)
1404 			device_printf(sc->dev,
1405 			    "Stage 2 translation supported.\n");
1406 		sc->features |= SMMU_FEATURE_S2P;
1407 	}
1408 
1409 	switch (reg & IDR0_TTF_M) {
1410 	case IDR0_TTF_ALL:
1411 	case IDR0_TTF_AA64:
1412 		sc->ias = 40;
1413 		break;
1414 	default:
1415 		device_printf(sc->dev, "No AArch64 table format support.\n");
1416 		return (ENXIO);
1417 	}
1418 
1419 	if (reg & IDR0_ASID16)
1420 		sc->asid_bits = 16;
1421 	else
1422 		sc->asid_bits = 8;
1423 
1424 	if (bootverbose)
1425 		device_printf(sc->dev, "ASID bits %d\n", sc->asid_bits);
1426 
1427 	if (reg & IDR0_VMID16)
1428 		sc->vmid_bits = 16;
1429 	else
1430 		sc->vmid_bits = 8;
1431 
1432 	reg = bus_read_4(sc->res[0], SMMU_IDR1);
1433 
1434 	if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
1435 		device_printf(sc->dev,
1436 		    "Embedded implementations not supported by this driver.\n");
1437 		return (ENXIO);
1438 	}
1439 
1440 	val = (reg & IDR1_CMDQS_M) >> IDR1_CMDQS_S;
1441 	sc->cmdq.size_log2 = val;
1442 	if (bootverbose)
1443 		device_printf(sc->dev, "CMD queue bits %d\n", val);
1444 
1445 	val = (reg & IDR1_EVENTQS_M) >> IDR1_EVENTQS_S;
1446 	sc->evtq.size_log2 = val;
1447 	if (bootverbose)
1448 		device_printf(sc->dev, "EVENT queue bits %d\n", val);
1449 
1450 	if (sc->features & SMMU_FEATURE_PRI) {
1451 		val = (reg & IDR1_PRIQS_M) >> IDR1_PRIQS_S;
1452 		sc->priq.size_log2 = val;
1453 		if (bootverbose)
1454 			device_printf(sc->dev, "PRI queue bits %d\n", val);
1455 	}
1456 
1457 	sc->ssid_bits = (reg & IDR1_SSIDSIZE_M) >> IDR1_SSIDSIZE_S;
1458 	sc->sid_bits = (reg & IDR1_SIDSIZE_M) >> IDR1_SIDSIZE_S;
1459 
1460 	if (sc->sid_bits <= STRTAB_SPLIT)
1461 		sc->features &= ~SMMU_FEATURE_2_LVL_STREAM_TABLE;
1462 
1463 	if (bootverbose) {
1464 		device_printf(sc->dev, "SSID bits %d\n", sc->ssid_bits);
1465 		device_printf(sc->dev, "SID bits %d\n", sc->sid_bits);
1466 	}
1467 
1468 	/* IDR3 */
1469 	reg = bus_read_4(sc->res[0], SMMU_IDR3);
1470 	if (reg & IDR3_RIL)
1471 		sc->features |= SMMU_FEATURE_RANGE_INV;
1472 
1473 	/* IDR5 */
1474 	reg = bus_read_4(sc->res[0], SMMU_IDR5);
1475 
1476 	switch (reg & IDR5_OAS_M) {
1477 	case IDR5_OAS_32:
1478 		sc->oas = 32;
1479 		break;
1480 	case IDR5_OAS_36:
1481 		sc->oas = 36;
1482 		break;
1483 	case IDR5_OAS_40:
1484 		sc->oas = 40;
1485 		break;
1486 	case IDR5_OAS_42:
1487 		sc->oas = 42;
1488 		break;
1489 	case IDR5_OAS_44:
1490 		sc->oas = 44;
1491 		break;
1492 	case IDR5_OAS_48:
1493 		sc->oas = 48;
1494 		break;
1495 	case IDR5_OAS_52:
1496 		sc->oas = 52;
1497 		break;
1498 	}
1499 
1500 	sc->pgsizes = 0;
1501 	if (reg & IDR5_GRAN64K)
1502 		sc->pgsizes |= 64 * 1024;
1503 	if (reg & IDR5_GRAN16K)
1504 		sc->pgsizes |= 16 * 1024;
1505 	if (reg & IDR5_GRAN4K)
1506 		sc->pgsizes |= 4 * 1024;
1507 
1508 	if ((reg & IDR5_VAX_M) == IDR5_VAX_52)
1509 		sc->features |= SMMU_FEATURE_VAX;
1510 
1511 	return (0);
1512 }
1513 
1514 static void
1515 smmu_init_asids(struct smmu_softc *sc)
1516 {
1517 
1518 	sc->asid_set_size = (1 << sc->asid_bits);
1519 	sc->asid_set = bit_alloc(sc->asid_set_size, M_SMMU, M_WAITOK);
1520 	mtx_init(&sc->asid_set_mutex, "asid set", NULL, MTX_SPIN);
1521 }
1522 
1523 static int
1524 smmu_asid_alloc(struct smmu_softc *sc, int *new_asid)
1525 {
1526 
1527 	mtx_lock_spin(&sc->asid_set_mutex);
1528 	bit_ffc(sc->asid_set, sc->asid_set_size, new_asid);
1529 	if (*new_asid == -1) {
1530 		mtx_unlock_spin(&sc->asid_set_mutex);
1531 		return (ENOMEM);
1532 	}
1533 	bit_set(sc->asid_set, *new_asid);
1534 	mtx_unlock_spin(&sc->asid_set_mutex);
1535 
1536 	return (0);
1537 }
1538 
1539 static void
1540 smmu_asid_free(struct smmu_softc *sc, int asid)
1541 {
1542 
1543 	mtx_lock_spin(&sc->asid_set_mutex);
1544 	bit_clear(sc->asid_set, asid);
1545 	mtx_unlock_spin(&sc->asid_set_mutex);
1546 }
1547 
1548 /*
1549  * Device interface.
1550  */
1551 int
1552 smmu_attach(device_t dev)
1553 {
1554 	struct smmu_softc *sc;
1555 	int error;
1556 
1557 	sc = device_get_softc(dev);
1558 	sc->dev = dev;
1559 
1560 	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->dev), "smmu", MTX_DEF);
1561 
1562 	error = smmu_setup_interrupts(sc);
1563 	if (error) {
1564 		bus_release_resources(dev, smmu_spec, sc->res);
1565 		return (ENXIO);
1566 	}
1567 
1568 	error = smmu_check_features(sc);
1569 	if (error) {
1570 		device_printf(dev, "Some features are required "
1571 		    "but not supported by hardware.\n");
1572 		return (ENXIO);
1573 	}
1574 
1575 	smmu_init_asids(sc);
1576 
1577 	error = smmu_init_queues(sc);
1578 	if (error) {
1579 		device_printf(dev, "Couldn't allocate queues.\n");
1580 		return (ENXIO);
1581 	}
1582 
1583 	error = smmu_init_strtab(sc);
1584 	if (error) {
1585 		device_printf(dev, "Couldn't allocate strtab.\n");
1586 		return (ENXIO);
1587 	}
1588 
1589 	error = smmu_reset(sc);
1590 	if (error) {
1591 		device_printf(dev, "Couldn't reset SMMU.\n");
1592 		return (ENXIO);
1593 	}
1594 
1595 	return (0);
1596 }
1597 
1598 int
1599 smmu_detach(device_t dev)
1600 {
1601 	struct smmu_softc *sc;
1602 
1603 	sc = device_get_softc(dev);
1604 
1605 	bus_release_resources(dev, smmu_spec, sc->res);
1606 
1607 	return (0);
1608 }
1609 
1610 static int
1611 smmu_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1612 {
1613 	struct smmu_softc *sc;
1614 
1615 	sc = device_get_softc(dev);
1616 
1617 	device_printf(sc->dev, "%s\n", __func__);
1618 
1619 	return (ENOENT);
1620 }
1621 
1622 static int
1623 smmu_unmap(device_t dev, struct iommu_domain *iodom,
1624     vm_offset_t va, bus_size_t size)
1625 {
1626 	struct smmu_domain *domain;
1627 	struct smmu_softc *sc;
1628 	int err;
1629 	int i;
1630 
1631 	sc = device_get_softc(dev);
1632 
1633 	domain = (struct smmu_domain *)iodom;
1634 
1635 	err = 0;
1636 
1637 	dprintf("%s: %lx, %ld, domain %d\n", __func__, va, size, domain->asid);
1638 
1639 	for (i = 0; i < size; i += PAGE_SIZE) {
1640 		if (smmu_pmap_remove(&domain->p, va) == 0) {
1641 			/* pmap entry removed, invalidate TLB. */
1642 			smmu_tlbi_va(sc, va, domain->asid);
1643 		} else {
1644 			err = ENOENT;
1645 			break;
1646 		}
1647 		va += PAGE_SIZE;
1648 	}
1649 
1650 	smmu_sync(sc);
1651 
1652 	return (err);
1653 }
1654 
1655 static int
1656 smmu_map(device_t dev, struct iommu_domain *iodom,
1657     vm_offset_t va, vm_page_t *ma, vm_size_t size,
1658     vm_prot_t prot)
1659 {
1660 	struct smmu_domain *domain;
1661 	struct smmu_softc *sc;
1662 	vm_paddr_t pa;
1663 	int error;
1664 	int i;
1665 
1666 	sc = device_get_softc(dev);
1667 
1668 	domain = (struct smmu_domain *)iodom;
1669 
1670 	dprintf("%s: %lx -> %lx, %ld, domain %d\n", __func__, va, pa, size,
1671 	    domain->asid);
1672 
1673 	for (i = 0; size > 0; size -= PAGE_SIZE) {
1674 		pa = VM_PAGE_TO_PHYS(ma[i++]);
1675 		error = smmu_pmap_enter(&domain->p, va, pa, prot, 0);
1676 		if (error)
1677 			return (error);
1678 		smmu_tlbi_va(sc, va, domain->asid);
1679 		va += PAGE_SIZE;
1680 	}
1681 
1682 	smmu_sync(sc);
1683 
1684 	return (0);
1685 }
1686 
1687 static struct iommu_domain *
1688 smmu_domain_alloc(device_t dev, struct iommu_unit *iommu)
1689 {
1690 	struct iommu_domain *iodom;
1691 	struct smmu_domain *domain;
1692 	struct smmu_unit *unit;
1693 	struct smmu_softc *sc;
1694 	int error;
1695 	int new_asid;
1696 
1697 	sc = device_get_softc(dev);
1698 
1699 	unit = (struct smmu_unit *)iommu;
1700 
1701 	domain = malloc(sizeof(*domain), M_SMMU, M_WAITOK | M_ZERO);
1702 
1703 	error = smmu_asid_alloc(sc, &new_asid);
1704 	if (error) {
1705 		free(domain, M_SMMU);
1706 		device_printf(sc->dev,
1707 		    "Could not allocate ASID for a new domain.\n");
1708 		return (NULL);
1709 	}
1710 
1711 	domain->asid = (uint16_t)new_asid;
1712 
1713 	smmu_pmap_pinit(&domain->p);
1714 
1715 	error = smmu_init_cd(sc, domain);
1716 	if (error) {
1717 		free(domain, M_SMMU);
1718 		device_printf(sc->dev, "Could not initialize CD\n");
1719 		return (NULL);
1720 	}
1721 
1722 	smmu_tlbi_asid(sc, domain->asid);
1723 
1724 	LIST_INIT(&domain->ctx_list);
1725 
1726 	IOMMU_LOCK(iommu);
1727 	LIST_INSERT_HEAD(&unit->domain_list, domain, next);
1728 	IOMMU_UNLOCK(iommu);
1729 
1730 	iodom = &domain->iodom;
1731 
1732 	/*
1733 	 * Use 48-bit address space regardless of VAX bit
1734 	 * as we need 64k IOMMU_PAGE_SIZE for 52-bit space.
1735 	 */
1736 	iodom->end = MAXADDR_48BIT;
1737 
1738 	return (iodom);
1739 }
1740 
1741 static void
1742 smmu_domain_free(device_t dev, struct iommu_domain *iodom)
1743 {
1744 	struct smmu_domain *domain;
1745 	struct smmu_softc *sc;
1746 	struct smmu_cd *cd;
1747 
1748 	sc = device_get_softc(dev);
1749 
1750 	domain = (struct smmu_domain *)iodom;
1751 
1752 	LIST_REMOVE(domain, next);
1753 
1754 	cd = domain->cd;
1755 
1756 	smmu_pmap_remove_pages(&domain->p);
1757 	smmu_pmap_release(&domain->p);
1758 
1759 	smmu_tlbi_asid(sc, domain->asid);
1760 	smmu_asid_free(sc, domain->asid);
1761 
1762 	free(cd->vaddr, M_SMMU);
1763 	free(cd, M_SMMU);
1764 
1765 	free(domain, M_SMMU);
1766 }
1767 
1768 static int
1769 smmu_set_buswide(device_t dev, struct smmu_domain *domain,
1770     struct smmu_ctx *ctx)
1771 {
1772 	struct smmu_softc *sc;
1773 	int i;
1774 
1775 	sc = device_get_softc(dev);
1776 
1777 	for (i = 0; i < PCI_SLOTMAX; i++)
1778 		smmu_init_ste(sc, domain->cd, (ctx->sid | i), ctx->bypass);
1779 
1780 	return (0);
1781 }
1782 
1783 static int
1784 smmu_pci_get_sid(device_t child, u_int *xref0, u_int *sid0)
1785 {
1786 	struct pci_id_ofw_iommu pi;
1787 	int err;
1788 
1789 	err = pci_get_id(child, PCI_ID_OFW_IOMMU, (uintptr_t *)&pi);
1790 	if (err == 0) {
1791 		if (sid0)
1792 			*sid0 = pi.id;
1793 		if (xref0)
1794 			*xref0 = pi.xref;
1795 	}
1796 
1797 	return (err);
1798 }
1799 
1800 static struct iommu_ctx *
1801 smmu_ctx_alloc(device_t dev, struct iommu_domain *iodom, device_t child,
1802     bool disabled)
1803 {
1804 	struct smmu_domain *domain;
1805 	struct smmu_ctx *ctx;
1806 
1807 	domain = (struct smmu_domain *)iodom;
1808 
1809 	ctx = malloc(sizeof(struct smmu_ctx), M_SMMU, M_WAITOK | M_ZERO);
1810 	ctx->dev = child;
1811 	ctx->domain = domain;
1812 	if (disabled)
1813 		ctx->bypass = true;
1814 
1815 	IOMMU_DOMAIN_LOCK(iodom);
1816 	LIST_INSERT_HEAD(&domain->ctx_list, ctx, next);
1817 	IOMMU_DOMAIN_UNLOCK(iodom);
1818 
1819 	return (&ctx->ioctx);
1820 }
1821 
1822 static int
1823 smmu_ctx_init(device_t dev, struct iommu_ctx *ioctx)
1824 {
1825 	struct smmu_domain *domain;
1826 	struct iommu_domain *iodom;
1827 	struct smmu_softc *sc;
1828 	struct smmu_ctx *ctx;
1829 	devclass_t pci_class;
1830 	u_int sid;
1831 	int err;
1832 
1833 	ctx = (struct smmu_ctx *)ioctx;
1834 
1835 	sc = device_get_softc(dev);
1836 
1837 	domain = ctx->domain;
1838 	iodom = (struct iommu_domain *)domain;
1839 
1840 	pci_class = devclass_find("pci");
1841 	if (device_get_devclass(device_get_parent(ctx->dev)) == pci_class) {
1842 		err = smmu_pci_get_sid(ctx->dev, NULL, &sid);
1843 		if (err)
1844 			return (err);
1845 
1846 		ioctx->rid = pci_get_rid(dev);
1847 		ctx->sid = sid;
1848 		ctx->vendor = pci_get_vendor(ctx->dev);
1849 		ctx->device = pci_get_device(ctx->dev);
1850 	}
1851 
1852 	if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE) {
1853 		err = smmu_init_l1_entry(sc, ctx->sid);
1854 		if (err)
1855 			return (err);
1856 	}
1857 
1858 	/*
1859 	 * Neoverse N1 SDP:
1860 	 * 0x800 xhci
1861 	 * 0x700 re
1862 	 * 0x600 sata
1863 	 */
1864 
1865 	smmu_init_ste(sc, domain->cd, ctx->sid, ctx->bypass);
1866 
1867 	if (device_get_devclass(device_get_parent(ctx->dev)) == pci_class)
1868 		if (iommu_is_buswide_ctx(iodom->iommu, pci_get_bus(ctx->dev)))
1869 			smmu_set_buswide(dev, domain, ctx);
1870 
1871 	return (0);
1872 }
1873 
1874 static void
1875 smmu_ctx_free(device_t dev, struct iommu_ctx *ioctx)
1876 {
1877 	struct smmu_softc *sc;
1878 	struct smmu_ctx *ctx;
1879 
1880 	IOMMU_ASSERT_LOCKED(ioctx->domain->iommu);
1881 
1882 	sc = device_get_softc(dev);
1883 	ctx = (struct smmu_ctx *)ioctx;
1884 
1885 	smmu_deinit_ste(sc, ctx->sid);
1886 
1887 	LIST_REMOVE(ctx, next);
1888 
1889 	free(ctx, M_SMMU);
1890 }
1891 
1892 struct smmu_ctx *
1893 smmu_ctx_lookup_by_sid(device_t dev, u_int sid)
1894 {
1895 	struct smmu_softc *sc;
1896 	struct smmu_domain *domain;
1897 	struct smmu_unit *unit;
1898 	struct smmu_ctx *ctx;
1899 
1900 	sc = device_get_softc(dev);
1901 
1902 	unit = &sc->unit;
1903 
1904 	LIST_FOREACH(domain, &unit->domain_list, next) {
1905 		LIST_FOREACH(ctx, &domain->ctx_list, next) {
1906 			if (ctx->sid == sid)
1907 				return (ctx);
1908 		}
1909 	}
1910 
1911 	return (NULL);
1912 }
1913 
1914 static struct iommu_ctx *
1915 smmu_ctx_lookup(device_t dev, device_t child)
1916 {
1917 	struct iommu_unit *iommu __diagused;
1918 	struct smmu_softc *sc;
1919 	struct smmu_domain *domain;
1920 	struct smmu_unit *unit;
1921 	struct smmu_ctx *ctx;
1922 
1923 	sc = device_get_softc(dev);
1924 
1925 	unit = &sc->unit;
1926 	iommu = &unit->iommu;
1927 
1928 	IOMMU_ASSERT_LOCKED(iommu);
1929 
1930 	LIST_FOREACH(domain, &unit->domain_list, next) {
1931 		IOMMU_DOMAIN_LOCK(&domain->iodom);
1932 		LIST_FOREACH(ctx, &domain->ctx_list, next) {
1933 			if (ctx->dev == child) {
1934 				IOMMU_DOMAIN_UNLOCK(&domain->iodom);
1935 				return (&ctx->ioctx);
1936 			}
1937 		}
1938 		IOMMU_DOMAIN_UNLOCK(&domain->iodom);
1939 	}
1940 
1941 	return (NULL);
1942 }
1943 
1944 static int
1945 smmu_find(device_t dev, device_t child)
1946 {
1947 	struct smmu_softc *sc;
1948 	u_int xref;
1949 	int err;
1950 
1951 	sc = device_get_softc(dev);
1952 
1953 	err = smmu_pci_get_sid(child, &xref, NULL);
1954 	if (err)
1955 		return (ENOENT);
1956 
1957 	/* Check if xref is ours. */
1958 	if (xref != sc->xref)
1959 		return (EFAULT);
1960 
1961 	return (0);
1962 }
1963 
1964 #ifdef FDT
1965 static int
1966 smmu_ofw_md_data(device_t dev, struct iommu_ctx *ioctx, pcell_t *cells,
1967     int ncells)
1968 {
1969 	struct smmu_ctx *ctx;
1970 
1971 	ctx = (struct smmu_ctx *)ioctx;
1972 
1973 	if (ncells != 1)
1974 		return (-1);
1975 
1976 	ctx->sid = cells[0];
1977 
1978 	return (0);
1979 }
1980 #endif
1981 
1982 static device_method_t smmu_methods[] = {
1983 	/* Device interface */
1984 	DEVMETHOD(device_detach,	smmu_detach),
1985 
1986 	/* SMMU interface */
1987 	DEVMETHOD(iommu_find,		smmu_find),
1988 	DEVMETHOD(iommu_map,		smmu_map),
1989 	DEVMETHOD(iommu_unmap,		smmu_unmap),
1990 	DEVMETHOD(iommu_domain_alloc,	smmu_domain_alloc),
1991 	DEVMETHOD(iommu_domain_free,	smmu_domain_free),
1992 	DEVMETHOD(iommu_ctx_alloc,	smmu_ctx_alloc),
1993 	DEVMETHOD(iommu_ctx_init,	smmu_ctx_init),
1994 	DEVMETHOD(iommu_ctx_free,	smmu_ctx_free),
1995 	DEVMETHOD(iommu_ctx_lookup,	smmu_ctx_lookup),
1996 #ifdef FDT
1997 	DEVMETHOD(iommu_ofw_md_data,	smmu_ofw_md_data),
1998 #endif
1999 
2000 	/* Bus interface */
2001 	DEVMETHOD(bus_read_ivar,	smmu_read_ivar),
2002 
2003 	/* End */
2004 	DEVMETHOD_END
2005 };
2006 
2007 DEFINE_CLASS_0(smmu, smmu_driver, smmu_methods, sizeof(struct smmu_softc));
2008