xref: /freebsd/sys/arm64/iommu/iommu_pmap.c (revision b2d2a78ad80ec68d4a17f5aef97d21686cb1e29b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2020-2021 Ruslan Bukin <br@bsdpad.com>
5  * Copyright (c) 2014-2021 Andrew Turner
6  * Copyright (c) 2014-2016 The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * This work was supported by Innovate UK project 105694, "Digital Security
10  * by Design (DSbD) Technology Platform Prototype".
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 /*
36  *	Manages physical address maps for ARM SMMUv3 and ARM Mali GPU.
37  */
38 
39 #include "opt_vm.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/ktr.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/rwlock.h>
47 
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_page.h>
51 #include <vm/vm_map.h>
52 #include <vm/vm_object.h>
53 #include <vm/vm_pageout.h>
54 #include <vm/vm_radix.h>
55 
56 #include <machine/machdep.h>
57 
58 #include <arm64/iommu/iommu_pmap.h>
59 #include <arm64/iommu/iommu_pte.h>
60 
61 #define	IOMMU_PAGE_SIZE		4096
62 
63 #define	SMMU_PMAP_LOCK(pmap)	mtx_lock(&(pmap)->sp_mtx)
64 #define	SMMU_PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->sp_mtx)
65 #define	SMMU_PMAP_LOCK_ASSERT(pmap, type) \
66     mtx_assert(&(pmap)->sp_mtx, (type))
67 
68 #define	NL0PG		(IOMMU_PAGE_SIZE/(sizeof (pd_entry_t)))
69 #define	NL1PG		(IOMMU_PAGE_SIZE/(sizeof (pd_entry_t)))
70 #define	NL2PG		(IOMMU_PAGE_SIZE/(sizeof (pd_entry_t)))
71 #define	NL3PG		(IOMMU_PAGE_SIZE/(sizeof (pt_entry_t)))
72 
73 #define	NUL0E		IOMMU_L0_ENTRIES
74 #define	NUL1E		(NUL0E * NL1PG)
75 #define	NUL2E		(NUL1E * NL2PG)
76 
77 #define	smmu_l0_pindex(v)	(NUL2E + NUL1E + ((v) >> IOMMU_L0_SHIFT))
78 #define	smmu_l1_pindex(v)	(NUL2E + ((v) >> IOMMU_L1_SHIFT))
79 #define	smmu_l2_pindex(v)	((v) >> IOMMU_L2_SHIFT)
80 
81 #define	smmu_l0_index(va)	(((va) >> IOMMU_L0_SHIFT) & IOMMU_L0_ADDR_MASK)
82 #define	smmu_l1_index(va)	(((va) >> IOMMU_L1_SHIFT) & IOMMU_Ln_ADDR_MASK)
83 #define	smmu_l2_index(va)	(((va) >> IOMMU_L2_SHIFT) & IOMMU_Ln_ADDR_MASK)
84 #define	smmu_l3_index(va)	(((va) >> IOMMU_L3_SHIFT) & IOMMU_Ln_ADDR_MASK)
85 
86 static vm_page_t _pmap_alloc_l3(struct smmu_pmap *pmap, vm_pindex_t ptepindex);
87 static void _smmu_pmap_unwire_l3(struct smmu_pmap *pmap, vm_offset_t va,
88     vm_page_t m, struct spglist *free);
89 
90 /*
91  * These load the old table data and store the new value.
92  * They need to be atomic as the System MMU may write to the table at
93  * the same time as the CPU.
94  */
95 #define	smmu_pmap_load(table)		(*table)
96 #define	smmu_pmap_clear(table)		atomic_store_64(table, 0)
97 #define	smmu_pmap_store(table, entry)	atomic_store_64(table, entry)
98 
99 /********************/
100 /* Inline functions */
101 /********************/
102 
103 static __inline pd_entry_t *
104 smmu_pmap_l0(struct smmu_pmap *pmap, vm_offset_t va)
105 {
106 
107 	return (&pmap->sp_l0[smmu_l0_index(va)]);
108 }
109 
110 static __inline pd_entry_t *
111 smmu_pmap_l0_to_l1(pd_entry_t *l0, vm_offset_t va)
112 {
113 	pd_entry_t *l1;
114 
115 	l1 = (pd_entry_t *)PHYS_TO_DMAP(smmu_pmap_load(l0) & ~ATTR_MASK);
116 	return (&l1[smmu_l1_index(va)]);
117 }
118 
119 static __inline pd_entry_t *
120 smmu_pmap_l1(struct smmu_pmap *pmap, vm_offset_t va)
121 {
122 	pd_entry_t *l0;
123 
124 	l0 = smmu_pmap_l0(pmap, va);
125 	if ((smmu_pmap_load(l0) & ATTR_DESCR_MASK) != IOMMU_L0_TABLE)
126 		return (NULL);
127 
128 	return (smmu_pmap_l0_to_l1(l0, va));
129 }
130 
131 static __inline pd_entry_t *
132 smmu_pmap_l1_to_l2(pd_entry_t *l1p, vm_offset_t va)
133 {
134 	pd_entry_t l1, *l2p;
135 
136 	l1 = smmu_pmap_load(l1p);
137 
138 	/*
139 	 * The valid bit may be clear if pmap_update_entry() is concurrently
140 	 * modifying the entry, so for KVA only the entry type may be checked.
141 	 */
142 	KASSERT(va >= VM_MAX_USER_ADDRESS || (l1 & ATTR_DESCR_VALID) != 0,
143 	    ("%s: L1 entry %#lx for %#lx is invalid", __func__, l1, va));
144 	KASSERT((l1 & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_TABLE,
145 	    ("%s: L1 entry %#lx for %#lx is a leaf", __func__, l1, va));
146 	l2p = (pd_entry_t *)PHYS_TO_DMAP(l1 & ~ATTR_MASK);
147 	return (&l2p[smmu_l2_index(va)]);
148 }
149 
150 static __inline pd_entry_t *
151 smmu_pmap_l2(struct smmu_pmap *pmap, vm_offset_t va)
152 {
153 	pd_entry_t *l1;
154 
155 	l1 = smmu_pmap_l1(pmap, va);
156 	if ((smmu_pmap_load(l1) & ATTR_DESCR_MASK) != IOMMU_L1_TABLE)
157 		return (NULL);
158 
159 	return (smmu_pmap_l1_to_l2(l1, va));
160 }
161 
162 static __inline pt_entry_t *
163 smmu_pmap_l2_to_l3(pd_entry_t *l2p, vm_offset_t va)
164 {
165 	pd_entry_t l2;
166 	pt_entry_t *l3p;
167 
168 	l2 = smmu_pmap_load(l2p);
169 
170 	/*
171 	 * The valid bit may be clear if pmap_update_entry() is concurrently
172 	 * modifying the entry, so for KVA only the entry type may be checked.
173 	 */
174 	KASSERT(va >= VM_MAX_USER_ADDRESS || (l2 & ATTR_DESCR_VALID) != 0,
175 	    ("%s: L2 entry %#lx for %#lx is invalid", __func__, l2, va));
176 	KASSERT((l2 & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_TABLE,
177 	    ("%s: L2 entry %#lx for %#lx is a leaf", __func__, l2, va));
178 	l3p = (pt_entry_t *)PHYS_TO_DMAP(l2 & ~ATTR_MASK);
179 	return (&l3p[smmu_l3_index(va)]);
180 }
181 
182 /*
183  * Returns the lowest valid pde for a given virtual address.
184  * The next level may or may not point to a valid page or block.
185  */
186 static __inline pd_entry_t *
187 smmu_pmap_pde(struct smmu_pmap *pmap, vm_offset_t va, int *level)
188 {
189 	pd_entry_t *l0, *l1, *l2, desc;
190 
191 	l0 = smmu_pmap_l0(pmap, va);
192 	desc = smmu_pmap_load(l0) & ATTR_DESCR_MASK;
193 	if (desc != IOMMU_L0_TABLE) {
194 		*level = -1;
195 		return (NULL);
196 	}
197 
198 	l1 = smmu_pmap_l0_to_l1(l0, va);
199 	desc = smmu_pmap_load(l1) & ATTR_DESCR_MASK;
200 	if (desc != IOMMU_L1_TABLE) {
201 		*level = 0;
202 		return (l0);
203 	}
204 
205 	l2 = smmu_pmap_l1_to_l2(l1, va);
206 	desc = smmu_pmap_load(l2) & ATTR_DESCR_MASK;
207 	if (desc != IOMMU_L2_TABLE) {
208 		*level = 1;
209 		return (l1);
210 	}
211 
212 	*level = 2;
213 	return (l2);
214 }
215 
216 /*
217  * Returns the lowest valid pte block or table entry for a given virtual
218  * address. If there are no valid entries return NULL and set the level to
219  * the first invalid level.
220  */
221 static __inline pt_entry_t *
222 smmu_pmap_pte(struct smmu_pmap *pmap, vm_offset_t va, int *level)
223 {
224 	pd_entry_t *l1, *l2, desc;
225 	pt_entry_t *l3;
226 
227 	l1 = smmu_pmap_l1(pmap, va);
228 	if (l1 == NULL) {
229 		*level = 0;
230 		return (NULL);
231 	}
232 	desc = smmu_pmap_load(l1) & ATTR_DESCR_MASK;
233 	if (desc == IOMMU_L1_BLOCK) {
234 		*level = 1;
235 		return (l1);
236 	}
237 
238 	if (desc != IOMMU_L1_TABLE) {
239 		*level = 1;
240 		return (NULL);
241 	}
242 
243 	l2 = smmu_pmap_l1_to_l2(l1, va);
244 	desc = smmu_pmap_load(l2) & ATTR_DESCR_MASK;
245 	if (desc == IOMMU_L2_BLOCK) {
246 		*level = 2;
247 		return (l2);
248 	}
249 
250 	if (desc != IOMMU_L2_TABLE) {
251 		*level = 2;
252 		return (NULL);
253 	}
254 
255 	*level = 3;
256 	l3 = smmu_pmap_l2_to_l3(l2, va);
257 	if ((smmu_pmap_load(l3) & ATTR_DESCR_MASK) != IOMMU_L3_PAGE)
258 		return (NULL);
259 
260 	return (l3);
261 }
262 
263 static __inline int
264 smmu_pmap_l3_valid(pt_entry_t l3)
265 {
266 
267 	return ((l3 & ATTR_DESCR_MASK) == IOMMU_L3_PAGE);
268 }
269 
270 CTASSERT(IOMMU_L1_BLOCK == IOMMU_L2_BLOCK);
271 
272 #ifdef INVARIANTS
273 static __inline void
274 smmu_pmap_resident_count_inc(struct smmu_pmap *pmap, int count)
275 {
276 
277 	SMMU_PMAP_LOCK_ASSERT(pmap, MA_OWNED);
278 	pmap->sp_resident_count += count;
279 }
280 
281 static __inline void
282 smmu_pmap_resident_count_dec(struct smmu_pmap *pmap, int count)
283 {
284 
285 	SMMU_PMAP_LOCK_ASSERT(pmap, MA_OWNED);
286 	KASSERT(pmap->sp_resident_count >= count,
287 	    ("pmap %p resident count underflow %ld %d", pmap,
288 	    pmap->sp_resident_count, count));
289 	pmap->sp_resident_count -= count;
290 }
291 #else
292 static __inline void
293 smmu_pmap_resident_count_inc(struct smmu_pmap *pmap, int count)
294 {
295 }
296 
297 static __inline void
298 smmu_pmap_resident_count_dec(struct smmu_pmap *pmap, int count)
299 {
300 }
301 #endif
302 
303 /***************************************************
304  * Page table page management routines.....
305  ***************************************************/
306 /*
307  * Schedule the specified unused page table page to be freed.  Specifically,
308  * add the page to the specified list of pages that will be released to the
309  * physical memory manager after the TLB has been updated.
310  */
311 static __inline void
312 smmu_pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
313     boolean_t set_PG_ZERO)
314 {
315 
316 	if (set_PG_ZERO)
317 		m->flags |= PG_ZERO;
318 	else
319 		m->flags &= ~PG_ZERO;
320 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
321 }
322 
323 /***************************************************
324  * Low level mapping routines.....
325  ***************************************************/
326 
327 /*
328  * Decrements a page table page's reference count, which is used to record the
329  * number of valid page table entries within the page.  If the reference count
330  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
331  * page table page was unmapped and FALSE otherwise.
332  */
333 static inline boolean_t
334 smmu_pmap_unwire_l3(struct smmu_pmap *pmap, vm_offset_t va, vm_page_t m,
335     struct spglist *free)
336 {
337 
338 	--m->ref_count;
339 	if (m->ref_count == 0) {
340 		_smmu_pmap_unwire_l3(pmap, va, m, free);
341 		return (TRUE);
342 	} else
343 		return (FALSE);
344 }
345 
346 static void
347 _smmu_pmap_unwire_l3(struct smmu_pmap *pmap, vm_offset_t va, vm_page_t m,
348     struct spglist *free)
349 {
350 
351 	SMMU_PMAP_LOCK_ASSERT(pmap, MA_OWNED);
352 	/*
353 	 * unmap the page table page
354 	 */
355 	if (m->pindex >= (NUL2E + NUL1E)) {
356 		/* l1 page */
357 		pd_entry_t *l0;
358 
359 		l0 = smmu_pmap_l0(pmap, va);
360 		smmu_pmap_clear(l0);
361 	} else if (m->pindex >= NUL2E) {
362 		/* l2 page */
363 		pd_entry_t *l1;
364 
365 		l1 = smmu_pmap_l1(pmap, va);
366 		smmu_pmap_clear(l1);
367 	} else {
368 		/* l3 page */
369 		pd_entry_t *l2;
370 
371 		l2 = smmu_pmap_l2(pmap, va);
372 		smmu_pmap_clear(l2);
373 	}
374 	smmu_pmap_resident_count_dec(pmap, 1);
375 	if (m->pindex < NUL2E) {
376 		/* We just released an l3, unhold the matching l2 */
377 		pd_entry_t *l1, tl1;
378 		vm_page_t l2pg;
379 
380 		l1 = smmu_pmap_l1(pmap, va);
381 		tl1 = smmu_pmap_load(l1);
382 		l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK);
383 		smmu_pmap_unwire_l3(pmap, va, l2pg, free);
384 	} else if (m->pindex < (NUL2E + NUL1E)) {
385 		/* We just released an l2, unhold the matching l1 */
386 		pd_entry_t *l0, tl0;
387 		vm_page_t l1pg;
388 
389 		l0 = smmu_pmap_l0(pmap, va);
390 		tl0 = smmu_pmap_load(l0);
391 		l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK);
392 		smmu_pmap_unwire_l3(pmap, va, l1pg, free);
393 	}
394 
395 	/*
396 	 * Put page on a list so that it is released after
397 	 * *ALL* TLB shootdown is done
398 	 */
399 	smmu_pmap_add_delayed_free_list(m, free, TRUE);
400 }
401 
402 int
403 smmu_pmap_pinit(struct smmu_pmap *pmap)
404 {
405 	vm_page_t m;
406 
407 	/*
408 	 * allocate the l0 page
409 	 */
410 	m = vm_page_alloc_noobj(VM_ALLOC_WAITOK | VM_ALLOC_WIRED |
411 	    VM_ALLOC_ZERO);
412 	pmap->sp_l0_paddr = VM_PAGE_TO_PHYS(m);
413 	pmap->sp_l0 = (pd_entry_t *)PHYS_TO_DMAP(pmap->sp_l0_paddr);
414 
415 #ifdef INVARIANTS
416 	pmap->sp_resident_count = 0;
417 #endif
418 	mtx_init(&pmap->sp_mtx, "smmu pmap", NULL, MTX_DEF);
419 
420 	return (1);
421 }
422 
423 /*
424  * This routine is called if the desired page table page does not exist.
425  *
426  * If page table page allocation fails, this routine may sleep before
427  * returning NULL.  It sleeps only if a lock pointer was given.
428  *
429  * Note: If a page allocation fails at page table level two or three,
430  * one or two pages may be held during the wait, only to be released
431  * afterwards.  This conservative approach is easily argued to avoid
432  * race conditions.
433  */
434 static vm_page_t
435 _pmap_alloc_l3(struct smmu_pmap *pmap, vm_pindex_t ptepindex)
436 {
437 	vm_page_t m, l1pg, l2pg;
438 
439 	SMMU_PMAP_LOCK_ASSERT(pmap, MA_OWNED);
440 
441 	/*
442 	 * Allocate a page table page.
443 	 */
444 	if ((m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
445 		/*
446 		 * Indicate the need to retry.  While waiting, the page table
447 		 * page may have been allocated.
448 		 */
449 		return (NULL);
450 	}
451 	m->pindex = ptepindex;
452 
453 	/*
454 	 * Because of AArch64's weak memory consistency model, we must have a
455 	 * barrier here to ensure that the stores for zeroing "m", whether by
456 	 * pmap_zero_page() or an earlier function, are visible before adding
457 	 * "m" to the page table.  Otherwise, a page table walk by another
458 	 * processor's MMU could see the mapping to "m" and a stale, non-zero
459 	 * PTE within "m".
460 	 */
461 	dmb(ishst);
462 
463 	/*
464 	 * Map the pagetable page into the process address space, if
465 	 * it isn't already there.
466 	 */
467 
468 	if (ptepindex >= (NUL2E + NUL1E)) {
469 		pd_entry_t *l0;
470 		vm_pindex_t l0index;
471 
472 		l0index = ptepindex - (NUL2E + NUL1E);
473 		l0 = &pmap->sp_l0[l0index];
474 		smmu_pmap_store(l0, VM_PAGE_TO_PHYS(m) | IOMMU_L0_TABLE);
475 	} else if (ptepindex >= NUL2E) {
476 		vm_pindex_t l0index, l1index;
477 		pd_entry_t *l0, *l1;
478 		pd_entry_t tl0;
479 
480 		l1index = ptepindex - NUL2E;
481 		l0index = l1index >> IOMMU_L0_ENTRIES_SHIFT;
482 
483 		l0 = &pmap->sp_l0[l0index];
484 		tl0 = smmu_pmap_load(l0);
485 		if (tl0 == 0) {
486 			/* recurse for allocating page dir */
487 			if (_pmap_alloc_l3(pmap, NUL2E + NUL1E + l0index)
488 			    == NULL) {
489 				vm_page_unwire_noq(m);
490 				vm_page_free_zero(m);
491 				return (NULL);
492 			}
493 		} else {
494 			l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK);
495 			l1pg->ref_count++;
496 		}
497 
498 		l1 = (pd_entry_t *)PHYS_TO_DMAP(smmu_pmap_load(l0) &~ATTR_MASK);
499 		l1 = &l1[ptepindex & Ln_ADDR_MASK];
500 		smmu_pmap_store(l1, VM_PAGE_TO_PHYS(m) | IOMMU_L1_TABLE);
501 	} else {
502 		vm_pindex_t l0index, l1index;
503 		pd_entry_t *l0, *l1, *l2;
504 		pd_entry_t tl0, tl1;
505 
506 		l1index = ptepindex >> IOMMU_Ln_ENTRIES_SHIFT;
507 		l0index = l1index >> IOMMU_L0_ENTRIES_SHIFT;
508 
509 		l0 = &pmap->sp_l0[l0index];
510 		tl0 = smmu_pmap_load(l0);
511 		if (tl0 == 0) {
512 			/* recurse for allocating page dir */
513 			if (_pmap_alloc_l3(pmap, NUL2E + l1index) == NULL) {
514 				vm_page_unwire_noq(m);
515 				vm_page_free_zero(m);
516 				return (NULL);
517 			}
518 			tl0 = smmu_pmap_load(l0);
519 			l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK);
520 			l1 = &l1[l1index & Ln_ADDR_MASK];
521 		} else {
522 			l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK);
523 			l1 = &l1[l1index & Ln_ADDR_MASK];
524 			tl1 = smmu_pmap_load(l1);
525 			if (tl1 == 0) {
526 				/* recurse for allocating page dir */
527 				if (_pmap_alloc_l3(pmap, NUL2E + l1index)
528 				    == NULL) {
529 					vm_page_unwire_noq(m);
530 					vm_page_free_zero(m);
531 					return (NULL);
532 				}
533 			} else {
534 				l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK);
535 				l2pg->ref_count++;
536 			}
537 		}
538 
539 		l2 = (pd_entry_t *)PHYS_TO_DMAP(smmu_pmap_load(l1) &~ATTR_MASK);
540 		l2 = &l2[ptepindex & Ln_ADDR_MASK];
541 		smmu_pmap_store(l2, VM_PAGE_TO_PHYS(m) | IOMMU_L2_TABLE);
542 	}
543 
544 	smmu_pmap_resident_count_inc(pmap, 1);
545 
546 	return (m);
547 }
548 
549 /***************************************************
550  * Pmap allocation/deallocation routines.
551  ***************************************************/
552 
553 /*
554  * Release any resources held by the given physical map.
555  * Called when a pmap initialized by pmap_pinit is being released.
556  * Should only be called if the map contains no valid mappings.
557  */
558 void
559 smmu_pmap_release(struct smmu_pmap *pmap)
560 {
561 	vm_page_t m;
562 
563 	KASSERT(pmap->sp_resident_count == 0,
564 	    ("pmap_release: pmap resident count %ld != 0",
565 	    pmap->sp_resident_count));
566 
567 	m = PHYS_TO_VM_PAGE(pmap->sp_l0_paddr);
568 	vm_page_unwire_noq(m);
569 	vm_page_free_zero(m);
570 	mtx_destroy(&pmap->sp_mtx);
571 }
572 
573 /***************************************************
574  * page management routines.
575  ***************************************************/
576 
577 /*
578  * Add a single Mali GPU entry. This function does not sleep.
579  */
580 int
581 pmap_gpu_enter(struct smmu_pmap *pmap, vm_offset_t va, vm_paddr_t pa,
582     vm_prot_t prot, u_int flags)
583 {
584 	pd_entry_t *pde;
585 	pt_entry_t new_l3;
586 	pt_entry_t orig_l3 __diagused;
587 	pt_entry_t *l3;
588 	vm_page_t mpte;
589 	pd_entry_t *l1p;
590 	pd_entry_t *l2p;
591 	int lvl;
592 	int rv;
593 
594 	KASSERT(va < VM_MAXUSER_ADDRESS, ("wrong address space"));
595 	KASSERT((va & PAGE_MASK) == 0, ("va is misaligned"));
596 	KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
597 
598 	new_l3 = (pt_entry_t)(pa | ATTR_SH(ATTR_SH_IS) | IOMMU_L3_BLOCK);
599 
600 	if ((prot & VM_PROT_WRITE) != 0)
601 		new_l3 |= ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE);
602 	if ((prot & VM_PROT_READ) != 0)
603 		new_l3 |= ATTR_S2_S2AP(ATTR_S2_S2AP_READ);
604 	if ((prot & VM_PROT_EXECUTE) == 0)
605 		new_l3 |= ATTR_S2_XN(ATTR_S2_XN_ALL);
606 
607 	CTR2(KTR_PMAP, "pmap_gpu_enter: %.16lx -> %.16lx", va, pa);
608 
609 	SMMU_PMAP_LOCK(pmap);
610 
611 	/*
612 	 * In the case that a page table page is not
613 	 * resident, we are creating it here.
614 	 */
615 retry:
616 	pde = smmu_pmap_pde(pmap, va, &lvl);
617 	if (pde != NULL && lvl == 2) {
618 		l3 = smmu_pmap_l2_to_l3(pde, va);
619 	} else {
620 		mpte = _pmap_alloc_l3(pmap, smmu_l2_pindex(va));
621 		if (mpte == NULL) {
622 			CTR0(KTR_PMAP, "pmap_enter: mpte == NULL");
623 			rv = KERN_RESOURCE_SHORTAGE;
624 			goto out;
625 		}
626 
627 		/*
628 		 * Ensure newly created l1, l2 are visible to GPU.
629 		 * l0 is already visible by similar call in panfrost driver.
630 		 * The cache entry for l3 handled below.
631 		 */
632 
633 		l1p = smmu_pmap_l1(pmap, va);
634 		l2p = smmu_pmap_l2(pmap, va);
635 		cpu_dcache_wb_range(l1p, sizeof(pd_entry_t));
636 		cpu_dcache_wb_range(l2p, sizeof(pd_entry_t));
637 
638 		goto retry;
639 	}
640 
641 	orig_l3 = smmu_pmap_load(l3);
642 	KASSERT(!smmu_pmap_l3_valid(orig_l3), ("l3 is valid"));
643 
644 	/* New mapping */
645 	smmu_pmap_store(l3, new_l3);
646 
647 	cpu_dcache_wb_range(l3, sizeof(pt_entry_t));
648 
649 	smmu_pmap_resident_count_inc(pmap, 1);
650 	dsb(ishst);
651 
652 	rv = KERN_SUCCESS;
653 out:
654 	SMMU_PMAP_UNLOCK(pmap);
655 
656 	return (rv);
657 }
658 
659 /*
660  * Remove a single Mali GPU entry.
661  */
662 int
663 pmap_gpu_remove(struct smmu_pmap *pmap, vm_offset_t va)
664 {
665 	pd_entry_t *pde;
666 	pt_entry_t *pte;
667 	int lvl;
668 	int rc;
669 
670 	KASSERT((va & PAGE_MASK) == 0, ("va is misaligned"));
671 
672 	SMMU_PMAP_LOCK(pmap);
673 
674 	pde = smmu_pmap_pde(pmap, va, &lvl);
675 	if (pde == NULL || lvl != 2) {
676 		rc = KERN_FAILURE;
677 		goto out;
678 	}
679 
680 	pte = smmu_pmap_l2_to_l3(pde, va);
681 
682 	smmu_pmap_resident_count_dec(pmap, 1);
683 	smmu_pmap_clear(pte);
684 	cpu_dcache_wb_range(pte, sizeof(pt_entry_t));
685 	rc = KERN_SUCCESS;
686 
687 out:
688 	SMMU_PMAP_UNLOCK(pmap);
689 
690 	return (rc);
691 }
692 
693 /*
694  * Add a single SMMU entry. This function does not sleep.
695  */
696 int
697 smmu_pmap_enter(struct smmu_pmap *pmap, vm_offset_t va, vm_paddr_t pa,
698     vm_prot_t prot, u_int flags)
699 {
700 	pd_entry_t *pde;
701 	pt_entry_t new_l3;
702 	pt_entry_t orig_l3 __diagused;
703 	pt_entry_t *l3;
704 	vm_page_t mpte;
705 	int lvl;
706 	int rv;
707 
708 	KASSERT(va < VM_MAXUSER_ADDRESS, ("wrong address space"));
709 
710 	va = trunc_page(va);
711 	new_l3 = (pt_entry_t)(pa | ATTR_AF | ATTR_SH(ATTR_SH_IS) |
712 	    ATTR_S1_IDX(VM_MEMATTR_DEVICE) | IOMMU_L3_PAGE);
713 	if ((prot & VM_PROT_WRITE) == 0)
714 		new_l3 |= ATTR_S1_AP(ATTR_S1_AP_RO);
715 	new_l3 |= ATTR_S1_XN; /* Execute never. */
716 	new_l3 |= ATTR_S1_AP(ATTR_S1_AP_USER);
717 	new_l3 |= ATTR_S1_nG; /* Non global. */
718 
719 	CTR2(KTR_PMAP, "pmap_senter: %.16lx -> %.16lx", va, pa);
720 
721 	SMMU_PMAP_LOCK(pmap);
722 
723 	/*
724 	 * In the case that a page table page is not
725 	 * resident, we are creating it here.
726 	 */
727 retry:
728 	pde = smmu_pmap_pde(pmap, va, &lvl);
729 	if (pde != NULL && lvl == 2) {
730 		l3 = smmu_pmap_l2_to_l3(pde, va);
731 	} else {
732 		mpte = _pmap_alloc_l3(pmap, smmu_l2_pindex(va));
733 		if (mpte == NULL) {
734 			CTR0(KTR_PMAP, "pmap_enter: mpte == NULL");
735 			rv = KERN_RESOURCE_SHORTAGE;
736 			goto out;
737 		}
738 		goto retry;
739 	}
740 
741 	orig_l3 = smmu_pmap_load(l3);
742 	KASSERT(!smmu_pmap_l3_valid(orig_l3), ("l3 is valid"));
743 
744 	/* New mapping */
745 	smmu_pmap_store(l3, new_l3);
746 	smmu_pmap_resident_count_inc(pmap, 1);
747 	dsb(ishst);
748 
749 	rv = KERN_SUCCESS;
750 out:
751 	SMMU_PMAP_UNLOCK(pmap);
752 
753 	return (rv);
754 }
755 
756 /*
757  * Remove a single SMMU entry.
758  */
759 int
760 smmu_pmap_remove(struct smmu_pmap *pmap, vm_offset_t va)
761 {
762 	pt_entry_t *pte;
763 	int lvl;
764 	int rc;
765 
766 	SMMU_PMAP_LOCK(pmap);
767 
768 	pte = smmu_pmap_pte(pmap, va, &lvl);
769 	KASSERT(lvl == 3,
770 	    ("Invalid SMMU pagetable level: %d != 3", lvl));
771 
772 	if (pte != NULL) {
773 		smmu_pmap_resident_count_dec(pmap, 1);
774 		smmu_pmap_clear(pte);
775 		rc = KERN_SUCCESS;
776 	} else
777 		rc = KERN_FAILURE;
778 
779 	SMMU_PMAP_UNLOCK(pmap);
780 
781 	return (rc);
782 }
783 
784 /*
785  * Remove all the allocated L1, L2 pages from SMMU pmap.
786  * All the L3 entires must be cleared in advance, otherwise
787  * this function panics.
788  */
789 void
790 smmu_pmap_remove_pages(struct smmu_pmap *pmap)
791 {
792 	pd_entry_t l0e, *l1, l1e, *l2, l2e;
793 	pt_entry_t *l3, l3e;
794 	vm_page_t m, m0, m1;
795 	vm_paddr_t pa;
796 	vm_paddr_t pa0;
797 	vm_paddr_t pa1;
798 	int i, j, k, l;
799 
800 	SMMU_PMAP_LOCK(pmap);
801 
802 	for (i = 0; i < IOMMU_L0_ENTRIES; i++) {
803 		l0e = pmap->sp_l0[i];
804 		if ((l0e & ATTR_DESCR_VALID) == 0) {
805 			continue;
806 		}
807 		pa0 = l0e & ~ATTR_MASK;
808 		m0 = PHYS_TO_VM_PAGE(pa0);
809 		l1 = (pd_entry_t *)PHYS_TO_DMAP(pa0);
810 
811 		for (j = 0; j < IOMMU_Ln_ENTRIES; j++) {
812 			l1e = l1[j];
813 			if ((l1e & ATTR_DESCR_VALID) == 0) {
814 				continue;
815 			}
816 			if ((l1e & ATTR_DESCR_MASK) == IOMMU_L1_BLOCK) {
817 				continue;
818 			}
819 			pa1 = l1e & ~ATTR_MASK;
820 			m1 = PHYS_TO_VM_PAGE(pa1);
821 			l2 = (pd_entry_t *)PHYS_TO_DMAP(pa1);
822 
823 			for (k = 0; k < IOMMU_Ln_ENTRIES; k++) {
824 				l2e = l2[k];
825 				if ((l2e & ATTR_DESCR_VALID) == 0) {
826 					continue;
827 				}
828 				pa = l2e & ~ATTR_MASK;
829 				m = PHYS_TO_VM_PAGE(pa);
830 				l3 = (pt_entry_t *)PHYS_TO_DMAP(pa);
831 
832 				for (l = 0; l < IOMMU_Ln_ENTRIES; l++) {
833 					l3e = l3[l];
834 					if ((l3e & ATTR_DESCR_VALID) == 0)
835 						continue;
836 					panic(
837 					  "%s: l3e found (indexes %d %d %d %d)",
838 					    __func__, i, j, k, l);
839 				}
840 
841 				vm_page_unwire_noq(m1);
842 				vm_page_unwire_noq(m);
843 				smmu_pmap_resident_count_dec(pmap, 1);
844 				vm_page_free(m);
845 				smmu_pmap_clear(&l2[k]);
846 			}
847 
848 			vm_page_unwire_noq(m0);
849 			smmu_pmap_resident_count_dec(pmap, 1);
850 			vm_page_free(m1);
851 			smmu_pmap_clear(&l1[j]);
852 		}
853 
854 		smmu_pmap_resident_count_dec(pmap, 1);
855 		vm_page_free(m0);
856 		smmu_pmap_clear(&pmap->sp_l0[i]);
857 	}
858 
859 	KASSERT(pmap->sp_resident_count == 0,
860 	    ("Invalid resident count %jd", pmap->sp_resident_count));
861 
862 	SMMU_PMAP_UNLOCK(pmap);
863 }
864