1 /*- 2 * Copyright (c) 1990 The Regents of the University of California. 3 * All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * William Jolitz. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * from: FreeBSD: src/sys/i386/include/vmparam.h,v 1.33 2000/03/30 34 */ 35 36 #ifdef __arm__ 37 #include <arm/vmparam.h> 38 #else /* !__arm__ */ 39 40 #ifndef _MACHINE_VMPARAM_H_ 41 #define _MACHINE_VMPARAM_H_ 42 43 /* 44 * Virtual memory related constants, all in bytes 45 */ 46 #ifndef MAXTSIZ 47 #define MAXTSIZ (1*1024*1024*1024) /* max text size */ 48 #endif 49 #ifndef DFLDSIZ 50 #define DFLDSIZ (128*1024*1024) /* initial data size limit */ 51 #endif 52 #ifndef MAXDSIZ 53 #define MAXDSIZ (1*1024*1024*1024) /* max data size */ 54 #endif 55 #ifndef DFLSSIZ 56 #define DFLSSIZ (128*1024*1024) /* initial stack size limit */ 57 #endif 58 #ifndef MAXSSIZ 59 #define MAXSSIZ (1*1024*1024*1024) /* max stack size */ 60 #endif 61 #ifndef SGROWSIZ 62 #define SGROWSIZ (128*1024) /* amount to grow stack */ 63 #endif 64 65 /* 66 * The physical address space is sparsely populated. 67 */ 68 #define VM_PHYSSEG_SPARSE 69 70 /* 71 * The number of PHYSSEG entries. 72 */ 73 #define VM_PHYSSEG_MAX 64 74 75 /* 76 * Create three free page pools: VM_FREEPOOL_DEFAULT is the default pool from 77 * which physical pages are allocated and VM_FREEPOOL_DIRECT is the pool from 78 * which physical pages for page tables and small UMA objects are allocated. 79 * VM_FREEPOOL_LAZYINIT is a special-purpose pool that is populated only during 80 * boot and is used to implement deferred initialization of page structures. 81 */ 82 #define VM_NFREEPOOL 3 83 #define VM_FREEPOOL_LAZYINIT 0 84 #define VM_FREEPOOL_DEFAULT 1 85 #define VM_FREEPOOL_DIRECT 2 86 87 /* 88 * Create two free page lists: VM_FREELIST_DMA32 is for physical pages that have 89 * physical addresses below 4G, and VM_FREELIST_DEFAULT is for all other 90 * physical pages. 91 */ 92 #define VM_NFREELIST 2 93 #define VM_FREELIST_DEFAULT 0 94 #define VM_FREELIST_DMA32 1 95 96 /* 97 * When PAGE_SIZE is 4KB, an allocation size of 16MB is supported in order 98 * to optimize the use of the direct map by UMA. Specifically, a 64-byte 99 * cache line contains at most 8 L2 BLOCK entries, collectively mapping 16MB 100 * of physical memory. By reducing the number of distinct 16MB "pages" that 101 * are used by UMA, the physical memory allocator reduces the likelihood of 102 * both 2MB page TLB misses and cache misses during the page table walk when 103 * a 2MB page TLB miss does occur. 104 * 105 * When PAGE_SIZE is 16KB, an allocation size of 32MB is supported. This 106 * size is used by level 0 reservations and L2 BLOCK mappings. 107 */ 108 #if PAGE_SIZE == PAGE_SIZE_4K 109 #define VM_NFREEORDER 13 110 #elif PAGE_SIZE == PAGE_SIZE_16K 111 #define VM_NFREEORDER 12 112 #else 113 #error Unsupported page size 114 #endif 115 116 /* 117 * Enable superpage reservations: 2 levels. 118 */ 119 #ifndef VM_NRESERVLEVEL 120 #define VM_NRESERVLEVEL 2 121 #endif 122 123 /* 124 * Level 0 reservations consist of 16 pages when PAGE_SIZE is 4KB, and 128 125 * pages when PAGE_SIZE is 16KB. Level 1 reservations consist of 32 64KB 126 * pages when PAGE_SIZE is 4KB, and 16 2M pages when PAGE_SIZE is 16KB. 127 */ 128 #if PAGE_SIZE == PAGE_SIZE_4K 129 #ifndef VM_LEVEL_0_ORDER 130 #define VM_LEVEL_0_ORDER 4 131 #endif 132 #ifndef VM_LEVEL_1_ORDER 133 #define VM_LEVEL_1_ORDER 5 134 #endif 135 #elif PAGE_SIZE == PAGE_SIZE_16K 136 #ifndef VM_LEVEL_0_ORDER 137 #define VM_LEVEL_0_ORDER 7 138 #endif 139 #ifndef VM_LEVEL_1_ORDER 140 #define VM_LEVEL_1_ORDER 4 141 #endif 142 #else 143 #error Unsupported page size 144 #endif 145 146 /** 147 * Address space layout. 148 * 149 * ARMv8 implements up to a 48 bit virtual address space. The address space is 150 * split into 2 regions at each end of the 64 bit address space, with an 151 * out of range "hole" in the middle. 152 * 153 * We use the full 48 bits for each region, however the kernel may only use 154 * a limited range within this space. 155 * 156 * Upper region: 0xffffffffffffffff Top of virtual memory 157 * 158 * 0xfffffeffffffffff End of DMAP 159 * 0xffffa00000000000 Start of DMAP 160 * 161 * 0xffff027fffffffff End of KMSAN origin map 162 * 0xffff020000000000 Start of KMSAN origin map 163 * 164 * 0xffff017fffffffff End of KMSAN shadow map 165 * 0xffff010000000000 Start of KMSAN shadow map 166 * 167 * 0xffff009fffffffff End of KASAN shadow map 168 * 0xffff008000000000 Start of KASAN shadow map 169 * 170 * 0xffff007fffffffff End of KVA 171 * 0xffff000000000000 Kernel base address & start of KVA 172 * 173 * Hole: 0xfffeffffffffffff 174 * 0x0001000000000000 175 * 176 * Lower region: 0x0000ffffffffffff End of user address space 177 * 0x0000000000000000 Start of user address space 178 * 179 * We use the upper region for the kernel, and the lower region for userland. 180 * 181 * We define some interesting address constants: 182 * 183 * VM_MIN_ADDRESS and VM_MAX_ADDRESS define the start and end of the entire 184 * 64 bit address space, mostly just for convenience. 185 * 186 * VM_MIN_KERNEL_ADDRESS and VM_MAX_KERNEL_ADDRESS define the start and end of 187 * mappable kernel virtual address space. 188 * 189 * VM_MIN_USER_ADDRESS and VM_MAX_USER_ADDRESS define the start and end of the 190 * user address space. 191 */ 192 #define VM_MIN_ADDRESS (0x0000000000000000UL) 193 #define VM_MAX_ADDRESS (0xffffffffffffffffUL) 194 195 /* 512 GiB of kernel addresses */ 196 #define VM_MIN_KERNEL_ADDRESS (0xffff000000000000UL) 197 #define VM_MAX_KERNEL_ADDRESS (0xffff008000000000UL) 198 199 /* 128 GiB KASAN shadow map */ 200 #define KASAN_MIN_ADDRESS (0xffff008000000000UL) 201 #define KASAN_MAX_ADDRESS (0xffff00a000000000UL) 202 203 /* 512GiB KMSAN shadow map */ 204 #define KMSAN_SHAD_MIN_ADDRESS (0xffff010000000000UL) 205 #define KMSAN_SHAD_MAX_ADDRESS (0xffff018000000000UL) 206 207 /* 512GiB KMSAN origin map */ 208 #define KMSAN_ORIG_MIN_ADDRESS (0xffff020000000000UL) 209 #define KMSAN_ORIG_MAX_ADDRESS (0xffff028000000000UL) 210 211 /* The address bits that hold a pointer authentication code */ 212 #define PAC_ADDR_MASK (0xff7f000000000000UL) 213 214 /* The top-byte ignore address bits */ 215 #define TBI_ADDR_MASK 0xff00000000000000UL 216 217 /* If true addr is in the kernel address space */ 218 #define ADDR_IS_KERNEL(addr) (((addr) & (1ul << 55)) == (1ul << 55)) 219 /* If true addr is in the user address space */ 220 #define ADDR_IS_USER(addr) (((addr) & (1ul << 55)) == 0) 221 /* If true addr is in its canonical form (i.e. no TBI, PAC, etc.) */ 222 #define ADDR_IS_CANONICAL(addr) \ 223 (((addr) & 0xffff000000000000UL) == 0 || \ 224 ((addr) & 0xffff000000000000UL) == 0xffff000000000000UL) 225 #define ADDR_MAKE_CANONICAL(addr) ({ \ 226 __typeof(addr) _tmp_addr = (addr); \ 227 \ 228 _tmp_addr &= ~0xffff000000000000UL; \ 229 if (ADDR_IS_KERNEL(addr)) \ 230 _tmp_addr |= 0xffff000000000000UL; \ 231 \ 232 _tmp_addr; \ 233 }) 234 235 /* 95 TiB maximum for the direct map region */ 236 #define DMAP_MIN_ADDRESS (0xffffa00000000000UL) 237 #define DMAP_MAX_ADDRESS (0xffffff0000000000UL) 238 239 #define DMAP_MIN_PHYSADDR (dmap_phys_base) 240 #define DMAP_MAX_PHYSADDR (dmap_phys_max) 241 242 /* 243 * Checks to see if a physical address is in the DMAP range. 244 * - PHYS_IN_DMAP_RANGE will return true that may be within the DMAP range 245 * but not accessible through the DMAP, e.g. device memory between two 246 * DMAP physical address regions. 247 * - PHYS_IN_DMAP will check if DMAP address is mapped before returning true. 248 * 249 * PHYS_IN_DMAP_RANGE should only be used when a check on the address is 250 * performed, e.g. by checking the physical address is within phys_avail, 251 * or checking the virtual address is mapped. 252 */ 253 #define PHYS_IN_DMAP_RANGE(pa) ((pa) >= DMAP_MIN_PHYSADDR && \ 254 (pa) < DMAP_MAX_PHYSADDR) 255 #define PHYS_IN_DMAP(pa) (PHYS_IN_DMAP_RANGE(pa) && \ 256 pmap_klookup(PHYS_TO_DMAP(pa), NULL)) 257 /* True if va is in the dmap range */ 258 #define VIRT_IN_DMAP(va) ((va) >= DMAP_MIN_ADDRESS && \ 259 (va) < (dmap_max_addr)) 260 261 #define PMAP_HAS_DMAP 1 262 #define PHYS_TO_DMAP(pa) \ 263 ({ \ 264 KASSERT(PHYS_IN_DMAP_RANGE(pa), \ 265 ("%s: PA out of range, PA: 0x%lx", __func__, \ 266 (vm_paddr_t)(pa))); \ 267 ((pa) - dmap_phys_base) + DMAP_MIN_ADDRESS; \ 268 }) 269 270 #define DMAP_TO_PHYS(va) \ 271 ({ \ 272 KASSERT(VIRT_IN_DMAP(va), \ 273 ("%s: VA out of range, VA: 0x%lx", __func__, \ 274 (vm_offset_t)(va))); \ 275 ((va) - DMAP_MIN_ADDRESS) + dmap_phys_base; \ 276 }) 277 278 #define VM_MIN_USER_ADDRESS (0x0000000000000000UL) 279 #define VM_MAX_USER_ADDRESS (0x0001000000000000UL) 280 281 #define VM_MINUSER_ADDRESS (VM_MIN_USER_ADDRESS) 282 #define VM_MAXUSER_ADDRESS (VM_MAX_USER_ADDRESS) 283 284 #define KERNBASE (VM_MIN_KERNEL_ADDRESS) 285 #define SHAREDPAGE (VM_MAXUSER_ADDRESS - PAGE_SIZE) 286 #define USRSTACK SHAREDPAGE 287 288 /* 289 * How many physical pages per kmem arena virtual page. 290 */ 291 #ifndef VM_KMEM_SIZE_SCALE 292 #define VM_KMEM_SIZE_SCALE (1) 293 #endif 294 295 /* 296 * Optional ceiling (in bytes) on the size of the kmem arena: 60% of the 297 * kernel map. 298 */ 299 #ifndef VM_KMEM_SIZE_MAX 300 #define VM_KMEM_SIZE_MAX ((VM_MAX_KERNEL_ADDRESS - \ 301 VM_MIN_KERNEL_ADDRESS + 1) * 3 / 5) 302 #endif 303 304 /* 305 * Initial pagein size of beginning of executable file. 306 */ 307 #ifndef VM_INITIAL_PAGEIN 308 #define VM_INITIAL_PAGEIN 16 309 #endif 310 311 #if !defined(KASAN) && !defined(KMSAN) 312 #define UMA_USE_DMAP 313 #endif 314 315 #ifndef LOCORE 316 317 extern vm_paddr_t dmap_phys_base; 318 extern vm_paddr_t dmap_phys_max; 319 extern vm_offset_t dmap_max_addr; 320 321 #endif 322 323 #define ZERO_REGION_SIZE (64 * 1024) /* 64KB */ 324 325 #define DEVMAP_MAX_VADDR VM_MAX_KERNEL_ADDRESS 326 327 /* 328 * The pmap can create non-transparent large page mappings. 329 */ 330 #define PMAP_HAS_LARGEPAGES 1 331 332 /* 333 * Need a page dump array for minidump. 334 */ 335 #define MINIDUMP_PAGE_TRACKING 1 336 #define MINIDUMP_STARTUP_PAGE_TRACKING 1 337 338 #endif /* !_MACHINE_VMPARAM_H_ */ 339 340 #endif /* !__arm__ */ 341