xref: /freebsd/sys/arm/ti/ti_machdep.c (revision 7cd2dcf07629713e5a3d60472cfe4701b705a167)
1 /*-
2  * Copyright (c) 1994-1998 Mark Brinicombe.
3  * Copyright (c) 1994 Brini.
4  * All rights reserved.
5  *
6  * This code is derived from software written for Brini by Mark Brinicombe
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by Brini.
19  * 4. The name of the company nor the name of the author may be used to
20  *    endorse or promote products derived from this software without specific
21  *    prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * from: FreeBSD: //depot/projects/arm/src/sys/arm/at91/kb920x_machdep.c, rev 45
36  */
37 
38 #include "opt_ddb.h"
39 #include "opt_platform.h"
40 #include "opt_global.h"
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #define _ARM32_BUS_DMA_PRIVATE
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/sysproto.h>
49 #include <sys/signalvar.h>
50 #include <sys/imgact.h>
51 #include <sys/kernel.h>
52 #include <sys/ktr.h>
53 #include <sys/linker.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/mutex.h>
57 #include <sys/pcpu.h>
58 #include <sys/proc.h>
59 #include <sys/ptrace.h>
60 #include <sys/cons.h>
61 #include <sys/bio.h>
62 #include <sys/bus.h>
63 #include <sys/buf.h>
64 #include <sys/exec.h>
65 #include <sys/kdb.h>
66 #include <sys/msgbuf.h>
67 #include <machine/reg.h>
68 #include <machine/cpu.h>
69 #include <machine/fdt.h>
70 
71 #include <dev/fdt/fdt_common.h>
72 #include <dev/ofw/openfirm.h>
73 
74 #include <vm/vm.h>
75 #include <vm/pmap.h>
76 #include <vm/vm_object.h>
77 #include <vm/vm_page.h>
78 #include <vm/vm_pager.h>
79 #include <vm/vm_map.h>
80 #include <machine/pte.h>
81 #include <machine/pmap.h>
82 #include <machine/vmparam.h>
83 #include <machine/pcb.h>
84 #include <machine/undefined.h>
85 #include <machine/machdep.h>
86 #include <machine/metadata.h>
87 #include <machine/armreg.h>
88 #include <machine/bus.h>
89 #include <sys/reboot.h>
90 
91 #include <arm/ti/omap4/omap4_reg.h>
92 
93 #define  DEBUG
94 #ifdef  DEBUG
95 #define debugf(fmt, args...) printf(fmt, ##args)
96 #else
97 #define debugf(fmt, args...)
98 #endif
99 
100 /* Start of address space used for bootstrap map */
101 #define DEVMAP_BOOTSTRAP_MAP_START	0xE0000000
102 
103 /*
104  * This is the number of L2 page tables required for covering max
105  * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf,
106  * stacks etc.), uprounded to be divisible by 4.
107  */
108 #define KERNEL_PT_MAX	78
109 
110 extern unsigned char kernbase[];
111 extern unsigned char _etext[];
112 extern unsigned char _edata[];
113 extern unsigned char __bss_start[];
114 extern unsigned char _end[];
115 
116 #ifdef DDB
117 extern vm_offset_t ksym_start, ksym_end;
118 #endif
119 
120 extern u_int data_abort_handler_address;
121 extern u_int prefetch_abort_handler_address;
122 extern u_int undefined_handler_address;
123 
124 extern vm_offset_t pmap_bootstrap_lastaddr;
125 extern int *end;
126 
127 struct pv_addr kernel_pt_table[KERNEL_PT_MAX];
128 
129 /* Physical and virtual addresses for some global pages */
130 vm_paddr_t phys_avail[10];
131 vm_paddr_t dump_avail[4];
132 vm_offset_t physical_pages;
133 vm_offset_t pmap_bootstrap_lastaddr;
134 vm_paddr_t pmap_pa;
135 
136 const struct pmap_devmap *pmap_devmap_bootstrap_table;
137 struct pv_addr systempage;
138 struct pv_addr msgbufpv;
139 struct pv_addr irqstack;
140 struct pv_addr undstack;
141 struct pv_addr abtstack;
142 struct pv_addr kernelstack;
143 
144 static struct mem_region availmem_regions[FDT_MEM_REGIONS];
145 static int availmem_regions_sz;
146 
147 static void print_kenv(void);
148 static void print_kernel_section_addr(void);
149 
150 static void physmap_init(void);
151 static int platform_devmap_init(void);
152 void (*ti_cpu_reset)(void);
153 
154 static char *
155 kenv_next(char *cp)
156 {
157 
158 	if (cp != NULL) {
159 		while (*cp != 0)
160 			cp++;
161 		cp++;
162 		if (*cp == 0)
163 			cp = NULL;
164 	}
165 	return (cp);
166 }
167 
168 static void
169 print_kenv(void)
170 {
171 	int len;
172 	char *cp;
173 
174 	debugf("loader passed (static) kenv:\n");
175 	if (kern_envp == NULL) {
176 		debugf(" no env, null ptr\n");
177 		return;
178 	}
179 	debugf(" kern_envp = 0x%08x\n", (uint32_t)kern_envp);
180 
181 	len = 0;
182 	for (cp = kern_envp; cp != NULL; cp = kenv_next(cp))
183 		debugf(" %x %s\n", (uint32_t)cp, cp);
184 }
185 
186 static void
187 print_kernel_section_addr(void)
188 {
189 
190 	debugf("kernel image addresses:\n");
191 	debugf(" kernbase       = 0x%08x\n", (uint32_t)kernbase);
192 	debugf(" _etext (sdata) = 0x%08x\n", (uint32_t)_etext);
193 	debugf(" _edata         = 0x%08x\n", (uint32_t)_edata);
194 	debugf(" __bss_start    = 0x%08x\n", (uint32_t)__bss_start);
195 	debugf(" _end           = 0x%08x\n", (uint32_t)_end);
196 }
197 
198 static void
199 physmap_init(void)
200 {
201 	int i, j, cnt;
202 	vm_offset_t phys_kernelend, kernload;
203 	uint32_t s, e, sz;
204 	struct mem_region *mp, *mp1;
205 
206 	phys_kernelend = KERNPHYSADDR + (virtual_avail - KERNVIRTADDR);
207 	kernload = KERNPHYSADDR;
208 
209 	/*
210 	 * Remove kernel physical address range from avail
211 	 * regions list. Page align all regions.
212 	 * Non-page aligned memory isn't very interesting to us.
213 	 * Also, sort the entries for ascending addresses.
214 	 */
215 	sz = 0;
216 	cnt = availmem_regions_sz;
217 	debugf("processing avail regions:\n");
218 	for (mp = availmem_regions; mp->mr_size; mp++) {
219 		s = mp->mr_start;
220 		e = mp->mr_start + mp->mr_size;
221 		debugf(" %08x-%08x -> ", s, e);
222 		/* Check whether this region holds all of the kernel. */
223 		if (s < kernload && e > phys_kernelend) {
224 			availmem_regions[cnt].mr_start = phys_kernelend;
225 			availmem_regions[cnt++].mr_size = e - phys_kernelend;
226 			e = kernload;
227 		}
228 		/* Look whether this regions starts within the kernel. */
229 		if (s >= kernload && s < phys_kernelend) {
230 			if (e <= phys_kernelend)
231 				goto empty;
232 			s = phys_kernelend;
233 		}
234 		/* Now look whether this region ends within the kernel. */
235 		if (e > kernload && e <= phys_kernelend) {
236 			if (s >= kernload) {
237 				goto empty;
238 			}
239 			e = kernload;
240 		}
241 		/* Now page align the start and size of the region. */
242 		s = round_page(s);
243 		e = trunc_page(e);
244 		if (e < s)
245 			e = s;
246 		sz = e - s;
247 		debugf("%08x-%08x = %x\n", s, e, sz);
248 
249 		/* Check whether some memory is left here. */
250 		if (sz == 0) {
251 		empty:
252 			printf("skipping\n");
253 			bcopy(mp + 1, mp,
254 			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
255 			cnt--;
256 			mp--;
257 			continue;
258 		}
259 
260 		/* Do an insertion sort. */
261 		for (mp1 = availmem_regions; mp1 < mp; mp1++)
262 			if (s < mp1->mr_start)
263 				break;
264 		if (mp1 < mp) {
265 			bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1);
266 			mp1->mr_start = s;
267 			mp1->mr_size = sz;
268 		} else {
269 			mp->mr_start = s;
270 			mp->mr_size = sz;
271 		}
272 	}
273 	availmem_regions_sz = cnt;
274 
275 	/* Fill in phys_avail table, based on availmem_regions */
276 	debugf("fill in phys_avail:\n");
277 	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
278 
279 		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
280 		    availmem_regions[i].mr_start,
281 		    availmem_regions[i].mr_start + availmem_regions[i].mr_size,
282 		    availmem_regions[i].mr_size);
283 
284 		/*
285 		 * We should not map the page at PA 0x0000000, the VM can't
286 		 * handle it, as pmap_extract() == 0 means failure.
287 		 */
288 		if (availmem_regions[i].mr_start > 0 ||
289 		    availmem_regions[i].mr_size > PAGE_SIZE) {
290 			phys_avail[j] = availmem_regions[i].mr_start;
291 			if (phys_avail[j] == 0)
292 				phys_avail[j] += PAGE_SIZE;
293 			phys_avail[j + 1] = availmem_regions[i].mr_start +
294 			    availmem_regions[i].mr_size;
295 		} else
296 			j -= 2;
297 	}
298 	phys_avail[j] = 0;
299 	phys_avail[j + 1] = 0;
300 }
301 
302 void *
303 initarm(struct arm_boot_params *abp)
304 {
305 	struct pv_addr kernel_l1pt;
306 	struct pv_addr dpcpu;
307 	vm_offset_t dtbp, freemempos, l2_start, lastaddr;
308 	uint32_t memsize, l2size;
309 	char *env;
310 	void *kmdp;
311 	u_int l1pagetable;
312 	int i = 0, j = 0, err_devmap = 0;
313 
314 	lastaddr = parse_boot_param(abp);
315 	memsize = 0;
316 	set_cpufuncs();
317 
318 	/*
319 	 * Find the dtb passed in by the boot loader.
320 	 */
321 	kmdp = preload_search_by_type("elf kernel");
322 	if (kmdp != NULL)
323 		dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
324 	else
325 		dtbp = (vm_offset_t)NULL;
326 
327 #if defined(FDT_DTB_STATIC)
328 	/*
329 	 * In case the device tree blob was not retrieved (from metadata) try
330 	 * to use the statically embedded one.
331 	 */
332 	if (dtbp == (vm_offset_t)NULL)
333 		dtbp = (vm_offset_t)&fdt_static_dtb;
334 #endif
335 
336 	if (OF_install(OFW_FDT, 0) == FALSE)
337 		while (1);
338 
339 	if (OF_init((void *)dtbp) != 0)
340 		while (1);
341 
342 	/* Grab physical memory regions information from device tree. */
343 	if (fdt_get_mem_regions(availmem_regions, &availmem_regions_sz,
344 	    &memsize) != 0)
345 		while(1);
346 
347 	/* Platform-specific initialisation */
348 	pmap_bootstrap_lastaddr = initarm_lastaddr();
349 
350 	pcpu0_init();
351 
352 	/* Calculate number of L2 tables needed for mapping vm_page_array */
353 	l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page);
354 	l2size = (l2size >> L1_S_SHIFT) + 1;
355 
356 	/*
357 	 * Add one table for end of kernel map, one for stacks, msgbuf and
358 	 * L1 and L2 tables map and one for vectors map.
359 	 */
360 	l2size += 3;
361 
362 	/* Make it divisible by 4 */
363 	l2size = (l2size + 3) & ~3;
364 
365 #define KERNEL_TEXT_BASE (KERNBASE)
366 	freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
367 
368 	/* Define a macro to simplify memory allocation */
369 #define valloc_pages(var, np)                   \
370 	alloc_pages((var).pv_va, (np));         \
371 	(var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR);
372 
373 #define alloc_pages(var, np)			\
374 	(var) = freemempos;		\
375 	freemempos += (np * PAGE_SIZE);		\
376 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
377 
378 	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
379 		freemempos += PAGE_SIZE;
380 	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
381 
382 	for (i = 0; i < l2size; ++i) {
383 		if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
384 			valloc_pages(kernel_pt_table[i],
385 			    L2_TABLE_SIZE / PAGE_SIZE);
386 			j = i;
387 		} else {
388 			kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va +
389 			    L2_TABLE_SIZE_REAL * (i - j);
390 			kernel_pt_table[i].pv_pa =
391 			    kernel_pt_table[i].pv_va - KERNVIRTADDR +
392 			    KERNPHYSADDR;
393 
394 		}
395 	}
396 	/*
397 	 * Allocate a page for the system page mapped to 0x00000000
398 	 * or 0xffff0000. This page will just contain the system vectors
399 	 * and can be shared by all processes.
400 	 */
401 	valloc_pages(systempage, 1);
402 
403 	/* Allocate dynamic per-cpu area. */
404 	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
405 	dpcpu_init((void *)dpcpu.pv_va, 0);
406 
407 	/* Allocate stacks for all modes */
408 	valloc_pages(irqstack, (IRQ_STACK_SIZE * MAXCPU));
409 	valloc_pages(abtstack, (ABT_STACK_SIZE * MAXCPU));
410 	valloc_pages(undstack, (UND_STACK_SIZE * MAXCPU));
411 	valloc_pages(kernelstack, (KSTACK_PAGES * MAXCPU));
412 
413 	init_param1();
414 
415 	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
416 
417 	/*
418 	 * Now we start construction of the L1 page table
419 	 * We start by mapping the L2 page tables into the L1.
420 	 * This means that we can replace L1 mappings later on if necessary
421 	 */
422 	l1pagetable = kernel_l1pt.pv_va;
423 
424 	/*
425 	 * Try to map as much as possible of kernel text and data using
426 	 * 1MB section mapping and for the rest of initial kernel address
427 	 * space use L2 coarse tables.
428 	 *
429 	 * Link L2 tables for mapping remainder of kernel (modulo 1MB)
430 	 * and kernel structures
431 	 */
432 	l2_start = lastaddr & ~(L1_S_OFFSET);
433 	for (i = 0 ; i < l2size - 1; i++)
434 		pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE,
435 		    &kernel_pt_table[i]);
436 
437 	pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE;
438 
439 	/* Map kernel code and data */
440 	pmap_map_chunk(l1pagetable, KERNVIRTADDR, KERNPHYSADDR,
441 	   (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK,
442 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
443 
444 
445 	/* Map L1 directory and allocated L2 page tables */
446 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
447 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
448 
449 	pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va,
450 	    kernel_pt_table[0].pv_pa,
451 	    L2_TABLE_SIZE_REAL * l2size,
452 	    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
453 
454 	/* Map allocated DPCPU, stacks and msgbuf */
455 	pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa,
456 	    freemempos - dpcpu.pv_va,
457 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
458 
459 	/* Link and map the vector page */
460 	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
461 	    &kernel_pt_table[l2size - 1]);
462 	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
463 	    VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
464 
465 	/* Map pmap_devmap[] entries */
466 	err_devmap = platform_devmap_init();
467 	pmap_devmap_bootstrap(l1pagetable, pmap_devmap_bootstrap_table);
468 
469 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
470 	    DOMAIN_CLIENT);
471 	pmap_pa = kernel_l1pt.pv_pa;
472 	setttb(kernel_l1pt.pv_pa);
473 	cpu_tlb_flushID();
474 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
475 
476 	/*
477 	 * Only after the SOC registers block is mapped we can perform device
478 	 * tree fixups, as they may attempt to read parameters from hardware.
479 	 */
480 	OF_interpret("perform-fixup", 0);
481 
482 	initarm_gpio_init();
483 
484 	cninit();
485 
486 	physmem = memsize / PAGE_SIZE;
487 
488 	debugf("initarm: console initialized\n");
489 	debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
490 	debugf(" boothowto = 0x%08x\n", boothowto);
491 	debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
492 	print_kernel_section_addr();
493 	print_kenv();
494 
495 	env = getenv("kernelname");
496 	if (env != NULL)
497 		strlcpy(kernelname, env, sizeof(kernelname));
498 
499 	if (err_devmap != 0)
500 		printf("WARNING: could not fully configure devmap, error=%d\n",
501 		    err_devmap);
502 
503 	initarm_late_init();
504 
505 	/*
506 	 * Pages were allocated during the secondary bootstrap for the
507 	 * stacks for different CPU modes.
508 	 * We must now set the r13 registers in the different CPU modes to
509 	 * point to these stacks.
510 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
511 	 * of the stack memory.
512 	 */
513 	cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
514 
515 	set_stackptrs(0);
516 
517 	/*
518 	 * We must now clean the cache again....
519 	 * Cleaning may be done by reading new data to displace any
520 	 * dirty data in the cache. This will have happened in setttb()
521 	 * but since we are boot strapping the addresses used for the read
522 	 * may have just been remapped and thus the cache could be out
523 	 * of sync. A re-clean after the switch will cure this.
524 	 * After booting there are no gross relocations of the kernel thus
525 	 * this problem will not occur after initarm().
526 	 */
527 	cpu_idcache_wbinv_all();
528 
529 	/* Set stack for exception handlers */
530 	data_abort_handler_address = (u_int)data_abort_handler;
531 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
532 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
533 	undefined_init();
534 
535 	init_proc0(kernelstack.pv_va);
536 
537 	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
538 	arm_dump_avail_init(memsize, sizeof(dump_avail) / sizeof(dump_avail[0]));
539 	pmap_bootstrap(freemempos, pmap_bootstrap_lastaddr, &kernel_l1pt);
540 	msgbufp = (void *)msgbufpv.pv_va;
541 	msgbufinit(msgbufp, msgbufsize);
542 	mutex_init();
543 
544 	/*
545 	 * Prepare map of physical memory regions available to vm subsystem.
546 	 */
547 	physmap_init();
548 
549 	/* Do basic tuning, hz etc */
550 	init_param2(physmem);
551 	kdb_init();
552 
553 	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
554 	    sizeof(struct pcb)));
555 }
556 
557 vm_offset_t
558 initarm_lastaddr(void)
559 {
560 
561 	ti_cpu_reset = NULL;
562 	return (DEVMAP_BOOTSTRAP_MAP_START - ARM_NOCACHE_KVA_SIZE);
563 }
564 
565 void
566 initarm_gpio_init(void)
567 {
568 }
569 
570 void
571 initarm_late_init(void)
572 {
573 }
574 
575 #define FDT_DEVMAP_MAX	(2)		// FIXME
576 static struct pmap_devmap fdt_devmap[FDT_DEVMAP_MAX] = {
577 	{ 0, 0, 0, 0, 0, }
578 };
579 
580 
581 /*
582  * Construct pmap_devmap[] with DT-derived config data.
583  */
584 static int
585 platform_devmap_init(void)
586 {
587 	int i = 0;
588 #if defined(SOC_OMAP4)
589 	fdt_devmap[i].pd_va = 0xE8000000;
590 	fdt_devmap[i].pd_pa = 0x48000000;
591 	fdt_devmap[i].pd_size = 0x1000000;
592 	fdt_devmap[i].pd_prot = VM_PROT_READ | VM_PROT_WRITE;
593 	fdt_devmap[i].pd_cache = PTE_DEVICE;
594 	i++;
595 #elif defined(SOC_TI_AM335X)
596 	fdt_devmap[i].pd_va = 0xE4C00000;
597 	fdt_devmap[i].pd_pa = 0x44C00000;       /* L4_WKUP */
598 	fdt_devmap[i].pd_size = 0x400000;       /* 4 MB */
599 	fdt_devmap[i].pd_prot = VM_PROT_READ | VM_PROT_WRITE;
600 	fdt_devmap[i].pd_cache = PTE_DEVICE;
601 	i++;
602 #else
603 #error "Unknown SoC"
604 #endif
605 
606 	pmap_devmap_bootstrap_table = &fdt_devmap[0];
607 	return (0);
608 }
609 
610 struct arm32_dma_range *
611 bus_dma_get_range(void)
612 {
613 
614 	return (NULL);
615 }
616 
617 int
618 bus_dma_get_range_nb(void)
619 {
620 
621 	return (0);
622 }
623 
624 void
625 cpu_reset()
626 {
627 	if (ti_cpu_reset)
628 		(*ti_cpu_reset)();
629 	else
630 		printf("no cpu_reset implementation\n");
631 	printf("Reset failed!\n");
632 	while (1);
633 }
634 
635