xref: /freebsd/sys/arm/ti/cpsw/if_cpsw.c (revision fcb560670601b2a4d87bb31d7531c8dcc37ee71b)
1 /*-
2  * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * TI Common Platform Ethernet Switch (CPSW) Driver
29  * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
30  *
31  * This controller is documented in the AM335x Technical Reference
32  * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
33  * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
34  *
35  * It is basically a single Ethernet port (port 0) wired internally to
36  * a 3-port store-and-forward switch connected to two independent
37  * "sliver" controllers (port 1 and port 2).  You can operate the
38  * controller in a variety of different ways by suitably configuring
39  * the slivers and the Address Lookup Engine (ALE) that routes packets
40  * between the ports.
41  *
42  * This code was developed and tested on a BeagleBone with
43  * an AM335x SoC.
44  */
45 
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/endian.h>
52 #include <sys/mbuf.h>
53 #include <sys/lock.h>
54 #include <sys/mutex.h>
55 #include <sys/kernel.h>
56 #include <sys/module.h>
57 #include <sys/socket.h>
58 #include <sys/sysctl.h>
59 
60 #include <net/ethernet.h>
61 #include <net/bpf.h>
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_types.h>
67 #include <net/if_var.h>
68 #include <net/if_vlan_var.h>
69 
70 #include <netinet/in_systm.h>
71 #include <netinet/in.h>
72 #include <netinet/ip.h>
73 
74 #include <sys/sockio.h>
75 #include <sys/bus.h>
76 #include <machine/bus.h>
77 #include <sys/rman.h>
78 #include <machine/resource.h>
79 
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82 
83 #include <dev/fdt/fdt_common.h>
84 #include <dev/ofw/ofw_bus.h>
85 #include <dev/ofw/ofw_bus_subr.h>
86 
87 #include "if_cpswreg.h"
88 #include "if_cpswvar.h"
89 
90 #include <arm/ti/ti_scm.h>
91 
92 #include "miibus_if.h"
93 
94 /* Device probe/attach/detach. */
95 static int cpsw_probe(device_t);
96 static void cpsw_init_slots(struct cpsw_softc *);
97 static int cpsw_attach(device_t);
98 static void cpsw_free_slot(struct cpsw_softc *, struct cpsw_slot *);
99 static int cpsw_detach(device_t);
100 
101 /* Device Init/shutdown. */
102 static void cpsw_init(void *);
103 static void cpsw_init_locked(void *);
104 static int cpsw_shutdown(device_t);
105 static void cpsw_shutdown_locked(struct cpsw_softc *);
106 
107 /* Device Suspend/Resume. */
108 static int cpsw_suspend(device_t);
109 static int cpsw_resume(device_t);
110 
111 /* Ioctl. */
112 static int cpsw_ioctl(struct ifnet *, u_long command, caddr_t data);
113 
114 static int cpsw_miibus_readreg(device_t, int phy, int reg);
115 static int cpsw_miibus_writereg(device_t, int phy, int reg, int value);
116 
117 /* Send/Receive packets. */
118 static void cpsw_intr_rx(void *arg);
119 static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
120 static void cpsw_rx_enqueue(struct cpsw_softc *);
121 static void cpsw_start(struct ifnet *);
122 static void cpsw_tx_enqueue(struct cpsw_softc *);
123 static int cpsw_tx_dequeue(struct cpsw_softc *);
124 
125 /* Misc interrupts and watchdog. */
126 static void cpsw_intr_rx_thresh(void *);
127 static void cpsw_intr_misc(void *);
128 static void cpsw_tick(void *);
129 static void cpsw_ifmedia_sts(struct ifnet *, struct ifmediareq *);
130 static int cpsw_ifmedia_upd(struct ifnet *);
131 static void cpsw_tx_watchdog(struct cpsw_softc *);
132 
133 /* ALE support */
134 static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t idx, uint32_t *ale_entry);
135 static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t idx, uint32_t *ale_entry);
136 static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t portmap, uint8_t *mac);
137 static int cpsw_ale_update_addresses(struct cpsw_softc *, int purge);
138 static void cpsw_ale_dump_table(struct cpsw_softc *);
139 
140 /* Statistics and sysctls. */
141 static void cpsw_add_sysctls(struct cpsw_softc *);
142 static void cpsw_stats_collect(struct cpsw_softc *);
143 static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
144 
145 /*
146  * Arbitrary limit on number of segments in an mbuf to be transmitted.
147  * Packets with more segments than this will be defragmented before
148  * they are queued.
149  */
150 #define CPSW_TXFRAGS 8
151 
152 
153 /*
154  * TODO: The CPSW subsystem (CPSW_SS) can drive two independent PHYs
155  * as separate Ethernet ports.  To properly support this, we should
156  * break this into two separate devices: a CPSW_SS device that owns
157  * the interrupts and actually talks to the CPSW hardware, and a
158  * separate CPSW Ethernet child device for each Ethernet port.  The RX
159  * interrupt, for example, would be part of CPSW_SS; it would receive
160  * a packet, note the input port, and then dispatch it to the child
161  * device's interface queue.  Similarly for transmit.
162  *
163  * It's not clear to me whether the device tree should be restructured
164  * with a cpsw_ss node and two child nodes.  That would allow specifying
165  * MAC addresses for each port, for example, but might be overkill.
166  *
167  * Unfortunately, I don't have hardware right now that supports two
168  * Ethernet ports via CPSW.
169  */
170 
171 static device_method_t cpsw_methods[] = {
172 	/* Device interface */
173 	DEVMETHOD(device_probe,		cpsw_probe),
174 	DEVMETHOD(device_attach,	cpsw_attach),
175 	DEVMETHOD(device_detach,	cpsw_detach),
176 	DEVMETHOD(device_shutdown,	cpsw_shutdown),
177 	DEVMETHOD(device_suspend,	cpsw_suspend),
178 	DEVMETHOD(device_resume,	cpsw_resume),
179 	/* MII interface */
180 	DEVMETHOD(miibus_readreg,	cpsw_miibus_readreg),
181 	DEVMETHOD(miibus_writereg,	cpsw_miibus_writereg),
182 	{ 0, 0 }
183 };
184 
185 static driver_t cpsw_driver = {
186 	"cpsw",
187 	cpsw_methods,
188 	sizeof(struct cpsw_softc),
189 };
190 
191 static devclass_t cpsw_devclass;
192 
193 DRIVER_MODULE(cpsw, simplebus, cpsw_driver, cpsw_devclass, 0, 0);
194 DRIVER_MODULE(miibus, cpsw, miibus_driver, miibus_devclass, 0, 0);
195 MODULE_DEPEND(cpsw, ether, 1, 1, 1);
196 MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
197 
198 static struct resource_spec res_spec[] = {
199 	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
200 	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
201 	{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
202 	{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
203 	{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
204 	{ -1, 0 }
205 };
206 
207 /* Number of entries here must match size of stats
208  * array in struct cpsw_softc. */
209 static struct cpsw_stat {
210 	int	reg;
211 	char *oid;
212 } cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
213 	{0x00, "GoodRxFrames"},
214 	{0x04, "BroadcastRxFrames"},
215 	{0x08, "MulticastRxFrames"},
216 	{0x0C, "PauseRxFrames"},
217 	{0x10, "RxCrcErrors"},
218 	{0x14, "RxAlignErrors"},
219 	{0x18, "OversizeRxFrames"},
220 	{0x1c, "RxJabbers"},
221 	{0x20, "ShortRxFrames"},
222 	{0x24, "RxFragments"},
223 	{0x30, "RxOctets"},
224 	{0x34, "GoodTxFrames"},
225 	{0x38, "BroadcastTxFrames"},
226 	{0x3c, "MulticastTxFrames"},
227 	{0x40, "PauseTxFrames"},
228 	{0x44, "DeferredTxFrames"},
229 	{0x48, "CollisionsTxFrames"},
230 	{0x4c, "SingleCollisionTxFrames"},
231 	{0x50, "MultipleCollisionTxFrames"},
232 	{0x54, "ExcessiveCollisions"},
233 	{0x58, "LateCollisions"},
234 	{0x5c, "TxUnderrun"},
235 	{0x60, "CarrierSenseErrors"},
236 	{0x64, "TxOctets"},
237 	{0x68, "RxTx64OctetFrames"},
238 	{0x6c, "RxTx65to127OctetFrames"},
239 	{0x70, "RxTx128to255OctetFrames"},
240 	{0x74, "RxTx256to511OctetFrames"},
241 	{0x78, "RxTx512to1024OctetFrames"},
242 	{0x7c, "RxTx1024upOctetFrames"},
243 	{0x80, "NetOctets"},
244 	{0x84, "RxStartOfFrameOverruns"},
245 	{0x88, "RxMiddleOfFrameOverruns"},
246 	{0x8c, "RxDmaOverruns"}
247 };
248 
249 /*
250  * Basic debug support.
251  */
252 
253 #define IF_DEBUG(sc)  if (sc->cpsw_if_flags & IFF_DEBUG)
254 
255 static void
256 cpsw_debugf_head(const char *funcname)
257 {
258 	int t = (int)(time_second % (24 * 60 * 60));
259 
260 	printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
261 }
262 
263 #include <machine/stdarg.h>
264 static void
265 cpsw_debugf(const char *fmt, ...)
266 {
267 	va_list ap;
268 
269 	va_start(ap, fmt);
270 	vprintf(fmt, ap);
271 	va_end(ap);
272 	printf("\n");
273 
274 }
275 
276 #define CPSW_DEBUGF(a) do {					\
277 	IF_DEBUG(sc) {						\
278 		cpsw_debugf_head(__func__);			\
279 		cpsw_debugf a;					\
280 	}							\
281 } while (0)
282 
283 
284 /*
285  * Locking macros
286  */
287 #define CPSW_TX_LOCK(sc) do {					\
288 		mtx_assert(&(sc)->rx.lock, MA_NOTOWNED);		\
289 		mtx_lock(&(sc)->tx.lock);				\
290 } while (0)
291 
292 #define CPSW_TX_UNLOCK(sc)	mtx_unlock(&(sc)->tx.lock)
293 #define CPSW_TX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->tx.lock, MA_OWNED)
294 
295 #define CPSW_RX_LOCK(sc) do {					\
296 		mtx_assert(&(sc)->tx.lock, MA_NOTOWNED);		\
297 		mtx_lock(&(sc)->rx.lock);				\
298 } while (0)
299 
300 #define CPSW_RX_UNLOCK(sc)		mtx_unlock(&(sc)->rx.lock)
301 #define CPSW_RX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->rx.lock, MA_OWNED)
302 
303 #define CPSW_GLOBAL_LOCK(sc) do {					\
304 		if ((mtx_owned(&(sc)->tx.lock) ? 1 : 0) !=	\
305 		    (mtx_owned(&(sc)->rx.lock) ? 1 : 0)) {		\
306 			panic("cpsw deadlock possibility detection!");	\
307 		}							\
308 		mtx_lock(&(sc)->tx.lock);				\
309 		mtx_lock(&(sc)->rx.lock);				\
310 } while (0)
311 
312 #define CPSW_GLOBAL_UNLOCK(sc) do {					\
313 		CPSW_RX_UNLOCK(sc);				\
314 		CPSW_TX_UNLOCK(sc);				\
315 } while (0)
316 
317 #define CPSW_GLOBAL_LOCK_ASSERT(sc) do {				\
318 		CPSW_TX_LOCK_ASSERT(sc);				\
319 		CPSW_RX_LOCK_ASSERT(sc);				\
320 } while (0)
321 
322 /*
323  * Read/Write macros
324  */
325 #define	cpsw_read_4(sc, reg)		bus_read_4(sc->res[0], reg)
326 #define	cpsw_write_4(sc, reg, val)	bus_write_4(sc->res[0], reg, val)
327 
328 #define	cpsw_cpdma_bd_offset(i)	(CPSW_CPPI_RAM_OFFSET + ((i)*16))
329 
330 #define	cpsw_cpdma_bd_paddr(sc, slot)				\
331 	BUS_SPACE_PHYSADDR(sc->res[0], slot->bd_offset)
332 #define	cpsw_cpdma_read_bd(sc, slot, val)				\
333 	bus_read_region_4(sc->res[0], slot->bd_offset, (uint32_t *) val, 4)
334 #define	cpsw_cpdma_write_bd(sc, slot, val)				\
335 	bus_write_region_4(sc->res[0], slot->bd_offset, (uint32_t *) val, 4)
336 #define	cpsw_cpdma_write_bd_next(sc, slot, next_slot)			\
337 	cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
338 #define	cpsw_cpdma_read_bd_flags(sc, slot)		\
339 	bus_read_2(sc->res[0], slot->bd_offset + 14)
340 #define	cpsw_write_hdp_slot(sc, queue, slot)				\
341 	cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
342 #define	CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
343 #define	cpsw_read_cp(sc, queue)				\
344 	cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
345 #define	cpsw_write_cp(sc, queue, val)				\
346 	cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
347 #define	cpsw_write_cp_slot(sc, queue, slot)		\
348 	cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
349 
350 #if 0
351 /* XXX temporary function versions for debugging. */
352 static void
353 cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
354 {
355 	uint32_t reg = queue->hdp_offset;
356 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
357 	CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
358 	cpsw_write_4(sc, reg, v);
359 }
360 
361 static void
362 cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
363 {
364 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
365 	CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
366 	cpsw_write_cp(sc, queue, v);
367 }
368 #endif
369 
370 /*
371  * Expanded dump routines for verbose debugging.
372  */
373 static void
374 cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
375 {
376 	static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
377 	    "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
378 	    "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
379 	    "Port0"};
380 	struct cpsw_cpdma_bd bd;
381 	const char *sep;
382 	int i;
383 
384 	cpsw_cpdma_read_bd(sc, slot, &bd);
385 	printf("BD Addr: 0x%08x   Next: 0x%08x\n", cpsw_cpdma_bd_paddr(sc, slot), bd.next);
386 	printf("  BufPtr: 0x%08x   BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
387 	printf("  BufOff: 0x%08x   PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
388 	printf("  Flags: ");
389 	sep = "";
390 	for (i = 0; i < 16; ++i) {
391 		if (bd.flags & (1 << (15 - i))) {
392 			printf("%s%s", sep, flags[i]);
393 			sep = ",";
394 		}
395 	}
396 	printf("\n");
397 	if (slot->mbuf) {
398 		printf("  Ether:  %14D\n",
399 		    (char *)(slot->mbuf->m_data), " ");
400 		printf("  Packet: %16D\n",
401 		    (char *)(slot->mbuf->m_data) + 14, " ");
402 	}
403 }
404 
405 #define CPSW_DUMP_SLOT(cs, slot) do {				\
406 	IF_DEBUG(sc) {						\
407 		cpsw_dump_slot(sc, slot);			\
408 	}							\
409 } while (0)
410 
411 
412 static void
413 cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
414 {
415 	struct cpsw_slot *slot;
416 	int i = 0;
417 	int others = 0;
418 
419 	STAILQ_FOREACH(slot, q, next) {
420 		if (i > 4)
421 			++others;
422 		else
423 			cpsw_dump_slot(sc, slot);
424 		++i;
425 	}
426 	if (others)
427 		printf(" ... and %d more.\n", others);
428 	printf("\n");
429 }
430 
431 #define CPSW_DUMP_QUEUE(sc, q) do {				\
432 	IF_DEBUG(sc) {						\
433 		cpsw_dump_queue(sc, q);				\
434 	}							\
435 } while (0)
436 
437 
438 /*
439  *
440  * Device Probe, Attach, Detach.
441  *
442  */
443 
444 static int
445 cpsw_probe(device_t dev)
446 {
447 
448 	if (!ofw_bus_status_okay(dev))
449 		return (ENXIO);
450 
451 	if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
452 		return (ENXIO);
453 
454 	device_set_desc(dev, "3-port Switch Ethernet Subsystem");
455 	return (BUS_PROBE_DEFAULT);
456 }
457 
458 
459 static void
460 cpsw_init_slots(struct cpsw_softc *sc)
461 {
462 	struct cpsw_slot *slot;
463 	int i;
464 
465 	STAILQ_INIT(&sc->avail);
466 
467 	/* Put the slot descriptors onto the global avail list. */
468 	for (i = 0; i < sizeof(sc->_slots) / sizeof(sc->_slots[0]); i++) {
469 		slot = &sc->_slots[i];
470 		slot->bd_offset = cpsw_cpdma_bd_offset(i);
471 		STAILQ_INSERT_TAIL(&sc->avail, slot, next);
472 	}
473 }
474 
475 /*
476  * bind an interrupt, add the relevant info to sc->interrupts
477  */
478 static int
479 cpsw_attach_interrupt(struct cpsw_softc *sc, struct resource *res, driver_intr_t *handler, const char *description)
480 {
481 	void **pcookie;
482 	int error;
483 
484 	sc->interrupts[sc->interrupt_count].res = res;
485 	sc->interrupts[sc->interrupt_count].description = description;
486 	pcookie = &sc->interrupts[sc->interrupt_count].ih_cookie;
487 
488 	error = bus_setup_intr(sc->dev, res, INTR_TYPE_NET | INTR_MPSAFE,
489 	    NULL, *handler, sc, pcookie);
490 	if (error)
491 		device_printf(sc->dev,
492 		    "could not setup %s\n", description);
493 	else
494 		++sc->interrupt_count;
495 	return (error);
496 }
497 
498 /*
499  * teardown everything in sc->interrupts.
500  */
501 static void
502 cpsw_detach_interrupts(struct cpsw_softc *sc)
503 {
504 	int error;
505 	int i;
506 
507 	for (i = 0; i < sizeof(sc->interrupts) / sizeof(sc->interrupts[0]); ++i) {
508 		if (!sc->interrupts[i].ih_cookie)
509 			continue;
510 		error = bus_teardown_intr(sc->dev,
511 		    sc->interrupts[i].res, sc->interrupts[i].ih_cookie);
512 		if (error)
513 			device_printf(sc->dev, "could not release %s\n",
514 			    sc->interrupts[i].description);
515 		sc->interrupts[i].ih_cookie = NULL;
516 	}
517 }
518 
519 static int
520 cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
521 {
522 	const int max_slots = sizeof(sc->_slots) / sizeof(sc->_slots[0]);
523 	struct cpsw_slot *slot;
524 	int i;
525 
526 	if (requested < 0)
527 		requested = max_slots;
528 
529 	for (i = 0; i < requested; ++i) {
530 		slot = STAILQ_FIRST(&sc->avail);
531 		if (slot == NULL)
532 			return (0);
533 		if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
534 			if_printf(sc->ifp, "failed to create dmamap\n");
535 			return (ENOMEM);
536 		}
537 		STAILQ_REMOVE_HEAD(&sc->avail, next);
538 		STAILQ_INSERT_TAIL(&queue->avail, slot, next);
539 		++queue->avail_queue_len;
540 		++queue->queue_slots;
541 	}
542 	return (0);
543 }
544 
545 static int
546 cpsw_attach(device_t dev)
547 {
548 	bus_dma_segment_t segs[1];
549 	struct cpsw_softc *sc = device_get_softc(dev);
550 	struct mii_softc *miisc;
551 	struct ifnet *ifp;
552 	void *phy_sc;
553 	int error, phy, nsegs;
554 	uint32_t reg;
555 
556 	CPSW_DEBUGF((""));
557 
558 	getbinuptime(&sc->attach_uptime);
559 	sc->dev = dev;
560 	sc->node = ofw_bus_get_node(dev);
561 
562 	/* Get phy address from fdt */
563 	if (fdt_get_phyaddr(sc->node, sc->dev, &phy, &phy_sc) != 0) {
564 		device_printf(dev, "failed to get PHY address from FDT\n");
565 		return (ENXIO);
566 	}
567 	/* Initialize mutexes */
568 	mtx_init(&sc->tx.lock, device_get_nameunit(dev),
569 	    "cpsw TX lock", MTX_DEF);
570 	mtx_init(&sc->rx.lock, device_get_nameunit(dev),
571 	    "cpsw RX lock", MTX_DEF);
572 
573 	/* Allocate IO and IRQ resources */
574 	error = bus_alloc_resources(dev, res_spec, sc->res);
575 	if (error) {
576 		device_printf(dev, "could not allocate resources\n");
577 		cpsw_detach(dev);
578 		return (ENXIO);
579 	}
580 
581 	reg = cpsw_read_4(sc, CPSW_SS_IDVER);
582 	device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
583 		reg & 0xFF, (reg >> 11) & 0x1F);
584 
585 	cpsw_add_sysctls(sc);
586 
587 	/* Allocate a busdma tag and DMA safe memory for mbufs. */
588 	error = bus_dma_tag_create(
589 		bus_get_dma_tag(sc->dev),	/* parent */
590 		1, 0,				/* alignment, boundary */
591 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
592 		BUS_SPACE_MAXADDR,		/* highaddr */
593 		NULL, NULL,			/* filtfunc, filtfuncarg */
594 		MCLBYTES, CPSW_TXFRAGS,		/* maxsize, nsegments */
595 		MCLBYTES, 0,			/* maxsegsz, flags */
596 		NULL, NULL,			/* lockfunc, lockfuncarg */
597 		&sc->mbuf_dtag);		/* dmatag */
598 	if (error) {
599 		device_printf(dev, "bus_dma_tag_create failed\n");
600 		cpsw_detach(dev);
601 		return (error);
602 	}
603 
604 	/* Allocate network interface */
605 	ifp = sc->ifp = if_alloc(IFT_ETHER);
606 	if (ifp == NULL) {
607 		device_printf(dev, "if_alloc() failed\n");
608 		cpsw_detach(dev);
609 		return (ENOMEM);
610 	}
611 
612 	/* Allocate the null mbuf and pre-sync it. */
613 	sc->null_mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
614 	memset(sc->null_mbuf->m_data, 0, sc->null_mbuf->m_ext.ext_size);
615 	bus_dmamap_create(sc->mbuf_dtag, 0, &sc->null_mbuf_dmamap);
616 	bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, sc->null_mbuf_dmamap,
617 	    sc->null_mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
618 	bus_dmamap_sync(sc->mbuf_dtag, sc->null_mbuf_dmamap,
619 	    BUS_DMASYNC_PREWRITE);
620 	sc->null_mbuf_paddr = segs[0].ds_addr;
621 
622 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
623 	ifp->if_softc = sc;
624 	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
625 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_HWCSUM; //FIXME VLAN?
626 	ifp->if_capenable = ifp->if_capabilities;
627 
628 	ifp->if_init = cpsw_init;
629 	ifp->if_start = cpsw_start;
630 	ifp->if_ioctl = cpsw_ioctl;
631 
632 	cpsw_init_slots(sc);
633 
634 	/* Allocate slots to TX and RX queues. */
635 	STAILQ_INIT(&sc->rx.avail);
636 	STAILQ_INIT(&sc->rx.active);
637 	STAILQ_INIT(&sc->tx.avail);
638 	STAILQ_INIT(&sc->tx.active);
639 	// For now:  128 slots to TX, rest to RX.
640 	// XXX TODO: start with 32/64 and grow dynamically based on demand.
641 	if (cpsw_add_slots(sc, &sc->tx, 128) || cpsw_add_slots(sc, &sc->rx, -1)) {
642 		device_printf(dev, "failed to allocate dmamaps\n");
643 		cpsw_detach(dev);
644 		return (ENOMEM);
645 	}
646 	device_printf(dev, "Initial queue size TX=%d RX=%d\n",
647 	    sc->tx.queue_slots, sc->rx.queue_slots);
648 
649 	ifp->if_snd.ifq_drv_maxlen = sc->tx.queue_slots;
650 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
651 	IFQ_SET_READY(&ifp->if_snd);
652 
653 	sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
654 	sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
655 
656 	/* Get high part of MAC address from control module (mac_id0_hi) */
657 	/* TODO: Get MAC ID1 as well as MAC ID0. */
658 	ti_scm_reg_read_4(0x634, &reg);
659 	sc->mac_addr[0] = reg & 0xFF;
660 	sc->mac_addr[1] = (reg >>  8) & 0xFF;
661 	sc->mac_addr[2] = (reg >> 16) & 0xFF;
662 	sc->mac_addr[3] = (reg >> 24) & 0xFF;
663 
664 	/* Get low part of MAC address from control module (mac_id0_lo) */
665 	ti_scm_reg_read_4(0x630, &reg);
666 	sc->mac_addr[4] = reg & 0xFF;
667 	sc->mac_addr[5] = (reg >>  8) & 0xFF;
668 
669 	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
670 	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
671 	cpsw_write_4(sc, MDIOCONTROL, 1 << 30 | 1 << 18 | 0xFF);
672 
673 	/* Clear ALE */
674 	cpsw_write_4(sc, CPSW_ALE_CONTROL, 1 << 30);
675 
676 	/* Attach PHY(s) */
677 	error = mii_attach(dev, &sc->miibus, ifp, cpsw_ifmedia_upd,
678 	    cpsw_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
679 	if (error) {
680 		device_printf(dev, "attaching PHYs failed\n");
681 		cpsw_detach(dev);
682 		return (error);
683 	}
684 	sc->mii = device_get_softc(sc->miibus);
685 
686 	/* Tell the MAC where to find the PHY so autoneg works */
687 	miisc = LIST_FIRST(&sc->mii->mii_phys);
688 
689 	/* Select PHY and enable interrupts */
690 	cpsw_write_4(sc, MDIOUSERPHYSEL0, 1 << 6 | (miisc->mii_phy & 0x1F));
691 
692 	/* Note: We don't use sc->res[3] (TX interrupt) */
693 	if (cpsw_attach_interrupt(sc, sc->res[1],
694 		cpsw_intr_rx_thresh, "CPSW RX threshold interrupt") ||
695 	    cpsw_attach_interrupt(sc, sc->res[2],
696 		cpsw_intr_rx, "CPSW RX interrupt") ||
697 	    cpsw_attach_interrupt(sc, sc->res[4],
698 		cpsw_intr_misc, "CPSW misc interrupt")) {
699 		cpsw_detach(dev);
700 		return (ENXIO);
701 	}
702 
703 	ether_ifattach(ifp, sc->mac_addr);
704 	callout_init(&sc->watchdog.callout, 0);
705 
706 	return (0);
707 }
708 
709 static void
710 cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
711 {
712 	int error;
713 
714 	if (slot->dmamap) {
715 		error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
716 		KASSERT(error == 0, ("Mapping still active"));
717 		slot->dmamap = NULL;
718 	}
719 	if (slot->mbuf) {
720 		m_freem(slot->mbuf);
721 		slot->mbuf = NULL;
722 	}
723 }
724 
725 static int
726 cpsw_detach(device_t dev)
727 {
728 	struct cpsw_softc *sc = device_get_softc(dev);
729 	int error, i;
730 
731 	CPSW_DEBUGF((""));
732 
733 	/* Stop controller and free TX queue */
734 	if (device_is_attached(dev)) {
735 		ether_ifdetach(sc->ifp);
736 		CPSW_GLOBAL_LOCK(sc);
737 		cpsw_shutdown_locked(sc);
738 		CPSW_GLOBAL_UNLOCK(sc);
739 		callout_drain(&sc->watchdog.callout);
740 	}
741 
742 	bus_generic_detach(dev);
743 	if (sc->miibus)
744 		device_delete_child(dev, sc->miibus);
745 
746 	/* Stop and release all interrupts */
747 	cpsw_detach_interrupts(sc);
748 
749 	/* Free dmamaps and mbufs */
750 	for (i = 0; i < sizeof(sc->_slots) / sizeof(sc->_slots[0]); ++i)
751 		cpsw_free_slot(sc, &sc->_slots[i]);
752 	if (sc->null_mbuf_dmamap) {
753 		error = bus_dmamap_destroy(sc->mbuf_dtag, sc->null_mbuf_dmamap);
754 		KASSERT(error == 0, ("Mapping still active"));
755 	}
756 	if (sc->null_mbuf)
757 		m_freem(sc->null_mbuf);
758 
759 	/* Free DMA tag */
760 	error = bus_dma_tag_destroy(sc->mbuf_dtag);
761 	KASSERT(error == 0, ("Unable to destroy DMA tag"));
762 
763 	/* Free IO memory handler */
764 	bus_release_resources(dev, res_spec, sc->res);
765 
766 	if (sc->ifp != NULL)
767 		if_free(sc->ifp);
768 
769 	/* Destroy mutexes */
770 	mtx_destroy(&sc->rx.lock);
771 	mtx_destroy(&sc->tx.lock);
772 
773 	return (0);
774 }
775 
776 /*
777  *
778  * Init/Shutdown.
779  *
780  */
781 
782 static void
783 cpsw_reset(struct cpsw_softc *sc)
784 {
785 	int i;
786 
787 	/* Reset RMII/RGMII wrapper. */
788 	cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
789 	while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
790 		;
791 
792 	/* Disable TX and RX interrupts for all cores. */
793 	for (i = 0; i < 3; ++i) {
794 		cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
795 		cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
796 		cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
797 		cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
798 	}
799 
800 	/* Reset CPSW subsystem. */
801 	cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
802 	while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
803 		;
804 
805 	/* Reset Sliver port 1 and 2 */
806 	for (i = 0; i < 2; i++) {
807 		/* Reset */
808 		cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
809 		while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
810 			;
811 	}
812 
813 	/* Reset DMA controller. */
814 	cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
815 	while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
816 		;
817 
818 	/* Disable TX & RX DMA */
819 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
820 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
821 
822 	/* Clear all queues. */
823 	for (i = 0; i < 8; i++) {
824 		cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
825 		cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
826 		cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
827 		cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
828 	}
829 
830 	/* Clear all interrupt Masks */
831 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
832 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
833 }
834 
835 static void
836 cpsw_init(void *arg)
837 {
838 	struct cpsw_softc *sc = arg;
839 
840 	CPSW_DEBUGF((""));
841 	CPSW_GLOBAL_LOCK(sc);
842 	cpsw_init_locked(arg);
843 	CPSW_GLOBAL_UNLOCK(sc);
844 }
845 
846 static void
847 cpsw_init_locked(void *arg)
848 {
849 	struct ifnet *ifp;
850 	struct cpsw_softc *sc = arg;
851 	struct cpsw_slot *slot;
852 	uint32_t i;
853 
854 	CPSW_DEBUGF((""));
855 	ifp = sc->ifp;
856 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
857 		return;
858 
859 	getbinuptime(&sc->init_uptime);
860 
861 	/* Reset the controller. */
862 	cpsw_reset(sc);
863 
864 	/* Enable ALE */
865 	cpsw_write_4(sc, CPSW_ALE_CONTROL, 1 << 31 | 1 << 4);
866 
867 	/* Init Sliver port 1 and 2 */
868 	for (i = 0; i < 2; i++) {
869 		/* Set Slave Mapping */
870 		cpsw_write_4(sc, CPSW_SL_RX_PRI_MAP(i), 0x76543210);
871 		cpsw_write_4(sc, CPSW_PORT_P_TX_PRI_MAP(i + 1), 0x33221100);
872 		cpsw_write_4(sc, CPSW_SL_RX_MAXLEN(i), 0x5f2);
873 		/* Set MACCONTROL for ports 0,1: IFCTL_B(16), IFCTL_A(15),
874 		   GMII_EN(5), FULLDUPLEX(1) */
875 		/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
876 		/* Huh?  Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
877 		cpsw_write_4(sc, CPSW_SL_MACCONTROL(i), 1 << 15 | 1 << 5 | 1);
878 	}
879 
880 	/* Set Host Port Mapping */
881 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
882 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
883 
884 	/* Initialize ALE: all ports set to forwarding(3), initialize addrs */
885 	for (i = 0; i < 3; i++)
886 		cpsw_write_4(sc, CPSW_ALE_PORTCTL(i), 3);
887 	cpsw_ale_update_addresses(sc, 1);
888 
889 	cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
890 
891 	/* Enable statistics for ports 0, 1 and 2 */
892 	cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
893 
894 	/* Experiment:  Turn off flow control */
895 	/* This seems to fix the watchdog resets that have plagued
896 	   earlier versions of this driver; I'm not yet sure if there
897 	   are negative effects yet. */
898 	cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
899 
900 	/* Make IP hdr aligned with 4 */
901 	cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
902 
903 	/* Initialize RX Buffer Descriptors */
904 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
905 
906 	/* Enable TX & RX DMA */
907 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
908 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
909 
910 	/* Enable Interrupts for core 0 */
911 	cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
912 	cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
913 	cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x3F);
914 
915 	/* Enable host Error Interrupt */
916 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
917 
918 	/* Enable interrupts for RX Channel 0 */
919 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET, 1);
920 
921 	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
922 	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
923 	cpsw_write_4(sc, MDIOCONTROL, 1 << 30 | 1 << 18 | 0xFF);
924 
925 	/* Select MII in GMII_SEL, Internal Delay mode */
926 	//ti_scm_reg_write_4(0x650, 0);
927 
928 	/* Initialize active queues. */
929 	slot = STAILQ_FIRST(&sc->tx.active);
930 	if (slot != NULL)
931 		cpsw_write_hdp_slot(sc, &sc->tx, slot);
932 	slot = STAILQ_FIRST(&sc->rx.active);
933 	if (slot != NULL)
934 		cpsw_write_hdp_slot(sc, &sc->rx, slot);
935 	cpsw_rx_enqueue(sc);
936 
937 	/* Activate network interface */
938 	sc->rx.running = 1;
939 	sc->tx.running = 1;
940 	sc->watchdog.timer = 0;
941 	callout_reset(&sc->watchdog.callout, hz, cpsw_tick, sc);
942 	sc->ifp->if_drv_flags |= IFF_DRV_RUNNING;
943 	sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
944 
945 }
946 
947 static int
948 cpsw_shutdown(device_t dev)
949 {
950 	struct cpsw_softc *sc = device_get_softc(dev);
951 
952 	CPSW_DEBUGF((""));
953 	CPSW_GLOBAL_LOCK(sc);
954 	cpsw_shutdown_locked(sc);
955 	CPSW_GLOBAL_UNLOCK(sc);
956 	return (0);
957 }
958 
959 static void
960 cpsw_rx_teardown_locked(struct cpsw_softc *sc)
961 {
962 	struct mbuf *received, *next;
963 	int i = 0;
964 
965 	CPSW_DEBUGF(("starting RX teardown"));
966 	cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
967 	for (;;) {
968 		received = cpsw_rx_dequeue(sc);
969 		CPSW_GLOBAL_UNLOCK(sc);
970 		while (received != NULL) {
971 			next = received->m_nextpkt;
972 			received->m_nextpkt = NULL;
973 			(*sc->ifp->if_input)(sc->ifp, received);
974 			received = next;
975 		}
976 		CPSW_GLOBAL_LOCK(sc);
977 		if (!sc->rx.running) {
978 			CPSW_DEBUGF(("finished RX teardown (%d retries)", i));
979 			return;
980 		}
981 		if (++i > 10) {
982 			if_printf(sc->ifp, "Unable to cleanly shutdown receiver\n");
983 			return;
984 		}
985 		DELAY(10);
986 	}
987 }
988 
989 static void
990 cpsw_tx_teardown_locked(struct cpsw_softc *sc)
991 {
992 	int i = 0;
993 
994 	CPSW_DEBUGF(("starting TX teardown"));
995 	cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
996 	cpsw_tx_dequeue(sc);
997 	while (sc->tx.running && ++i < 10) {
998 		DELAY(10);
999 		cpsw_tx_dequeue(sc);
1000 	}
1001 	if (sc->tx.running)
1002 		if_printf(sc->ifp, "Unable to cleanly shutdown transmitter\n");
1003 	CPSW_DEBUGF(("finished TX teardown (%d retries, %d idle buffers)",
1004 	    i, sc->tx.active_queue_len));
1005 }
1006 
1007 static void
1008 cpsw_shutdown_locked(struct cpsw_softc *sc)
1009 {
1010 	struct ifnet *ifp;
1011 
1012 	CPSW_DEBUGF((""));
1013 	CPSW_GLOBAL_LOCK_ASSERT(sc);
1014 	ifp = sc->ifp;
1015 
1016 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1017 		return;
1018 
1019 	/* Disable interface */
1020 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1021 	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1022 
1023 	/* Stop ticker */
1024 	callout_stop(&sc->watchdog.callout);
1025 
1026 	/* Tear down the RX/TX queues. */
1027 	cpsw_rx_teardown_locked(sc);
1028 	cpsw_tx_teardown_locked(sc);
1029 
1030 	/* Capture stats before we reset controller. */
1031 	cpsw_stats_collect(sc);
1032 
1033 	cpsw_reset(sc);
1034 }
1035 
1036 /*
1037  *  Suspend/Resume.
1038  */
1039 
1040 static int
1041 cpsw_suspend(device_t dev)
1042 {
1043 	struct cpsw_softc *sc = device_get_softc(dev);
1044 
1045 	CPSW_DEBUGF((""));
1046 	CPSW_GLOBAL_LOCK(sc);
1047 	cpsw_shutdown_locked(sc);
1048 	CPSW_GLOBAL_UNLOCK(sc);
1049 	return (0);
1050 }
1051 
1052 static int
1053 cpsw_resume(device_t dev)
1054 {
1055 	struct cpsw_softc *sc = device_get_softc(dev);
1056 
1057 	CPSW_DEBUGF(("UNIMPLEMENTED"));
1058 	return (0);
1059 }
1060 
1061 /*
1062  *
1063  *  IOCTL
1064  *
1065  */
1066 
1067 static void
1068 cpsw_set_promisc(struct cpsw_softc *sc, int set)
1069 {
1070 	/*
1071 	 * Enabling promiscuous mode requires two bits of work: First,
1072 	 * ALE_BYPASS needs to be enabled.  That disables the ALE
1073 	 * forwarding logic and causes every packet to be sent to the
1074 	 * host port.  That makes us promiscuous wrt received packets.
1075 	 *
1076 	 * With ALE forwarding disabled, the transmitter needs to set
1077 	 * an explicit output port on every packet to route it to the
1078 	 * correct egress.  This should be doable for systems such as
1079 	 * BeagleBone where only one egress port is actually wired to
1080 	 * a PHY.  If you have both egress ports wired up, life gets a
1081 	 * lot more interesting.
1082 	 *
1083 	 * Hmmm.... NetBSD driver uses ALE_BYPASS always and doesn't
1084 	 * seem to set explicit egress ports.  Does that mean they
1085 	 * are always promiscuous?
1086 	 */
1087 	if (set) {
1088 		printf("Promiscuous mode unimplemented\n");
1089 	}
1090 }
1091 
1092 static void
1093 cpsw_set_allmulti(struct cpsw_softc *sc, int set)
1094 {
1095 	if (set) {
1096 		printf("All-multicast mode unimplemented\n");
1097 	}
1098 }
1099 
1100 static int
1101 cpsw_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1102 {
1103 	struct cpsw_softc *sc = ifp->if_softc;
1104 	struct ifreq *ifr = (struct ifreq *)data;
1105 	int error;
1106 	uint32_t changed;
1107 
1108 	error = 0;
1109 
1110 	switch (command) {
1111 	case SIOCSIFFLAGS:
1112 		CPSW_GLOBAL_LOCK(sc);
1113 		if (ifp->if_flags & IFF_UP) {
1114 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1115 				changed = ifp->if_flags ^ sc->cpsw_if_flags;
1116 				CPSW_DEBUGF(("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)", changed));
1117 				if (changed & IFF_PROMISC)
1118 					cpsw_set_promisc(sc,
1119 					    ifp->if_flags & IFF_PROMISC);
1120 				if (changed & IFF_ALLMULTI)
1121 					cpsw_set_allmulti(sc,
1122 					    ifp->if_flags & IFF_ALLMULTI);
1123 			} else {
1124 				CPSW_DEBUGF(("SIOCSIFFLAGS: UP but not RUNNING; starting up"));
1125 				cpsw_init_locked(sc);
1126 			}
1127 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1128 			CPSW_DEBUGF(("SIOCSIFFLAGS: not UP but RUNNING; shutting down"));
1129 			cpsw_shutdown_locked(sc);
1130 		}
1131 
1132 		sc->cpsw_if_flags = ifp->if_flags;
1133 		CPSW_GLOBAL_UNLOCK(sc);
1134 		break;
1135 	case SIOCADDMULTI:
1136 		cpsw_ale_update_addresses(sc, 0);
1137 		break;
1138 	case SIOCDELMULTI:
1139 		/* Ugh.  DELMULTI doesn't provide the specific address
1140 		   being removed, so the best we can do is remove
1141 		   everything and rebuild it all. */
1142 		cpsw_ale_update_addresses(sc, 1);
1143 		break;
1144 	case SIOCGIFMEDIA:
1145 	case SIOCSIFMEDIA:
1146 		error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
1147 		break;
1148 	default:
1149 		error = ether_ioctl(ifp, command, data);
1150 	}
1151 	return (error);
1152 }
1153 
1154 /*
1155  *
1156  * MIIBUS
1157  *
1158  */
1159 static int
1160 cpsw_miibus_ready(struct cpsw_softc *sc)
1161 {
1162 	uint32_t r, retries = CPSW_MIIBUS_RETRIES;
1163 
1164 	while (--retries) {
1165 		r = cpsw_read_4(sc, MDIOUSERACCESS0);
1166 		if ((r & 1 << 31) == 0)
1167 			return 1;
1168 		DELAY(CPSW_MIIBUS_DELAY);
1169 	}
1170 	return 0;
1171 }
1172 
1173 static int
1174 cpsw_miibus_readreg(device_t dev, int phy, int reg)
1175 {
1176 	struct cpsw_softc *sc = device_get_softc(dev);
1177 	uint32_t cmd, r;
1178 
1179 	if (!cpsw_miibus_ready(sc)) {
1180 		device_printf(dev, "MDIO not ready to read\n");
1181 		return 0;
1182 	}
1183 
1184 	/* Set GO, reg, phy */
1185 	cmd = 1 << 31 | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
1186 	cpsw_write_4(sc, MDIOUSERACCESS0, cmd);
1187 
1188 	if (!cpsw_miibus_ready(sc)) {
1189 		device_printf(dev, "MDIO timed out during read\n");
1190 		return 0;
1191 	}
1192 
1193 	r = cpsw_read_4(sc, MDIOUSERACCESS0);
1194 	if((r & 1 << 29) == 0) {
1195 		device_printf(dev, "Failed to read from PHY.\n");
1196 		r = 0;
1197 	}
1198 	return (r & 0xFFFF);
1199 }
1200 
1201 static int
1202 cpsw_miibus_writereg(device_t dev, int phy, int reg, int value)
1203 {
1204 	struct cpsw_softc *sc = device_get_softc(dev);
1205 	uint32_t cmd;
1206 
1207 	if (!cpsw_miibus_ready(sc)) {
1208 		device_printf(dev, "MDIO not ready to write\n");
1209 		return 0;
1210 	}
1211 
1212 	/* Set GO, WRITE, reg, phy, and value */
1213 	cmd = 3 << 30 | (reg & 0x1F) << 21 | (phy & 0x1F) << 16
1214 	    | (value & 0xFFFF);
1215 	cpsw_write_4(sc, MDIOUSERACCESS0, cmd);
1216 
1217 	if (!cpsw_miibus_ready(sc)) {
1218 		device_printf(dev, "MDIO timed out during write\n");
1219 		return 0;
1220 	}
1221 
1222 	if((cpsw_read_4(sc, MDIOUSERACCESS0) & (1 << 29)) == 0)
1223 		device_printf(dev, "Failed to write to PHY.\n");
1224 
1225 	return 0;
1226 }
1227 
1228 /*
1229  *
1230  * Transmit/Receive Packets.
1231  *
1232  */
1233 
1234 
1235 static void
1236 cpsw_intr_rx(void *arg)
1237 {
1238 	struct cpsw_softc *sc = arg;
1239 	struct mbuf *received, *next;
1240 
1241 	CPSW_RX_LOCK(sc);
1242 	received = cpsw_rx_dequeue(sc);
1243 	cpsw_rx_enqueue(sc);
1244 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
1245 	CPSW_RX_UNLOCK(sc);
1246 
1247 	while (received != NULL) {
1248 		next = received->m_nextpkt;
1249 		received->m_nextpkt = NULL;
1250 		(*sc->ifp->if_input)(sc->ifp, received);
1251 		received = next;
1252 	}
1253 }
1254 
1255 static struct mbuf *
1256 cpsw_rx_dequeue(struct cpsw_softc *sc)
1257 {
1258 	struct cpsw_cpdma_bd bd;
1259 	struct cpsw_slot *slot;
1260 	struct ifnet *ifp;
1261 	struct mbuf *mb_head, *mb_tail;
1262 	int removed = 0;
1263 
1264 	ifp = sc->ifp;
1265 	mb_head = mb_tail = NULL;
1266 
1267 	/* Pull completed packets off hardware RX queue. */
1268 	while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
1269 		cpsw_cpdma_read_bd(sc, slot, &bd);
1270 		if (bd.flags & CPDMA_BD_OWNER)
1271 			break; /* Still in use by hardware */
1272 
1273 		CPSW_DEBUGF(("Removing received packet from RX queue"));
1274 		++removed;
1275 		STAILQ_REMOVE_HEAD(&sc->rx.active, next);
1276 		STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
1277 
1278 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
1279 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1280 
1281 		if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
1282 			CPSW_DEBUGF(("RX teardown in progress"));
1283 			m_freem(slot->mbuf);
1284 			slot->mbuf = NULL;
1285 			cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
1286 			sc->rx.running = 0;
1287 			break;
1288 		}
1289 
1290 		cpsw_write_cp_slot(sc, &sc->rx, slot);
1291 
1292 		/* Set up mbuf */
1293 		/* TODO: track SOP/EOP bits to assemble a full mbuf
1294 		   out of received fragments. */
1295 		slot->mbuf->m_data += bd.bufoff;
1296 		slot->mbuf->m_len = bd.pktlen - 4;
1297 		slot->mbuf->m_pkthdr.len = bd.pktlen - 4;
1298 		slot->mbuf->m_flags |= M_PKTHDR;
1299 		slot->mbuf->m_pkthdr.rcvif = ifp;
1300 		slot->mbuf->m_nextpkt = NULL;
1301 
1302 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1303 			/* check for valid CRC by looking into pkt_err[5:4] */
1304 			if ((bd.flags & CPDMA_BD_PKT_ERR_MASK) == 0) {
1305 				slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1306 				slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1307 				slot->mbuf->m_pkthdr.csum_data = 0xffff;
1308 			}
1309 		}
1310 
1311 		/* Add mbuf to packet list to be returned. */
1312 		if (mb_tail) {
1313 			mb_tail->m_nextpkt = slot->mbuf;
1314 		} else {
1315 			mb_head = slot->mbuf;
1316 		}
1317 		mb_tail = slot->mbuf;
1318 		slot->mbuf = NULL;
1319 	}
1320 
1321 	if (removed != 0) {
1322 		sc->rx.queue_removes += removed;
1323 		sc->rx.active_queue_len -= removed;
1324 		sc->rx.avail_queue_len += removed;
1325 		if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
1326 			sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
1327 	}
1328 	return (mb_head);
1329 }
1330 
1331 static void
1332 cpsw_rx_enqueue(struct cpsw_softc *sc)
1333 {
1334 	bus_dma_segment_t seg[1];
1335 	struct cpsw_cpdma_bd bd;
1336 	struct ifnet *ifp = sc->ifp;
1337 	struct cpsw_slots tmpqueue = STAILQ_HEAD_INITIALIZER(tmpqueue);
1338 	struct cpsw_slot *slot, *prev_slot = NULL;
1339 	struct cpsw_slot *last_old_slot, *first_new_slot;
1340 	int error, nsegs, added = 0;
1341 
1342 	/* Register new mbufs with hardware. */
1343 	while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
1344 		if (slot->mbuf == NULL) {
1345 			slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1346 			if (slot->mbuf == NULL) {
1347 				if_printf(sc->ifp, "Unable to fill RX queue\n");
1348 				break;
1349 			}
1350 			slot->mbuf->m_len =
1351 			    slot->mbuf->m_pkthdr.len =
1352 			    slot->mbuf->m_ext.ext_size;
1353 		}
1354 
1355 		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1356 		    slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
1357 
1358 		KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
1359 		KASSERT(error == 0, ("DMA error (error=%d)", error));
1360 		if (error != 0 || nsegs != 1) {
1361 			if_printf(ifp,
1362 			    "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
1363 			    __func__, nsegs, error);
1364 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1365 			m_freem(slot->mbuf);
1366 			slot->mbuf = NULL;
1367 			break;
1368 		}
1369 
1370 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
1371 
1372 		/* Create and submit new rx descriptor*/
1373 		bd.next = 0;
1374 		bd.bufptr = seg->ds_addr;
1375 		bd.bufoff = 0;
1376 		bd.buflen = MCLBYTES - 1;
1377 		bd.pktlen = bd.buflen;
1378 		bd.flags = CPDMA_BD_OWNER;
1379 		cpsw_cpdma_write_bd(sc, slot, &bd);
1380 		++added;
1381 
1382 		if (prev_slot != NULL)
1383 			cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1384 		prev_slot = slot;
1385 		STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
1386 		sc->rx.avail_queue_len--;
1387 		STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1388 	}
1389 
1390 	if (added == 0)
1391 		return;
1392 
1393 	CPSW_DEBUGF(("Adding %d buffers to RX queue", added));
1394 
1395 	/* Link new entries to hardware RX queue. */
1396 	last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
1397 	first_new_slot = STAILQ_FIRST(&tmpqueue);
1398 	STAILQ_CONCAT(&sc->rx.active, &tmpqueue);
1399 	if (first_new_slot == NULL) {
1400 		return;
1401 	} else if (last_old_slot == NULL) {
1402 		/* Start a fresh queue. */
1403 		cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1404 	} else {
1405 		/* Add buffers to end of current queue. */
1406 		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1407 		/* If underrun, restart queue. */
1408 		if (cpsw_cpdma_read_bd_flags(sc, last_old_slot) & CPDMA_BD_EOQ) {
1409 			cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1410 		}
1411 	}
1412 	sc->rx.queue_adds += added;
1413 	sc->rx.active_queue_len += added;
1414 	if (sc->rx.active_queue_len > sc->rx.max_active_queue_len) {
1415 		sc->rx.max_active_queue_len = sc->rx.active_queue_len;
1416 	}
1417 }
1418 
1419 static void
1420 cpsw_start(struct ifnet *ifp)
1421 {
1422 	struct cpsw_softc *sc = ifp->if_softc;
1423 
1424 	CPSW_TX_LOCK(sc);
1425 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && sc->tx.running) {
1426 		cpsw_tx_enqueue(sc);
1427 		cpsw_tx_dequeue(sc);
1428 	}
1429 	CPSW_TX_UNLOCK(sc);
1430 }
1431 
1432 static void
1433 cpsw_tx_enqueue(struct cpsw_softc *sc)
1434 {
1435 	bus_dma_segment_t segs[CPSW_TXFRAGS];
1436 	struct cpsw_cpdma_bd bd;
1437 	struct cpsw_slots tmpqueue = STAILQ_HEAD_INITIALIZER(tmpqueue);
1438 	struct cpsw_slot *slot, *prev_slot = NULL;
1439 	struct cpsw_slot *last_old_slot, *first_new_slot;
1440 	struct mbuf *m0;
1441 	int error, nsegs, seg, added = 0, padlen;
1442 
1443 	/* Pull pending packets from IF queue and prep them for DMA. */
1444 	while ((slot = STAILQ_FIRST(&sc->tx.avail)) != NULL) {
1445 		IF_DEQUEUE(&sc->ifp->if_snd, m0);
1446 		if (m0 == NULL)
1447 			break;
1448 
1449 		slot->mbuf = m0;
1450 		padlen = ETHER_MIN_LEN - slot->mbuf->m_pkthdr.len;
1451 		if (padlen < 0)
1452 			padlen = 0;
1453 
1454 		/* Create mapping in DMA memory */
1455 		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1456 		    slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1457 		/* If the packet is too fragmented, try to simplify. */
1458 		if (error == EFBIG ||
1459 		    (error == 0 &&
1460 			nsegs + (padlen > 0 ? 1 : 0) > sc->tx.avail_queue_len)) {
1461 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1462 			if (padlen > 0) /* May as well add padding. */
1463 				m_append(slot->mbuf, padlen,
1464 				    sc->null_mbuf->m_data);
1465 			m0 = m_defrag(slot->mbuf, M_NOWAIT);
1466 			if (m0 == NULL) {
1467 				if_printf(sc->ifp,
1468 				    "Can't defragment packet; dropping\n");
1469 				m_freem(slot->mbuf);
1470 			} else {
1471 				CPSW_DEBUGF(("Requeueing defragmented packet"));
1472 				IF_PREPEND(&sc->ifp->if_snd, m0);
1473 			}
1474 			slot->mbuf = NULL;
1475 			continue;
1476 		}
1477 		if (error != 0) {
1478 			if_printf(sc->ifp,
1479 			    "%s: Can't setup DMA (error=%d), dropping packet\n",
1480 			    __func__, error);
1481 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1482 			m_freem(slot->mbuf);
1483 			slot->mbuf = NULL;
1484 			break;
1485 		}
1486 
1487 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap,
1488 				BUS_DMASYNC_PREWRITE);
1489 
1490 
1491 		CPSW_DEBUGF(("Queueing TX packet: %d segments + %d pad bytes",
1492 			nsegs, padlen));
1493 
1494 		/* If there is only one segment, the for() loop
1495 		 * gets skipped and the single buffer gets set up
1496 		 * as both SOP and EOP. */
1497 		/* Start by setting up the first buffer */
1498 		bd.next = 0;
1499 		bd.bufptr = segs[0].ds_addr;
1500 		bd.bufoff = 0;
1501 		bd.buflen = segs[0].ds_len;
1502 		bd.pktlen = m_length(slot->mbuf, NULL) + padlen;
1503 		bd.flags =  CPDMA_BD_SOP | CPDMA_BD_OWNER;
1504 		for (seg = 1; seg < nsegs; ++seg) {
1505 			/* Save the previous buffer (which isn't EOP) */
1506 			cpsw_cpdma_write_bd(sc, slot, &bd);
1507 			if (prev_slot != NULL)
1508 				cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1509 			prev_slot = slot;
1510 			STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
1511 			sc->tx.avail_queue_len--;
1512 			STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1513 			++added;
1514 			slot = STAILQ_FIRST(&sc->tx.avail);
1515 
1516 			/* Setup next buffer (which isn't SOP) */
1517 			bd.next = 0;
1518 			bd.bufptr = segs[seg].ds_addr;
1519 			bd.bufoff = 0;
1520 			bd.buflen = segs[seg].ds_len;
1521 			bd.pktlen = 0;
1522 			bd.flags = CPDMA_BD_OWNER;
1523 		}
1524 		/* Save the final buffer. */
1525 		if (padlen <= 0)
1526 			bd.flags |= CPDMA_BD_EOP;
1527 		cpsw_cpdma_write_bd(sc, slot, &bd);
1528 		if (prev_slot != NULL)
1529 			cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1530 		prev_slot = slot;
1531 		STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
1532 		sc->tx.avail_queue_len--;
1533 		STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1534 		++added;
1535 
1536 		if (padlen > 0) {
1537 			slot = STAILQ_FIRST(&sc->tx.avail);
1538 			STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
1539 			sc->tx.avail_queue_len--;
1540 			STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1541 			++added;
1542 
1543 			/* Setup buffer of null pad bytes (definitely EOP) */
1544 			cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1545 			prev_slot = slot;
1546 			bd.next = 0;
1547 			bd.bufptr = sc->null_mbuf_paddr;
1548 			bd.bufoff = 0;
1549 			bd.buflen = padlen;
1550 			bd.pktlen = 0;
1551 			bd.flags = CPDMA_BD_EOP | CPDMA_BD_OWNER;
1552 			cpsw_cpdma_write_bd(sc, slot, &bd);
1553 			++nsegs;
1554 		}
1555 
1556 		if (nsegs > sc->tx.longest_chain)
1557 			sc->tx.longest_chain = nsegs;
1558 
1559 		// TODO: Should we defer the BPF tap until
1560 		// after all packets are queued?
1561 		BPF_MTAP(sc->ifp, m0);
1562 	}
1563 
1564 	/* Attach the list of new buffers to the hardware TX queue. */
1565 	last_old_slot = STAILQ_LAST(&sc->tx.active, cpsw_slot, next);
1566 	first_new_slot = STAILQ_FIRST(&tmpqueue);
1567 	STAILQ_CONCAT(&sc->tx.active, &tmpqueue);
1568 	if (first_new_slot == NULL) {
1569 		return;
1570 	} else if (last_old_slot == NULL) {
1571 		/* Start a fresh queue. */
1572 		cpsw_write_hdp_slot(sc, &sc->tx, first_new_slot);
1573 	} else {
1574 		/* Add buffers to end of current queue. */
1575 		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1576 		/* If underrun, restart queue. */
1577 		if (cpsw_cpdma_read_bd_flags(sc, last_old_slot) & CPDMA_BD_EOQ) {
1578 			cpsw_write_hdp_slot(sc, &sc->tx, first_new_slot);
1579 		}
1580 	}
1581 	sc->tx.queue_adds += added;
1582 	sc->tx.active_queue_len += added;
1583 	if (sc->tx.active_queue_len > sc->tx.max_active_queue_len) {
1584 		sc->tx.max_active_queue_len = sc->tx.active_queue_len;
1585 	}
1586 }
1587 
1588 static int
1589 cpsw_tx_dequeue(struct cpsw_softc *sc)
1590 {
1591 	struct cpsw_slot *slot, *last_removed_slot = NULL;
1592 	uint32_t flags, removed = 0;
1593 
1594 	slot = STAILQ_FIRST(&sc->tx.active);
1595 	if (slot == NULL && cpsw_read_cp(sc, &sc->tx) == 0xfffffffc) {
1596 		CPSW_DEBUGF(("TX teardown of an empty queue"));
1597 		cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1598 		sc->tx.running = 0;
1599 		return (0);
1600 	}
1601 
1602 	/* Pull completed buffers off the hardware TX queue. */
1603 	while (slot != NULL) {
1604 		flags = cpsw_cpdma_read_bd_flags(sc, slot);
1605 		if (flags & CPDMA_BD_OWNER)
1606 			break; /* Hardware is still using this packet. */
1607 
1608 		CPSW_DEBUGF(("TX removing completed packet"));
1609 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
1610 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1611 		m_freem(slot->mbuf);
1612 		slot->mbuf = NULL;
1613 
1614 		/* Dequeue any additional buffers used by this packet. */
1615 		while (slot != NULL && slot->mbuf == NULL) {
1616 			STAILQ_REMOVE_HEAD(&sc->tx.active, next);
1617 			STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
1618 			++removed;
1619 			last_removed_slot = slot;
1620 			slot = STAILQ_FIRST(&sc->tx.active);
1621 		}
1622 
1623 		/* TearDown complete is only marked on the SOP for the packet. */
1624 		if (flags & CPDMA_BD_TDOWNCMPLT) {
1625 			CPSW_DEBUGF(("TX teardown in progress"));
1626 			cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1627 			// TODO: Increment a count of dropped TX packets
1628 			sc->tx.running = 0;
1629 			break;
1630 		}
1631 	}
1632 
1633 	if (removed != 0) {
1634 		cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
1635 		sc->tx.queue_removes += removed;
1636 		sc->tx.active_queue_len -= removed;
1637 		sc->tx.avail_queue_len += removed;
1638 		if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
1639 			sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
1640 	}
1641 	return (removed);
1642 }
1643 
1644 /*
1645  *
1646  * Miscellaneous interrupts.
1647  *
1648  */
1649 
1650 static void
1651 cpsw_intr_rx_thresh(void *arg)
1652 {
1653 	struct cpsw_softc *sc = arg;
1654 	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_RX_THRESH_STAT(0));
1655 
1656 	CPSW_DEBUGF(("stat=%x", stat));
1657 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
1658 }
1659 
1660 static void
1661 cpsw_intr_misc_host_error(struct cpsw_softc *sc)
1662 {
1663 	uint32_t intstat;
1664 	uint32_t dmastat;
1665 	int txerr, rxerr, txchan, rxchan;
1666 
1667 	printf("\n\n");
1668 	device_printf(sc->dev,
1669 	    "HOST ERROR:  PROGRAMMING ERROR DETECTED BY HARDWARE\n");
1670 	printf("\n\n");
1671 	intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
1672 	device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
1673 	dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
1674 	device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
1675 
1676 	txerr = (dmastat >> 20) & 15;
1677 	txchan = (dmastat >> 16) & 7;
1678 	rxerr = (dmastat >> 12) & 15;
1679 	rxchan = (dmastat >> 8) & 7;
1680 
1681 	switch (txerr) {
1682 	case 0: break;
1683 	case 1:	printf("SOP error on TX channel %d\n", txchan);
1684 		break;
1685 	case 2:	printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
1686 		break;
1687 	case 3:	printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
1688 		break;
1689 	case 4:	printf("Zero Buffer Pointer on TX channel %d\n", txchan);
1690 		break;
1691 	case 5:	printf("Zero Buffer Length on TX channel %d\n", txchan);
1692 		break;
1693 	case 6:	printf("Packet length error on TX channel %d\n", txchan);
1694 		break;
1695 	default: printf("Unknown error on TX channel %d\n", txchan);
1696 		break;
1697 	}
1698 
1699 	if (txerr != 0) {
1700 		printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
1701 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
1702 		printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
1703 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
1704 		cpsw_dump_queue(sc, &sc->tx.active);
1705 	}
1706 
1707 	switch (rxerr) {
1708 	case 0: break;
1709 	case 2:	printf("Ownership bit not set on RX channel %d\n", rxchan);
1710 		break;
1711 	case 4:	printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
1712 		break;
1713 	case 5:	printf("Zero Buffer Length on RX channel %d\n", rxchan);
1714 		break;
1715 	case 6:	printf("Buffer offset too big on RX channel %d\n", rxchan);
1716 		break;
1717 	default: printf("Unknown RX error on RX channel %d\n", rxchan);
1718 		break;
1719 	}
1720 
1721 	if (rxerr != 0) {
1722 		printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
1723 		    rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
1724 		printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
1725 		    rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
1726 		cpsw_dump_queue(sc, &sc->rx.active);
1727 	}
1728 
1729 	printf("\nALE Table\n");
1730 	cpsw_ale_dump_table(sc);
1731 
1732 	// XXX do something useful here??
1733 	panic("CPSW HOST ERROR INTERRUPT");
1734 
1735 	// Suppress this interrupt in the future.
1736 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
1737 	printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
1738 	// The watchdog will probably reset the controller
1739 	// in a little while.  It will probably fail again.
1740 }
1741 
1742 static void
1743 cpsw_intr_misc(void *arg)
1744 {
1745 	struct cpsw_softc *sc = arg;
1746 	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
1747 
1748 	if (stat & 16)
1749 		CPSW_DEBUGF(("Time sync event interrupt unimplemented"));
1750 	if (stat & 8)
1751 		cpsw_stats_collect(sc);
1752 	if (stat & 4)
1753 		cpsw_intr_misc_host_error(sc);
1754 	if (stat & 2)
1755 		CPSW_DEBUGF(("MDIO link change interrupt unimplemented"));
1756 	if (stat & 1)
1757 		CPSW_DEBUGF(("MDIO operation completed interrupt unimplemented"));
1758 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
1759 }
1760 
1761 /*
1762  *
1763  * Periodic Checks and Watchdog.
1764  *
1765  */
1766 
1767 static void
1768 cpsw_tick(void *msc)
1769 {
1770 	struct cpsw_softc *sc = msc;
1771 
1772 	/* Check for TX timeout */
1773 	cpsw_tx_watchdog(sc);
1774 
1775 	/* Check for media type change */
1776 	mii_tick(sc->mii);
1777 	if(sc->cpsw_media_status != sc->mii->mii_media.ifm_media) {
1778 		printf("%s: media type changed (ifm_media=%x)\n", __func__,
1779 			sc->mii->mii_media.ifm_media);
1780 		cpsw_ifmedia_upd(sc->ifp);
1781 	}
1782 
1783 	/* Schedule another timeout one second from now */
1784 	callout_reset(&sc->watchdog.callout, hz, cpsw_tick, sc);
1785 }
1786 
1787 static void
1788 cpsw_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1789 {
1790 	struct cpsw_softc *sc = ifp->if_softc;
1791 	struct mii_data *mii;
1792 
1793 	CPSW_DEBUGF((""));
1794 	CPSW_TX_LOCK(sc);
1795 
1796 	mii = sc->mii;
1797 	mii_pollstat(mii);
1798 
1799 	ifmr->ifm_active = mii->mii_media_active;
1800 	ifmr->ifm_status = mii->mii_media_status;
1801 
1802 	CPSW_TX_UNLOCK(sc);
1803 }
1804 
1805 static int
1806 cpsw_ifmedia_upd(struct ifnet *ifp)
1807 {
1808 	struct cpsw_softc *sc = ifp->if_softc;
1809 
1810 	CPSW_DEBUGF((""));
1811 	if (ifp->if_flags & IFF_UP) {
1812 		CPSW_GLOBAL_LOCK(sc);
1813 		sc->cpsw_media_status = sc->mii->mii_media.ifm_media;
1814 		mii_mediachg(sc->mii);
1815 		cpsw_init_locked(sc);
1816 		CPSW_GLOBAL_UNLOCK(sc);
1817 	}
1818 
1819 	return (0);
1820 }
1821 
1822 static void
1823 cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
1824 {
1825 	cpsw_debugf_head("CPSW watchdog");
1826 	if_printf(sc->ifp, "watchdog timeout\n");
1827 	cpsw_shutdown_locked(sc);
1828 	cpsw_init_locked(sc);
1829 }
1830 
1831 static void
1832 cpsw_tx_watchdog(struct cpsw_softc *sc)
1833 {
1834 	struct ifnet *ifp = sc->ifp;
1835 
1836 	CPSW_GLOBAL_LOCK(sc);
1837 	if (sc->tx.active_queue_len == 0 || (ifp->if_flags & IFF_UP) == 0 ||
1838 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || !sc->tx.running) {
1839 		sc->watchdog.timer = 0; /* Nothing to do. */
1840 	} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
1841 		sc->watchdog.timer = 0;  /* Stuff done while we weren't looking. */
1842 	} else if (cpsw_tx_dequeue(sc) > 0) {
1843 		sc->watchdog.timer = 0;  /* We just did something. */
1844 	} else {
1845 		/* There was something to do but it didn't get done. */
1846 		++sc->watchdog.timer;
1847 		if (sc->watchdog.timer > 2) {
1848 			sc->watchdog.timer = 0;
1849 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1850 			++sc->watchdog.resets;
1851 			cpsw_tx_watchdog_full_reset(sc);
1852 		}
1853 	}
1854 	sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
1855 	CPSW_GLOBAL_UNLOCK(sc);
1856 }
1857 
1858 /*
1859  *
1860  * ALE support routines.
1861  *
1862  */
1863 
1864 static void
1865 cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
1866 {
1867 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
1868 	ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
1869 	ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
1870 	ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
1871 }
1872 
1873 static void
1874 cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
1875 {
1876 	cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
1877 	cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
1878 	cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
1879 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
1880 }
1881 
1882 static int
1883 cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
1884 {
1885 	int i;
1886 	uint32_t ale_entry[3];
1887 
1888 	/* First two entries are link address and broadcast. */
1889 	for (i = 2; i < CPSW_MAX_ALE_ENTRIES; i++) {
1890 		cpsw_ale_read_entry(sc, i, ale_entry);
1891 		if (((ale_entry[1] >> 28) & 3) == 1 && /* Address entry */
1892 		    ((ale_entry[1] >> 8) & 1) == 1) { /* MCast link addr */
1893 			ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
1894 			cpsw_ale_write_entry(sc, i, ale_entry);
1895 		}
1896 	}
1897 	return CPSW_MAX_ALE_ENTRIES;
1898 }
1899 
1900 static int
1901 cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, uint8_t *mac)
1902 {
1903 	int free_index = -1, matching_index = -1, i;
1904 	uint32_t ale_entry[3];
1905 
1906 	/* Find a matching entry or a free entry. */
1907 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
1908 		cpsw_ale_read_entry(sc, i, ale_entry);
1909 
1910 		/* Entry Type[61:60] is 0 for free entry */
1911 		if (free_index < 0 && ((ale_entry[1] >> 28) & 3) == 0) {
1912 			free_index = i;
1913 		}
1914 
1915 		if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
1916 		    (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
1917 		    (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
1918 		    (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
1919 		    (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
1920 		    (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
1921 			matching_index = i;
1922 			break;
1923 		}
1924 	}
1925 
1926 	if (matching_index < 0) {
1927 		if (free_index < 0)
1928 			return (ENOMEM);
1929 		i = free_index;
1930 	}
1931 
1932 	/* Set MAC address */
1933 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
1934 	ale_entry[1] = mac[0] << 8 | mac[1];
1935 
1936 	/* Entry type[61:60] is addr entry(1), Mcast fwd state[63:62] is fw(3)*/
1937 	ale_entry[1] |= 0xd0 << 24;
1938 
1939 	/* Set portmask [68:66] */
1940 	ale_entry[2] = (portmap & 7) << 2;
1941 
1942 	cpsw_ale_write_entry(sc, i, ale_entry);
1943 
1944 	return 0;
1945 }
1946 
1947 static void
1948 cpsw_ale_dump_table(struct cpsw_softc *sc) {
1949 	int i;
1950 	uint32_t ale_entry[3];
1951 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
1952 		cpsw_ale_read_entry(sc, i, ale_entry);
1953 		if (ale_entry[0] || ale_entry[1] || ale_entry[2]) {
1954 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[0],
1955 				ale_entry[1], ale_entry[2]);
1956 			printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
1957 				(ale_entry[1] >> 8) & 0xFF,
1958 				(ale_entry[1] >> 0) & 0xFF,
1959 				(ale_entry[0] >>24) & 0xFF,
1960 				(ale_entry[0] >>16) & 0xFF,
1961 				(ale_entry[0] >> 8) & 0xFF,
1962 				(ale_entry[0] >> 0) & 0xFF);
1963 			printf(((ale_entry[1] >> 8) & 1) ? "mcast " : "ucast ");
1964 			printf("type: %u ", (ale_entry[1] >> 28) & 3);
1965 			printf("port: %u ", (ale_entry[2] >> 2) & 7);
1966 			printf("\n");
1967 		}
1968 	}
1969 	printf("\n");
1970 }
1971 
1972 static int
1973 cpsw_ale_update_addresses(struct cpsw_softc *sc, int purge)
1974 {
1975 	uint8_t *mac;
1976 	uint32_t ale_entry[3];
1977 	struct ifnet *ifp = sc->ifp;
1978 	struct ifmultiaddr *ifma;
1979 	int i;
1980 
1981 	/* Route incoming packets for our MAC address to Port 0 (host). */
1982 	/* For simplicity, keep this entry at table index 0 in the ALE. */
1983         if_addr_rlock(ifp);
1984 	mac = LLADDR((struct sockaddr_dl *)ifp->if_addr->ifa_addr);
1985 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
1986 	ale_entry[1] = 0x10 << 24 | mac[0] << 8 | mac[1]; /* addr entry + mac */
1987 	ale_entry[2] = 0; /* port = 0 */
1988 	cpsw_ale_write_entry(sc, 0, ale_entry);
1989 
1990 	/* Set outgoing MAC Address for Ports 1 and 2. */
1991 	for (i = 1; i < 3; ++i) {
1992 		cpsw_write_4(sc, CPSW_PORT_P_SA_HI(i),
1993 		    mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
1994 		cpsw_write_4(sc, CPSW_PORT_P_SA_LO(i),
1995 		    mac[5] << 8 | mac[4]);
1996 	}
1997         if_addr_runlock(ifp);
1998 
1999 	/* Keep the broadcast address at table entry 1. */
2000 	ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
2001 	ale_entry[1] = 0xd000ffff; /* FW (3 << 30), Addr entry (1 << 24), upper 16 bits of Mac */
2002 	ale_entry[2] = 0x0000001c; /* Forward to all ports */
2003 	cpsw_ale_write_entry(sc, 1, ale_entry);
2004 
2005 	/* SIOCDELMULTI doesn't specify the particular address
2006 	   being removed, so we have to remove all and rebuild. */
2007 	if (purge)
2008 		cpsw_ale_remove_all_mc_entries(sc);
2009 
2010         /* Set other multicast addrs desired. */
2011         if_maddr_rlock(ifp);
2012         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2013                 if (ifma->ifma_addr->sa_family != AF_LINK)
2014                         continue;
2015 		cpsw_ale_mc_entry_set(sc, 7,
2016 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
2017         }
2018         if_maddr_runlock(ifp);
2019 
2020 	return (0);
2021 }
2022 
2023 /*
2024  *
2025  * Statistics and Sysctls.
2026  *
2027  */
2028 
2029 #if 0
2030 static void
2031 cpsw_stats_dump(struct cpsw_softc *sc)
2032 {
2033 	int i;
2034 	uint32_t r;
2035 
2036 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2037 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2038 		    cpsw_stat_sysctls[i].reg);
2039 		CPSW_DEBUGF(("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
2040 			     (intmax_t)sc->shadow_stats[i], r,
2041 			     (intmax_t)sc->shadow_stats[i] + r));
2042 	}
2043 }
2044 #endif
2045 
2046 static void
2047 cpsw_stats_collect(struct cpsw_softc *sc)
2048 {
2049 	int i;
2050 	uint32_t r;
2051 
2052 	CPSW_DEBUGF(("Controller shadow statistics updated."));
2053 
2054 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2055 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2056 		    cpsw_stat_sysctls[i].reg);
2057 		sc->shadow_stats[i] += r;
2058 		cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg, r);
2059 	}
2060 }
2061 
2062 static int
2063 cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
2064 {
2065 	struct cpsw_softc *sc;
2066 	struct cpsw_stat *stat;
2067 	uint64_t result;
2068 
2069 	sc = (struct cpsw_softc *)arg1;
2070 	stat = &cpsw_stat_sysctls[oidp->oid_number];
2071 	result = sc->shadow_stats[oidp->oid_number];
2072 	result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
2073 	return (sysctl_handle_64(oidp, &result, 0, req));
2074 }
2075 
2076 static int
2077 cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
2078 {
2079 	struct cpsw_softc *sc;
2080 	struct bintime t;
2081 	unsigned result;
2082 
2083 	sc = (struct cpsw_softc *)arg1;
2084 	getbinuptime(&t);
2085 	bintime_sub(&t, &sc->attach_uptime);
2086 	result = t.sec;
2087 	return (sysctl_handle_int(oidp, &result, 0, req));
2088 }
2089 
2090 static int
2091 cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
2092 {
2093 	struct cpsw_softc *sc;
2094 	struct bintime t;
2095 	unsigned result;
2096 
2097 	sc = (struct cpsw_softc *)arg1;
2098 	if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
2099 		getbinuptime(&t);
2100 		bintime_sub(&t, &sc->init_uptime);
2101 		result = t.sec;
2102 	} else
2103 		result = 0;
2104 	return (sysctl_handle_int(oidp, &result, 0, req));
2105 }
2106 
2107 static void
2108 cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node, struct cpsw_queue *queue)
2109 {
2110 	struct sysctl_oid_list *parent;
2111 
2112 	parent = SYSCTL_CHILDREN(node);
2113 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
2114 	    CTLFLAG_RD, &queue->queue_slots, 0,
2115 	    "Total buffers currently assigned to this queue");
2116 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
2117 	    CTLFLAG_RD, &queue->active_queue_len, 0,
2118 	    "Buffers currently registered with hardware controller");
2119 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
2120 	    CTLFLAG_RD, &queue->max_active_queue_len, 0,
2121 	    "Max value of activeBuffers since last driver reset");
2122 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
2123 	    CTLFLAG_RD, &queue->avail_queue_len, 0,
2124 	    "Buffers allocated to this queue but not currently "
2125 	    "registered with hardware controller");
2126 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
2127 	    CTLFLAG_RD, &queue->max_avail_queue_len, 0,
2128 	    "Max value of availBuffers since last driver reset");
2129 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
2130 	    CTLFLAG_RD, &queue->queue_adds, 0,
2131 	    "Total buffers added to queue");
2132 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
2133 	    CTLFLAG_RD, &queue->queue_removes, 0,
2134 	    "Total buffers removed from queue");
2135 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
2136 	    CTLFLAG_RD, &queue->longest_chain, 0,
2137 	    "Max buffers used for a single packet");
2138 }
2139 
2140 static void
2141 cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node, struct cpsw_softc *sc)
2142 {
2143 	struct sysctl_oid_list *parent;
2144 
2145 	parent = SYSCTL_CHILDREN(node);
2146 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
2147 	    CTLFLAG_RD, &sc->watchdog.resets, 0,
2148 	    "Total number of watchdog resets");
2149 }
2150 
2151 static void
2152 cpsw_add_sysctls(struct cpsw_softc *sc)
2153 {
2154 	struct sysctl_ctx_list *ctx;
2155 	struct sysctl_oid *stats_node, *queue_node, *node;
2156 	struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
2157 	int i;
2158 
2159 	ctx = device_get_sysctl_ctx(sc->dev);
2160 	parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
2161 
2162 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
2163 	    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_attached, "IU",
2164 	    "Time since driver attach");
2165 
2166 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "uptime",
2167 	    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_uptime, "IU",
2168 	    "Seconds since driver init");
2169 
2170 	stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
2171 				     CTLFLAG_RD, NULL, "CPSW Statistics");
2172 	stats_parent = SYSCTL_CHILDREN(stats_node);
2173 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2174 		SYSCTL_ADD_PROC(ctx, stats_parent, i,
2175 				cpsw_stat_sysctls[i].oid,
2176 				CTLTYPE_U64 | CTLFLAG_RD, sc, 0,
2177 				cpsw_stats_sysctl, "IU",
2178 				cpsw_stat_sysctls[i].oid);
2179 	}
2180 
2181 	queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
2182 	    CTLFLAG_RD, NULL, "CPSW Queue Statistics");
2183 	queue_parent = SYSCTL_CHILDREN(queue_node);
2184 
2185 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
2186 	    CTLFLAG_RD, NULL, "TX Queue Statistics");
2187 	cpsw_add_queue_sysctls(ctx, node, &sc->tx);
2188 
2189 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
2190 	    CTLFLAG_RD, NULL, "RX Queue Statistics");
2191 	cpsw_add_queue_sysctls(ctx, node, &sc->rx);
2192 
2193 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
2194 	    CTLFLAG_RD, NULL, "Watchdog Statistics");
2195 	cpsw_add_watchdog_sysctls(ctx, node, sc);
2196 }
2197 
2198