xref: /freebsd/sys/arm/ti/cpsw/if_cpsw.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
5  * Copyright (c) 2016 Rubicon Communications, LLC (Netgate)
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * TI Common Platform Ethernet Switch (CPSW) Driver
32  * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
33  *
34  * This controller is documented in the AM335x Technical Reference
35  * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
36  * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
37  *
38  * It is basically a single Ethernet port (port 0) wired internally to
39  * a 3-port store-and-forward switch connected to two independent
40  * "sliver" controllers (port 1 and port 2).  You can operate the
41  * controller in a variety of different ways by suitably configuring
42  * the slivers and the Address Lookup Engine (ALE) that routes packets
43  * between the ports.
44  *
45  * This code was developed and tested on a BeagleBone with
46  * an AM335x SoC.
47  */
48 
49 #include <sys/cdefs.h>
50 #include "opt_cpsw.h"
51 
52 #include <sys/param.h>
53 #include <sys/bus.h>
54 #include <sys/kernel.h>
55 #include <sys/lock.h>
56 #include <sys/mbuf.h>
57 #include <sys/module.h>
58 #include <sys/mutex.h>
59 #include <sys/rman.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/sysctl.h>
63 
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66 #include <machine/stdarg.h>
67 
68 #include <net/ethernet.h>
69 #include <net/bpf.h>
70 #include <net/if.h>
71 #include <net/if_dl.h>
72 #include <net/if_media.h>
73 #include <net/if_types.h>
74 
75 #include <dev/syscon/syscon.h>
76 #include "syscon_if.h"
77 #include <arm/ti/am335x/am335x_scm.h>
78 
79 #include <dev/mii/mii.h>
80 #include <dev/mii/miivar.h>
81 
82 #include <dev/ofw/ofw_bus.h>
83 #include <dev/ofw/ofw_bus_subr.h>
84 
85 #include <dev/fdt/fdt_common.h>
86 
87 #ifdef CPSW_ETHERSWITCH
88 #include <dev/etherswitch/etherswitch.h>
89 #include "etherswitch_if.h"
90 #endif
91 
92 #include "if_cpswreg.h"
93 #include "if_cpswvar.h"
94 
95 #include "miibus_if.h"
96 
97 /* Device probe/attach/detach. */
98 static int cpsw_probe(device_t);
99 static int cpsw_attach(device_t);
100 static int cpsw_detach(device_t);
101 static int cpswp_probe(device_t);
102 static int cpswp_attach(device_t);
103 static int cpswp_detach(device_t);
104 
105 static phandle_t cpsw_get_node(device_t, device_t);
106 
107 /* Device Init/shutdown. */
108 static int cpsw_shutdown(device_t);
109 static void cpswp_init(void *);
110 static void cpswp_init_locked(void *);
111 static void cpswp_stop_locked(struct cpswp_softc *);
112 
113 /* Device Suspend/Resume. */
114 static int cpsw_suspend(device_t);
115 static int cpsw_resume(device_t);
116 
117 /* Ioctl. */
118 static int cpswp_ioctl(if_t, u_long command, caddr_t data);
119 
120 static int cpswp_miibus_readreg(device_t, int phy, int reg);
121 static int cpswp_miibus_writereg(device_t, int phy, int reg, int value);
122 static void cpswp_miibus_statchg(device_t);
123 
124 /* Send/Receive packets. */
125 static void cpsw_intr_rx(void *arg);
126 static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
127 static void cpsw_rx_enqueue(struct cpsw_softc *);
128 static void cpswp_start(if_t);
129 static void cpsw_intr_tx(void *);
130 static void cpswp_tx_enqueue(struct cpswp_softc *);
131 static int cpsw_tx_dequeue(struct cpsw_softc *);
132 
133 /* Misc interrupts and watchdog. */
134 static void cpsw_intr_rx_thresh(void *);
135 static void cpsw_intr_misc(void *);
136 static void cpswp_tick(void *);
137 static void cpswp_ifmedia_sts(if_t, struct ifmediareq *);
138 static int cpswp_ifmedia_upd(if_t);
139 static void cpsw_tx_watchdog(void *);
140 
141 /* ALE support */
142 static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t, uint32_t *);
143 static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t, uint32_t *);
144 static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t, int, uint8_t *);
145 static void cpsw_ale_dump_table(struct cpsw_softc *);
146 static int cpsw_ale_update_vlan_table(struct cpsw_softc *, int, int, int, int,
147 	int);
148 static int cpswp_ale_update_addresses(struct cpswp_softc *, int);
149 
150 /* Statistics and sysctls. */
151 static void cpsw_add_sysctls(struct cpsw_softc *);
152 static void cpsw_stats_collect(struct cpsw_softc *);
153 static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
154 
155 #ifdef CPSW_ETHERSWITCH
156 static etherswitch_info_t *cpsw_getinfo(device_t);
157 static int cpsw_getport(device_t, etherswitch_port_t *);
158 static int cpsw_setport(device_t, etherswitch_port_t *);
159 static int cpsw_getconf(device_t, etherswitch_conf_t *);
160 static int cpsw_getvgroup(device_t, etherswitch_vlangroup_t *);
161 static int cpsw_setvgroup(device_t, etherswitch_vlangroup_t *);
162 static int cpsw_readreg(device_t, int);
163 static int cpsw_writereg(device_t, int, int);
164 static int cpsw_readphy(device_t, int, int);
165 static int cpsw_writephy(device_t, int, int, int);
166 #endif
167 
168 /*
169  * Arbitrary limit on number of segments in an mbuf to be transmitted.
170  * Packets with more segments than this will be defragmented before
171  * they are queued.
172  */
173 #define	CPSW_TXFRAGS		16
174 
175 /* Shared resources. */
176 static device_method_t cpsw_methods[] = {
177 	/* Device interface */
178 	DEVMETHOD(device_probe,		cpsw_probe),
179 	DEVMETHOD(device_attach,	cpsw_attach),
180 	DEVMETHOD(device_detach,	cpsw_detach),
181 	DEVMETHOD(device_shutdown,	cpsw_shutdown),
182 	DEVMETHOD(device_suspend,	cpsw_suspend),
183 	DEVMETHOD(device_resume,	cpsw_resume),
184 	/* Bus interface */
185 	DEVMETHOD(bus_add_child,	device_add_child_ordered),
186 	/* OFW methods */
187 	DEVMETHOD(ofw_bus_get_node,	cpsw_get_node),
188 #ifdef CPSW_ETHERSWITCH
189 	/* etherswitch interface */
190 	DEVMETHOD(etherswitch_getinfo,	cpsw_getinfo),
191 	DEVMETHOD(etherswitch_readreg,	cpsw_readreg),
192 	DEVMETHOD(etherswitch_writereg,	cpsw_writereg),
193 	DEVMETHOD(etherswitch_readphyreg,	cpsw_readphy),
194 	DEVMETHOD(etherswitch_writephyreg,	cpsw_writephy),
195 	DEVMETHOD(etherswitch_getport,	cpsw_getport),
196 	DEVMETHOD(etherswitch_setport,	cpsw_setport),
197 	DEVMETHOD(etherswitch_getvgroup,	cpsw_getvgroup),
198 	DEVMETHOD(etherswitch_setvgroup,	cpsw_setvgroup),
199 	DEVMETHOD(etherswitch_getconf,	cpsw_getconf),
200 #endif
201 	DEVMETHOD_END
202 };
203 
204 static driver_t cpsw_driver = {
205 	"cpswss",
206 	cpsw_methods,
207 	sizeof(struct cpsw_softc),
208 };
209 
210 DRIVER_MODULE(cpswss, simplebus, cpsw_driver, 0, 0);
211 
212 /* Port/Slave resources. */
213 static device_method_t cpswp_methods[] = {
214 	/* Device interface */
215 	DEVMETHOD(device_probe,		cpswp_probe),
216 	DEVMETHOD(device_attach,	cpswp_attach),
217 	DEVMETHOD(device_detach,	cpswp_detach),
218 	/* MII interface */
219 	DEVMETHOD(miibus_readreg,	cpswp_miibus_readreg),
220 	DEVMETHOD(miibus_writereg,	cpswp_miibus_writereg),
221 	DEVMETHOD(miibus_statchg,	cpswp_miibus_statchg),
222 	DEVMETHOD_END
223 };
224 
225 static driver_t cpswp_driver = {
226 	"cpsw",
227 	cpswp_methods,
228 	sizeof(struct cpswp_softc),
229 };
230 
231 #ifdef CPSW_ETHERSWITCH
232 DRIVER_MODULE(etherswitch, cpswss, etherswitch_driver, 0, 0);
233 MODULE_DEPEND(cpswss, etherswitch, 1, 1, 1);
234 #endif
235 
236 DRIVER_MODULE(cpsw, cpswss, cpswp_driver, 0, 0);
237 DRIVER_MODULE(miibus, cpsw, miibus_driver, 0, 0);
238 MODULE_DEPEND(cpsw, ether, 1, 1, 1);
239 MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
240 
241 #ifdef CPSW_ETHERSWITCH
242 static struct cpsw_vlangroups cpsw_vgroups[CPSW_VLANS];
243 #endif
244 
245 static uint32_t slave_mdio_addr[] = { 0x4a100200, 0x4a100300 };
246 
247 static struct resource_spec irq_res_spec[] = {
248 	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
249 	{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
250 	{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
251 	{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
252 	{ -1, 0 }
253 };
254 
255 static struct {
256 	void (*cb)(void *);
257 } cpsw_intr_cb[] = {
258 	{ cpsw_intr_rx_thresh },
259 	{ cpsw_intr_rx },
260 	{ cpsw_intr_tx },
261 	{ cpsw_intr_misc },
262 };
263 
264 /* Number of entries here must match size of stats
265  * array in struct cpswp_softc. */
266 static struct cpsw_stat {
267 	int	reg;
268 	char *oid;
269 } cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
270 	{0x00, "GoodRxFrames"},
271 	{0x04, "BroadcastRxFrames"},
272 	{0x08, "MulticastRxFrames"},
273 	{0x0C, "PauseRxFrames"},
274 	{0x10, "RxCrcErrors"},
275 	{0x14, "RxAlignErrors"},
276 	{0x18, "OversizeRxFrames"},
277 	{0x1c, "RxJabbers"},
278 	{0x20, "ShortRxFrames"},
279 	{0x24, "RxFragments"},
280 	{0x30, "RxOctets"},
281 	{0x34, "GoodTxFrames"},
282 	{0x38, "BroadcastTxFrames"},
283 	{0x3c, "MulticastTxFrames"},
284 	{0x40, "PauseTxFrames"},
285 	{0x44, "DeferredTxFrames"},
286 	{0x48, "CollisionsTxFrames"},
287 	{0x4c, "SingleCollisionTxFrames"},
288 	{0x50, "MultipleCollisionTxFrames"},
289 	{0x54, "ExcessiveCollisions"},
290 	{0x58, "LateCollisions"},
291 	{0x5c, "TxUnderrun"},
292 	{0x60, "CarrierSenseErrors"},
293 	{0x64, "TxOctets"},
294 	{0x68, "RxTx64OctetFrames"},
295 	{0x6c, "RxTx65to127OctetFrames"},
296 	{0x70, "RxTx128to255OctetFrames"},
297 	{0x74, "RxTx256to511OctetFrames"},
298 	{0x78, "RxTx512to1024OctetFrames"},
299 	{0x7c, "RxTx1024upOctetFrames"},
300 	{0x80, "NetOctets"},
301 	{0x84, "RxStartOfFrameOverruns"},
302 	{0x88, "RxMiddleOfFrameOverruns"},
303 	{0x8c, "RxDmaOverruns"}
304 };
305 
306 /*
307  * Basic debug support.
308  */
309 
310 static void
311 cpsw_debugf_head(const char *funcname)
312 {
313 	int t = (int)(time_second % (24 * 60 * 60));
314 
315 	printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
316 }
317 
318 static void
319 cpsw_debugf(const char *fmt, ...)
320 {
321 	va_list ap;
322 
323 	va_start(ap, fmt);
324 	vprintf(fmt, ap);
325 	va_end(ap);
326 	printf("\n");
327 
328 }
329 
330 #define	CPSW_DEBUGF(_sc, a) do {					\
331 	if ((_sc)->debug) {						\
332 		cpsw_debugf_head(__func__);				\
333 		cpsw_debugf a;						\
334 	}								\
335 } while (0)
336 
337 /*
338  * Locking macros
339  */
340 #define	CPSW_TX_LOCK(sc) do {						\
341 		mtx_assert(&(sc)->rx.lock, MA_NOTOWNED);		\
342 		mtx_lock(&(sc)->tx.lock);				\
343 } while (0)
344 
345 #define	CPSW_TX_UNLOCK(sc)	mtx_unlock(&(sc)->tx.lock)
346 #define	CPSW_TX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->tx.lock, MA_OWNED)
347 
348 #define	CPSW_RX_LOCK(sc) do {						\
349 		mtx_assert(&(sc)->tx.lock, MA_NOTOWNED);		\
350 		mtx_lock(&(sc)->rx.lock);				\
351 } while (0)
352 
353 #define	CPSW_RX_UNLOCK(sc)		mtx_unlock(&(sc)->rx.lock)
354 #define	CPSW_RX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->rx.lock, MA_OWNED)
355 
356 #define CPSW_PORT_LOCK(_sc) do {					\
357 		mtx_assert(&(_sc)->lock, MA_NOTOWNED);			\
358 		mtx_lock(&(_sc)->lock);					\
359 } while (0)
360 
361 #define	CPSW_PORT_UNLOCK(_sc)	mtx_unlock(&(_sc)->lock)
362 #define	CPSW_PORT_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->lock, MA_OWNED)
363 
364 /*
365  * Read/Write macros
366  */
367 #define	cpsw_read_4(_sc, _reg)		bus_read_4((_sc)->mem_res, (_reg))
368 #define	cpsw_write_4(_sc, _reg, _val)					\
369 	bus_write_4((_sc)->mem_res, (_reg), (_val))
370 
371 #define	cpsw_cpdma_bd_offset(i)	(CPSW_CPPI_RAM_OFFSET + ((i)*16))
372 
373 #define	cpsw_cpdma_bd_paddr(sc, slot)					\
374 	BUS_SPACE_PHYSADDR(sc->mem_res, slot->bd_offset)
375 #define	cpsw_cpdma_read_bd(sc, slot, val)				\
376 	bus_read_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
377 #define	cpsw_cpdma_write_bd(sc, slot, val)				\
378 	bus_write_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
379 #define	cpsw_cpdma_write_bd_next(sc, slot, next_slot)			\
380 	cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
381 #define	cpsw_cpdma_write_bd_flags(sc, slot, val)			\
382 	bus_write_2(sc->mem_res, slot->bd_offset + 14, val)
383 #define	cpsw_cpdma_read_bd_flags(sc, slot)				\
384 	bus_read_2(sc->mem_res, slot->bd_offset + 14)
385 #define	cpsw_write_hdp_slot(sc, queue, slot)				\
386 	cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
387 #define	CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
388 #define	cpsw_read_cp(sc, queue)						\
389 	cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
390 #define	cpsw_write_cp(sc, queue, val)					\
391 	cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
392 #define	cpsw_write_cp_slot(sc, queue, slot)				\
393 	cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
394 
395 #if 0
396 /* XXX temporary function versions for debugging. */
397 static void
398 cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
399 {
400 	uint32_t reg = queue->hdp_offset;
401 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
402 	CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
403 	cpsw_write_4(sc, reg, v);
404 }
405 
406 static void
407 cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
408 {
409 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
410 	CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
411 	cpsw_write_cp(sc, queue, v);
412 }
413 #endif
414 
415 /*
416  * Expanded dump routines for verbose debugging.
417  */
418 static void
419 cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
420 {
421 	static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
422 	    "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
423 	    "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
424 	    "Port0"};
425 	struct cpsw_cpdma_bd bd;
426 	const char *sep;
427 	int i;
428 
429 	cpsw_cpdma_read_bd(sc, slot, &bd);
430 	printf("BD Addr : 0x%08x   Next  : 0x%08x\n",
431 	    cpsw_cpdma_bd_paddr(sc, slot), bd.next);
432 	printf("  BufPtr: 0x%08x   BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
433 	printf("  BufOff: 0x%08x   PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
434 	printf("  Flags: ");
435 	sep = "";
436 	for (i = 0; i < 16; ++i) {
437 		if (bd.flags & (1 << (15 - i))) {
438 			printf("%s%s", sep, flags[i]);
439 			sep = ",";
440 		}
441 	}
442 	printf("\n");
443 	if (slot->mbuf) {
444 		printf("  Ether:  %14D\n",
445 		    (char *)(slot->mbuf->m_data), " ");
446 		printf("  Packet: %16D\n",
447 		    (char *)(slot->mbuf->m_data) + 14, " ");
448 	}
449 }
450 
451 #define	CPSW_DUMP_SLOT(cs, slot) do {				\
452 	IF_DEBUG(sc) {						\
453 		cpsw_dump_slot(sc, slot);			\
454 	}							\
455 } while (0)
456 
457 static void
458 cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
459 {
460 	struct cpsw_slot *slot;
461 	int i = 0;
462 	int others = 0;
463 
464 	STAILQ_FOREACH(slot, q, next) {
465 		if (i > CPSW_TXFRAGS)
466 			++others;
467 		else
468 			cpsw_dump_slot(sc, slot);
469 		++i;
470 	}
471 	if (others)
472 		printf(" ... and %d more.\n", others);
473 	printf("\n");
474 }
475 
476 #define CPSW_DUMP_QUEUE(sc, q) do {				\
477 	IF_DEBUG(sc) {						\
478 		cpsw_dump_queue(sc, q);				\
479 	}							\
480 } while (0)
481 
482 static void
483 cpsw_init_slots(struct cpsw_softc *sc)
484 {
485 	struct cpsw_slot *slot;
486 	int i;
487 
488 	STAILQ_INIT(&sc->avail);
489 
490 	/* Put the slot descriptors onto the global avail list. */
491 	for (i = 0; i < nitems(sc->_slots); i++) {
492 		slot = &sc->_slots[i];
493 		slot->bd_offset = cpsw_cpdma_bd_offset(i);
494 		STAILQ_INSERT_TAIL(&sc->avail, slot, next);
495 	}
496 }
497 
498 static int
499 cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
500 {
501 	const int max_slots = nitems(sc->_slots);
502 	struct cpsw_slot *slot;
503 	int i;
504 
505 	if (requested < 0)
506 		requested = max_slots;
507 
508 	for (i = 0; i < requested; ++i) {
509 		slot = STAILQ_FIRST(&sc->avail);
510 		if (slot == NULL)
511 			return (0);
512 		if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
513 			device_printf(sc->dev, "failed to create dmamap\n");
514 			return (ENOMEM);
515 		}
516 		STAILQ_REMOVE_HEAD(&sc->avail, next);
517 		STAILQ_INSERT_TAIL(&queue->avail, slot, next);
518 		++queue->avail_queue_len;
519 		++queue->queue_slots;
520 	}
521 	return (0);
522 }
523 
524 static void
525 cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
526 {
527 	int error __diagused;
528 
529 	if (slot->dmamap) {
530 		if (slot->mbuf)
531 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
532 		error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
533 		KASSERT(error == 0, ("Mapping still active"));
534 		slot->dmamap = NULL;
535 	}
536 	if (slot->mbuf) {
537 		m_freem(slot->mbuf);
538 		slot->mbuf = NULL;
539 	}
540 }
541 
542 static void
543 cpsw_reset(struct cpsw_softc *sc)
544 {
545 	int i;
546 
547 	callout_stop(&sc->watchdog.callout);
548 
549 	/* Reset RMII/RGMII wrapper. */
550 	cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
551 	while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
552 		;
553 
554 	/* Disable TX and RX interrupts for all cores. */
555 	for (i = 0; i < 3; ++i) {
556 		cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
557 		cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
558 		cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
559 		cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
560 	}
561 
562 	/* Reset CPSW subsystem. */
563 	cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
564 	while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
565 		;
566 
567 	/* Reset Sliver port 1 and 2 */
568 	for (i = 0; i < 2; i++) {
569 		/* Reset */
570 		cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
571 		while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
572 			;
573 	}
574 
575 	/* Reset DMA controller. */
576 	cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
577 	while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
578 		;
579 
580 	/* Disable TX & RX DMA */
581 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
582 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
583 
584 	/* Clear all queues. */
585 	for (i = 0; i < 8; i++) {
586 		cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
587 		cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
588 		cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
589 		cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
590 	}
591 
592 	/* Clear all interrupt Masks */
593 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
594 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
595 }
596 
597 static void
598 cpsw_init(struct cpsw_softc *sc)
599 {
600 	struct cpsw_slot *slot;
601 	uint32_t reg;
602 
603 	/* Disable the interrupt pacing. */
604 	reg = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
605 	reg &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
606 	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, reg);
607 
608 	/* Clear ALE */
609 	cpsw_write_4(sc, CPSW_ALE_CONTROL, CPSW_ALE_CTL_CLEAR_TBL);
610 
611 	/* Enable ALE */
612 	reg = CPSW_ALE_CTL_ENABLE;
613 	if (sc->dualemac)
614 		reg |= CPSW_ALE_CTL_VLAN_AWARE;
615 	cpsw_write_4(sc, CPSW_ALE_CONTROL, reg);
616 
617 	/* Set Host Port Mapping. */
618 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
619 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
620 
621 	/* Initialize ALE: set host port to forwarding(3). */
622 	cpsw_write_4(sc, CPSW_ALE_PORTCTL(0),
623 	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
624 
625 	cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
626 
627 	/* Enable statistics for ports 0, 1 and 2 */
628 	cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
629 
630 	/* Turn off flow control. */
631 	cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
632 
633 	/* Make IP hdr aligned with 4 */
634 	cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
635 
636 	/* Initialize RX Buffer Descriptors */
637 	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), 0);
638 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
639 
640 	/* Enable TX & RX DMA */
641 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
642 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
643 
644 	/* Enable Interrupts for core 0 */
645 	cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
646 	cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
647 	cpsw_write_4(sc, CPSW_WR_C_TX_EN(0), 0xFF);
648 	cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x1F);
649 
650 	/* Enable host Error Interrupt */
651 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
652 
653 	/* Enable interrupts for RX and TX on Channel 0 */
654 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET,
655 	    CPSW_CPDMA_RX_INT(0) | CPSW_CPDMA_RX_INT_THRESH(0));
656 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_SET, 1);
657 
658 	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
659 	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
660 	cpsw_write_4(sc, MDIOCONTROL, MDIOCTL_ENABLE | MDIOCTL_FAULTENB | 0xff);
661 
662 	/* Select MII in GMII_SEL, Internal Delay mode */
663 	//ti_scm_reg_write_4(0x650, 0);
664 
665 	/* Initialize active queues. */
666 	slot = STAILQ_FIRST(&sc->tx.active);
667 	if (slot != NULL)
668 		cpsw_write_hdp_slot(sc, &sc->tx, slot);
669 	slot = STAILQ_FIRST(&sc->rx.active);
670 	if (slot != NULL)
671 		cpsw_write_hdp_slot(sc, &sc->rx, slot);
672 	cpsw_rx_enqueue(sc);
673 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), sc->rx.active_queue_len);
674 	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), CPSW_TXFRAGS);
675 
676 	/* Activate network interface. */
677 	sc->rx.running = 1;
678 	sc->tx.running = 1;
679 	sc->watchdog.timer = 0;
680 	callout_init(&sc->watchdog.callout, 0);
681 	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
682 }
683 
684 /*
685  *
686  * Device Probe, Attach, Detach.
687  *
688  */
689 
690 static int
691 cpsw_probe(device_t dev)
692 {
693 
694 	if (!ofw_bus_status_okay(dev))
695 		return (ENXIO);
696 
697 	if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
698 		return (ENXIO);
699 
700 	device_set_desc(dev, "3-port Switch Ethernet Subsystem");
701 	return (BUS_PROBE_DEFAULT);
702 }
703 
704 static int
705 cpsw_intr_attach(struct cpsw_softc *sc)
706 {
707 	int i;
708 
709 	for (i = 0; i < CPSW_INTR_COUNT; i++) {
710 		if (bus_setup_intr(sc->dev, sc->irq_res[i],
711 		    INTR_TYPE_NET | INTR_MPSAFE, NULL,
712 		    cpsw_intr_cb[i].cb, sc, &sc->ih_cookie[i]) != 0) {
713 			return (-1);
714 		}
715 	}
716 
717 	return (0);
718 }
719 
720 static void
721 cpsw_intr_detach(struct cpsw_softc *sc)
722 {
723 	int i;
724 
725 	for (i = 0; i < CPSW_INTR_COUNT; i++) {
726 		if (sc->ih_cookie[i]) {
727 			bus_teardown_intr(sc->dev, sc->irq_res[i],
728 			    sc->ih_cookie[i]);
729 		}
730 	}
731 }
732 
733 static int
734 cpsw_get_fdt_data(struct cpsw_softc *sc, int port)
735 {
736 	char *name;
737 	int len, phy, vlan;
738 	pcell_t phy_id[3], vlan_id;
739 	phandle_t child;
740 	unsigned long mdio_child_addr;
741 
742 	/* Find any slave with phy-handle/phy_id */
743 	phy = -1;
744 	vlan = -1;
745 	for (child = OF_child(sc->node); child != 0; child = OF_peer(child)) {
746 		if (OF_getprop_alloc(child, "name", (void **)&name) < 0)
747 			continue;
748 		if (sscanf(name, "slave@%lx", &mdio_child_addr) != 1) {
749 			OF_prop_free(name);
750 			continue;
751 		}
752 		OF_prop_free(name);
753 
754 		if (mdio_child_addr != slave_mdio_addr[port] &&
755 		    mdio_child_addr != (slave_mdio_addr[port] & 0xFFF))
756 			continue;
757 
758 		if (fdt_get_phyaddr(child, NULL, &phy, NULL) != 0){
759 			/* Users with old DTB will have phy_id instead */
760 			phy = -1;
761 			len = OF_getproplen(child, "phy_id");
762 			if (len / sizeof(pcell_t) == 2) {
763 				/* Get phy address from fdt */
764 				if (OF_getencprop(child, "phy_id", phy_id, len) > 0)
765 					phy = phy_id[1];
766 			}
767 		}
768 
769 		len = OF_getproplen(child, "dual_emac_res_vlan");
770 		if (len / sizeof(pcell_t) == 1) {
771 			/* Get phy address from fdt */
772 			if (OF_getencprop(child, "dual_emac_res_vlan",
773 			    &vlan_id, len) > 0) {
774 				vlan = vlan_id;
775 			}
776 		}
777 
778 		break;
779 	}
780 	if (phy == -1)
781 		return (ENXIO);
782 	sc->port[port].phy = phy;
783 	sc->port[port].vlan = vlan;
784 
785 	return (0);
786 }
787 
788 static int
789 cpsw_attach(device_t dev)
790 {
791 	int error, i;
792 	struct cpsw_softc *sc;
793 	uint32_t reg;
794 
795 	sc = device_get_softc(dev);
796 	sc->dev = dev;
797 	sc->node = ofw_bus_get_node(dev);
798 	getbinuptime(&sc->attach_uptime);
799 
800 	if (OF_getencprop(sc->node, "active_slave", &sc->active_slave,
801 	    sizeof(sc->active_slave)) <= 0) {
802 		sc->active_slave = 0;
803 	}
804 	if (sc->active_slave > 1)
805 		sc->active_slave = 1;
806 
807 	if (OF_hasprop(sc->node, "dual_emac"))
808 		sc->dualemac = 1;
809 
810 	for (i = 0; i < CPSW_PORTS; i++) {
811 		if (!sc->dualemac && i != sc->active_slave)
812 			continue;
813 		if (cpsw_get_fdt_data(sc, i) != 0) {
814 			device_printf(dev,
815 			    "failed to get PHY address from FDT\n");
816 			return (ENXIO);
817 		}
818 	}
819 
820 	/* Initialize mutexes */
821 	mtx_init(&sc->tx.lock, device_get_nameunit(dev),
822 	    "cpsw TX lock", MTX_DEF);
823 	mtx_init(&sc->rx.lock, device_get_nameunit(dev),
824 	    "cpsw RX lock", MTX_DEF);
825 
826 	/* Allocate IRQ resources */
827 	error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
828 	if (error) {
829 		device_printf(dev, "could not allocate IRQ resources\n");
830 		cpsw_detach(dev);
831 		return (ENXIO);
832 	}
833 
834 	sc->mem_rid = 0;
835 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
836 	    &sc->mem_rid, RF_ACTIVE);
837 	if (sc->mem_res == NULL) {
838 		device_printf(sc->dev, "failed to allocate memory resource\n");
839 		cpsw_detach(dev);
840 		return (ENXIO);
841 	}
842 
843 	reg = cpsw_read_4(sc, CPSW_SS_IDVER);
844 	device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
845 		reg & 0xFF, (reg >> 11) & 0x1F);
846 
847 	cpsw_add_sysctls(sc);
848 
849 	/* Allocate a busdma tag and DMA safe memory for mbufs. */
850 	error = bus_dma_tag_create(
851 		bus_get_dma_tag(sc->dev),	/* parent */
852 		1, 0,				/* alignment, boundary */
853 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
854 		BUS_SPACE_MAXADDR,		/* highaddr */
855 		NULL, NULL,			/* filtfunc, filtfuncarg */
856 		MCLBYTES, CPSW_TXFRAGS,		/* maxsize, nsegments */
857 		MCLBYTES, 0,			/* maxsegsz, flags */
858 		NULL, NULL,			/* lockfunc, lockfuncarg */
859 		&sc->mbuf_dtag);		/* dmatag */
860 	if (error) {
861 		device_printf(dev, "bus_dma_tag_create failed\n");
862 		cpsw_detach(dev);
863 		return (error);
864 	}
865 
866 	/* Allocate a NULL buffer for padding. */
867 	sc->nullpad = malloc(ETHER_MIN_LEN, M_DEVBUF, M_WAITOK | M_ZERO);
868 
869 	cpsw_init_slots(sc);
870 
871 	/* Allocate slots to TX and RX queues. */
872 	STAILQ_INIT(&sc->rx.avail);
873 	STAILQ_INIT(&sc->rx.active);
874 	STAILQ_INIT(&sc->tx.avail);
875 	STAILQ_INIT(&sc->tx.active);
876 	// For now:  128 slots to TX, rest to RX.
877 	// XXX TODO: start with 32/64 and grow dynamically based on demand.
878 	if (cpsw_add_slots(sc, &sc->tx, 128) ||
879 	    cpsw_add_slots(sc, &sc->rx, -1)) {
880 		device_printf(dev, "failed to allocate dmamaps\n");
881 		cpsw_detach(dev);
882 		return (ENOMEM);
883 	}
884 	device_printf(dev, "Initial queue size TX=%d RX=%d\n",
885 	    sc->tx.queue_slots, sc->rx.queue_slots);
886 
887 	sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
888 	sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
889 
890 	if (cpsw_intr_attach(sc) == -1) {
891 		device_printf(dev, "failed to setup interrupts\n");
892 		cpsw_detach(dev);
893 		return (ENXIO);
894 	}
895 
896 #ifdef CPSW_ETHERSWITCH
897 	for (i = 0; i < CPSW_VLANS; i++)
898 		cpsw_vgroups[i].vid = -1;
899 #endif
900 
901 	/* Reset the controller. */
902 	cpsw_reset(sc);
903 	cpsw_init(sc);
904 
905 	for (i = 0; i < CPSW_PORTS; i++) {
906 		if (!sc->dualemac && i != sc->active_slave)
907 			continue;
908 		sc->port[i].dev = device_add_child(dev, "cpsw", i);
909 		if (sc->port[i].dev == NULL) {
910 			cpsw_detach(dev);
911 			return (ENXIO);
912 		}
913 	}
914 	bus_identify_children(dev);
915 	bus_attach_children(dev);
916 
917 	return (0);
918 }
919 
920 static int
921 cpsw_detach(device_t dev)
922 {
923 	struct cpsw_softc *sc;
924 	int error, i;
925 
926 	error = bus_generic_detach(dev);
927 	if (error != 0)
928 		return (error);
929 
930 	sc = device_get_softc(dev);
931 
932 	if (device_is_attached(dev)) {
933 		callout_stop(&sc->watchdog.callout);
934 		callout_drain(&sc->watchdog.callout);
935 	}
936 
937 	/* Stop and release all interrupts */
938 	cpsw_intr_detach(sc);
939 
940 	/* Free dmamaps and mbufs */
941 	for (i = 0; i < nitems(sc->_slots); ++i)
942 		cpsw_free_slot(sc, &sc->_slots[i]);
943 
944 	/* Free null padding buffer. */
945 	if (sc->nullpad)
946 		free(sc->nullpad, M_DEVBUF);
947 
948 	/* Free DMA tag */
949 	if (sc->mbuf_dtag) {
950 		error = bus_dma_tag_destroy(sc->mbuf_dtag);
951 		KASSERT(error == 0, ("Unable to destroy DMA tag"));
952 	}
953 
954 	/* Free IO memory handler */
955 	if (sc->mem_res != NULL)
956 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res);
957 	bus_release_resources(dev, irq_res_spec, sc->irq_res);
958 
959 	/* Destroy mutexes */
960 	mtx_destroy(&sc->rx.lock);
961 	mtx_destroy(&sc->tx.lock);
962 
963 	return (0);
964 }
965 
966 static phandle_t
967 cpsw_get_node(device_t bus, device_t dev)
968 {
969 
970 	/* Share controller node with port device. */
971 	return (ofw_bus_get_node(bus));
972 }
973 
974 static int
975 cpswp_probe(device_t dev)
976 {
977 
978 	if (device_get_unit(dev) > 1) {
979 		device_printf(dev, "Only two ports are supported.\n");
980 		return (ENXIO);
981 	}
982 	device_set_desc(dev, "Ethernet Switch Port");
983 
984 	return (BUS_PROBE_DEFAULT);
985 }
986 
987 static int
988 cpswp_attach(device_t dev)
989 {
990 	int error;
991 	if_t ifp;
992 	struct cpswp_softc *sc;
993 	uint32_t reg;
994 	uint8_t mac_addr[ETHER_ADDR_LEN];
995 	phandle_t opp_table;
996 	struct syscon *syscon;
997 
998 	sc = device_get_softc(dev);
999 	sc->dev = dev;
1000 	sc->pdev = device_get_parent(dev);
1001 	sc->swsc = device_get_softc(sc->pdev);
1002 	sc->unit = device_get_unit(dev);
1003 	sc->phy = sc->swsc->port[sc->unit].phy;
1004 	sc->vlan = sc->swsc->port[sc->unit].vlan;
1005 	if (sc->swsc->dualemac && sc->vlan == -1)
1006 		sc->vlan = sc->unit + 1;
1007 
1008 	if (sc->unit == 0) {
1009 		sc->physel = MDIOUSERPHYSEL0;
1010 		sc->phyaccess = MDIOUSERACCESS0;
1011 	} else {
1012 		sc->physel = MDIOUSERPHYSEL1;
1013 		sc->phyaccess = MDIOUSERACCESS1;
1014 	}
1015 
1016 	mtx_init(&sc->lock, device_get_nameunit(dev), "cpsw port lock",
1017 	    MTX_DEF);
1018 
1019 	/* Allocate network interface */
1020 	ifp = sc->ifp = if_alloc(IFT_ETHER);
1021 	if_initname(ifp, device_get_name(sc->dev), sc->unit);
1022 	if_setsoftc(ifp, sc);
1023 	if_setflags(ifp, IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST);
1024 
1025 	if_setcapenable(ifp, if_getcapabilities(ifp));
1026 
1027 	if_setinitfn(ifp, cpswp_init);
1028 	if_setstartfn(ifp, cpswp_start);
1029 	if_setioctlfn(ifp, cpswp_ioctl);
1030 
1031 	if_setsendqlen(ifp, sc->swsc->tx.queue_slots);
1032 	if_setsendqready(ifp);
1033 
1034 	/* FIXME: For now; Go and kidnap syscon from opp-table */
1035 	/* ti,cpsw actually have an optional syscon reference but only for am33xx?? */
1036 	opp_table = OF_finddevice("/opp-table");
1037 	if (opp_table == -1) {
1038 		device_printf(dev, "Cant find /opp-table\n");
1039 		cpswp_detach(dev);
1040 		return (ENXIO);
1041 	}
1042 	if (!OF_hasprop(opp_table, "syscon")) {
1043 		device_printf(dev, "/opp-table doesnt have required syscon property\n");
1044 		cpswp_detach(dev);
1045 		return (ENXIO);
1046 	}
1047 	if (syscon_get_by_ofw_property(dev, opp_table, "syscon", &syscon) != 0) {
1048 		device_printf(dev, "Failed to get syscon\n");
1049 		cpswp_detach(dev);
1050 		return (ENXIO);
1051 	}
1052 
1053 	/* Get high part of MAC address from control module (mac_id[0|1]_hi) */
1054 	reg = SYSCON_READ_4(syscon, SCM_MAC_ID0_HI + sc->unit * 8);
1055 	mac_addr[0] = reg & 0xFF;
1056 	mac_addr[1] = (reg >>  8) & 0xFF;
1057 	mac_addr[2] = (reg >> 16) & 0xFF;
1058 	mac_addr[3] = (reg >> 24) & 0xFF;
1059 
1060 	/* Get low part of MAC address from control module (mac_id[0|1]_lo) */
1061 	reg = SYSCON_READ_4(syscon, SCM_MAC_ID0_LO + sc->unit * 8);
1062 	mac_addr[4] = reg & 0xFF;
1063 	mac_addr[5] = (reg >>  8) & 0xFF;
1064 
1065 	error = mii_attach(dev, &sc->miibus, ifp, cpswp_ifmedia_upd,
1066 	    cpswp_ifmedia_sts, BMSR_DEFCAPMASK, sc->phy, MII_OFFSET_ANY, 0);
1067 	if (error) {
1068 		device_printf(dev, "attaching PHYs failed\n");
1069 		cpswp_detach(dev);
1070 		return (error);
1071 	}
1072 	sc->mii = device_get_softc(sc->miibus);
1073 
1074 	/* Select PHY and enable interrupts */
1075 	cpsw_write_4(sc->swsc, sc->physel,
1076 	    MDIO_PHYSEL_LINKINTENB | (sc->phy & 0x1F));
1077 
1078 	ether_ifattach(sc->ifp, mac_addr);
1079 	callout_init(&sc->mii_callout, 0);
1080 
1081 	return (0);
1082 }
1083 
1084 static int
1085 cpswp_detach(device_t dev)
1086 {
1087 	struct cpswp_softc *sc;
1088 	int error;
1089 
1090 	error = bus_generic_detach(dev);
1091 	if (error != 0)
1092 		return (error);
1093 
1094 	sc = device_get_softc(dev);
1095 	CPSW_DEBUGF(sc->swsc, (""));
1096 	if (device_is_attached(dev)) {
1097 		ether_ifdetach(sc->ifp);
1098 		CPSW_PORT_LOCK(sc);
1099 		cpswp_stop_locked(sc);
1100 		CPSW_PORT_UNLOCK(sc);
1101 		callout_drain(&sc->mii_callout);
1102 	}
1103 
1104 	if_free(sc->ifp);
1105 	mtx_destroy(&sc->lock);
1106 
1107 	return (0);
1108 }
1109 
1110 /*
1111  *
1112  * Init/Shutdown.
1113  *
1114  */
1115 
1116 static int
1117 cpsw_ports_down(struct cpsw_softc *sc)
1118 {
1119 	struct cpswp_softc *psc;
1120 	if_t ifp1, ifp2;
1121 
1122 	if (!sc->dualemac)
1123 		return (1);
1124 	psc = device_get_softc(sc->port[0].dev);
1125 	ifp1 = psc->ifp;
1126 	psc = device_get_softc(sc->port[1].dev);
1127 	ifp2 = psc->ifp;
1128 	if ((if_getflags(ifp1) & IFF_UP) == 0 && (if_getflags(ifp2) & IFF_UP) == 0)
1129 		return (1);
1130 
1131 	return (0);
1132 }
1133 
1134 static void
1135 cpswp_init(void *arg)
1136 {
1137 	struct cpswp_softc *sc = arg;
1138 
1139 	CPSW_DEBUGF(sc->swsc, (""));
1140 	CPSW_PORT_LOCK(sc);
1141 	cpswp_init_locked(arg);
1142 	CPSW_PORT_UNLOCK(sc);
1143 }
1144 
1145 static void
1146 cpswp_init_locked(void *arg)
1147 {
1148 #ifdef CPSW_ETHERSWITCH
1149 	int i;
1150 #endif
1151 	struct cpswp_softc *sc = arg;
1152 	if_t ifp;
1153 	uint32_t reg;
1154 
1155 	CPSW_DEBUGF(sc->swsc, (""));
1156 	CPSW_PORT_LOCK_ASSERT(sc);
1157 	ifp = sc->ifp;
1158 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1159 		return;
1160 
1161 	getbinuptime(&sc->init_uptime);
1162 
1163 	if (!sc->swsc->rx.running && !sc->swsc->tx.running) {
1164 		/* Reset the controller. */
1165 		cpsw_reset(sc->swsc);
1166 		cpsw_init(sc->swsc);
1167 	}
1168 
1169 	/* Set Slave Mapping. */
1170 	cpsw_write_4(sc->swsc, CPSW_SL_RX_PRI_MAP(sc->unit), 0x76543210);
1171 	cpsw_write_4(sc->swsc, CPSW_PORT_P_TX_PRI_MAP(sc->unit + 1),
1172 	    0x33221100);
1173 	cpsw_write_4(sc->swsc, CPSW_SL_RX_MAXLEN(sc->unit), 0x5f2);
1174 	/* Enable MAC RX/TX modules. */
1175 	/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
1176 	/* Huh?  Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
1177 	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1178 	reg |= CPSW_SL_MACTL_GMII_ENABLE;
1179 	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1180 
1181 	/* Initialize ALE: set port to forwarding, initialize addrs */
1182 	cpsw_write_4(sc->swsc, CPSW_ALE_PORTCTL(sc->unit + 1),
1183 	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
1184 	cpswp_ale_update_addresses(sc, 1);
1185 
1186 	if (sc->swsc->dualemac) {
1187 		/* Set Port VID. */
1188 		cpsw_write_4(sc->swsc, CPSW_PORT_P_VLAN(sc->unit + 1),
1189 		    sc->vlan & 0xfff);
1190 		cpsw_ale_update_vlan_table(sc->swsc, sc->vlan,
1191 		    (1 << (sc->unit + 1)) | (1 << 0), /* Member list */
1192 		    (1 << (sc->unit + 1)) | (1 << 0), /* Untagged egress */
1193 		    (1 << (sc->unit + 1)) | (1 << 0), 0); /* mcast reg flood */
1194 #ifdef CPSW_ETHERSWITCH
1195 		for (i = 0; i < CPSW_VLANS; i++) {
1196 			if (cpsw_vgroups[i].vid != -1)
1197 				continue;
1198 			cpsw_vgroups[i].vid = sc->vlan;
1199 			break;
1200 		}
1201 #endif
1202 	}
1203 
1204 	mii_mediachg(sc->mii);
1205 	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
1206 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
1207 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1208 }
1209 
1210 static int
1211 cpsw_shutdown(device_t dev)
1212 {
1213 	struct cpsw_softc *sc;
1214 	struct cpswp_softc *psc;
1215 	int i;
1216 
1217  	sc = device_get_softc(dev);
1218 	CPSW_DEBUGF(sc, (""));
1219 	for (i = 0; i < CPSW_PORTS; i++) {
1220 		if (!sc->dualemac && i != sc->active_slave)
1221 			continue;
1222 		psc = device_get_softc(sc->port[i].dev);
1223 		CPSW_PORT_LOCK(psc);
1224 		cpswp_stop_locked(psc);
1225 		CPSW_PORT_UNLOCK(psc);
1226 	}
1227 
1228 	return (0);
1229 }
1230 
1231 static void
1232 cpsw_rx_teardown(struct cpsw_softc *sc)
1233 {
1234 	int i = 0;
1235 
1236 	CPSW_RX_LOCK(sc);
1237 	CPSW_DEBUGF(sc, ("starting RX teardown"));
1238 	sc->rx.teardown = 1;
1239 	cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
1240 	CPSW_RX_UNLOCK(sc);
1241 	while (sc->rx.running) {
1242 		if (++i > 10) {
1243 			device_printf(sc->dev,
1244 			    "Unable to cleanly shutdown receiver\n");
1245 			return;
1246 		}
1247 		DELAY(200);
1248 	}
1249 	if (!sc->rx.running)
1250 		CPSW_DEBUGF(sc, ("finished RX teardown (%d retries)", i));
1251 }
1252 
1253 static void
1254 cpsw_tx_teardown(struct cpsw_softc *sc)
1255 {
1256 	int i = 0;
1257 
1258 	CPSW_TX_LOCK(sc);
1259 	CPSW_DEBUGF(sc, ("starting TX teardown"));
1260 	/* Start the TX queue teardown if queue is not empty. */
1261 	if (STAILQ_FIRST(&sc->tx.active) != NULL)
1262 		cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
1263 	else
1264 		sc->tx.teardown = 1;
1265 	cpsw_tx_dequeue(sc);
1266 	while (sc->tx.running && ++i < 10) {
1267 		DELAY(200);
1268 		cpsw_tx_dequeue(sc);
1269 	}
1270 	if (sc->tx.running) {
1271 		device_printf(sc->dev,
1272 		    "Unable to cleanly shutdown transmitter\n");
1273 	}
1274 	CPSW_DEBUGF(sc,
1275 	    ("finished TX teardown (%d retries, %d idle buffers)", i,
1276 	     sc->tx.active_queue_len));
1277 	CPSW_TX_UNLOCK(sc);
1278 }
1279 
1280 static void
1281 cpswp_stop_locked(struct cpswp_softc *sc)
1282 {
1283 	if_t ifp;
1284 	uint32_t reg;
1285 
1286 	ifp = sc->ifp;
1287 	CPSW_DEBUGF(sc->swsc, (""));
1288 	CPSW_PORT_LOCK_ASSERT(sc);
1289 
1290 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1291 		return;
1292 
1293 	/* Disable interface */
1294 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1295 	if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1296 
1297 	/* Stop ticker */
1298 	callout_stop(&sc->mii_callout);
1299 
1300 	/* Tear down the RX/TX queues. */
1301 	if (cpsw_ports_down(sc->swsc)) {
1302 		cpsw_rx_teardown(sc->swsc);
1303 		cpsw_tx_teardown(sc->swsc);
1304 	}
1305 
1306 	/* Stop MAC RX/TX modules. */
1307 	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1308 	reg &= ~CPSW_SL_MACTL_GMII_ENABLE;
1309 	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1310 
1311 	if (cpsw_ports_down(sc->swsc)) {
1312 		/* Capture stats before we reset controller. */
1313 		cpsw_stats_collect(sc->swsc);
1314 
1315 		cpsw_reset(sc->swsc);
1316 		cpsw_init(sc->swsc);
1317 	}
1318 }
1319 
1320 /*
1321  *  Suspend/Resume.
1322  */
1323 
1324 static int
1325 cpsw_suspend(device_t dev)
1326 {
1327 	struct cpsw_softc *sc;
1328 	struct cpswp_softc *psc;
1329 	int i;
1330 
1331 	sc = device_get_softc(dev);
1332 	CPSW_DEBUGF(sc, (""));
1333 	for (i = 0; i < CPSW_PORTS; i++) {
1334 		if (!sc->dualemac && i != sc->active_slave)
1335 			continue;
1336 		psc = device_get_softc(sc->port[i].dev);
1337 		CPSW_PORT_LOCK(psc);
1338 		cpswp_stop_locked(psc);
1339 		CPSW_PORT_UNLOCK(psc);
1340 	}
1341 
1342 	return (0);
1343 }
1344 
1345 static int
1346 cpsw_resume(device_t dev)
1347 {
1348 	struct cpsw_softc *sc;
1349 
1350 	sc  = device_get_softc(dev);
1351 	CPSW_DEBUGF(sc, ("UNIMPLEMENTED"));
1352 
1353 	return (0);
1354 }
1355 
1356 /*
1357  *
1358  *  IOCTL
1359  *
1360  */
1361 
1362 static void
1363 cpsw_set_promisc(struct cpswp_softc *sc, int set)
1364 {
1365 	uint32_t reg;
1366 
1367 	/*
1368 	 * Enabling promiscuous mode requires ALE_BYPASS to be enabled.
1369 	 * That disables the ALE forwarding logic and causes every
1370 	 * packet to be sent only to the host port.  In bypass mode,
1371 	 * the ALE processes host port transmit packets the same as in
1372 	 * normal mode.
1373 	 */
1374 	reg = cpsw_read_4(sc->swsc, CPSW_ALE_CONTROL);
1375 	reg &= ~CPSW_ALE_CTL_BYPASS;
1376 	if (set)
1377 		reg |= CPSW_ALE_CTL_BYPASS;
1378 	cpsw_write_4(sc->swsc, CPSW_ALE_CONTROL, reg);
1379 }
1380 
1381 static void
1382 cpsw_set_allmulti(struct cpswp_softc *sc, int set)
1383 {
1384 	if (set) {
1385 		printf("All-multicast mode unimplemented\n");
1386 	}
1387 }
1388 
1389 static int
1390 cpswp_ioctl(if_t ifp, u_long command, caddr_t data)
1391 {
1392 	struct cpswp_softc *sc;
1393 	struct ifreq *ifr;
1394 	int error;
1395 	uint32_t changed;
1396 
1397 	error = 0;
1398 	sc = if_getsoftc(ifp);
1399 	ifr = (struct ifreq *)data;
1400 
1401 	switch (command) {
1402 	case SIOCSIFCAP:
1403 		changed = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
1404 		if (changed & IFCAP_HWCSUM) {
1405 			if ((ifr->ifr_reqcap & changed) & IFCAP_HWCSUM)
1406 				if_setcapenablebit(ifp, IFCAP_HWCSUM, 0);
1407 			else
1408 				if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
1409 		}
1410 		error = 0;
1411 		break;
1412 	case SIOCSIFFLAGS:
1413 		CPSW_PORT_LOCK(sc);
1414 		if (if_getflags(ifp) & IFF_UP) {
1415 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1416 				changed = if_getflags(ifp) ^ sc->if_flags;
1417 				CPSW_DEBUGF(sc->swsc,
1418 				    ("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)",
1419 				    changed));
1420 				if (changed & IFF_PROMISC)
1421 					cpsw_set_promisc(sc,
1422 					    if_getflags(ifp) & IFF_PROMISC);
1423 				if (changed & IFF_ALLMULTI)
1424 					cpsw_set_allmulti(sc,
1425 					    if_getflags(ifp) & IFF_ALLMULTI);
1426 			} else {
1427 				CPSW_DEBUGF(sc->swsc,
1428 				    ("SIOCSIFFLAGS: starting up"));
1429 				cpswp_init_locked(sc);
1430 			}
1431 		} else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1432 			CPSW_DEBUGF(sc->swsc, ("SIOCSIFFLAGS: shutting down"));
1433 			cpswp_stop_locked(sc);
1434 		}
1435 
1436 		sc->if_flags = if_getflags(ifp);
1437 		CPSW_PORT_UNLOCK(sc);
1438 		break;
1439 	case SIOCADDMULTI:
1440 		cpswp_ale_update_addresses(sc, 0);
1441 		break;
1442 	case SIOCDELMULTI:
1443 		/* Ugh.  DELMULTI doesn't provide the specific address
1444 		   being removed, so the best we can do is remove
1445 		   everything and rebuild it all. */
1446 		cpswp_ale_update_addresses(sc, 1);
1447 		break;
1448 	case SIOCGIFMEDIA:
1449 	case SIOCSIFMEDIA:
1450 		error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
1451 		break;
1452 	default:
1453 		error = ether_ioctl(ifp, command, data);
1454 	}
1455 	return (error);
1456 }
1457 
1458 /*
1459  *
1460  * MIIBUS
1461  *
1462  */
1463 static int
1464 cpswp_miibus_ready(struct cpsw_softc *sc, uint32_t reg)
1465 {
1466 	uint32_t r, retries = CPSW_MIIBUS_RETRIES;
1467 
1468 	while (--retries) {
1469 		r = cpsw_read_4(sc, reg);
1470 		if ((r & MDIO_PHYACCESS_GO) == 0)
1471 			return (1);
1472 		DELAY(CPSW_MIIBUS_DELAY);
1473 	}
1474 
1475 	return (0);
1476 }
1477 
1478 static int
1479 cpswp_miibus_readreg(device_t dev, int phy, int reg)
1480 {
1481 	struct cpswp_softc *sc;
1482 	uint32_t cmd, r;
1483 
1484 	sc = device_get_softc(dev);
1485 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1486 		device_printf(dev, "MDIO not ready to read\n");
1487 		return (0);
1488 	}
1489 
1490 	/* Set GO, reg, phy */
1491 	cmd = MDIO_PHYACCESS_GO | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
1492 	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1493 
1494 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1495 		device_printf(dev, "MDIO timed out during read\n");
1496 		return (0);
1497 	}
1498 
1499 	r = cpsw_read_4(sc->swsc, sc->phyaccess);
1500 	if ((r & MDIO_PHYACCESS_ACK) == 0) {
1501 		device_printf(dev, "Failed to read from PHY.\n");
1502 		r = 0;
1503 	}
1504 	return (r & 0xFFFF);
1505 }
1506 
1507 static int
1508 cpswp_miibus_writereg(device_t dev, int phy, int reg, int value)
1509 {
1510 	struct cpswp_softc *sc;
1511 	uint32_t cmd;
1512 
1513 	sc = device_get_softc(dev);
1514 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1515 		device_printf(dev, "MDIO not ready to write\n");
1516 		return (0);
1517 	}
1518 
1519 	/* Set GO, WRITE, reg, phy, and value */
1520 	cmd = MDIO_PHYACCESS_GO | MDIO_PHYACCESS_WRITE |
1521 	    (reg & 0x1F) << 21 | (phy & 0x1F) << 16 | (value & 0xFFFF);
1522 	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1523 
1524 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1525 		device_printf(dev, "MDIO timed out during write\n");
1526 		return (0);
1527 	}
1528 
1529 	return (0);
1530 }
1531 
1532 static void
1533 cpswp_miibus_statchg(device_t dev)
1534 {
1535 	struct cpswp_softc *sc;
1536 	uint32_t mac_control, reg;
1537 
1538 	sc = device_get_softc(dev);
1539 	CPSW_DEBUGF(sc->swsc, (""));
1540 
1541 	reg = CPSW_SL_MACCONTROL(sc->unit);
1542 	mac_control = cpsw_read_4(sc->swsc, reg);
1543 	mac_control &= ~(CPSW_SL_MACTL_GIG | CPSW_SL_MACTL_IFCTL_A |
1544 	    CPSW_SL_MACTL_IFCTL_B | CPSW_SL_MACTL_FULLDUPLEX);
1545 
1546 	switch(IFM_SUBTYPE(sc->mii->mii_media_active)) {
1547 	case IFM_1000_SX:
1548 	case IFM_1000_LX:
1549 	case IFM_1000_CX:
1550 	case IFM_1000_T:
1551 		mac_control |= CPSW_SL_MACTL_GIG;
1552 		break;
1553 
1554 	case IFM_100_TX:
1555 		mac_control |= CPSW_SL_MACTL_IFCTL_A;
1556 		break;
1557 	}
1558 	if (sc->mii->mii_media_active & IFM_FDX)
1559 		mac_control |= CPSW_SL_MACTL_FULLDUPLEX;
1560 
1561 	cpsw_write_4(sc->swsc, reg, mac_control);
1562 }
1563 
1564 /*
1565  *
1566  * Transmit/Receive Packets.
1567  *
1568  */
1569 static void
1570 cpsw_intr_rx(void *arg)
1571 {
1572 	struct cpsw_softc *sc;
1573 	if_t ifp;
1574 	struct mbuf *received, *next;
1575 
1576 	sc = (struct cpsw_softc *)arg;
1577 	CPSW_RX_LOCK(sc);
1578 	if (sc->rx.teardown) {
1579 		sc->rx.running = 0;
1580 		sc->rx.teardown = 0;
1581 		cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
1582 	}
1583 	received = cpsw_rx_dequeue(sc);
1584 	cpsw_rx_enqueue(sc);
1585 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
1586 	CPSW_RX_UNLOCK(sc);
1587 
1588 	while (received != NULL) {
1589 		next = received->m_nextpkt;
1590 		received->m_nextpkt = NULL;
1591 		ifp = received->m_pkthdr.rcvif;
1592 		if_input(ifp, received);
1593 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1594 		received = next;
1595 	}
1596 }
1597 
1598 static struct mbuf *
1599 cpsw_rx_dequeue(struct cpsw_softc *sc)
1600 {
1601 	int nsegs, port, removed;
1602 	struct cpsw_cpdma_bd bd;
1603 	struct cpsw_slot *last, *slot;
1604 	struct cpswp_softc *psc;
1605 	struct mbuf *m, *m0, *mb_head, *mb_tail;
1606 	uint16_t m0_flags;
1607 
1608 	nsegs = 0;
1609 	m0 = NULL;
1610 	last = NULL;
1611 	mb_head = NULL;
1612 	mb_tail = NULL;
1613 	removed = 0;
1614 
1615 	/* Pull completed packets off hardware RX queue. */
1616 	while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
1617 		cpsw_cpdma_read_bd(sc, slot, &bd);
1618 
1619 		/*
1620 		 * Stop on packets still in use by hardware, but do not stop
1621 		 * on packets with the teardown complete flag, they will be
1622 		 * discarded later.
1623 		 */
1624 		if ((bd.flags & (CPDMA_BD_OWNER | CPDMA_BD_TDOWNCMPLT)) ==
1625 		    CPDMA_BD_OWNER)
1626 			break;
1627 
1628 		last = slot;
1629 		++removed;
1630 		STAILQ_REMOVE_HEAD(&sc->rx.active, next);
1631 		STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
1632 
1633 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
1634 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1635 
1636 		m = slot->mbuf;
1637 		slot->mbuf = NULL;
1638 
1639 		if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
1640 			CPSW_DEBUGF(sc, ("RX teardown is complete"));
1641 			m_freem(m);
1642 			sc->rx.running = 0;
1643 			sc->rx.teardown = 0;
1644 			break;
1645 		}
1646 
1647 		port = (bd.flags & CPDMA_BD_PORT_MASK) - 1;
1648 		KASSERT(port >= 0 && port <= 1,
1649 		    ("patcket received with invalid port: %d", port));
1650 		psc = device_get_softc(sc->port[port].dev);
1651 
1652 		/* Set up mbuf */
1653 		m->m_data += bd.bufoff;
1654 		m->m_len = bd.buflen;
1655 		if (bd.flags & CPDMA_BD_SOP) {
1656 			m->m_pkthdr.len = bd.pktlen;
1657 			m->m_pkthdr.rcvif = psc->ifp;
1658 			m->m_flags |= M_PKTHDR;
1659 			m0_flags = bd.flags;
1660 			m0 = m;
1661 		}
1662 		nsegs++;
1663 		m->m_next = NULL;
1664 		m->m_nextpkt = NULL;
1665 		if (bd.flags & CPDMA_BD_EOP && m0 != NULL) {
1666 			if (m0_flags & CPDMA_BD_PASS_CRC)
1667 				m_adj(m0, -ETHER_CRC_LEN);
1668 			m0_flags = 0;
1669 			m0 = NULL;
1670 			if (nsegs > sc->rx.longest_chain)
1671 				sc->rx.longest_chain = nsegs;
1672 			nsegs = 0;
1673 		}
1674 
1675 		if ((if_getcapenable(psc->ifp) & IFCAP_RXCSUM) != 0) {
1676 			/* check for valid CRC by looking into pkt_err[5:4] */
1677 			if ((bd.flags &
1678 			    (CPDMA_BD_SOP | CPDMA_BD_PKT_ERR_MASK)) ==
1679 			    CPDMA_BD_SOP) {
1680 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1681 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1682 				m->m_pkthdr.csum_data = 0xffff;
1683 			}
1684 		}
1685 
1686 		if (STAILQ_FIRST(&sc->rx.active) != NULL &&
1687 		    (bd.flags & (CPDMA_BD_EOP | CPDMA_BD_EOQ)) ==
1688 		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
1689 			cpsw_write_hdp_slot(sc, &sc->rx,
1690 			    STAILQ_FIRST(&sc->rx.active));
1691 			sc->rx.queue_restart++;
1692 		}
1693 
1694 		/* Add mbuf to packet list to be returned. */
1695 		if (mb_tail != NULL && (bd.flags & CPDMA_BD_SOP)) {
1696 			mb_tail->m_nextpkt = m;
1697 		} else if (mb_tail != NULL) {
1698 			mb_tail->m_next = m;
1699 		} else if (mb_tail == NULL && (bd.flags & CPDMA_BD_SOP) == 0) {
1700 			if (bootverbose)
1701 				printf(
1702 				    "%s: %s: discanding fragment packet w/o header\n",
1703 				    __func__, if_name(psc->ifp));
1704 			m_freem(m);
1705 			continue;
1706 		} else {
1707 			mb_head = m;
1708 		}
1709 		mb_tail = m;
1710 	}
1711 
1712 	if (removed != 0) {
1713 		cpsw_write_cp_slot(sc, &sc->rx, last);
1714 		sc->rx.queue_removes += removed;
1715 		sc->rx.avail_queue_len += removed;
1716 		sc->rx.active_queue_len -= removed;
1717 		if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
1718 			sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
1719 		CPSW_DEBUGF(sc, ("Removed %d received packet(s) from RX queue", removed));
1720 	}
1721 
1722 	return (mb_head);
1723 }
1724 
1725 static void
1726 cpsw_rx_enqueue(struct cpsw_softc *sc)
1727 {
1728 	bus_dma_segment_t seg[1];
1729 	struct cpsw_cpdma_bd bd;
1730 	struct cpsw_slot *first_new_slot, *last_old_slot, *next, *slot;
1731 	int error, nsegs, added = 0;
1732 
1733 	/* Register new mbufs with hardware. */
1734 	first_new_slot = NULL;
1735 	last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
1736 	while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
1737 		if (first_new_slot == NULL)
1738 			first_new_slot = slot;
1739 		if (slot->mbuf == NULL) {
1740 			slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1741 			if (slot->mbuf == NULL) {
1742 				device_printf(sc->dev,
1743 				    "Unable to fill RX queue\n");
1744 				break;
1745 			}
1746 			slot->mbuf->m_len =
1747 			    slot->mbuf->m_pkthdr.len =
1748 			    slot->mbuf->m_ext.ext_size;
1749 		}
1750 
1751 		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1752 		    slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
1753 
1754 		KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
1755 		KASSERT(error == 0, ("DMA error (error=%d)", error));
1756 		if (error != 0 || nsegs != 1) {
1757 			device_printf(sc->dev,
1758 			    "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
1759 			    __func__, nsegs, error);
1760 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1761 			m_freem(slot->mbuf);
1762 			slot->mbuf = NULL;
1763 			break;
1764 		}
1765 
1766 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
1767 
1768 		/* Create and submit new rx descriptor. */
1769 		if ((next = STAILQ_NEXT(slot, next)) != NULL)
1770 			bd.next = cpsw_cpdma_bd_paddr(sc, next);
1771 		else
1772 			bd.next = 0;
1773 		bd.bufptr = seg->ds_addr;
1774 		bd.bufoff = 0;
1775 		bd.buflen = MCLBYTES - 1;
1776 		bd.pktlen = bd.buflen;
1777 		bd.flags = CPDMA_BD_OWNER;
1778 		cpsw_cpdma_write_bd(sc, slot, &bd);
1779 		++added;
1780 
1781 		STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
1782 		STAILQ_INSERT_TAIL(&sc->rx.active, slot, next);
1783 	}
1784 
1785 	if (added == 0 || first_new_slot == NULL)
1786 		return;
1787 
1788 	CPSW_DEBUGF(sc, ("Adding %d buffers to RX queue", added));
1789 
1790 	/* Link new entries to hardware RX queue. */
1791 	if (last_old_slot == NULL) {
1792 		/* Start a fresh queue. */
1793 		cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1794 	} else {
1795 		/* Add buffers to end of current queue. */
1796 		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1797 	}
1798 	sc->rx.queue_adds += added;
1799 	sc->rx.avail_queue_len -= added;
1800 	sc->rx.active_queue_len += added;
1801 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), added);
1802 	if (sc->rx.active_queue_len > sc->rx.max_active_queue_len)
1803 		sc->rx.max_active_queue_len = sc->rx.active_queue_len;
1804 }
1805 
1806 static void
1807 cpswp_start(if_t ifp)
1808 {
1809 	struct cpswp_softc *sc;
1810 
1811 	sc = if_getsoftc(ifp);
1812 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
1813 	    sc->swsc->tx.running == 0) {
1814 		return;
1815 	}
1816 	CPSW_TX_LOCK(sc->swsc);
1817 	cpswp_tx_enqueue(sc);
1818 	cpsw_tx_dequeue(sc->swsc);
1819 	CPSW_TX_UNLOCK(sc->swsc);
1820 }
1821 
1822 static void
1823 cpsw_intr_tx(void *arg)
1824 {
1825 	struct cpsw_softc *sc;
1826 
1827 	sc = (struct cpsw_softc *)arg;
1828 	CPSW_TX_LOCK(sc);
1829 	if (cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)) == 0xfffffffc)
1830 		cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1831 	cpsw_tx_dequeue(sc);
1832 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 2);
1833 	CPSW_TX_UNLOCK(sc);
1834 }
1835 
1836 static void
1837 cpswp_tx_enqueue(struct cpswp_softc *sc)
1838 {
1839 	bus_dma_segment_t segs[CPSW_TXFRAGS];
1840 	struct cpsw_cpdma_bd bd;
1841 	struct cpsw_slot *first_new_slot, *last, *last_old_slot, *next, *slot;
1842 	struct mbuf *m0;
1843 	int error, nsegs, seg, added = 0, padlen;
1844 
1845 	/* Pull pending packets from IF queue and prep them for DMA. */
1846 	last = NULL;
1847 	first_new_slot = NULL;
1848 	last_old_slot = STAILQ_LAST(&sc->swsc->tx.active, cpsw_slot, next);
1849 	while ((slot = STAILQ_FIRST(&sc->swsc->tx.avail)) != NULL) {
1850 		m0 = if_dequeue(sc->ifp);
1851 		if (m0 == NULL)
1852 			break;
1853 
1854 		slot->mbuf = m0;
1855 		padlen = ETHER_MIN_LEN - ETHER_CRC_LEN - m0->m_pkthdr.len;
1856 		if (padlen < 0)
1857 			padlen = 0;
1858 		else if (padlen > 0)
1859 			m_append(slot->mbuf, padlen, sc->swsc->nullpad);
1860 
1861 		/* Create mapping in DMA memory */
1862 		error = bus_dmamap_load_mbuf_sg(sc->swsc->mbuf_dtag,
1863 		    slot->dmamap, slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1864 		/* If the packet is too fragmented, try to simplify. */
1865 		if (error == EFBIG ||
1866 		    (error == 0 && nsegs > sc->swsc->tx.avail_queue_len)) {
1867 			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1868 			m0 = m_defrag(slot->mbuf, M_NOWAIT);
1869 			if (m0 == NULL) {
1870 				device_printf(sc->dev,
1871 				    "Can't defragment packet; dropping\n");
1872 				m_freem(slot->mbuf);
1873 			} else {
1874 				CPSW_DEBUGF(sc->swsc,
1875 				    ("Requeueing defragmented packet"));
1876 				if_sendq_prepend(sc->ifp, m0);
1877 			}
1878 			slot->mbuf = NULL;
1879 			continue;
1880 		}
1881 		if (error != 0) {
1882 			device_printf(sc->dev,
1883 			    "%s: Can't setup DMA (error=%d), dropping packet\n",
1884 			    __func__, error);
1885 			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1886 			m_freem(slot->mbuf);
1887 			slot->mbuf = NULL;
1888 			break;
1889 		}
1890 
1891 		bus_dmamap_sync(sc->swsc->mbuf_dtag, slot->dmamap,
1892 				BUS_DMASYNC_PREWRITE);
1893 
1894 		CPSW_DEBUGF(sc->swsc,
1895 		    ("Queueing TX packet: %d segments + %d pad bytes",
1896 		    nsegs, padlen));
1897 
1898 		if (first_new_slot == NULL)
1899 			first_new_slot = slot;
1900 
1901 		/* Link from the previous descriptor. */
1902 		if (last != NULL)
1903 			cpsw_cpdma_write_bd_next(sc->swsc, last, slot);
1904 
1905 		slot->ifp = sc->ifp;
1906 
1907 		/* If there is only one segment, the for() loop
1908 		 * gets skipped and the single buffer gets set up
1909 		 * as both SOP and EOP. */
1910 		if (nsegs > 1) {
1911 			next = STAILQ_NEXT(slot, next);
1912 			bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1913 		} else
1914 			bd.next = 0;
1915 		/* Start by setting up the first buffer. */
1916 		bd.bufptr = segs[0].ds_addr;
1917 		bd.bufoff = 0;
1918 		bd.buflen = segs[0].ds_len;
1919 		bd.pktlen = m_length(slot->mbuf, NULL);
1920 		bd.flags =  CPDMA_BD_SOP | CPDMA_BD_OWNER;
1921 		if (sc->swsc->dualemac) {
1922 			bd.flags |= CPDMA_BD_TO_PORT;
1923 			bd.flags |= ((sc->unit + 1) & CPDMA_BD_PORT_MASK);
1924 		}
1925 		for (seg = 1; seg < nsegs; ++seg) {
1926 			/* Save the previous buffer (which isn't EOP) */
1927 			cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1928 			STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1929 			STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1930 			slot = STAILQ_FIRST(&sc->swsc->tx.avail);
1931 
1932 			/* Setup next buffer (which isn't SOP) */
1933 			if (nsegs > seg + 1) {
1934 				next = STAILQ_NEXT(slot, next);
1935 				bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1936 			} else
1937 				bd.next = 0;
1938 			bd.bufptr = segs[seg].ds_addr;
1939 			bd.bufoff = 0;
1940 			bd.buflen = segs[seg].ds_len;
1941 			bd.pktlen = 0;
1942 			bd.flags = CPDMA_BD_OWNER;
1943 		}
1944 
1945 		/* Save the final buffer. */
1946 		bd.flags |= CPDMA_BD_EOP;
1947 		cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1948 		STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1949 		STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1950 
1951 		last = slot;
1952 		added += nsegs;
1953 		if (nsegs > sc->swsc->tx.longest_chain)
1954 			sc->swsc->tx.longest_chain = nsegs;
1955 
1956 		BPF_MTAP(sc->ifp, m0);
1957 	}
1958 
1959 	if (first_new_slot == NULL)
1960 		return;
1961 
1962 	/* Attach the list of new buffers to the hardware TX queue. */
1963 	if (last_old_slot != NULL &&
1964 	    (cpsw_cpdma_read_bd_flags(sc->swsc, last_old_slot) &
1965 	     CPDMA_BD_EOQ) == 0) {
1966 		/* Add buffers to end of current queue. */
1967 		cpsw_cpdma_write_bd_next(sc->swsc, last_old_slot,
1968 		    first_new_slot);
1969 	} else {
1970 		/* Start a fresh queue. */
1971 		cpsw_write_hdp_slot(sc->swsc, &sc->swsc->tx, first_new_slot);
1972 	}
1973 	sc->swsc->tx.queue_adds += added;
1974 	sc->swsc->tx.avail_queue_len -= added;
1975 	sc->swsc->tx.active_queue_len += added;
1976 	if (sc->swsc->tx.active_queue_len > sc->swsc->tx.max_active_queue_len) {
1977 		sc->swsc->tx.max_active_queue_len = sc->swsc->tx.active_queue_len;
1978 	}
1979 	CPSW_DEBUGF(sc->swsc, ("Queued %d TX packet(s)", added));
1980 }
1981 
1982 static int
1983 cpsw_tx_dequeue(struct cpsw_softc *sc)
1984 {
1985 	struct cpsw_slot *slot, *last_removed_slot = NULL;
1986 	struct cpsw_cpdma_bd bd;
1987 	uint32_t flags, removed = 0;
1988 
1989 	/* Pull completed buffers off the hardware TX queue. */
1990 	slot = STAILQ_FIRST(&sc->tx.active);
1991 	while (slot != NULL) {
1992 		flags = cpsw_cpdma_read_bd_flags(sc, slot);
1993 
1994 		/* TearDown complete is only marked on the SOP for the packet. */
1995 		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) ==
1996 		    (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) {
1997 			sc->tx.teardown = 1;
1998 		}
1999 
2000 		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_OWNER)) ==
2001 		    (CPDMA_BD_SOP | CPDMA_BD_OWNER) && sc->tx.teardown == 0)
2002 			break; /* Hardware is still using this packet. */
2003 
2004 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
2005 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
2006 		m_freem(slot->mbuf);
2007 		slot->mbuf = NULL;
2008 
2009 		if (slot->ifp) {
2010 			if (sc->tx.teardown == 0)
2011 				if_inc_counter(slot->ifp, IFCOUNTER_OPACKETS, 1);
2012 			else
2013 				if_inc_counter(slot->ifp, IFCOUNTER_OQDROPS, 1);
2014 		}
2015 
2016 		/* Dequeue any additional buffers used by this packet. */
2017 		while (slot != NULL && slot->mbuf == NULL) {
2018 			STAILQ_REMOVE_HEAD(&sc->tx.active, next);
2019 			STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
2020 			++removed;
2021 			last_removed_slot = slot;
2022 			slot = STAILQ_FIRST(&sc->tx.active);
2023 		}
2024 
2025 		cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
2026 
2027 		/* Restart the TX queue if necessary. */
2028 		cpsw_cpdma_read_bd(sc, last_removed_slot, &bd);
2029 		if (slot != NULL && bd.next != 0 && (bd.flags &
2030 		    (CPDMA_BD_EOP | CPDMA_BD_OWNER | CPDMA_BD_EOQ)) ==
2031 		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
2032 			cpsw_write_hdp_slot(sc, &sc->tx, slot);
2033 			sc->tx.queue_restart++;
2034 			break;
2035 		}
2036 	}
2037 
2038 	if (removed != 0) {
2039 		sc->tx.queue_removes += removed;
2040 		sc->tx.active_queue_len -= removed;
2041 		sc->tx.avail_queue_len += removed;
2042 		if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
2043 			sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
2044 		CPSW_DEBUGF(sc, ("TX removed %d completed packet(s)", removed));
2045 	}
2046 
2047 	if (sc->tx.teardown && STAILQ_EMPTY(&sc->tx.active)) {
2048 		CPSW_DEBUGF(sc, ("TX teardown is complete"));
2049 		sc->tx.teardown = 0;
2050 		sc->tx.running = 0;
2051 	}
2052 
2053 	return (removed);
2054 }
2055 
2056 /*
2057  *
2058  * Miscellaneous interrupts.
2059  *
2060  */
2061 
2062 static void
2063 cpsw_intr_rx_thresh(void *arg)
2064 {
2065 	struct cpsw_softc *sc;
2066 	if_t ifp;
2067 	struct mbuf *received, *next;
2068 
2069 	sc = (struct cpsw_softc *)arg;
2070 	CPSW_RX_LOCK(sc);
2071 	received = cpsw_rx_dequeue(sc);
2072 	cpsw_rx_enqueue(sc);
2073 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
2074 	CPSW_RX_UNLOCK(sc);
2075 
2076 	while (received != NULL) {
2077 		next = received->m_nextpkt;
2078 		received->m_nextpkt = NULL;
2079 		ifp = received->m_pkthdr.rcvif;
2080 		if_input(ifp, received);
2081 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2082 		received = next;
2083 	}
2084 }
2085 
2086 static void
2087 cpsw_intr_misc_host_error(struct cpsw_softc *sc)
2088 {
2089 	uint32_t intstat;
2090 	uint32_t dmastat;
2091 	int txerr, rxerr, txchan, rxchan;
2092 
2093 	printf("\n\n");
2094 	device_printf(sc->dev,
2095 	    "HOST ERROR:  PROGRAMMING ERROR DETECTED BY HARDWARE\n");
2096 	printf("\n\n");
2097 	intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
2098 	device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
2099 	dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
2100 	device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
2101 
2102 	txerr = (dmastat >> 20) & 15;
2103 	txchan = (dmastat >> 16) & 7;
2104 	rxerr = (dmastat >> 12) & 15;
2105 	rxchan = (dmastat >> 8) & 7;
2106 
2107 	switch (txerr) {
2108 	case 0: break;
2109 	case 1:	printf("SOP error on TX channel %d\n", txchan);
2110 		break;
2111 	case 2:	printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
2112 		break;
2113 	case 3:	printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
2114 		break;
2115 	case 4:	printf("Zero Buffer Pointer on TX channel %d\n", txchan);
2116 		break;
2117 	case 5:	printf("Zero Buffer Length on TX channel %d\n", txchan);
2118 		break;
2119 	case 6:	printf("Packet length error on TX channel %d\n", txchan);
2120 		break;
2121 	default: printf("Unknown error on TX channel %d\n", txchan);
2122 		break;
2123 	}
2124 
2125 	if (txerr != 0) {
2126 		printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
2127 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
2128 		printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
2129 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
2130 		cpsw_dump_queue(sc, &sc->tx.active);
2131 	}
2132 
2133 	switch (rxerr) {
2134 	case 0: break;
2135 	case 2:	printf("Ownership bit not set on RX channel %d\n", rxchan);
2136 		break;
2137 	case 4:	printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
2138 		break;
2139 	case 5:	printf("Zero Buffer Length on RX channel %d\n", rxchan);
2140 		break;
2141 	case 6:	printf("Buffer offset too big on RX channel %d\n", rxchan);
2142 		break;
2143 	default: printf("Unknown RX error on RX channel %d\n", rxchan);
2144 		break;
2145 	}
2146 
2147 	if (rxerr != 0) {
2148 		printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
2149 		    rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
2150 		printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
2151 		    rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
2152 		cpsw_dump_queue(sc, &sc->rx.active);
2153 	}
2154 
2155 	printf("\nALE Table\n");
2156 	cpsw_ale_dump_table(sc);
2157 
2158 	// XXX do something useful here??
2159 	panic("CPSW HOST ERROR INTERRUPT");
2160 
2161 	// Suppress this interrupt in the future.
2162 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
2163 	printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
2164 	// The watchdog will probably reset the controller
2165 	// in a little while.  It will probably fail again.
2166 }
2167 
2168 static void
2169 cpsw_intr_misc(void *arg)
2170 {
2171 	struct cpsw_softc *sc = arg;
2172 	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
2173 
2174 	if (stat & CPSW_WR_C_MISC_EVNT_PEND)
2175 		CPSW_DEBUGF(sc, ("Time sync event interrupt unimplemented"));
2176 	if (stat & CPSW_WR_C_MISC_STAT_PEND)
2177 		cpsw_stats_collect(sc);
2178 	if (stat & CPSW_WR_C_MISC_HOST_PEND)
2179 		cpsw_intr_misc_host_error(sc);
2180 	if (stat & CPSW_WR_C_MISC_MDIOLINK) {
2181 		cpsw_write_4(sc, MDIOLINKINTMASKED,
2182 		    cpsw_read_4(sc, MDIOLINKINTMASKED));
2183 	}
2184 	if (stat & CPSW_WR_C_MISC_MDIOUSER) {
2185 		CPSW_DEBUGF(sc,
2186 		    ("MDIO operation completed interrupt unimplemented"));
2187 	}
2188 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
2189 }
2190 
2191 /*
2192  *
2193  * Periodic Checks and Watchdog.
2194  *
2195  */
2196 
2197 static void
2198 cpswp_tick(void *msc)
2199 {
2200 	struct cpswp_softc *sc = msc;
2201 
2202 	/* Check for media type change */
2203 	mii_tick(sc->mii);
2204 	if (sc->media_status != sc->mii->mii_media.ifm_media) {
2205 		printf("%s: media type changed (ifm_media=%x)\n", __func__,
2206 			sc->mii->mii_media.ifm_media);
2207 		cpswp_ifmedia_upd(sc->ifp);
2208 	}
2209 
2210 	/* Schedule another timeout one second from now */
2211 	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
2212 }
2213 
2214 static void
2215 cpswp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2216 {
2217 	struct cpswp_softc *sc;
2218 	struct mii_data *mii;
2219 
2220 	sc = if_getsoftc(ifp);
2221 	CPSW_DEBUGF(sc->swsc, (""));
2222 	CPSW_PORT_LOCK(sc);
2223 
2224 	mii = sc->mii;
2225 	mii_pollstat(mii);
2226 
2227 	ifmr->ifm_active = mii->mii_media_active;
2228 	ifmr->ifm_status = mii->mii_media_status;
2229 	CPSW_PORT_UNLOCK(sc);
2230 }
2231 
2232 static int
2233 cpswp_ifmedia_upd(if_t ifp)
2234 {
2235 	struct cpswp_softc *sc;
2236 
2237 	sc = if_getsoftc(ifp);
2238 	CPSW_DEBUGF(sc->swsc, (""));
2239 	CPSW_PORT_LOCK(sc);
2240 	mii_mediachg(sc->mii);
2241 	sc->media_status = sc->mii->mii_media.ifm_media;
2242 	CPSW_PORT_UNLOCK(sc);
2243 
2244 	return (0);
2245 }
2246 
2247 static void
2248 cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
2249 {
2250 	struct cpswp_softc *psc;
2251 	int i;
2252 
2253 	cpsw_debugf_head("CPSW watchdog");
2254 	device_printf(sc->dev, "watchdog timeout\n");
2255 	printf("CPSW_CPDMA_TX%d_HDP=0x%x\n", 0,
2256 	    cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(0)));
2257 	printf("CPSW_CPDMA_TX%d_CP=0x%x\n", 0,
2258 	    cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)));
2259 	cpsw_dump_queue(sc, &sc->tx.active);
2260 	for (i = 0; i < CPSW_PORTS; i++) {
2261 		if (!sc->dualemac && i != sc->active_slave)
2262 			continue;
2263 		psc = device_get_softc(sc->port[i].dev);
2264 		CPSW_PORT_LOCK(psc);
2265 		cpswp_stop_locked(psc);
2266 		CPSW_PORT_UNLOCK(psc);
2267 	}
2268 }
2269 
2270 static void
2271 cpsw_tx_watchdog(void *msc)
2272 {
2273 	struct cpsw_softc *sc;
2274 
2275 	sc = msc;
2276 	CPSW_TX_LOCK(sc);
2277 	if (sc->tx.active_queue_len == 0 || !sc->tx.running) {
2278 		sc->watchdog.timer = 0; /* Nothing to do. */
2279 	} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
2280 		sc->watchdog.timer = 0;  /* Stuff done while we weren't looking. */
2281 	} else if (cpsw_tx_dequeue(sc) > 0) {
2282 		sc->watchdog.timer = 0;  /* We just did something. */
2283 	} else {
2284 		/* There was something to do but it didn't get done. */
2285 		++sc->watchdog.timer;
2286 		if (sc->watchdog.timer > 5) {
2287 			sc->watchdog.timer = 0;
2288 			++sc->watchdog.resets;
2289 			cpsw_tx_watchdog_full_reset(sc);
2290 		}
2291 	}
2292 	sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
2293 	CPSW_TX_UNLOCK(sc);
2294 
2295 	/* Schedule another timeout one second from now */
2296 	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
2297 }
2298 
2299 /*
2300  *
2301  * ALE support routines.
2302  *
2303  */
2304 
2305 static void
2306 cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2307 {
2308 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
2309 	ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
2310 	ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
2311 	ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
2312 }
2313 
2314 static void
2315 cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2316 {
2317 	cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
2318 	cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
2319 	cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
2320 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
2321 }
2322 
2323 static void
2324 cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
2325 {
2326 	int i;
2327 	uint32_t ale_entry[3];
2328 
2329 	/* First four entries are link address and broadcast. */
2330 	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2331 		cpsw_ale_read_entry(sc, i, ale_entry);
2332 		if ((ALE_TYPE(ale_entry) == ALE_TYPE_ADDR ||
2333 		    ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR) &&
2334 		    ALE_MCAST(ale_entry)  == 1) { /* MCast link addr */
2335 			ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2336 			cpsw_ale_write_entry(sc, i, ale_entry);
2337 		}
2338 	}
2339 }
2340 
2341 static int
2342 cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, int vlan,
2343 	uint8_t *mac)
2344 {
2345 	int free_index = -1, matching_index = -1, i;
2346 	uint32_t ale_entry[3], ale_type;
2347 
2348 	/* Find a matching entry or a free entry. */
2349 	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2350 		cpsw_ale_read_entry(sc, i, ale_entry);
2351 
2352 		/* Entry Type[61:60] is 0 for free entry */
2353 		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2354 			free_index = i;
2355 
2356 		if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
2357 		    (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
2358 		    (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
2359 		    (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
2360 		    (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
2361 		    (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
2362 			matching_index = i;
2363 			break;
2364 		}
2365 	}
2366 
2367 	if (matching_index < 0) {
2368 		if (free_index < 0)
2369 			return (ENOMEM);
2370 		i = free_index;
2371 	}
2372 
2373 	if (vlan != -1)
2374 		ale_type = ALE_TYPE_VLAN_ADDR << 28 | vlan << 16;
2375 	else
2376 		ale_type = ALE_TYPE_ADDR << 28;
2377 
2378 	/* Set MAC address */
2379 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2380 	ale_entry[1] = mac[0] << 8 | mac[1];
2381 
2382 	/* Entry type[61:60] and Mcast fwd state[63:62] is fw(3). */
2383 	ale_entry[1] |= ALE_MCAST_FWD | ale_type;
2384 
2385 	/* Set portmask [68:66] */
2386 	ale_entry[2] = (portmap & 7) << 2;
2387 
2388 	cpsw_ale_write_entry(sc, i, ale_entry);
2389 
2390 	return 0;
2391 }
2392 
2393 static void
2394 cpsw_ale_dump_table(struct cpsw_softc *sc) {
2395 	int i;
2396 	uint32_t ale_entry[3];
2397 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2398 		cpsw_ale_read_entry(sc, i, ale_entry);
2399 		switch (ALE_TYPE(ale_entry)) {
2400 		case ALE_TYPE_VLAN:
2401 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2402 				ale_entry[1], ale_entry[0]);
2403 			printf("type: %u ", ALE_TYPE(ale_entry));
2404 			printf("vlan: %u ", ALE_VLAN(ale_entry));
2405 			printf("untag: %u ", ALE_VLAN_UNTAG(ale_entry));
2406 			printf("reg flood: %u ", ALE_VLAN_REGFLOOD(ale_entry));
2407 			printf("unreg flood: %u ", ALE_VLAN_UNREGFLOOD(ale_entry));
2408 			printf("members: %u ", ALE_VLAN_MEMBERS(ale_entry));
2409 			printf("\n");
2410 			break;
2411 		case ALE_TYPE_ADDR:
2412 		case ALE_TYPE_VLAN_ADDR:
2413 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2414 				ale_entry[1], ale_entry[0]);
2415 			printf("type: %u ", ALE_TYPE(ale_entry));
2416 			printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
2417 				(ale_entry[1] >> 8) & 0xFF,
2418 				(ale_entry[1] >> 0) & 0xFF,
2419 				(ale_entry[0] >>24) & 0xFF,
2420 				(ale_entry[0] >>16) & 0xFF,
2421 				(ale_entry[0] >> 8) & 0xFF,
2422 				(ale_entry[0] >> 0) & 0xFF);
2423 			printf(ALE_MCAST(ale_entry) ? "mcast " : "ucast ");
2424 			if (ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR)
2425 				printf("vlan: %u ", ALE_VLAN(ale_entry));
2426 			printf("port: %u ", ALE_PORTS(ale_entry));
2427 			printf("\n");
2428 			break;
2429 		}
2430 	}
2431 	printf("\n");
2432 }
2433 
2434 static u_int
2435 cpswp_set_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2436 {
2437 	struct cpswp_softc *sc = arg;
2438 	uint32_t portmask;
2439 
2440 	if (sc->swsc->dualemac)
2441 		portmask = 1 << (sc->unit + 1) | 1 << 0;
2442 	else
2443 		portmask = 7;
2444 
2445 	cpsw_ale_mc_entry_set(sc->swsc, portmask, sc->vlan, LLADDR(sdl));
2446 
2447 	return (1);
2448 }
2449 
2450 static int
2451 cpswp_ale_update_addresses(struct cpswp_softc *sc, int purge)
2452 {
2453 	uint8_t *mac;
2454 	uint32_t ale_entry[3], ale_type, portmask;
2455 
2456 	if (sc->swsc->dualemac) {
2457 		ale_type = ALE_TYPE_VLAN_ADDR << 28 | sc->vlan << 16;
2458 		portmask = 1 << (sc->unit + 1) | 1 << 0;
2459 	} else {
2460 		ale_type = ALE_TYPE_ADDR << 28;
2461 		portmask = 7;
2462 	}
2463 
2464 	/*
2465 	 * Route incoming packets for our MAC address to Port 0 (host).
2466 	 * For simplicity, keep this entry at table index 0 for port 1 and
2467 	 * at index 2 for port 2 in the ALE.
2468 	 */
2469 	mac = LLADDR((struct sockaddr_dl *)if_getifaddr(sc->ifp)->ifa_addr);
2470 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2471 	ale_entry[1] = ale_type | mac[0] << 8 | mac[1]; /* addr entry + mac */
2472 	ale_entry[2] = 0; /* port = 0 */
2473 	cpsw_ale_write_entry(sc->swsc, 0 + 2 * sc->unit, ale_entry);
2474 
2475 	/* Set outgoing MAC Address for slave port. */
2476 	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_HI(sc->unit + 1),
2477 	    mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
2478 	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_LO(sc->unit + 1),
2479 	    mac[5] << 8 | mac[4]);
2480 
2481 	/* Keep the broadcast address at table entry 1 (or 3). */
2482 	ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
2483 	/* ALE_MCAST_FWD, Addr type, upper 16 bits of Mac */
2484 	ale_entry[1] = ALE_MCAST_FWD | ale_type | 0xffff;
2485 	ale_entry[2] = portmask << 2;
2486 	cpsw_ale_write_entry(sc->swsc, 1 + 2 * sc->unit, ale_entry);
2487 
2488 	/* SIOCDELMULTI doesn't specify the particular address
2489 	   being removed, so we have to remove all and rebuild. */
2490 	if (purge)
2491 		cpsw_ale_remove_all_mc_entries(sc->swsc);
2492 
2493         /* Set other multicast addrs desired. */
2494 	if_foreach_llmaddr(sc->ifp, cpswp_set_maddr, sc);
2495 
2496 	return (0);
2497 }
2498 
2499 static int
2500 cpsw_ale_update_vlan_table(struct cpsw_softc *sc, int vlan, int ports,
2501 	int untag, int mcregflood, int mcunregflood)
2502 {
2503 	int free_index, i, matching_index;
2504 	uint32_t ale_entry[3];
2505 
2506 	free_index = matching_index = -1;
2507 	/* Find a matching entry or a free entry. */
2508 	for (i = 5; i < CPSW_MAX_ALE_ENTRIES; i++) {
2509 		cpsw_ale_read_entry(sc, i, ale_entry);
2510 
2511 		/* Entry Type[61:60] is 0 for free entry */
2512 		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2513 			free_index = i;
2514 
2515 		if (ALE_VLAN(ale_entry) == vlan) {
2516 			matching_index = i;
2517 			break;
2518 		}
2519 	}
2520 
2521 	if (matching_index < 0) {
2522 		if (free_index < 0)
2523 			return (-1);
2524 		i = free_index;
2525 	}
2526 
2527 	ale_entry[0] = (untag & 7) << 24 | (mcregflood & 7) << 16 |
2528 	    (mcunregflood & 7) << 8 | (ports & 7);
2529 	ale_entry[1] = ALE_TYPE_VLAN << 28 | vlan << 16;
2530 	ale_entry[2] = 0;
2531 	cpsw_ale_write_entry(sc, i, ale_entry);
2532 
2533 	return (0);
2534 }
2535 
2536 /*
2537  *
2538  * Statistics and Sysctls.
2539  *
2540  */
2541 
2542 #if 0
2543 static void
2544 cpsw_stats_dump(struct cpsw_softc *sc)
2545 {
2546 	int i;
2547 	uint32_t r;
2548 
2549 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2550 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2551 		    cpsw_stat_sysctls[i].reg);
2552 		CPSW_DEBUGF(sc, ("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
2553 		    (intmax_t)sc->shadow_stats[i], r,
2554 		    (intmax_t)sc->shadow_stats[i] + r));
2555 	}
2556 }
2557 #endif
2558 
2559 static void
2560 cpsw_stats_collect(struct cpsw_softc *sc)
2561 {
2562 	int i;
2563 	uint32_t r;
2564 
2565 	CPSW_DEBUGF(sc, ("Controller shadow statistics updated."));
2566 
2567 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2568 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2569 		    cpsw_stat_sysctls[i].reg);
2570 		sc->shadow_stats[i] += r;
2571 		cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg,
2572 		    r);
2573 	}
2574 }
2575 
2576 static int
2577 cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
2578 {
2579 	struct cpsw_softc *sc;
2580 	struct cpsw_stat *stat;
2581 	uint64_t result;
2582 
2583 	sc = (struct cpsw_softc *)arg1;
2584 	stat = &cpsw_stat_sysctls[oidp->oid_number];
2585 	result = sc->shadow_stats[oidp->oid_number];
2586 	result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
2587 	return (sysctl_handle_64(oidp, &result, 0, req));
2588 }
2589 
2590 static int
2591 cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
2592 {
2593 	struct cpsw_softc *sc;
2594 	struct bintime t;
2595 	unsigned result;
2596 
2597 	sc = (struct cpsw_softc *)arg1;
2598 	getbinuptime(&t);
2599 	bintime_sub(&t, &sc->attach_uptime);
2600 	result = t.sec;
2601 	return (sysctl_handle_int(oidp, &result, 0, req));
2602 }
2603 
2604 static int
2605 cpsw_intr_coalesce(SYSCTL_HANDLER_ARGS)
2606 {
2607 	int error;
2608 	struct cpsw_softc *sc;
2609 	uint32_t ctrl, intr_per_ms;
2610 
2611 	sc = (struct cpsw_softc *)arg1;
2612 	error = sysctl_handle_int(oidp, &sc->coal_us, 0, req);
2613 	if (error != 0 || req->newptr == NULL)
2614 		return (error);
2615 
2616 	ctrl = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
2617 	ctrl &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
2618 	if (sc->coal_us == 0) {
2619 		/* Disable the interrupt pace hardware. */
2620 		cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2621 		cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), 0);
2622 		cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), 0);
2623 		return (0);
2624 	}
2625 
2626 	if (sc->coal_us > CPSW_WR_C_IMAX_US_MAX)
2627 		sc->coal_us = CPSW_WR_C_IMAX_US_MAX;
2628 	if (sc->coal_us < CPSW_WR_C_IMAX_US_MIN)
2629 		sc->coal_us = CPSW_WR_C_IMAX_US_MIN;
2630 	intr_per_ms = 1000 / sc->coal_us;
2631 	/* Just to make sure... */
2632 	if (intr_per_ms > CPSW_WR_C_IMAX_MAX)
2633 		intr_per_ms = CPSW_WR_C_IMAX_MAX;
2634 	if (intr_per_ms < CPSW_WR_C_IMAX_MIN)
2635 		intr_per_ms = CPSW_WR_C_IMAX_MIN;
2636 
2637 	/* Set the prescale to produce 4us pulses from the 125 Mhz clock. */
2638 	ctrl |= (125 * 4) & CPSW_WR_INT_PRESCALE_MASK;
2639 
2640 	/* Enable the interrupt pace hardware. */
2641 	cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), intr_per_ms);
2642 	cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), intr_per_ms);
2643 	ctrl |= CPSW_WR_INT_C0_RX_PULSE | CPSW_WR_INT_C0_TX_PULSE;
2644 	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2645 
2646 	return (0);
2647 }
2648 
2649 static int
2650 cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
2651 {
2652 	struct cpsw_softc *swsc;
2653 	struct cpswp_softc *sc;
2654 	struct bintime t;
2655 	unsigned result;
2656 
2657 	swsc = arg1;
2658 	sc = device_get_softc(swsc->port[arg2].dev);
2659 	if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
2660 		getbinuptime(&t);
2661 		bintime_sub(&t, &sc->init_uptime);
2662 		result = t.sec;
2663 	} else
2664 		result = 0;
2665 	return (sysctl_handle_int(oidp, &result, 0, req));
2666 }
2667 
2668 static void
2669 cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2670 	struct cpsw_queue *queue)
2671 {
2672 	struct sysctl_oid_list *parent;
2673 
2674 	parent = SYSCTL_CHILDREN(node);
2675 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
2676 	    CTLFLAG_RD, &queue->queue_slots, 0,
2677 	    "Total buffers currently assigned to this queue");
2678 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
2679 	    CTLFLAG_RD, &queue->active_queue_len, 0,
2680 	    "Buffers currently registered with hardware controller");
2681 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
2682 	    CTLFLAG_RD, &queue->max_active_queue_len, 0,
2683 	    "Max value of activeBuffers since last driver reset");
2684 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
2685 	    CTLFLAG_RD, &queue->avail_queue_len, 0,
2686 	    "Buffers allocated to this queue but not currently "
2687 	    "registered with hardware controller");
2688 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
2689 	    CTLFLAG_RD, &queue->max_avail_queue_len, 0,
2690 	    "Max value of availBuffers since last driver reset");
2691 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
2692 	    CTLFLAG_RD, &queue->queue_adds, 0,
2693 	    "Total buffers added to queue");
2694 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
2695 	    CTLFLAG_RD, &queue->queue_removes, 0,
2696 	    "Total buffers removed from queue");
2697 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "queueRestart",
2698 	    CTLFLAG_RD, &queue->queue_restart, 0,
2699 	    "Total times the queue has been restarted");
2700 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
2701 	    CTLFLAG_RD, &queue->longest_chain, 0,
2702 	    "Max buffers used for a single packet");
2703 }
2704 
2705 static void
2706 cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2707 	struct cpsw_softc *sc)
2708 {
2709 	struct sysctl_oid_list *parent;
2710 
2711 	parent = SYSCTL_CHILDREN(node);
2712 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
2713 	    CTLFLAG_RD, &sc->watchdog.resets, 0,
2714 	    "Total number of watchdog resets");
2715 }
2716 
2717 static void
2718 cpsw_add_sysctls(struct cpsw_softc *sc)
2719 {
2720 	struct sysctl_ctx_list *ctx;
2721 	struct sysctl_oid *stats_node, *queue_node, *node;
2722 	struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
2723 	struct sysctl_oid_list *ports_parent, *port_parent;
2724 	char port[16];
2725 	int i;
2726 
2727 	ctx = device_get_sysctl_ctx(sc->dev);
2728 	parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
2729 
2730 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "debug",
2731 	    CTLFLAG_RW, &sc->debug, 0, "Enable switch debug messages");
2732 
2733 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
2734 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2735 	    sc, 0, cpsw_stat_attached, "IU",
2736 	    "Time since driver attach");
2737 
2738 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "intr_coalesce_us",
2739 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
2740 	    sc, 0, cpsw_intr_coalesce, "IU",
2741 	    "minimum time between interrupts");
2742 
2743 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "ports",
2744 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Ports Statistics");
2745 	ports_parent = SYSCTL_CHILDREN(node);
2746 	for (i = 0; i < CPSW_PORTS; i++) {
2747 		if (!sc->dualemac && i != sc->active_slave)
2748 			continue;
2749 		port[0] = '0' + i;
2750 		port[1] = '\0';
2751 		node = SYSCTL_ADD_NODE(ctx, ports_parent, OID_AUTO,
2752 		    port, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
2753 		    "CPSW Port Statistics");
2754 		port_parent = SYSCTL_CHILDREN(node);
2755 		SYSCTL_ADD_PROC(ctx, port_parent, OID_AUTO, "uptime",
2756 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, i,
2757 		    cpsw_stat_uptime, "IU", "Seconds since driver init");
2758 	}
2759 
2760 	stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
2761 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Statistics");
2762 	stats_parent = SYSCTL_CHILDREN(stats_node);
2763 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2764 		SYSCTL_ADD_PROC(ctx, stats_parent, i,
2765 				cpsw_stat_sysctls[i].oid,
2766 				CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2767 				sc, 0, cpsw_stats_sysctl, "IU",
2768 				cpsw_stat_sysctls[i].oid);
2769 	}
2770 
2771 	queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
2772 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Queue Statistics");
2773 	queue_parent = SYSCTL_CHILDREN(queue_node);
2774 
2775 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
2776 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Statistics");
2777 	cpsw_add_queue_sysctls(ctx, node, &sc->tx);
2778 
2779 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
2780 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Statistics");
2781 	cpsw_add_queue_sysctls(ctx, node, &sc->rx);
2782 
2783 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
2784 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Watchdog Statistics");
2785 	cpsw_add_watchdog_sysctls(ctx, node, sc);
2786 }
2787 
2788 #ifdef CPSW_ETHERSWITCH
2789 static etherswitch_info_t etherswitch_info = {
2790 	.es_nports =		CPSW_PORTS + 1,
2791 	.es_nvlangroups =	CPSW_VLANS,
2792 	.es_name =		"TI Common Platform Ethernet Switch (CPSW)",
2793 	.es_vlan_caps =		ETHERSWITCH_VLAN_DOT1Q,
2794 };
2795 
2796 static etherswitch_info_t *
2797 cpsw_getinfo(device_t dev)
2798 {
2799 	return (&etherswitch_info);
2800 }
2801 
2802 static int
2803 cpsw_getport(device_t dev, etherswitch_port_t *p)
2804 {
2805 	int err;
2806 	struct cpsw_softc *sc;
2807 	struct cpswp_softc *psc;
2808 	struct ifmediareq *ifmr;
2809 	uint32_t reg;
2810 
2811 	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2812 		return (ENXIO);
2813 
2814 	err = 0;
2815 	sc = device_get_softc(dev);
2816 	if (p->es_port == CPSW_CPU_PORT) {
2817 		p->es_flags |= ETHERSWITCH_PORT_CPU;
2818  		ifmr = &p->es_ifmr;
2819 		ifmr->ifm_current = ifmr->ifm_active =
2820 		    IFM_ETHER | IFM_1000_T | IFM_FDX;
2821 		ifmr->ifm_mask = 0;
2822 		ifmr->ifm_status = IFM_ACTIVE | IFM_AVALID;
2823 		ifmr->ifm_count = 0;
2824 	} else {
2825 		psc = device_get_softc(sc->port[p->es_port - 1].dev);
2826 		err = ifmedia_ioctl(psc->ifp, &p->es_ifr,
2827 		    &psc->mii->mii_media, SIOCGIFMEDIA);
2828 	}
2829 	reg = cpsw_read_4(sc, CPSW_PORT_P_VLAN(p->es_port));
2830 	p->es_pvid = reg & ETHERSWITCH_VID_MASK;
2831 
2832 	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2833 	if (reg & ALE_PORTCTL_DROP_UNTAGGED)
2834 		p->es_flags |= ETHERSWITCH_PORT_DROPUNTAGGED;
2835 	if (reg & ALE_PORTCTL_INGRESS)
2836 		p->es_flags |= ETHERSWITCH_PORT_INGRESS;
2837 
2838 	return (err);
2839 }
2840 
2841 static int
2842 cpsw_setport(device_t dev, etherswitch_port_t *p)
2843 {
2844 	struct cpsw_softc *sc;
2845 	struct cpswp_softc *psc;
2846 	struct ifmedia *ifm;
2847 	uint32_t reg;
2848 
2849 	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2850 		return (ENXIO);
2851 
2852 	sc = device_get_softc(dev);
2853 	if (p->es_pvid != 0) {
2854 		cpsw_write_4(sc, CPSW_PORT_P_VLAN(p->es_port),
2855 		    p->es_pvid & ETHERSWITCH_VID_MASK);
2856 	}
2857 
2858 	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2859 	if (p->es_flags & ETHERSWITCH_PORT_DROPUNTAGGED)
2860 		reg |= ALE_PORTCTL_DROP_UNTAGGED;
2861 	else
2862 		reg &= ~ALE_PORTCTL_DROP_UNTAGGED;
2863 	if (p->es_flags & ETHERSWITCH_PORT_INGRESS)
2864 		reg |= ALE_PORTCTL_INGRESS;
2865 	else
2866 		reg &= ~ALE_PORTCTL_INGRESS;
2867 	cpsw_write_4(sc, CPSW_ALE_PORTCTL(p->es_port), reg);
2868 
2869 	/* CPU port does not allow media settings. */
2870 	if (p->es_port == CPSW_CPU_PORT)
2871 		return (0);
2872 
2873 	psc = device_get_softc(sc->port[p->es_port - 1].dev);
2874 	ifm = &psc->mii->mii_media;
2875 
2876 	return (ifmedia_ioctl(psc->ifp, &p->es_ifr, ifm, SIOCSIFMEDIA));
2877 }
2878 
2879 static int
2880 cpsw_getconf(device_t dev, etherswitch_conf_t *conf)
2881 {
2882 
2883 	/* Return the VLAN mode. */
2884 	conf->cmd = ETHERSWITCH_CONF_VLAN_MODE;
2885 	conf->vlan_mode = ETHERSWITCH_VLAN_DOT1Q;
2886 
2887 	return (0);
2888 }
2889 
2890 static int
2891 cpsw_getvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2892 {
2893 	int i, vid;
2894 	uint32_t ale_entry[3];
2895 	struct cpsw_softc *sc;
2896 
2897 	sc = device_get_softc(dev);
2898 
2899 	if (vg->es_vlangroup >= CPSW_VLANS)
2900 		return (EINVAL);
2901 
2902 	vg->es_vid = 0;
2903 	vid = cpsw_vgroups[vg->es_vlangroup].vid;
2904 	if (vid == -1)
2905 		return (0);
2906 
2907 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2908 		cpsw_ale_read_entry(sc, i, ale_entry);
2909 		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2910 			continue;
2911 		if (vid != ALE_VLAN(ale_entry))
2912 			continue;
2913 
2914 		vg->es_fid = 0;
2915 		vg->es_vid = ALE_VLAN(ale_entry) | ETHERSWITCH_VID_VALID;
2916 		vg->es_member_ports = ALE_VLAN_MEMBERS(ale_entry);
2917 		vg->es_untagged_ports = ALE_VLAN_UNTAG(ale_entry);
2918 	}
2919 
2920 	return (0);
2921 }
2922 
2923 static void
2924 cpsw_remove_vlan(struct cpsw_softc *sc, int vlan)
2925 {
2926 	int i;
2927 	uint32_t ale_entry[3];
2928 
2929 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2930 		cpsw_ale_read_entry(sc, i, ale_entry);
2931 		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2932 			continue;
2933 		if (vlan != ALE_VLAN(ale_entry))
2934 			continue;
2935 		ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2936 		cpsw_ale_write_entry(sc, i, ale_entry);
2937 		break;
2938 	}
2939 }
2940 
2941 static int
2942 cpsw_setvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2943 {
2944 	int i;
2945 	struct cpsw_softc *sc;
2946 
2947 	sc = device_get_softc(dev);
2948 
2949 	for (i = 0; i < CPSW_VLANS; i++) {
2950 		/* Is this Vlan ID in use by another vlangroup ? */
2951 		if (vg->es_vlangroup != i && cpsw_vgroups[i].vid == vg->es_vid)
2952 			return (EINVAL);
2953 	}
2954 
2955 	if (vg->es_vid == 0) {
2956 		if (cpsw_vgroups[vg->es_vlangroup].vid == -1)
2957 			return (0);
2958 		cpsw_remove_vlan(sc, cpsw_vgroups[vg->es_vlangroup].vid);
2959 		cpsw_vgroups[vg->es_vlangroup].vid = -1;
2960 		vg->es_untagged_ports = 0;
2961 		vg->es_member_ports = 0;
2962 		vg->es_vid = 0;
2963 		return (0);
2964 	}
2965 
2966 	vg->es_vid &= ETHERSWITCH_VID_MASK;
2967 	vg->es_member_ports &= CPSW_PORTS_MASK;
2968 	vg->es_untagged_ports &= CPSW_PORTS_MASK;
2969 
2970 	if (cpsw_vgroups[vg->es_vlangroup].vid != -1 &&
2971 	    cpsw_vgroups[vg->es_vlangroup].vid != vg->es_vid)
2972 		return (EINVAL);
2973 
2974 	cpsw_vgroups[vg->es_vlangroup].vid = vg->es_vid;
2975 	cpsw_ale_update_vlan_table(sc, vg->es_vid, vg->es_member_ports,
2976 	    vg->es_untagged_ports, vg->es_member_ports, 0);
2977 
2978 	return (0);
2979 }
2980 
2981 static int
2982 cpsw_readreg(device_t dev, int addr)
2983 {
2984 
2985 	/* Not supported. */
2986 	return (0);
2987 }
2988 
2989 static int
2990 cpsw_writereg(device_t dev, int addr, int value)
2991 {
2992 
2993 	/* Not supported. */
2994 	return (0);
2995 }
2996 
2997 static int
2998 cpsw_readphy(device_t dev, int phy, int reg)
2999 {
3000 
3001 	/* Not supported. */
3002 	return (0);
3003 }
3004 
3005 static int
3006 cpsw_writephy(device_t dev, int phy, int reg, int data)
3007 {
3008 
3009 	/* Not supported. */
3010 	return (0);
3011 }
3012 #endif
3013