xref: /freebsd/sys/arm/ti/cpsw/if_cpsw.c (revision d5e3895ea4fe4ef9db8823774e07b4368180a23e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
5  * Copyright (c) 2016 Rubicon Communications, LLC (Netgate)
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * TI Common Platform Ethernet Switch (CPSW) Driver
32  * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
33  *
34  * This controller is documented in the AM335x Technical Reference
35  * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
36  * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
37  *
38  * It is basically a single Ethernet port (port 0) wired internally to
39  * a 3-port store-and-forward switch connected to two independent
40  * "sliver" controllers (port 1 and port 2).  You can operate the
41  * controller in a variety of different ways by suitably configuring
42  * the slivers and the Address Lookup Engine (ALE) that routes packets
43  * between the ports.
44  *
45  * This code was developed and tested on a BeagleBone with
46  * an AM335x SoC.
47  */
48 
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51 
52 #include "opt_cpsw.h"
53 
54 #include <sys/param.h>
55 #include <sys/bus.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/mbuf.h>
59 #include <sys/module.h>
60 #include <sys/mutex.h>
61 #include <sys/rman.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/sysctl.h>
65 
66 #include <machine/bus.h>
67 #include <machine/resource.h>
68 #include <machine/stdarg.h>
69 
70 #include <net/ethernet.h>
71 #include <net/bpf.h>
72 #include <net/if.h>
73 #include <net/if_dl.h>
74 #include <net/if_media.h>
75 #include <net/if_types.h>
76 
77 #include <dev/extres/syscon/syscon.h>
78 #include "syscon_if.h"
79 #include <arm/ti/am335x/am335x_scm.h>
80 
81 #include <dev/mii/mii.h>
82 #include <dev/mii/miivar.h>
83 
84 #include <dev/ofw/ofw_bus.h>
85 #include <dev/ofw/ofw_bus_subr.h>
86 
87 #include <dev/fdt/fdt_common.h>
88 
89 #ifdef CPSW_ETHERSWITCH
90 #include <dev/etherswitch/etherswitch.h>
91 #include "etherswitch_if.h"
92 #endif
93 
94 #include "if_cpswreg.h"
95 #include "if_cpswvar.h"
96 
97 #include "miibus_if.h"
98 
99 /* Device probe/attach/detach. */
100 static int cpsw_probe(device_t);
101 static int cpsw_attach(device_t);
102 static int cpsw_detach(device_t);
103 static int cpswp_probe(device_t);
104 static int cpswp_attach(device_t);
105 static int cpswp_detach(device_t);
106 
107 static phandle_t cpsw_get_node(device_t, device_t);
108 
109 /* Device Init/shutdown. */
110 static int cpsw_shutdown(device_t);
111 static void cpswp_init(void *);
112 static void cpswp_init_locked(void *);
113 static void cpswp_stop_locked(struct cpswp_softc *);
114 
115 /* Device Suspend/Resume. */
116 static int cpsw_suspend(device_t);
117 static int cpsw_resume(device_t);
118 
119 /* Ioctl. */
120 static int cpswp_ioctl(struct ifnet *, u_long command, caddr_t data);
121 
122 static int cpswp_miibus_readreg(device_t, int phy, int reg);
123 static int cpswp_miibus_writereg(device_t, int phy, int reg, int value);
124 static void cpswp_miibus_statchg(device_t);
125 
126 /* Send/Receive packets. */
127 static void cpsw_intr_rx(void *arg);
128 static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
129 static void cpsw_rx_enqueue(struct cpsw_softc *);
130 static void cpswp_start(struct ifnet *);
131 static void cpsw_intr_tx(void *);
132 static void cpswp_tx_enqueue(struct cpswp_softc *);
133 static int cpsw_tx_dequeue(struct cpsw_softc *);
134 
135 /* Misc interrupts and watchdog. */
136 static void cpsw_intr_rx_thresh(void *);
137 static void cpsw_intr_misc(void *);
138 static void cpswp_tick(void *);
139 static void cpswp_ifmedia_sts(struct ifnet *, struct ifmediareq *);
140 static int cpswp_ifmedia_upd(struct ifnet *);
141 static void cpsw_tx_watchdog(void *);
142 
143 /* ALE support */
144 static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t, uint32_t *);
145 static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t, uint32_t *);
146 static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t, int, uint8_t *);
147 static void cpsw_ale_dump_table(struct cpsw_softc *);
148 static int cpsw_ale_update_vlan_table(struct cpsw_softc *, int, int, int, int,
149 	int);
150 static int cpswp_ale_update_addresses(struct cpswp_softc *, int);
151 
152 /* Statistics and sysctls. */
153 static void cpsw_add_sysctls(struct cpsw_softc *);
154 static void cpsw_stats_collect(struct cpsw_softc *);
155 static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
156 
157 #ifdef CPSW_ETHERSWITCH
158 static etherswitch_info_t *cpsw_getinfo(device_t);
159 static int cpsw_getport(device_t, etherswitch_port_t *);
160 static int cpsw_setport(device_t, etherswitch_port_t *);
161 static int cpsw_getconf(device_t, etherswitch_conf_t *);
162 static int cpsw_getvgroup(device_t, etherswitch_vlangroup_t *);
163 static int cpsw_setvgroup(device_t, etherswitch_vlangroup_t *);
164 static int cpsw_readreg(device_t, int);
165 static int cpsw_writereg(device_t, int, int);
166 static int cpsw_readphy(device_t, int, int);
167 static int cpsw_writephy(device_t, int, int, int);
168 #endif
169 
170 /*
171  * Arbitrary limit on number of segments in an mbuf to be transmitted.
172  * Packets with more segments than this will be defragmented before
173  * they are queued.
174  */
175 #define	CPSW_TXFRAGS		16
176 
177 /* Shared resources. */
178 static device_method_t cpsw_methods[] = {
179 	/* Device interface */
180 	DEVMETHOD(device_probe,		cpsw_probe),
181 	DEVMETHOD(device_attach,	cpsw_attach),
182 	DEVMETHOD(device_detach,	cpsw_detach),
183 	DEVMETHOD(device_shutdown,	cpsw_shutdown),
184 	DEVMETHOD(device_suspend,	cpsw_suspend),
185 	DEVMETHOD(device_resume,	cpsw_resume),
186 	/* Bus interface */
187 	DEVMETHOD(bus_add_child,	device_add_child_ordered),
188 	/* OFW methods */
189 	DEVMETHOD(ofw_bus_get_node,	cpsw_get_node),
190 #ifdef CPSW_ETHERSWITCH
191 	/* etherswitch interface */
192 	DEVMETHOD(etherswitch_getinfo,	cpsw_getinfo),
193 	DEVMETHOD(etherswitch_readreg,	cpsw_readreg),
194 	DEVMETHOD(etherswitch_writereg,	cpsw_writereg),
195 	DEVMETHOD(etherswitch_readphyreg,	cpsw_readphy),
196 	DEVMETHOD(etherswitch_writephyreg,	cpsw_writephy),
197 	DEVMETHOD(etherswitch_getport,	cpsw_getport),
198 	DEVMETHOD(etherswitch_setport,	cpsw_setport),
199 	DEVMETHOD(etherswitch_getvgroup,	cpsw_getvgroup),
200 	DEVMETHOD(etherswitch_setvgroup,	cpsw_setvgroup),
201 	DEVMETHOD(etherswitch_getconf,	cpsw_getconf),
202 #endif
203 	DEVMETHOD_END
204 };
205 
206 static driver_t cpsw_driver = {
207 	"cpswss",
208 	cpsw_methods,
209 	sizeof(struct cpsw_softc),
210 };
211 
212 static devclass_t cpsw_devclass;
213 
214 DRIVER_MODULE(cpswss, simplebus, cpsw_driver, cpsw_devclass, 0, 0);
215 
216 /* Port/Slave resources. */
217 static device_method_t cpswp_methods[] = {
218 	/* Device interface */
219 	DEVMETHOD(device_probe,		cpswp_probe),
220 	DEVMETHOD(device_attach,	cpswp_attach),
221 	DEVMETHOD(device_detach,	cpswp_detach),
222 	/* MII interface */
223 	DEVMETHOD(miibus_readreg,	cpswp_miibus_readreg),
224 	DEVMETHOD(miibus_writereg,	cpswp_miibus_writereg),
225 	DEVMETHOD(miibus_statchg,	cpswp_miibus_statchg),
226 	DEVMETHOD_END
227 };
228 
229 static driver_t cpswp_driver = {
230 	"cpsw",
231 	cpswp_methods,
232 	sizeof(struct cpswp_softc),
233 };
234 
235 static devclass_t cpswp_devclass;
236 
237 #ifdef CPSW_ETHERSWITCH
238 DRIVER_MODULE(etherswitch, cpswss, etherswitch_driver, etherswitch_devclass, 0, 0);
239 MODULE_DEPEND(cpswss, etherswitch, 1, 1, 1);
240 #endif
241 
242 DRIVER_MODULE(cpsw, cpswss, cpswp_driver, cpswp_devclass, 0, 0);
243 DRIVER_MODULE(miibus, cpsw, miibus_driver, miibus_devclass, 0, 0);
244 MODULE_DEPEND(cpsw, ether, 1, 1, 1);
245 MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
246 
247 #ifdef CPSW_ETHERSWITCH
248 static struct cpsw_vlangroups cpsw_vgroups[CPSW_VLANS];
249 #endif
250 
251 static uint32_t slave_mdio_addr[] = { 0x4a100200, 0x4a100300 };
252 
253 static struct resource_spec irq_res_spec[] = {
254 	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
255 	{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
256 	{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
257 	{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
258 	{ -1, 0 }
259 };
260 
261 static struct {
262 	void (*cb)(void *);
263 } cpsw_intr_cb[] = {
264 	{ cpsw_intr_rx_thresh },
265 	{ cpsw_intr_rx },
266 	{ cpsw_intr_tx },
267 	{ cpsw_intr_misc },
268 };
269 
270 /* Number of entries here must match size of stats
271  * array in struct cpswp_softc. */
272 static struct cpsw_stat {
273 	int	reg;
274 	char *oid;
275 } cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
276 	{0x00, "GoodRxFrames"},
277 	{0x04, "BroadcastRxFrames"},
278 	{0x08, "MulticastRxFrames"},
279 	{0x0C, "PauseRxFrames"},
280 	{0x10, "RxCrcErrors"},
281 	{0x14, "RxAlignErrors"},
282 	{0x18, "OversizeRxFrames"},
283 	{0x1c, "RxJabbers"},
284 	{0x20, "ShortRxFrames"},
285 	{0x24, "RxFragments"},
286 	{0x30, "RxOctets"},
287 	{0x34, "GoodTxFrames"},
288 	{0x38, "BroadcastTxFrames"},
289 	{0x3c, "MulticastTxFrames"},
290 	{0x40, "PauseTxFrames"},
291 	{0x44, "DeferredTxFrames"},
292 	{0x48, "CollisionsTxFrames"},
293 	{0x4c, "SingleCollisionTxFrames"},
294 	{0x50, "MultipleCollisionTxFrames"},
295 	{0x54, "ExcessiveCollisions"},
296 	{0x58, "LateCollisions"},
297 	{0x5c, "TxUnderrun"},
298 	{0x60, "CarrierSenseErrors"},
299 	{0x64, "TxOctets"},
300 	{0x68, "RxTx64OctetFrames"},
301 	{0x6c, "RxTx65to127OctetFrames"},
302 	{0x70, "RxTx128to255OctetFrames"},
303 	{0x74, "RxTx256to511OctetFrames"},
304 	{0x78, "RxTx512to1024OctetFrames"},
305 	{0x7c, "RxTx1024upOctetFrames"},
306 	{0x80, "NetOctets"},
307 	{0x84, "RxStartOfFrameOverruns"},
308 	{0x88, "RxMiddleOfFrameOverruns"},
309 	{0x8c, "RxDmaOverruns"}
310 };
311 
312 /*
313  * Basic debug support.
314  */
315 
316 static void
317 cpsw_debugf_head(const char *funcname)
318 {
319 	int t = (int)(time_second % (24 * 60 * 60));
320 
321 	printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
322 }
323 
324 static void
325 cpsw_debugf(const char *fmt, ...)
326 {
327 	va_list ap;
328 
329 	va_start(ap, fmt);
330 	vprintf(fmt, ap);
331 	va_end(ap);
332 	printf("\n");
333 
334 }
335 
336 #define	CPSW_DEBUGF(_sc, a) do {					\
337 	if ((_sc)->debug) {						\
338 		cpsw_debugf_head(__func__);				\
339 		cpsw_debugf a;						\
340 	}								\
341 } while (0)
342 
343 /*
344  * Locking macros
345  */
346 #define	CPSW_TX_LOCK(sc) do {						\
347 		mtx_assert(&(sc)->rx.lock, MA_NOTOWNED);		\
348 		mtx_lock(&(sc)->tx.lock);				\
349 } while (0)
350 
351 #define	CPSW_TX_UNLOCK(sc)	mtx_unlock(&(sc)->tx.lock)
352 #define	CPSW_TX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->tx.lock, MA_OWNED)
353 
354 #define	CPSW_RX_LOCK(sc) do {						\
355 		mtx_assert(&(sc)->tx.lock, MA_NOTOWNED);		\
356 		mtx_lock(&(sc)->rx.lock);				\
357 } while (0)
358 
359 #define	CPSW_RX_UNLOCK(sc)		mtx_unlock(&(sc)->rx.lock)
360 #define	CPSW_RX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->rx.lock, MA_OWNED)
361 
362 #define CPSW_PORT_LOCK(_sc) do {					\
363 		mtx_assert(&(_sc)->lock, MA_NOTOWNED);			\
364 		mtx_lock(&(_sc)->lock);					\
365 } while (0)
366 
367 #define	CPSW_PORT_UNLOCK(_sc)	mtx_unlock(&(_sc)->lock)
368 #define	CPSW_PORT_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->lock, MA_OWNED)
369 
370 /*
371  * Read/Write macros
372  */
373 #define	cpsw_read_4(_sc, _reg)		bus_read_4((_sc)->mem_res, (_reg))
374 #define	cpsw_write_4(_sc, _reg, _val)					\
375 	bus_write_4((_sc)->mem_res, (_reg), (_val))
376 
377 #define	cpsw_cpdma_bd_offset(i)	(CPSW_CPPI_RAM_OFFSET + ((i)*16))
378 
379 #define	cpsw_cpdma_bd_paddr(sc, slot)					\
380 	BUS_SPACE_PHYSADDR(sc->mem_res, slot->bd_offset)
381 #define	cpsw_cpdma_read_bd(sc, slot, val)				\
382 	bus_read_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
383 #define	cpsw_cpdma_write_bd(sc, slot, val)				\
384 	bus_write_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
385 #define	cpsw_cpdma_write_bd_next(sc, slot, next_slot)			\
386 	cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
387 #define	cpsw_cpdma_write_bd_flags(sc, slot, val)			\
388 	bus_write_2(sc->mem_res, slot->bd_offset + 14, val)
389 #define	cpsw_cpdma_read_bd_flags(sc, slot)				\
390 	bus_read_2(sc->mem_res, slot->bd_offset + 14)
391 #define	cpsw_write_hdp_slot(sc, queue, slot)				\
392 	cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
393 #define	CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
394 #define	cpsw_read_cp(sc, queue)						\
395 	cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
396 #define	cpsw_write_cp(sc, queue, val)					\
397 	cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
398 #define	cpsw_write_cp_slot(sc, queue, slot)				\
399 	cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
400 
401 #if 0
402 /* XXX temporary function versions for debugging. */
403 static void
404 cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
405 {
406 	uint32_t reg = queue->hdp_offset;
407 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
408 	CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
409 	cpsw_write_4(sc, reg, v);
410 }
411 
412 static void
413 cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
414 {
415 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
416 	CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
417 	cpsw_write_cp(sc, queue, v);
418 }
419 #endif
420 
421 /*
422  * Expanded dump routines for verbose debugging.
423  */
424 static void
425 cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
426 {
427 	static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
428 	    "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
429 	    "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
430 	    "Port0"};
431 	struct cpsw_cpdma_bd bd;
432 	const char *sep;
433 	int i;
434 
435 	cpsw_cpdma_read_bd(sc, slot, &bd);
436 	printf("BD Addr : 0x%08x   Next  : 0x%08x\n",
437 	    cpsw_cpdma_bd_paddr(sc, slot), bd.next);
438 	printf("  BufPtr: 0x%08x   BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
439 	printf("  BufOff: 0x%08x   PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
440 	printf("  Flags: ");
441 	sep = "";
442 	for (i = 0; i < 16; ++i) {
443 		if (bd.flags & (1 << (15 - i))) {
444 			printf("%s%s", sep, flags[i]);
445 			sep = ",";
446 		}
447 	}
448 	printf("\n");
449 	if (slot->mbuf) {
450 		printf("  Ether:  %14D\n",
451 		    (char *)(slot->mbuf->m_data), " ");
452 		printf("  Packet: %16D\n",
453 		    (char *)(slot->mbuf->m_data) + 14, " ");
454 	}
455 }
456 
457 #define	CPSW_DUMP_SLOT(cs, slot) do {				\
458 	IF_DEBUG(sc) {						\
459 		cpsw_dump_slot(sc, slot);			\
460 	}							\
461 } while (0)
462 
463 static void
464 cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
465 {
466 	struct cpsw_slot *slot;
467 	int i = 0;
468 	int others = 0;
469 
470 	STAILQ_FOREACH(slot, q, next) {
471 		if (i > CPSW_TXFRAGS)
472 			++others;
473 		else
474 			cpsw_dump_slot(sc, slot);
475 		++i;
476 	}
477 	if (others)
478 		printf(" ... and %d more.\n", others);
479 	printf("\n");
480 }
481 
482 #define CPSW_DUMP_QUEUE(sc, q) do {				\
483 	IF_DEBUG(sc) {						\
484 		cpsw_dump_queue(sc, q);				\
485 	}							\
486 } while (0)
487 
488 static void
489 cpsw_init_slots(struct cpsw_softc *sc)
490 {
491 	struct cpsw_slot *slot;
492 	int i;
493 
494 	STAILQ_INIT(&sc->avail);
495 
496 	/* Put the slot descriptors onto the global avail list. */
497 	for (i = 0; i < nitems(sc->_slots); i++) {
498 		slot = &sc->_slots[i];
499 		slot->bd_offset = cpsw_cpdma_bd_offset(i);
500 		STAILQ_INSERT_TAIL(&sc->avail, slot, next);
501 	}
502 }
503 
504 static int
505 cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
506 {
507 	const int max_slots = nitems(sc->_slots);
508 	struct cpsw_slot *slot;
509 	int i;
510 
511 	if (requested < 0)
512 		requested = max_slots;
513 
514 	for (i = 0; i < requested; ++i) {
515 		slot = STAILQ_FIRST(&sc->avail);
516 		if (slot == NULL)
517 			return (0);
518 		if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
519 			device_printf(sc->dev, "failed to create dmamap\n");
520 			return (ENOMEM);
521 		}
522 		STAILQ_REMOVE_HEAD(&sc->avail, next);
523 		STAILQ_INSERT_TAIL(&queue->avail, slot, next);
524 		++queue->avail_queue_len;
525 		++queue->queue_slots;
526 	}
527 	return (0);
528 }
529 
530 static void
531 cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
532 {
533 	int error;
534 
535 	if (slot->dmamap) {
536 		if (slot->mbuf)
537 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
538 		error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
539 		KASSERT(error == 0, ("Mapping still active"));
540 		slot->dmamap = NULL;
541 	}
542 	if (slot->mbuf) {
543 		m_freem(slot->mbuf);
544 		slot->mbuf = NULL;
545 	}
546 }
547 
548 static void
549 cpsw_reset(struct cpsw_softc *sc)
550 {
551 	int i;
552 
553 	callout_stop(&sc->watchdog.callout);
554 
555 	/* Reset RMII/RGMII wrapper. */
556 	cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
557 	while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
558 		;
559 
560 	/* Disable TX and RX interrupts for all cores. */
561 	for (i = 0; i < 3; ++i) {
562 		cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
563 		cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
564 		cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
565 		cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
566 	}
567 
568 	/* Reset CPSW subsystem. */
569 	cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
570 	while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
571 		;
572 
573 	/* Reset Sliver port 1 and 2 */
574 	for (i = 0; i < 2; i++) {
575 		/* Reset */
576 		cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
577 		while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
578 			;
579 	}
580 
581 	/* Reset DMA controller. */
582 	cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
583 	while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
584 		;
585 
586 	/* Disable TX & RX DMA */
587 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
588 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
589 
590 	/* Clear all queues. */
591 	for (i = 0; i < 8; i++) {
592 		cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
593 		cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
594 		cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
595 		cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
596 	}
597 
598 	/* Clear all interrupt Masks */
599 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
600 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
601 }
602 
603 static void
604 cpsw_init(struct cpsw_softc *sc)
605 {
606 	struct cpsw_slot *slot;
607 	uint32_t reg;
608 
609 	/* Disable the interrupt pacing. */
610 	reg = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
611 	reg &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
612 	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, reg);
613 
614 	/* Clear ALE */
615 	cpsw_write_4(sc, CPSW_ALE_CONTROL, CPSW_ALE_CTL_CLEAR_TBL);
616 
617 	/* Enable ALE */
618 	reg = CPSW_ALE_CTL_ENABLE;
619 	if (sc->dualemac)
620 		reg |= CPSW_ALE_CTL_VLAN_AWARE;
621 	cpsw_write_4(sc, CPSW_ALE_CONTROL, reg);
622 
623 	/* Set Host Port Mapping. */
624 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
625 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
626 
627 	/* Initialize ALE: set host port to forwarding(3). */
628 	cpsw_write_4(sc, CPSW_ALE_PORTCTL(0),
629 	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
630 
631 	cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
632 
633 	/* Enable statistics for ports 0, 1 and 2 */
634 	cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
635 
636 	/* Turn off flow control. */
637 	cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
638 
639 	/* Make IP hdr aligned with 4 */
640 	cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
641 
642 	/* Initialize RX Buffer Descriptors */
643 	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), 0);
644 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
645 
646 	/* Enable TX & RX DMA */
647 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
648 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
649 
650 	/* Enable Interrupts for core 0 */
651 	cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
652 	cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
653 	cpsw_write_4(sc, CPSW_WR_C_TX_EN(0), 0xFF);
654 	cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x1F);
655 
656 	/* Enable host Error Interrupt */
657 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
658 
659 	/* Enable interrupts for RX and TX on Channel 0 */
660 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET,
661 	    CPSW_CPDMA_RX_INT(0) | CPSW_CPDMA_RX_INT_THRESH(0));
662 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_SET, 1);
663 
664 	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
665 	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
666 	cpsw_write_4(sc, MDIOCONTROL, MDIOCTL_ENABLE | MDIOCTL_FAULTENB | 0xff);
667 
668 	/* Select MII in GMII_SEL, Internal Delay mode */
669 	//ti_scm_reg_write_4(0x650, 0);
670 
671 	/* Initialize active queues. */
672 	slot = STAILQ_FIRST(&sc->tx.active);
673 	if (slot != NULL)
674 		cpsw_write_hdp_slot(sc, &sc->tx, slot);
675 	slot = STAILQ_FIRST(&sc->rx.active);
676 	if (slot != NULL)
677 		cpsw_write_hdp_slot(sc, &sc->rx, slot);
678 	cpsw_rx_enqueue(sc);
679 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), sc->rx.active_queue_len);
680 	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), CPSW_TXFRAGS);
681 
682 	/* Activate network interface. */
683 	sc->rx.running = 1;
684 	sc->tx.running = 1;
685 	sc->watchdog.timer = 0;
686 	callout_init(&sc->watchdog.callout, 0);
687 	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
688 }
689 
690 /*
691  *
692  * Device Probe, Attach, Detach.
693  *
694  */
695 
696 static int
697 cpsw_probe(device_t dev)
698 {
699 
700 	if (!ofw_bus_status_okay(dev))
701 		return (ENXIO);
702 
703 	if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
704 		return (ENXIO);
705 
706 	device_set_desc(dev, "3-port Switch Ethernet Subsystem");
707 	return (BUS_PROBE_DEFAULT);
708 }
709 
710 static int
711 cpsw_intr_attach(struct cpsw_softc *sc)
712 {
713 	int i;
714 
715 	for (i = 0; i < CPSW_INTR_COUNT; i++) {
716 		if (bus_setup_intr(sc->dev, sc->irq_res[i],
717 		    INTR_TYPE_NET | INTR_MPSAFE, NULL,
718 		    cpsw_intr_cb[i].cb, sc, &sc->ih_cookie[i]) != 0) {
719 			return (-1);
720 		}
721 	}
722 
723 	return (0);
724 }
725 
726 static void
727 cpsw_intr_detach(struct cpsw_softc *sc)
728 {
729 	int i;
730 
731 	for (i = 0; i < CPSW_INTR_COUNT; i++) {
732 		if (sc->ih_cookie[i]) {
733 			bus_teardown_intr(sc->dev, sc->irq_res[i],
734 			    sc->ih_cookie[i]);
735 		}
736 	}
737 }
738 
739 static int
740 cpsw_get_fdt_data(struct cpsw_softc *sc, int port)
741 {
742 	char *name;
743 	int len, phy, vlan;
744 	pcell_t phy_id[3], vlan_id;
745 	phandle_t child;
746 	unsigned long mdio_child_addr;
747 
748 	/* Find any slave with phy-handle/phy_id */
749 	phy = -1;
750 	vlan = -1;
751 	for (child = OF_child(sc->node); child != 0; child = OF_peer(child)) {
752 		if (OF_getprop_alloc(child, "name", (void **)&name) < 0)
753 			continue;
754 		if (sscanf(name, "slave@%lx", &mdio_child_addr) != 1) {
755 			OF_prop_free(name);
756 			continue;
757 		}
758 		OF_prop_free(name);
759 
760 		if (mdio_child_addr != slave_mdio_addr[port] &&
761 		    mdio_child_addr != (slave_mdio_addr[port] & 0xFFF))
762 			continue;
763 
764 		if (fdt_get_phyaddr(child, NULL, &phy, NULL) != 0){
765 			/* Users with old DTB will have phy_id instead */
766 			phy = -1;
767 			len = OF_getproplen(child, "phy_id");
768 			if (len / sizeof(pcell_t) == 2) {
769 				/* Get phy address from fdt */
770 				if (OF_getencprop(child, "phy_id", phy_id, len) > 0)
771 					phy = phy_id[1];
772 			}
773 		}
774 
775 		len = OF_getproplen(child, "dual_emac_res_vlan");
776 		if (len / sizeof(pcell_t) == 1) {
777 			/* Get phy address from fdt */
778 			if (OF_getencprop(child, "dual_emac_res_vlan",
779 			    &vlan_id, len) > 0) {
780 				vlan = vlan_id;
781 			}
782 		}
783 
784 		break;
785 	}
786 	if (phy == -1)
787 		return (ENXIO);
788 	sc->port[port].phy = phy;
789 	sc->port[port].vlan = vlan;
790 
791 	return (0);
792 }
793 
794 static int
795 cpsw_attach(device_t dev)
796 {
797 	int error, i;
798 	struct cpsw_softc *sc;
799 	uint32_t reg;
800 
801 	sc = device_get_softc(dev);
802 	sc->dev = dev;
803 	sc->node = ofw_bus_get_node(dev);
804 	getbinuptime(&sc->attach_uptime);
805 
806 	if (OF_getencprop(sc->node, "active_slave", &sc->active_slave,
807 	    sizeof(sc->active_slave)) <= 0) {
808 		sc->active_slave = 0;
809 	}
810 	if (sc->active_slave > 1)
811 		sc->active_slave = 1;
812 
813 	if (OF_hasprop(sc->node, "dual_emac"))
814 		sc->dualemac = 1;
815 
816 	for (i = 0; i < CPSW_PORTS; i++) {
817 		if (!sc->dualemac && i != sc->active_slave)
818 			continue;
819 		if (cpsw_get_fdt_data(sc, i) != 0) {
820 			device_printf(dev,
821 			    "failed to get PHY address from FDT\n");
822 			return (ENXIO);
823 		}
824 	}
825 
826 	/* Initialize mutexes */
827 	mtx_init(&sc->tx.lock, device_get_nameunit(dev),
828 	    "cpsw TX lock", MTX_DEF);
829 	mtx_init(&sc->rx.lock, device_get_nameunit(dev),
830 	    "cpsw RX lock", MTX_DEF);
831 
832 	/* Allocate IRQ resources */
833 	error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
834 	if (error) {
835 		device_printf(dev, "could not allocate IRQ resources\n");
836 		cpsw_detach(dev);
837 		return (ENXIO);
838 	}
839 
840 	sc->mem_rid = 0;
841 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
842 	    &sc->mem_rid, RF_ACTIVE);
843 	if (sc->mem_res == NULL) {
844 		device_printf(sc->dev, "failed to allocate memory resource\n");
845 		cpsw_detach(dev);
846 		return (ENXIO);
847 	}
848 
849 	reg = cpsw_read_4(sc, CPSW_SS_IDVER);
850 	device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
851 		reg & 0xFF, (reg >> 11) & 0x1F);
852 
853 	cpsw_add_sysctls(sc);
854 
855 	/* Allocate a busdma tag and DMA safe memory for mbufs. */
856 	error = bus_dma_tag_create(
857 		bus_get_dma_tag(sc->dev),	/* parent */
858 		1, 0,				/* alignment, boundary */
859 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
860 		BUS_SPACE_MAXADDR,		/* highaddr */
861 		NULL, NULL,			/* filtfunc, filtfuncarg */
862 		MCLBYTES, CPSW_TXFRAGS,		/* maxsize, nsegments */
863 		MCLBYTES, 0,			/* maxsegsz, flags */
864 		NULL, NULL,			/* lockfunc, lockfuncarg */
865 		&sc->mbuf_dtag);		/* dmatag */
866 	if (error) {
867 		device_printf(dev, "bus_dma_tag_create failed\n");
868 		cpsw_detach(dev);
869 		return (error);
870 	}
871 
872 	/* Allocate a NULL buffer for padding. */
873 	sc->nullpad = malloc(ETHER_MIN_LEN, M_DEVBUF, M_WAITOK | M_ZERO);
874 
875 	cpsw_init_slots(sc);
876 
877 	/* Allocate slots to TX and RX queues. */
878 	STAILQ_INIT(&sc->rx.avail);
879 	STAILQ_INIT(&sc->rx.active);
880 	STAILQ_INIT(&sc->tx.avail);
881 	STAILQ_INIT(&sc->tx.active);
882 	// For now:  128 slots to TX, rest to RX.
883 	// XXX TODO: start with 32/64 and grow dynamically based on demand.
884 	if (cpsw_add_slots(sc, &sc->tx, 128) ||
885 	    cpsw_add_slots(sc, &sc->rx, -1)) {
886 		device_printf(dev, "failed to allocate dmamaps\n");
887 		cpsw_detach(dev);
888 		return (ENOMEM);
889 	}
890 	device_printf(dev, "Initial queue size TX=%d RX=%d\n",
891 	    sc->tx.queue_slots, sc->rx.queue_slots);
892 
893 	sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
894 	sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
895 
896 	if (cpsw_intr_attach(sc) == -1) {
897 		device_printf(dev, "failed to setup interrupts\n");
898 		cpsw_detach(dev);
899 		return (ENXIO);
900 	}
901 
902 #ifdef CPSW_ETHERSWITCH
903 	for (i = 0; i < CPSW_VLANS; i++)
904 		cpsw_vgroups[i].vid = -1;
905 #endif
906 
907 	/* Reset the controller. */
908 	cpsw_reset(sc);
909 	cpsw_init(sc);
910 
911 	for (i = 0; i < CPSW_PORTS; i++) {
912 		if (!sc->dualemac && i != sc->active_slave)
913 			continue;
914 		sc->port[i].dev = device_add_child(dev, "cpsw", i);
915 		if (sc->port[i].dev == NULL) {
916 			cpsw_detach(dev);
917 			return (ENXIO);
918 		}
919 	}
920 	bus_generic_probe(dev);
921 	bus_generic_attach(dev);
922 
923 	return (0);
924 }
925 
926 static int
927 cpsw_detach(device_t dev)
928 {
929 	struct cpsw_softc *sc;
930 	int error, i;
931 
932 	bus_generic_detach(dev);
933  	sc = device_get_softc(dev);
934 
935 	for (i = 0; i < CPSW_PORTS; i++) {
936 		if (sc->port[i].dev)
937 			device_delete_child(dev, sc->port[i].dev);
938 	}
939 
940 	if (device_is_attached(dev)) {
941 		callout_stop(&sc->watchdog.callout);
942 		callout_drain(&sc->watchdog.callout);
943 	}
944 
945 	/* Stop and release all interrupts */
946 	cpsw_intr_detach(sc);
947 
948 	/* Free dmamaps and mbufs */
949 	for (i = 0; i < nitems(sc->_slots); ++i)
950 		cpsw_free_slot(sc, &sc->_slots[i]);
951 
952 	/* Free null padding buffer. */
953 	if (sc->nullpad)
954 		free(sc->nullpad, M_DEVBUF);
955 
956 	/* Free DMA tag */
957 	if (sc->mbuf_dtag) {
958 		error = bus_dma_tag_destroy(sc->mbuf_dtag);
959 		KASSERT(error == 0, ("Unable to destroy DMA tag"));
960 	}
961 
962 	/* Free IO memory handler */
963 	if (sc->mem_res != NULL)
964 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res);
965 	bus_release_resources(dev, irq_res_spec, sc->irq_res);
966 
967 	/* Destroy mutexes */
968 	mtx_destroy(&sc->rx.lock);
969 	mtx_destroy(&sc->tx.lock);
970 
971 	/* Detach the switch device, if present. */
972 	error = bus_generic_detach(dev);
973 	if (error != 0)
974 		return (error);
975 
976 	return (device_delete_children(dev));
977 }
978 
979 static phandle_t
980 cpsw_get_node(device_t bus, device_t dev)
981 {
982 
983 	/* Share controller node with port device. */
984 	return (ofw_bus_get_node(bus));
985 }
986 
987 static int
988 cpswp_probe(device_t dev)
989 {
990 
991 	if (device_get_unit(dev) > 1) {
992 		device_printf(dev, "Only two ports are supported.\n");
993 		return (ENXIO);
994 	}
995 	device_set_desc(dev, "Ethernet Switch Port");
996 
997 	return (BUS_PROBE_DEFAULT);
998 }
999 
1000 static int
1001 cpswp_attach(device_t dev)
1002 {
1003 	int error;
1004 	struct ifnet *ifp;
1005 	struct cpswp_softc *sc;
1006 	uint32_t reg;
1007 	uint8_t mac_addr[ETHER_ADDR_LEN];
1008 	phandle_t opp_table;
1009 	struct syscon *syscon;
1010 
1011 	sc = device_get_softc(dev);
1012 	sc->dev = dev;
1013 	sc->pdev = device_get_parent(dev);
1014 	sc->swsc = device_get_softc(sc->pdev);
1015 	sc->unit = device_get_unit(dev);
1016 	sc->phy = sc->swsc->port[sc->unit].phy;
1017 	sc->vlan = sc->swsc->port[sc->unit].vlan;
1018 	if (sc->swsc->dualemac && sc->vlan == -1)
1019 		sc->vlan = sc->unit + 1;
1020 
1021 	if (sc->unit == 0) {
1022 		sc->physel = MDIOUSERPHYSEL0;
1023 		sc->phyaccess = MDIOUSERACCESS0;
1024 	} else {
1025 		sc->physel = MDIOUSERPHYSEL1;
1026 		sc->phyaccess = MDIOUSERACCESS1;
1027 	}
1028 
1029 	mtx_init(&sc->lock, device_get_nameunit(dev), "cpsw port lock",
1030 	    MTX_DEF);
1031 
1032 	/* Allocate network interface */
1033 	ifp = sc->ifp = if_alloc(IFT_ETHER);
1034 	if (ifp == NULL) {
1035 		cpswp_detach(dev);
1036 		return (ENXIO);
1037 	}
1038 
1039 	if_initname(ifp, device_get_name(sc->dev), sc->unit);
1040 	ifp->if_softc = sc;
1041 	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
1042 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_HWCSUM; //FIXME VLAN?
1043 	ifp->if_capenable = ifp->if_capabilities;
1044 
1045 	ifp->if_init = cpswp_init;
1046 	ifp->if_start = cpswp_start;
1047 	ifp->if_ioctl = cpswp_ioctl;
1048 
1049 	ifp->if_snd.ifq_drv_maxlen = sc->swsc->tx.queue_slots;
1050 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1051 	IFQ_SET_READY(&ifp->if_snd);
1052 
1053 	/* FIXME: For now; Go and kidnap syscon from opp-table */
1054 	/* ti,cpsw actually have an optional syscon reference but only for am33xx?? */
1055 	opp_table = OF_finddevice("/opp-table");
1056 	if (opp_table == -1) {
1057 		device_printf(dev, "Cant find /opp-table\n");
1058 		cpswp_detach(dev);
1059 		return (ENXIO);
1060 	}
1061 	if (!OF_hasprop(opp_table, "syscon")) {
1062 		device_printf(dev, "/opp-table doesnt have required syscon property\n");
1063 		cpswp_detach(dev);
1064 		return (ENXIO);
1065 	}
1066 	if (syscon_get_by_ofw_property(dev, opp_table, "syscon", &syscon) != 0) {
1067 		device_printf(dev, "Failed to get syscon\n");
1068 		cpswp_detach(dev);
1069 		return (ENXIO);
1070 	}
1071 
1072 	/* Get high part of MAC address from control module (mac_id[0|1]_hi) */
1073 	reg = SYSCON_READ_4(syscon, SCM_MAC_ID0_HI + sc->unit * 8);
1074 	mac_addr[0] = reg & 0xFF;
1075 	mac_addr[1] = (reg >>  8) & 0xFF;
1076 	mac_addr[2] = (reg >> 16) & 0xFF;
1077 	mac_addr[3] = (reg >> 24) & 0xFF;
1078 
1079 	/* Get low part of MAC address from control module (mac_id[0|1]_lo) */
1080 	reg = SYSCON_READ_4(syscon, SCM_MAC_ID0_LO + sc->unit * 8);
1081 	mac_addr[4] = reg & 0xFF;
1082 	mac_addr[5] = (reg >>  8) & 0xFF;
1083 
1084 	error = mii_attach(dev, &sc->miibus, ifp, cpswp_ifmedia_upd,
1085 	    cpswp_ifmedia_sts, BMSR_DEFCAPMASK, sc->phy, MII_OFFSET_ANY, 0);
1086 	if (error) {
1087 		device_printf(dev, "attaching PHYs failed\n");
1088 		cpswp_detach(dev);
1089 		return (error);
1090 	}
1091 	sc->mii = device_get_softc(sc->miibus);
1092 
1093 	/* Select PHY and enable interrupts */
1094 	cpsw_write_4(sc->swsc, sc->physel,
1095 	    MDIO_PHYSEL_LINKINTENB | (sc->phy & 0x1F));
1096 
1097 	ether_ifattach(sc->ifp, mac_addr);
1098 	callout_init(&sc->mii_callout, 0);
1099 
1100 	return (0);
1101 }
1102 
1103 static int
1104 cpswp_detach(device_t dev)
1105 {
1106 	struct cpswp_softc *sc;
1107 
1108 	sc = device_get_softc(dev);
1109 	CPSW_DEBUGF(sc->swsc, (""));
1110 	if (device_is_attached(dev)) {
1111 		ether_ifdetach(sc->ifp);
1112 		CPSW_PORT_LOCK(sc);
1113 		cpswp_stop_locked(sc);
1114 		CPSW_PORT_UNLOCK(sc);
1115 		callout_drain(&sc->mii_callout);
1116 	}
1117 
1118 	bus_generic_detach(dev);
1119 
1120 	if_free(sc->ifp);
1121 	mtx_destroy(&sc->lock);
1122 
1123 	return (0);
1124 }
1125 
1126 /*
1127  *
1128  * Init/Shutdown.
1129  *
1130  */
1131 
1132 static int
1133 cpsw_ports_down(struct cpsw_softc *sc)
1134 {
1135 	struct cpswp_softc *psc;
1136 	struct ifnet *ifp1, *ifp2;
1137 
1138 	if (!sc->dualemac)
1139 		return (1);
1140 	psc = device_get_softc(sc->port[0].dev);
1141 	ifp1 = psc->ifp;
1142 	psc = device_get_softc(sc->port[1].dev);
1143 	ifp2 = psc->ifp;
1144 	if ((ifp1->if_flags & IFF_UP) == 0 && (ifp2->if_flags & IFF_UP) == 0)
1145 		return (1);
1146 
1147 	return (0);
1148 }
1149 
1150 static void
1151 cpswp_init(void *arg)
1152 {
1153 	struct cpswp_softc *sc = arg;
1154 
1155 	CPSW_DEBUGF(sc->swsc, (""));
1156 	CPSW_PORT_LOCK(sc);
1157 	cpswp_init_locked(arg);
1158 	CPSW_PORT_UNLOCK(sc);
1159 }
1160 
1161 static void
1162 cpswp_init_locked(void *arg)
1163 {
1164 #ifdef CPSW_ETHERSWITCH
1165 	int i;
1166 #endif
1167 	struct cpswp_softc *sc = arg;
1168 	struct ifnet *ifp;
1169 	uint32_t reg;
1170 
1171 	CPSW_DEBUGF(sc->swsc, (""));
1172 	CPSW_PORT_LOCK_ASSERT(sc);
1173 	ifp = sc->ifp;
1174 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1175 		return;
1176 
1177 	getbinuptime(&sc->init_uptime);
1178 
1179 	if (!sc->swsc->rx.running && !sc->swsc->tx.running) {
1180 		/* Reset the controller. */
1181 		cpsw_reset(sc->swsc);
1182 		cpsw_init(sc->swsc);
1183 	}
1184 
1185 	/* Set Slave Mapping. */
1186 	cpsw_write_4(sc->swsc, CPSW_SL_RX_PRI_MAP(sc->unit), 0x76543210);
1187 	cpsw_write_4(sc->swsc, CPSW_PORT_P_TX_PRI_MAP(sc->unit + 1),
1188 	    0x33221100);
1189 	cpsw_write_4(sc->swsc, CPSW_SL_RX_MAXLEN(sc->unit), 0x5f2);
1190 	/* Enable MAC RX/TX modules. */
1191 	/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
1192 	/* Huh?  Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
1193 	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1194 	reg |= CPSW_SL_MACTL_GMII_ENABLE;
1195 	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1196 
1197 	/* Initialize ALE: set port to forwarding, initialize addrs */
1198 	cpsw_write_4(sc->swsc, CPSW_ALE_PORTCTL(sc->unit + 1),
1199 	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
1200 	cpswp_ale_update_addresses(sc, 1);
1201 
1202 	if (sc->swsc->dualemac) {
1203 		/* Set Port VID. */
1204 		cpsw_write_4(sc->swsc, CPSW_PORT_P_VLAN(sc->unit + 1),
1205 		    sc->vlan & 0xfff);
1206 		cpsw_ale_update_vlan_table(sc->swsc, sc->vlan,
1207 		    (1 << (sc->unit + 1)) | (1 << 0), /* Member list */
1208 		    (1 << (sc->unit + 1)) | (1 << 0), /* Untagged egress */
1209 		    (1 << (sc->unit + 1)) | (1 << 0), 0); /* mcast reg flood */
1210 #ifdef CPSW_ETHERSWITCH
1211 		for (i = 0; i < CPSW_VLANS; i++) {
1212 			if (cpsw_vgroups[i].vid != -1)
1213 				continue;
1214 			cpsw_vgroups[i].vid = sc->vlan;
1215 			break;
1216 		}
1217 #endif
1218 	}
1219 
1220 	mii_mediachg(sc->mii);
1221 	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
1222 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1223 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1224 }
1225 
1226 static int
1227 cpsw_shutdown(device_t dev)
1228 {
1229 	struct cpsw_softc *sc;
1230 	struct cpswp_softc *psc;
1231 	int i;
1232 
1233  	sc = device_get_softc(dev);
1234 	CPSW_DEBUGF(sc, (""));
1235 	for (i = 0; i < CPSW_PORTS; i++) {
1236 		if (!sc->dualemac && i != sc->active_slave)
1237 			continue;
1238 		psc = device_get_softc(sc->port[i].dev);
1239 		CPSW_PORT_LOCK(psc);
1240 		cpswp_stop_locked(psc);
1241 		CPSW_PORT_UNLOCK(psc);
1242 	}
1243 
1244 	return (0);
1245 }
1246 
1247 static void
1248 cpsw_rx_teardown(struct cpsw_softc *sc)
1249 {
1250 	int i = 0;
1251 
1252 	CPSW_RX_LOCK(sc);
1253 	CPSW_DEBUGF(sc, ("starting RX teardown"));
1254 	sc->rx.teardown = 1;
1255 	cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
1256 	CPSW_RX_UNLOCK(sc);
1257 	while (sc->rx.running) {
1258 		if (++i > 10) {
1259 			device_printf(sc->dev,
1260 			    "Unable to cleanly shutdown receiver\n");
1261 			return;
1262 		}
1263 		DELAY(200);
1264 	}
1265 	if (!sc->rx.running)
1266 		CPSW_DEBUGF(sc, ("finished RX teardown (%d retries)", i));
1267 }
1268 
1269 static void
1270 cpsw_tx_teardown(struct cpsw_softc *sc)
1271 {
1272 	int i = 0;
1273 
1274 	CPSW_TX_LOCK(sc);
1275 	CPSW_DEBUGF(sc, ("starting TX teardown"));
1276 	/* Start the TX queue teardown if queue is not empty. */
1277 	if (STAILQ_FIRST(&sc->tx.active) != NULL)
1278 		cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
1279 	else
1280 		sc->tx.teardown = 1;
1281 	cpsw_tx_dequeue(sc);
1282 	while (sc->tx.running && ++i < 10) {
1283 		DELAY(200);
1284 		cpsw_tx_dequeue(sc);
1285 	}
1286 	if (sc->tx.running) {
1287 		device_printf(sc->dev,
1288 		    "Unable to cleanly shutdown transmitter\n");
1289 	}
1290 	CPSW_DEBUGF(sc,
1291 	    ("finished TX teardown (%d retries, %d idle buffers)", i,
1292 	     sc->tx.active_queue_len));
1293 	CPSW_TX_UNLOCK(sc);
1294 }
1295 
1296 static void
1297 cpswp_stop_locked(struct cpswp_softc *sc)
1298 {
1299 	struct ifnet *ifp;
1300 	uint32_t reg;
1301 
1302 	ifp = sc->ifp;
1303 	CPSW_DEBUGF(sc->swsc, (""));
1304 	CPSW_PORT_LOCK_ASSERT(sc);
1305 
1306 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1307 		return;
1308 
1309 	/* Disable interface */
1310 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1311 	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1312 
1313 	/* Stop ticker */
1314 	callout_stop(&sc->mii_callout);
1315 
1316 	/* Tear down the RX/TX queues. */
1317 	if (cpsw_ports_down(sc->swsc)) {
1318 		cpsw_rx_teardown(sc->swsc);
1319 		cpsw_tx_teardown(sc->swsc);
1320 	}
1321 
1322 	/* Stop MAC RX/TX modules. */
1323 	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1324 	reg &= ~CPSW_SL_MACTL_GMII_ENABLE;
1325 	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1326 
1327 	if (cpsw_ports_down(sc->swsc)) {
1328 		/* Capture stats before we reset controller. */
1329 		cpsw_stats_collect(sc->swsc);
1330 
1331 		cpsw_reset(sc->swsc);
1332 		cpsw_init(sc->swsc);
1333 	}
1334 }
1335 
1336 /*
1337  *  Suspend/Resume.
1338  */
1339 
1340 static int
1341 cpsw_suspend(device_t dev)
1342 {
1343 	struct cpsw_softc *sc;
1344 	struct cpswp_softc *psc;
1345 	int i;
1346 
1347 	sc = device_get_softc(dev);
1348 	CPSW_DEBUGF(sc, (""));
1349 	for (i = 0; i < CPSW_PORTS; i++) {
1350 		if (!sc->dualemac && i != sc->active_slave)
1351 			continue;
1352 		psc = device_get_softc(sc->port[i].dev);
1353 		CPSW_PORT_LOCK(psc);
1354 		cpswp_stop_locked(psc);
1355 		CPSW_PORT_UNLOCK(psc);
1356 	}
1357 
1358 	return (0);
1359 }
1360 
1361 static int
1362 cpsw_resume(device_t dev)
1363 {
1364 	struct cpsw_softc *sc;
1365 
1366 	sc  = device_get_softc(dev);
1367 	CPSW_DEBUGF(sc, ("UNIMPLEMENTED"));
1368 
1369 	return (0);
1370 }
1371 
1372 /*
1373  *
1374  *  IOCTL
1375  *
1376  */
1377 
1378 static void
1379 cpsw_set_promisc(struct cpswp_softc *sc, int set)
1380 {
1381 	uint32_t reg;
1382 
1383 	/*
1384 	 * Enabling promiscuous mode requires ALE_BYPASS to be enabled.
1385 	 * That disables the ALE forwarding logic and causes every
1386 	 * packet to be sent only to the host port.  In bypass mode,
1387 	 * the ALE processes host port transmit packets the same as in
1388 	 * normal mode.
1389 	 */
1390 	reg = cpsw_read_4(sc->swsc, CPSW_ALE_CONTROL);
1391 	reg &= ~CPSW_ALE_CTL_BYPASS;
1392 	if (set)
1393 		reg |= CPSW_ALE_CTL_BYPASS;
1394 	cpsw_write_4(sc->swsc, CPSW_ALE_CONTROL, reg);
1395 }
1396 
1397 static void
1398 cpsw_set_allmulti(struct cpswp_softc *sc, int set)
1399 {
1400 	if (set) {
1401 		printf("All-multicast mode unimplemented\n");
1402 	}
1403 }
1404 
1405 static int
1406 cpswp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1407 {
1408 	struct cpswp_softc *sc;
1409 	struct ifreq *ifr;
1410 	int error;
1411 	uint32_t changed;
1412 
1413 	error = 0;
1414 	sc = ifp->if_softc;
1415 	ifr = (struct ifreq *)data;
1416 
1417 	switch (command) {
1418 	case SIOCSIFCAP:
1419 		changed = ifp->if_capenable ^ ifr->ifr_reqcap;
1420 		if (changed & IFCAP_HWCSUM) {
1421 			if ((ifr->ifr_reqcap & changed) & IFCAP_HWCSUM)
1422 				ifp->if_capenable |= IFCAP_HWCSUM;
1423 			else
1424 				ifp->if_capenable &= ~IFCAP_HWCSUM;
1425 		}
1426 		error = 0;
1427 		break;
1428 	case SIOCSIFFLAGS:
1429 		CPSW_PORT_LOCK(sc);
1430 		if (ifp->if_flags & IFF_UP) {
1431 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1432 				changed = ifp->if_flags ^ sc->if_flags;
1433 				CPSW_DEBUGF(sc->swsc,
1434 				    ("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)",
1435 				    changed));
1436 				if (changed & IFF_PROMISC)
1437 					cpsw_set_promisc(sc,
1438 					    ifp->if_flags & IFF_PROMISC);
1439 				if (changed & IFF_ALLMULTI)
1440 					cpsw_set_allmulti(sc,
1441 					    ifp->if_flags & IFF_ALLMULTI);
1442 			} else {
1443 				CPSW_DEBUGF(sc->swsc,
1444 				    ("SIOCSIFFLAGS: starting up"));
1445 				cpswp_init_locked(sc);
1446 			}
1447 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1448 			CPSW_DEBUGF(sc->swsc, ("SIOCSIFFLAGS: shutting down"));
1449 			cpswp_stop_locked(sc);
1450 		}
1451 
1452 		sc->if_flags = ifp->if_flags;
1453 		CPSW_PORT_UNLOCK(sc);
1454 		break;
1455 	case SIOCADDMULTI:
1456 		cpswp_ale_update_addresses(sc, 0);
1457 		break;
1458 	case SIOCDELMULTI:
1459 		/* Ugh.  DELMULTI doesn't provide the specific address
1460 		   being removed, so the best we can do is remove
1461 		   everything and rebuild it all. */
1462 		cpswp_ale_update_addresses(sc, 1);
1463 		break;
1464 	case SIOCGIFMEDIA:
1465 	case SIOCSIFMEDIA:
1466 		error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
1467 		break;
1468 	default:
1469 		error = ether_ioctl(ifp, command, data);
1470 	}
1471 	return (error);
1472 }
1473 
1474 /*
1475  *
1476  * MIIBUS
1477  *
1478  */
1479 static int
1480 cpswp_miibus_ready(struct cpsw_softc *sc, uint32_t reg)
1481 {
1482 	uint32_t r, retries = CPSW_MIIBUS_RETRIES;
1483 
1484 	while (--retries) {
1485 		r = cpsw_read_4(sc, reg);
1486 		if ((r & MDIO_PHYACCESS_GO) == 0)
1487 			return (1);
1488 		DELAY(CPSW_MIIBUS_DELAY);
1489 	}
1490 
1491 	return (0);
1492 }
1493 
1494 static int
1495 cpswp_miibus_readreg(device_t dev, int phy, int reg)
1496 {
1497 	struct cpswp_softc *sc;
1498 	uint32_t cmd, r;
1499 
1500 	sc = device_get_softc(dev);
1501 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1502 		device_printf(dev, "MDIO not ready to read\n");
1503 		return (0);
1504 	}
1505 
1506 	/* Set GO, reg, phy */
1507 	cmd = MDIO_PHYACCESS_GO | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
1508 	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1509 
1510 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1511 		device_printf(dev, "MDIO timed out during read\n");
1512 		return (0);
1513 	}
1514 
1515 	r = cpsw_read_4(sc->swsc, sc->phyaccess);
1516 	if ((r & MDIO_PHYACCESS_ACK) == 0) {
1517 		device_printf(dev, "Failed to read from PHY.\n");
1518 		r = 0;
1519 	}
1520 	return (r & 0xFFFF);
1521 }
1522 
1523 static int
1524 cpswp_miibus_writereg(device_t dev, int phy, int reg, int value)
1525 {
1526 	struct cpswp_softc *sc;
1527 	uint32_t cmd;
1528 
1529 	sc = device_get_softc(dev);
1530 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1531 		device_printf(dev, "MDIO not ready to write\n");
1532 		return (0);
1533 	}
1534 
1535 	/* Set GO, WRITE, reg, phy, and value */
1536 	cmd = MDIO_PHYACCESS_GO | MDIO_PHYACCESS_WRITE |
1537 	    (reg & 0x1F) << 21 | (phy & 0x1F) << 16 | (value & 0xFFFF);
1538 	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1539 
1540 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1541 		device_printf(dev, "MDIO timed out during write\n");
1542 		return (0);
1543 	}
1544 
1545 	return (0);
1546 }
1547 
1548 static void
1549 cpswp_miibus_statchg(device_t dev)
1550 {
1551 	struct cpswp_softc *sc;
1552 	uint32_t mac_control, reg;
1553 
1554 	sc = device_get_softc(dev);
1555 	CPSW_DEBUGF(sc->swsc, (""));
1556 
1557 	reg = CPSW_SL_MACCONTROL(sc->unit);
1558 	mac_control = cpsw_read_4(sc->swsc, reg);
1559 	mac_control &= ~(CPSW_SL_MACTL_GIG | CPSW_SL_MACTL_IFCTL_A |
1560 	    CPSW_SL_MACTL_IFCTL_B | CPSW_SL_MACTL_FULLDUPLEX);
1561 
1562 	switch(IFM_SUBTYPE(sc->mii->mii_media_active)) {
1563 	case IFM_1000_SX:
1564 	case IFM_1000_LX:
1565 	case IFM_1000_CX:
1566 	case IFM_1000_T:
1567 		mac_control |= CPSW_SL_MACTL_GIG;
1568 		break;
1569 
1570 	case IFM_100_TX:
1571 		mac_control |= CPSW_SL_MACTL_IFCTL_A;
1572 		break;
1573 	}
1574 	if (sc->mii->mii_media_active & IFM_FDX)
1575 		mac_control |= CPSW_SL_MACTL_FULLDUPLEX;
1576 
1577 	cpsw_write_4(sc->swsc, reg, mac_control);
1578 }
1579 
1580 /*
1581  *
1582  * Transmit/Receive Packets.
1583  *
1584  */
1585 static void
1586 cpsw_intr_rx(void *arg)
1587 {
1588 	struct cpsw_softc *sc;
1589 	struct ifnet *ifp;
1590 	struct mbuf *received, *next;
1591 
1592 	sc = (struct cpsw_softc *)arg;
1593 	CPSW_RX_LOCK(sc);
1594 	if (sc->rx.teardown) {
1595 		sc->rx.running = 0;
1596 		sc->rx.teardown = 0;
1597 		cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
1598 	}
1599 	received = cpsw_rx_dequeue(sc);
1600 	cpsw_rx_enqueue(sc);
1601 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
1602 	CPSW_RX_UNLOCK(sc);
1603 
1604 	while (received != NULL) {
1605 		next = received->m_nextpkt;
1606 		received->m_nextpkt = NULL;
1607 		ifp = received->m_pkthdr.rcvif;
1608 		(*ifp->if_input)(ifp, received);
1609 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1610 		received = next;
1611 	}
1612 }
1613 
1614 static struct mbuf *
1615 cpsw_rx_dequeue(struct cpsw_softc *sc)
1616 {
1617 	int nsegs, port, removed;
1618 	struct cpsw_cpdma_bd bd;
1619 	struct cpsw_slot *last, *slot;
1620 	struct cpswp_softc *psc;
1621 	struct mbuf *m, *m0, *mb_head, *mb_tail;
1622 	uint16_t m0_flags;
1623 
1624 	nsegs = 0;
1625 	m0 = NULL;
1626 	last = NULL;
1627 	mb_head = NULL;
1628 	mb_tail = NULL;
1629 	removed = 0;
1630 
1631 	/* Pull completed packets off hardware RX queue. */
1632 	while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
1633 		cpsw_cpdma_read_bd(sc, slot, &bd);
1634 
1635 		/*
1636 		 * Stop on packets still in use by hardware, but do not stop
1637 		 * on packets with the teardown complete flag, they will be
1638 		 * discarded later.
1639 		 */
1640 		if ((bd.flags & (CPDMA_BD_OWNER | CPDMA_BD_TDOWNCMPLT)) ==
1641 		    CPDMA_BD_OWNER)
1642 			break;
1643 
1644 		last = slot;
1645 		++removed;
1646 		STAILQ_REMOVE_HEAD(&sc->rx.active, next);
1647 		STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
1648 
1649 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
1650 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1651 
1652 		m = slot->mbuf;
1653 		slot->mbuf = NULL;
1654 
1655 		if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
1656 			CPSW_DEBUGF(sc, ("RX teardown is complete"));
1657 			m_freem(m);
1658 			sc->rx.running = 0;
1659 			sc->rx.teardown = 0;
1660 			break;
1661 		}
1662 
1663 		port = (bd.flags & CPDMA_BD_PORT_MASK) - 1;
1664 		KASSERT(port >= 0 && port <= 1,
1665 		    ("patcket received with invalid port: %d", port));
1666 		psc = device_get_softc(sc->port[port].dev);
1667 
1668 		/* Set up mbuf */
1669 		m->m_data += bd.bufoff;
1670 		m->m_len = bd.buflen;
1671 		if (bd.flags & CPDMA_BD_SOP) {
1672 			m->m_pkthdr.len = bd.pktlen;
1673 			m->m_pkthdr.rcvif = psc->ifp;
1674 			m->m_flags |= M_PKTHDR;
1675 			m0_flags = bd.flags;
1676 			m0 = m;
1677 		}
1678 		nsegs++;
1679 		m->m_next = NULL;
1680 		m->m_nextpkt = NULL;
1681 		if (bd.flags & CPDMA_BD_EOP && m0 != NULL) {
1682 			if (m0_flags & CPDMA_BD_PASS_CRC)
1683 				m_adj(m0, -ETHER_CRC_LEN);
1684 			m0_flags = 0;
1685 			m0 = NULL;
1686 			if (nsegs > sc->rx.longest_chain)
1687 				sc->rx.longest_chain = nsegs;
1688 			nsegs = 0;
1689 		}
1690 
1691 		if ((psc->ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1692 			/* check for valid CRC by looking into pkt_err[5:4] */
1693 			if ((bd.flags &
1694 			    (CPDMA_BD_SOP | CPDMA_BD_PKT_ERR_MASK)) ==
1695 			    CPDMA_BD_SOP) {
1696 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1697 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1698 				m->m_pkthdr.csum_data = 0xffff;
1699 			}
1700 		}
1701 
1702 		if (STAILQ_FIRST(&sc->rx.active) != NULL &&
1703 		    (bd.flags & (CPDMA_BD_EOP | CPDMA_BD_EOQ)) ==
1704 		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
1705 			cpsw_write_hdp_slot(sc, &sc->rx,
1706 			    STAILQ_FIRST(&sc->rx.active));
1707 			sc->rx.queue_restart++;
1708 		}
1709 
1710 		/* Add mbuf to packet list to be returned. */
1711 		if (mb_tail != NULL && (bd.flags & CPDMA_BD_SOP)) {
1712 			mb_tail->m_nextpkt = m;
1713 		} else if (mb_tail != NULL) {
1714 			mb_tail->m_next = m;
1715 		} else if (mb_tail == NULL && (bd.flags & CPDMA_BD_SOP) == 0) {
1716 			if (bootverbose)
1717 				printf(
1718 				    "%s: %s: discanding fragment packet w/o header\n",
1719 				    __func__, psc->ifp->if_xname);
1720 			m_freem(m);
1721 			continue;
1722 		} else {
1723 			mb_head = m;
1724 		}
1725 		mb_tail = m;
1726 	}
1727 
1728 	if (removed != 0) {
1729 		cpsw_write_cp_slot(sc, &sc->rx, last);
1730 		sc->rx.queue_removes += removed;
1731 		sc->rx.avail_queue_len += removed;
1732 		sc->rx.active_queue_len -= removed;
1733 		if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
1734 			sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
1735 		CPSW_DEBUGF(sc, ("Removed %d received packet(s) from RX queue", removed));
1736 	}
1737 
1738 	return (mb_head);
1739 }
1740 
1741 static void
1742 cpsw_rx_enqueue(struct cpsw_softc *sc)
1743 {
1744 	bus_dma_segment_t seg[1];
1745 	struct cpsw_cpdma_bd bd;
1746 	struct cpsw_slot *first_new_slot, *last_old_slot, *next, *slot;
1747 	int error, nsegs, added = 0;
1748 
1749 	/* Register new mbufs with hardware. */
1750 	first_new_slot = NULL;
1751 	last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
1752 	while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
1753 		if (first_new_slot == NULL)
1754 			first_new_slot = slot;
1755 		if (slot->mbuf == NULL) {
1756 			slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1757 			if (slot->mbuf == NULL) {
1758 				device_printf(sc->dev,
1759 				    "Unable to fill RX queue\n");
1760 				break;
1761 			}
1762 			slot->mbuf->m_len =
1763 			    slot->mbuf->m_pkthdr.len =
1764 			    slot->mbuf->m_ext.ext_size;
1765 		}
1766 
1767 		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1768 		    slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
1769 
1770 		KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
1771 		KASSERT(error == 0, ("DMA error (error=%d)", error));
1772 		if (error != 0 || nsegs != 1) {
1773 			device_printf(sc->dev,
1774 			    "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
1775 			    __func__, nsegs, error);
1776 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1777 			m_freem(slot->mbuf);
1778 			slot->mbuf = NULL;
1779 			break;
1780 		}
1781 
1782 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
1783 
1784 		/* Create and submit new rx descriptor. */
1785 		if ((next = STAILQ_NEXT(slot, next)) != NULL)
1786 			bd.next = cpsw_cpdma_bd_paddr(sc, next);
1787 		else
1788 			bd.next = 0;
1789 		bd.bufptr = seg->ds_addr;
1790 		bd.bufoff = 0;
1791 		bd.buflen = MCLBYTES - 1;
1792 		bd.pktlen = bd.buflen;
1793 		bd.flags = CPDMA_BD_OWNER;
1794 		cpsw_cpdma_write_bd(sc, slot, &bd);
1795 		++added;
1796 
1797 		STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
1798 		STAILQ_INSERT_TAIL(&sc->rx.active, slot, next);
1799 	}
1800 
1801 	if (added == 0 || first_new_slot == NULL)
1802 		return;
1803 
1804 	CPSW_DEBUGF(sc, ("Adding %d buffers to RX queue", added));
1805 
1806 	/* Link new entries to hardware RX queue. */
1807 	if (last_old_slot == NULL) {
1808 		/* Start a fresh queue. */
1809 		cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1810 	} else {
1811 		/* Add buffers to end of current queue. */
1812 		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1813 	}
1814 	sc->rx.queue_adds += added;
1815 	sc->rx.avail_queue_len -= added;
1816 	sc->rx.active_queue_len += added;
1817 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), added);
1818 	if (sc->rx.active_queue_len > sc->rx.max_active_queue_len)
1819 		sc->rx.max_active_queue_len = sc->rx.active_queue_len;
1820 }
1821 
1822 static void
1823 cpswp_start(struct ifnet *ifp)
1824 {
1825 	struct cpswp_softc *sc;
1826 
1827 	sc = ifp->if_softc;
1828 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1829 	    sc->swsc->tx.running == 0) {
1830 		return;
1831 	}
1832 	CPSW_TX_LOCK(sc->swsc);
1833 	cpswp_tx_enqueue(sc);
1834 	cpsw_tx_dequeue(sc->swsc);
1835 	CPSW_TX_UNLOCK(sc->swsc);
1836 }
1837 
1838 static void
1839 cpsw_intr_tx(void *arg)
1840 {
1841 	struct cpsw_softc *sc;
1842 
1843 	sc = (struct cpsw_softc *)arg;
1844 	CPSW_TX_LOCK(sc);
1845 	if (cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)) == 0xfffffffc)
1846 		cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1847 	cpsw_tx_dequeue(sc);
1848 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 2);
1849 	CPSW_TX_UNLOCK(sc);
1850 }
1851 
1852 static void
1853 cpswp_tx_enqueue(struct cpswp_softc *sc)
1854 {
1855 	bus_dma_segment_t segs[CPSW_TXFRAGS];
1856 	struct cpsw_cpdma_bd bd;
1857 	struct cpsw_slot *first_new_slot, *last, *last_old_slot, *next, *slot;
1858 	struct mbuf *m0;
1859 	int error, nsegs, seg, added = 0, padlen;
1860 
1861 	/* Pull pending packets from IF queue and prep them for DMA. */
1862 	last = NULL;
1863 	first_new_slot = NULL;
1864 	last_old_slot = STAILQ_LAST(&sc->swsc->tx.active, cpsw_slot, next);
1865 	while ((slot = STAILQ_FIRST(&sc->swsc->tx.avail)) != NULL) {
1866 		IF_DEQUEUE(&sc->ifp->if_snd, m0);
1867 		if (m0 == NULL)
1868 			break;
1869 
1870 		slot->mbuf = m0;
1871 		padlen = ETHER_MIN_LEN - ETHER_CRC_LEN - m0->m_pkthdr.len;
1872 		if (padlen < 0)
1873 			padlen = 0;
1874 		else if (padlen > 0)
1875 			m_append(slot->mbuf, padlen, sc->swsc->nullpad);
1876 
1877 		/* Create mapping in DMA memory */
1878 		error = bus_dmamap_load_mbuf_sg(sc->swsc->mbuf_dtag,
1879 		    slot->dmamap, slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1880 		/* If the packet is too fragmented, try to simplify. */
1881 		if (error == EFBIG ||
1882 		    (error == 0 && nsegs > sc->swsc->tx.avail_queue_len)) {
1883 			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1884 			m0 = m_defrag(slot->mbuf, M_NOWAIT);
1885 			if (m0 == NULL) {
1886 				device_printf(sc->dev,
1887 				    "Can't defragment packet; dropping\n");
1888 				m_freem(slot->mbuf);
1889 			} else {
1890 				CPSW_DEBUGF(sc->swsc,
1891 				    ("Requeueing defragmented packet"));
1892 				IF_PREPEND(&sc->ifp->if_snd, m0);
1893 			}
1894 			slot->mbuf = NULL;
1895 			continue;
1896 		}
1897 		if (error != 0) {
1898 			device_printf(sc->dev,
1899 			    "%s: Can't setup DMA (error=%d), dropping packet\n",
1900 			    __func__, error);
1901 			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1902 			m_freem(slot->mbuf);
1903 			slot->mbuf = NULL;
1904 			break;
1905 		}
1906 
1907 		bus_dmamap_sync(sc->swsc->mbuf_dtag, slot->dmamap,
1908 				BUS_DMASYNC_PREWRITE);
1909 
1910 		CPSW_DEBUGF(sc->swsc,
1911 		    ("Queueing TX packet: %d segments + %d pad bytes",
1912 		    nsegs, padlen));
1913 
1914 		if (first_new_slot == NULL)
1915 			first_new_slot = slot;
1916 
1917 		/* Link from the previous descriptor. */
1918 		if (last != NULL)
1919 			cpsw_cpdma_write_bd_next(sc->swsc, last, slot);
1920 
1921 		slot->ifp = sc->ifp;
1922 
1923 		/* If there is only one segment, the for() loop
1924 		 * gets skipped and the single buffer gets set up
1925 		 * as both SOP and EOP. */
1926 		if (nsegs > 1) {
1927 			next = STAILQ_NEXT(slot, next);
1928 			bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1929 		} else
1930 			bd.next = 0;
1931 		/* Start by setting up the first buffer. */
1932 		bd.bufptr = segs[0].ds_addr;
1933 		bd.bufoff = 0;
1934 		bd.buflen = segs[0].ds_len;
1935 		bd.pktlen = m_length(slot->mbuf, NULL);
1936 		bd.flags =  CPDMA_BD_SOP | CPDMA_BD_OWNER;
1937 		if (sc->swsc->dualemac) {
1938 			bd.flags |= CPDMA_BD_TO_PORT;
1939 			bd.flags |= ((sc->unit + 1) & CPDMA_BD_PORT_MASK);
1940 		}
1941 		for (seg = 1; seg < nsegs; ++seg) {
1942 			/* Save the previous buffer (which isn't EOP) */
1943 			cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1944 			STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1945 			STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1946 			slot = STAILQ_FIRST(&sc->swsc->tx.avail);
1947 
1948 			/* Setup next buffer (which isn't SOP) */
1949 			if (nsegs > seg + 1) {
1950 				next = STAILQ_NEXT(slot, next);
1951 				bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1952 			} else
1953 				bd.next = 0;
1954 			bd.bufptr = segs[seg].ds_addr;
1955 			bd.bufoff = 0;
1956 			bd.buflen = segs[seg].ds_len;
1957 			bd.pktlen = 0;
1958 			bd.flags = CPDMA_BD_OWNER;
1959 		}
1960 
1961 		/* Save the final buffer. */
1962 		bd.flags |= CPDMA_BD_EOP;
1963 		cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1964 		STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1965 		STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1966 
1967 		last = slot;
1968 		added += nsegs;
1969 		if (nsegs > sc->swsc->tx.longest_chain)
1970 			sc->swsc->tx.longest_chain = nsegs;
1971 
1972 		BPF_MTAP(sc->ifp, m0);
1973 	}
1974 
1975 	if (first_new_slot == NULL)
1976 		return;
1977 
1978 	/* Attach the list of new buffers to the hardware TX queue. */
1979 	if (last_old_slot != NULL &&
1980 	    (cpsw_cpdma_read_bd_flags(sc->swsc, last_old_slot) &
1981 	     CPDMA_BD_EOQ) == 0) {
1982 		/* Add buffers to end of current queue. */
1983 		cpsw_cpdma_write_bd_next(sc->swsc, last_old_slot,
1984 		    first_new_slot);
1985 	} else {
1986 		/* Start a fresh queue. */
1987 		cpsw_write_hdp_slot(sc->swsc, &sc->swsc->tx, first_new_slot);
1988 	}
1989 	sc->swsc->tx.queue_adds += added;
1990 	sc->swsc->tx.avail_queue_len -= added;
1991 	sc->swsc->tx.active_queue_len += added;
1992 	if (sc->swsc->tx.active_queue_len > sc->swsc->tx.max_active_queue_len) {
1993 		sc->swsc->tx.max_active_queue_len = sc->swsc->tx.active_queue_len;
1994 	}
1995 	CPSW_DEBUGF(sc->swsc, ("Queued %d TX packet(s)", added));
1996 }
1997 
1998 static int
1999 cpsw_tx_dequeue(struct cpsw_softc *sc)
2000 {
2001 	struct cpsw_slot *slot, *last_removed_slot = NULL;
2002 	struct cpsw_cpdma_bd bd;
2003 	uint32_t flags, removed = 0;
2004 
2005 	/* Pull completed buffers off the hardware TX queue. */
2006 	slot = STAILQ_FIRST(&sc->tx.active);
2007 	while (slot != NULL) {
2008 		flags = cpsw_cpdma_read_bd_flags(sc, slot);
2009 
2010 		/* TearDown complete is only marked on the SOP for the packet. */
2011 		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) ==
2012 		    (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) {
2013 			sc->tx.teardown = 1;
2014 		}
2015 
2016 		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_OWNER)) ==
2017 		    (CPDMA_BD_SOP | CPDMA_BD_OWNER) && sc->tx.teardown == 0)
2018 			break; /* Hardware is still using this packet. */
2019 
2020 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
2021 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
2022 		m_freem(slot->mbuf);
2023 		slot->mbuf = NULL;
2024 
2025 		if (slot->ifp) {
2026 			if (sc->tx.teardown == 0)
2027 				if_inc_counter(slot->ifp, IFCOUNTER_OPACKETS, 1);
2028 			else
2029 				if_inc_counter(slot->ifp, IFCOUNTER_OQDROPS, 1);
2030 		}
2031 
2032 		/* Dequeue any additional buffers used by this packet. */
2033 		while (slot != NULL && slot->mbuf == NULL) {
2034 			STAILQ_REMOVE_HEAD(&sc->tx.active, next);
2035 			STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
2036 			++removed;
2037 			last_removed_slot = slot;
2038 			slot = STAILQ_FIRST(&sc->tx.active);
2039 		}
2040 
2041 		cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
2042 
2043 		/* Restart the TX queue if necessary. */
2044 		cpsw_cpdma_read_bd(sc, last_removed_slot, &bd);
2045 		if (slot != NULL && bd.next != 0 && (bd.flags &
2046 		    (CPDMA_BD_EOP | CPDMA_BD_OWNER | CPDMA_BD_EOQ)) ==
2047 		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
2048 			cpsw_write_hdp_slot(sc, &sc->tx, slot);
2049 			sc->tx.queue_restart++;
2050 			break;
2051 		}
2052 	}
2053 
2054 	if (removed != 0) {
2055 		sc->tx.queue_removes += removed;
2056 		sc->tx.active_queue_len -= removed;
2057 		sc->tx.avail_queue_len += removed;
2058 		if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
2059 			sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
2060 		CPSW_DEBUGF(sc, ("TX removed %d completed packet(s)", removed));
2061 	}
2062 
2063 	if (sc->tx.teardown && STAILQ_EMPTY(&sc->tx.active)) {
2064 		CPSW_DEBUGF(sc, ("TX teardown is complete"));
2065 		sc->tx.teardown = 0;
2066 		sc->tx.running = 0;
2067 	}
2068 
2069 	return (removed);
2070 }
2071 
2072 /*
2073  *
2074  * Miscellaneous interrupts.
2075  *
2076  */
2077 
2078 static void
2079 cpsw_intr_rx_thresh(void *arg)
2080 {
2081 	struct cpsw_softc *sc;
2082 	struct ifnet *ifp;
2083 	struct mbuf *received, *next;
2084 
2085 	sc = (struct cpsw_softc *)arg;
2086 	CPSW_RX_LOCK(sc);
2087 	received = cpsw_rx_dequeue(sc);
2088 	cpsw_rx_enqueue(sc);
2089 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
2090 	CPSW_RX_UNLOCK(sc);
2091 
2092 	while (received != NULL) {
2093 		next = received->m_nextpkt;
2094 		received->m_nextpkt = NULL;
2095 		ifp = received->m_pkthdr.rcvif;
2096 		(*ifp->if_input)(ifp, received);
2097 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2098 		received = next;
2099 	}
2100 }
2101 
2102 static void
2103 cpsw_intr_misc_host_error(struct cpsw_softc *sc)
2104 {
2105 	uint32_t intstat;
2106 	uint32_t dmastat;
2107 	int txerr, rxerr, txchan, rxchan;
2108 
2109 	printf("\n\n");
2110 	device_printf(sc->dev,
2111 	    "HOST ERROR:  PROGRAMMING ERROR DETECTED BY HARDWARE\n");
2112 	printf("\n\n");
2113 	intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
2114 	device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
2115 	dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
2116 	device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
2117 
2118 	txerr = (dmastat >> 20) & 15;
2119 	txchan = (dmastat >> 16) & 7;
2120 	rxerr = (dmastat >> 12) & 15;
2121 	rxchan = (dmastat >> 8) & 7;
2122 
2123 	switch (txerr) {
2124 	case 0: break;
2125 	case 1:	printf("SOP error on TX channel %d\n", txchan);
2126 		break;
2127 	case 2:	printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
2128 		break;
2129 	case 3:	printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
2130 		break;
2131 	case 4:	printf("Zero Buffer Pointer on TX channel %d\n", txchan);
2132 		break;
2133 	case 5:	printf("Zero Buffer Length on TX channel %d\n", txchan);
2134 		break;
2135 	case 6:	printf("Packet length error on TX channel %d\n", txchan);
2136 		break;
2137 	default: printf("Unknown error on TX channel %d\n", txchan);
2138 		break;
2139 	}
2140 
2141 	if (txerr != 0) {
2142 		printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
2143 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
2144 		printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
2145 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
2146 		cpsw_dump_queue(sc, &sc->tx.active);
2147 	}
2148 
2149 	switch (rxerr) {
2150 	case 0: break;
2151 	case 2:	printf("Ownership bit not set on RX channel %d\n", rxchan);
2152 		break;
2153 	case 4:	printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
2154 		break;
2155 	case 5:	printf("Zero Buffer Length on RX channel %d\n", rxchan);
2156 		break;
2157 	case 6:	printf("Buffer offset too big on RX channel %d\n", rxchan);
2158 		break;
2159 	default: printf("Unknown RX error on RX channel %d\n", rxchan);
2160 		break;
2161 	}
2162 
2163 	if (rxerr != 0) {
2164 		printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
2165 		    rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
2166 		printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
2167 		    rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
2168 		cpsw_dump_queue(sc, &sc->rx.active);
2169 	}
2170 
2171 	printf("\nALE Table\n");
2172 	cpsw_ale_dump_table(sc);
2173 
2174 	// XXX do something useful here??
2175 	panic("CPSW HOST ERROR INTERRUPT");
2176 
2177 	// Suppress this interrupt in the future.
2178 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
2179 	printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
2180 	// The watchdog will probably reset the controller
2181 	// in a little while.  It will probably fail again.
2182 }
2183 
2184 static void
2185 cpsw_intr_misc(void *arg)
2186 {
2187 	struct cpsw_softc *sc = arg;
2188 	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
2189 
2190 	if (stat & CPSW_WR_C_MISC_EVNT_PEND)
2191 		CPSW_DEBUGF(sc, ("Time sync event interrupt unimplemented"));
2192 	if (stat & CPSW_WR_C_MISC_STAT_PEND)
2193 		cpsw_stats_collect(sc);
2194 	if (stat & CPSW_WR_C_MISC_HOST_PEND)
2195 		cpsw_intr_misc_host_error(sc);
2196 	if (stat & CPSW_WR_C_MISC_MDIOLINK) {
2197 		cpsw_write_4(sc, MDIOLINKINTMASKED,
2198 		    cpsw_read_4(sc, MDIOLINKINTMASKED));
2199 	}
2200 	if (stat & CPSW_WR_C_MISC_MDIOUSER) {
2201 		CPSW_DEBUGF(sc,
2202 		    ("MDIO operation completed interrupt unimplemented"));
2203 	}
2204 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
2205 }
2206 
2207 /*
2208  *
2209  * Periodic Checks and Watchdog.
2210  *
2211  */
2212 
2213 static void
2214 cpswp_tick(void *msc)
2215 {
2216 	struct cpswp_softc *sc = msc;
2217 
2218 	/* Check for media type change */
2219 	mii_tick(sc->mii);
2220 	if (sc->media_status != sc->mii->mii_media.ifm_media) {
2221 		printf("%s: media type changed (ifm_media=%x)\n", __func__,
2222 			sc->mii->mii_media.ifm_media);
2223 		cpswp_ifmedia_upd(sc->ifp);
2224 	}
2225 
2226 	/* Schedule another timeout one second from now */
2227 	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
2228 }
2229 
2230 static void
2231 cpswp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2232 {
2233 	struct cpswp_softc *sc;
2234 	struct mii_data *mii;
2235 
2236 	sc = ifp->if_softc;
2237 	CPSW_DEBUGF(sc->swsc, (""));
2238 	CPSW_PORT_LOCK(sc);
2239 
2240 	mii = sc->mii;
2241 	mii_pollstat(mii);
2242 
2243 	ifmr->ifm_active = mii->mii_media_active;
2244 	ifmr->ifm_status = mii->mii_media_status;
2245 	CPSW_PORT_UNLOCK(sc);
2246 }
2247 
2248 static int
2249 cpswp_ifmedia_upd(struct ifnet *ifp)
2250 {
2251 	struct cpswp_softc *sc;
2252 
2253 	sc = ifp->if_softc;
2254 	CPSW_DEBUGF(sc->swsc, (""));
2255 	CPSW_PORT_LOCK(sc);
2256 	mii_mediachg(sc->mii);
2257 	sc->media_status = sc->mii->mii_media.ifm_media;
2258 	CPSW_PORT_UNLOCK(sc);
2259 
2260 	return (0);
2261 }
2262 
2263 static void
2264 cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
2265 {
2266 	struct cpswp_softc *psc;
2267 	int i;
2268 
2269 	cpsw_debugf_head("CPSW watchdog");
2270 	device_printf(sc->dev, "watchdog timeout\n");
2271 	printf("CPSW_CPDMA_TX%d_HDP=0x%x\n", 0,
2272 	    cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(0)));
2273 	printf("CPSW_CPDMA_TX%d_CP=0x%x\n", 0,
2274 	    cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)));
2275 	cpsw_dump_queue(sc, &sc->tx.active);
2276 	for (i = 0; i < CPSW_PORTS; i++) {
2277 		if (!sc->dualemac && i != sc->active_slave)
2278 			continue;
2279 		psc = device_get_softc(sc->port[i].dev);
2280 		CPSW_PORT_LOCK(psc);
2281 		cpswp_stop_locked(psc);
2282 		CPSW_PORT_UNLOCK(psc);
2283 	}
2284 }
2285 
2286 static void
2287 cpsw_tx_watchdog(void *msc)
2288 {
2289 	struct cpsw_softc *sc;
2290 
2291 	sc = msc;
2292 	CPSW_TX_LOCK(sc);
2293 	if (sc->tx.active_queue_len == 0 || !sc->tx.running) {
2294 		sc->watchdog.timer = 0; /* Nothing to do. */
2295 	} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
2296 		sc->watchdog.timer = 0;  /* Stuff done while we weren't looking. */
2297 	} else if (cpsw_tx_dequeue(sc) > 0) {
2298 		sc->watchdog.timer = 0;  /* We just did something. */
2299 	} else {
2300 		/* There was something to do but it didn't get done. */
2301 		++sc->watchdog.timer;
2302 		if (sc->watchdog.timer > 5) {
2303 			sc->watchdog.timer = 0;
2304 			++sc->watchdog.resets;
2305 			cpsw_tx_watchdog_full_reset(sc);
2306 		}
2307 	}
2308 	sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
2309 	CPSW_TX_UNLOCK(sc);
2310 
2311 	/* Schedule another timeout one second from now */
2312 	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
2313 }
2314 
2315 /*
2316  *
2317  * ALE support routines.
2318  *
2319  */
2320 
2321 static void
2322 cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2323 {
2324 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
2325 	ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
2326 	ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
2327 	ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
2328 }
2329 
2330 static void
2331 cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2332 {
2333 	cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
2334 	cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
2335 	cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
2336 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
2337 }
2338 
2339 static void
2340 cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
2341 {
2342 	int i;
2343 	uint32_t ale_entry[3];
2344 
2345 	/* First four entries are link address and broadcast. */
2346 	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2347 		cpsw_ale_read_entry(sc, i, ale_entry);
2348 		if ((ALE_TYPE(ale_entry) == ALE_TYPE_ADDR ||
2349 		    ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR) &&
2350 		    ALE_MCAST(ale_entry)  == 1) { /* MCast link addr */
2351 			ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2352 			cpsw_ale_write_entry(sc, i, ale_entry);
2353 		}
2354 	}
2355 }
2356 
2357 static int
2358 cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, int vlan,
2359 	uint8_t *mac)
2360 {
2361 	int free_index = -1, matching_index = -1, i;
2362 	uint32_t ale_entry[3], ale_type;
2363 
2364 	/* Find a matching entry or a free entry. */
2365 	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2366 		cpsw_ale_read_entry(sc, i, ale_entry);
2367 
2368 		/* Entry Type[61:60] is 0 for free entry */
2369 		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2370 			free_index = i;
2371 
2372 		if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
2373 		    (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
2374 		    (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
2375 		    (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
2376 		    (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
2377 		    (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
2378 			matching_index = i;
2379 			break;
2380 		}
2381 	}
2382 
2383 	if (matching_index < 0) {
2384 		if (free_index < 0)
2385 			return (ENOMEM);
2386 		i = free_index;
2387 	}
2388 
2389 	if (vlan != -1)
2390 		ale_type = ALE_TYPE_VLAN_ADDR << 28 | vlan << 16;
2391 	else
2392 		ale_type = ALE_TYPE_ADDR << 28;
2393 
2394 	/* Set MAC address */
2395 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2396 	ale_entry[1] = mac[0] << 8 | mac[1];
2397 
2398 	/* Entry type[61:60] and Mcast fwd state[63:62] is fw(3). */
2399 	ale_entry[1] |= ALE_MCAST_FWD | ale_type;
2400 
2401 	/* Set portmask [68:66] */
2402 	ale_entry[2] = (portmap & 7) << 2;
2403 
2404 	cpsw_ale_write_entry(sc, i, ale_entry);
2405 
2406 	return 0;
2407 }
2408 
2409 static void
2410 cpsw_ale_dump_table(struct cpsw_softc *sc) {
2411 	int i;
2412 	uint32_t ale_entry[3];
2413 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2414 		cpsw_ale_read_entry(sc, i, ale_entry);
2415 		switch (ALE_TYPE(ale_entry)) {
2416 		case ALE_TYPE_VLAN:
2417 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2418 				ale_entry[1], ale_entry[0]);
2419 			printf("type: %u ", ALE_TYPE(ale_entry));
2420 			printf("vlan: %u ", ALE_VLAN(ale_entry));
2421 			printf("untag: %u ", ALE_VLAN_UNTAG(ale_entry));
2422 			printf("reg flood: %u ", ALE_VLAN_REGFLOOD(ale_entry));
2423 			printf("unreg flood: %u ", ALE_VLAN_UNREGFLOOD(ale_entry));
2424 			printf("members: %u ", ALE_VLAN_MEMBERS(ale_entry));
2425 			printf("\n");
2426 			break;
2427 		case ALE_TYPE_ADDR:
2428 		case ALE_TYPE_VLAN_ADDR:
2429 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2430 				ale_entry[1], ale_entry[0]);
2431 			printf("type: %u ", ALE_TYPE(ale_entry));
2432 			printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
2433 				(ale_entry[1] >> 8) & 0xFF,
2434 				(ale_entry[1] >> 0) & 0xFF,
2435 				(ale_entry[0] >>24) & 0xFF,
2436 				(ale_entry[0] >>16) & 0xFF,
2437 				(ale_entry[0] >> 8) & 0xFF,
2438 				(ale_entry[0] >> 0) & 0xFF);
2439 			printf(ALE_MCAST(ale_entry) ? "mcast " : "ucast ");
2440 			if (ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR)
2441 				printf("vlan: %u ", ALE_VLAN(ale_entry));
2442 			printf("port: %u ", ALE_PORTS(ale_entry));
2443 			printf("\n");
2444 			break;
2445 		}
2446 	}
2447 	printf("\n");
2448 }
2449 
2450 static u_int
2451 cpswp_set_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2452 {
2453 	struct cpswp_softc *sc = arg;
2454 	uint32_t portmask;
2455 
2456 	if (sc->swsc->dualemac)
2457 		portmask = 1 << (sc->unit + 1) | 1 << 0;
2458 	else
2459 		portmask = 7;
2460 
2461 	cpsw_ale_mc_entry_set(sc->swsc, portmask, sc->vlan, LLADDR(sdl));
2462 
2463 	return (1);
2464 }
2465 
2466 static int
2467 cpswp_ale_update_addresses(struct cpswp_softc *sc, int purge)
2468 {
2469 	uint8_t *mac;
2470 	uint32_t ale_entry[3], ale_type, portmask;
2471 
2472 	if (sc->swsc->dualemac) {
2473 		ale_type = ALE_TYPE_VLAN_ADDR << 28 | sc->vlan << 16;
2474 		portmask = 1 << (sc->unit + 1) | 1 << 0;
2475 	} else {
2476 		ale_type = ALE_TYPE_ADDR << 28;
2477 		portmask = 7;
2478 	}
2479 
2480 	/*
2481 	 * Route incoming packets for our MAC address to Port 0 (host).
2482 	 * For simplicity, keep this entry at table index 0 for port 1 and
2483 	 * at index 2 for port 2 in the ALE.
2484 	 */
2485 	mac = LLADDR((struct sockaddr_dl *)sc->ifp->if_addr->ifa_addr);
2486 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2487 	ale_entry[1] = ale_type | mac[0] << 8 | mac[1]; /* addr entry + mac */
2488 	ale_entry[2] = 0; /* port = 0 */
2489 	cpsw_ale_write_entry(sc->swsc, 0 + 2 * sc->unit, ale_entry);
2490 
2491 	/* Set outgoing MAC Address for slave port. */
2492 	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_HI(sc->unit + 1),
2493 	    mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
2494 	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_LO(sc->unit + 1),
2495 	    mac[5] << 8 | mac[4]);
2496 
2497 	/* Keep the broadcast address at table entry 1 (or 3). */
2498 	ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
2499 	/* ALE_MCAST_FWD, Addr type, upper 16 bits of Mac */
2500 	ale_entry[1] = ALE_MCAST_FWD | ale_type | 0xffff;
2501 	ale_entry[2] = portmask << 2;
2502 	cpsw_ale_write_entry(sc->swsc, 1 + 2 * sc->unit, ale_entry);
2503 
2504 	/* SIOCDELMULTI doesn't specify the particular address
2505 	   being removed, so we have to remove all and rebuild. */
2506 	if (purge)
2507 		cpsw_ale_remove_all_mc_entries(sc->swsc);
2508 
2509         /* Set other multicast addrs desired. */
2510 	if_foreach_llmaddr(sc->ifp, cpswp_set_maddr, sc);
2511 
2512 	return (0);
2513 }
2514 
2515 static int
2516 cpsw_ale_update_vlan_table(struct cpsw_softc *sc, int vlan, int ports,
2517 	int untag, int mcregflood, int mcunregflood)
2518 {
2519 	int free_index, i, matching_index;
2520 	uint32_t ale_entry[3];
2521 
2522 	free_index = matching_index = -1;
2523 	/* Find a matching entry or a free entry. */
2524 	for (i = 5; i < CPSW_MAX_ALE_ENTRIES; i++) {
2525 		cpsw_ale_read_entry(sc, i, ale_entry);
2526 
2527 		/* Entry Type[61:60] is 0 for free entry */
2528 		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2529 			free_index = i;
2530 
2531 		if (ALE_VLAN(ale_entry) == vlan) {
2532 			matching_index = i;
2533 			break;
2534 		}
2535 	}
2536 
2537 	if (matching_index < 0) {
2538 		if (free_index < 0)
2539 			return (-1);
2540 		i = free_index;
2541 	}
2542 
2543 	ale_entry[0] = (untag & 7) << 24 | (mcregflood & 7) << 16 |
2544 	    (mcunregflood & 7) << 8 | (ports & 7);
2545 	ale_entry[1] = ALE_TYPE_VLAN << 28 | vlan << 16;
2546 	ale_entry[2] = 0;
2547 	cpsw_ale_write_entry(sc, i, ale_entry);
2548 
2549 	return (0);
2550 }
2551 
2552 /*
2553  *
2554  * Statistics and Sysctls.
2555  *
2556  */
2557 
2558 #if 0
2559 static void
2560 cpsw_stats_dump(struct cpsw_softc *sc)
2561 {
2562 	int i;
2563 	uint32_t r;
2564 
2565 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2566 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2567 		    cpsw_stat_sysctls[i].reg);
2568 		CPSW_DEBUGF(sc, ("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
2569 		    (intmax_t)sc->shadow_stats[i], r,
2570 		    (intmax_t)sc->shadow_stats[i] + r));
2571 	}
2572 }
2573 #endif
2574 
2575 static void
2576 cpsw_stats_collect(struct cpsw_softc *sc)
2577 {
2578 	int i;
2579 	uint32_t r;
2580 
2581 	CPSW_DEBUGF(sc, ("Controller shadow statistics updated."));
2582 
2583 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2584 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2585 		    cpsw_stat_sysctls[i].reg);
2586 		sc->shadow_stats[i] += r;
2587 		cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg,
2588 		    r);
2589 	}
2590 }
2591 
2592 static int
2593 cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
2594 {
2595 	struct cpsw_softc *sc;
2596 	struct cpsw_stat *stat;
2597 	uint64_t result;
2598 
2599 	sc = (struct cpsw_softc *)arg1;
2600 	stat = &cpsw_stat_sysctls[oidp->oid_number];
2601 	result = sc->shadow_stats[oidp->oid_number];
2602 	result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
2603 	return (sysctl_handle_64(oidp, &result, 0, req));
2604 }
2605 
2606 static int
2607 cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
2608 {
2609 	struct cpsw_softc *sc;
2610 	struct bintime t;
2611 	unsigned result;
2612 
2613 	sc = (struct cpsw_softc *)arg1;
2614 	getbinuptime(&t);
2615 	bintime_sub(&t, &sc->attach_uptime);
2616 	result = t.sec;
2617 	return (sysctl_handle_int(oidp, &result, 0, req));
2618 }
2619 
2620 static int
2621 cpsw_intr_coalesce(SYSCTL_HANDLER_ARGS)
2622 {
2623 	int error;
2624 	struct cpsw_softc *sc;
2625 	uint32_t ctrl, intr_per_ms;
2626 
2627 	sc = (struct cpsw_softc *)arg1;
2628 	error = sysctl_handle_int(oidp, &sc->coal_us, 0, req);
2629 	if (error != 0 || req->newptr == NULL)
2630 		return (error);
2631 
2632 	ctrl = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
2633 	ctrl &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
2634 	if (sc->coal_us == 0) {
2635 		/* Disable the interrupt pace hardware. */
2636 		cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2637 		cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), 0);
2638 		cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), 0);
2639 		return (0);
2640 	}
2641 
2642 	if (sc->coal_us > CPSW_WR_C_IMAX_US_MAX)
2643 		sc->coal_us = CPSW_WR_C_IMAX_US_MAX;
2644 	if (sc->coal_us < CPSW_WR_C_IMAX_US_MIN)
2645 		sc->coal_us = CPSW_WR_C_IMAX_US_MIN;
2646 	intr_per_ms = 1000 / sc->coal_us;
2647 	/* Just to make sure... */
2648 	if (intr_per_ms > CPSW_WR_C_IMAX_MAX)
2649 		intr_per_ms = CPSW_WR_C_IMAX_MAX;
2650 	if (intr_per_ms < CPSW_WR_C_IMAX_MIN)
2651 		intr_per_ms = CPSW_WR_C_IMAX_MIN;
2652 
2653 	/* Set the prescale to produce 4us pulses from the 125 Mhz clock. */
2654 	ctrl |= (125 * 4) & CPSW_WR_INT_PRESCALE_MASK;
2655 
2656 	/* Enable the interrupt pace hardware. */
2657 	cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), intr_per_ms);
2658 	cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), intr_per_ms);
2659 	ctrl |= CPSW_WR_INT_C0_RX_PULSE | CPSW_WR_INT_C0_TX_PULSE;
2660 	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2661 
2662 	return (0);
2663 }
2664 
2665 static int
2666 cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
2667 {
2668 	struct cpsw_softc *swsc;
2669 	struct cpswp_softc *sc;
2670 	struct bintime t;
2671 	unsigned result;
2672 
2673 	swsc = arg1;
2674 	sc = device_get_softc(swsc->port[arg2].dev);
2675 	if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
2676 		getbinuptime(&t);
2677 		bintime_sub(&t, &sc->init_uptime);
2678 		result = t.sec;
2679 	} else
2680 		result = 0;
2681 	return (sysctl_handle_int(oidp, &result, 0, req));
2682 }
2683 
2684 static void
2685 cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2686 	struct cpsw_queue *queue)
2687 {
2688 	struct sysctl_oid_list *parent;
2689 
2690 	parent = SYSCTL_CHILDREN(node);
2691 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
2692 	    CTLFLAG_RD, &queue->queue_slots, 0,
2693 	    "Total buffers currently assigned to this queue");
2694 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
2695 	    CTLFLAG_RD, &queue->active_queue_len, 0,
2696 	    "Buffers currently registered with hardware controller");
2697 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
2698 	    CTLFLAG_RD, &queue->max_active_queue_len, 0,
2699 	    "Max value of activeBuffers since last driver reset");
2700 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
2701 	    CTLFLAG_RD, &queue->avail_queue_len, 0,
2702 	    "Buffers allocated to this queue but not currently "
2703 	    "registered with hardware controller");
2704 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
2705 	    CTLFLAG_RD, &queue->max_avail_queue_len, 0,
2706 	    "Max value of availBuffers since last driver reset");
2707 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
2708 	    CTLFLAG_RD, &queue->queue_adds, 0,
2709 	    "Total buffers added to queue");
2710 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
2711 	    CTLFLAG_RD, &queue->queue_removes, 0,
2712 	    "Total buffers removed from queue");
2713 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "queueRestart",
2714 	    CTLFLAG_RD, &queue->queue_restart, 0,
2715 	    "Total times the queue has been restarted");
2716 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
2717 	    CTLFLAG_RD, &queue->longest_chain, 0,
2718 	    "Max buffers used for a single packet");
2719 }
2720 
2721 static void
2722 cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2723 	struct cpsw_softc *sc)
2724 {
2725 	struct sysctl_oid_list *parent;
2726 
2727 	parent = SYSCTL_CHILDREN(node);
2728 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
2729 	    CTLFLAG_RD, &sc->watchdog.resets, 0,
2730 	    "Total number of watchdog resets");
2731 }
2732 
2733 static void
2734 cpsw_add_sysctls(struct cpsw_softc *sc)
2735 {
2736 	struct sysctl_ctx_list *ctx;
2737 	struct sysctl_oid *stats_node, *queue_node, *node;
2738 	struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
2739 	struct sysctl_oid_list *ports_parent, *port_parent;
2740 	char port[16];
2741 	int i;
2742 
2743 	ctx = device_get_sysctl_ctx(sc->dev);
2744 	parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
2745 
2746 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "debug",
2747 	    CTLFLAG_RW, &sc->debug, 0, "Enable switch debug messages");
2748 
2749 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
2750 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2751 	    sc, 0, cpsw_stat_attached, "IU",
2752 	    "Time since driver attach");
2753 
2754 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "intr_coalesce_us",
2755 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
2756 	    sc, 0, cpsw_intr_coalesce, "IU",
2757 	    "minimum time between interrupts");
2758 
2759 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "ports",
2760 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Ports Statistics");
2761 	ports_parent = SYSCTL_CHILDREN(node);
2762 	for (i = 0; i < CPSW_PORTS; i++) {
2763 		if (!sc->dualemac && i != sc->active_slave)
2764 			continue;
2765 		port[0] = '0' + i;
2766 		port[1] = '\0';
2767 		node = SYSCTL_ADD_NODE(ctx, ports_parent, OID_AUTO,
2768 		    port, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
2769 		    "CPSW Port Statistics");
2770 		port_parent = SYSCTL_CHILDREN(node);
2771 		SYSCTL_ADD_PROC(ctx, port_parent, OID_AUTO, "uptime",
2772 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, i,
2773 		    cpsw_stat_uptime, "IU", "Seconds since driver init");
2774 	}
2775 
2776 	stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
2777 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Statistics");
2778 	stats_parent = SYSCTL_CHILDREN(stats_node);
2779 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2780 		SYSCTL_ADD_PROC(ctx, stats_parent, i,
2781 				cpsw_stat_sysctls[i].oid,
2782 				CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2783 				sc, 0, cpsw_stats_sysctl, "IU",
2784 				cpsw_stat_sysctls[i].oid);
2785 	}
2786 
2787 	queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
2788 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Queue Statistics");
2789 	queue_parent = SYSCTL_CHILDREN(queue_node);
2790 
2791 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
2792 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Statistics");
2793 	cpsw_add_queue_sysctls(ctx, node, &sc->tx);
2794 
2795 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
2796 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Statistics");
2797 	cpsw_add_queue_sysctls(ctx, node, &sc->rx);
2798 
2799 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
2800 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Watchdog Statistics");
2801 	cpsw_add_watchdog_sysctls(ctx, node, sc);
2802 }
2803 
2804 #ifdef CPSW_ETHERSWITCH
2805 static etherswitch_info_t etherswitch_info = {
2806 	.es_nports =		CPSW_PORTS + 1,
2807 	.es_nvlangroups =	CPSW_VLANS,
2808 	.es_name =		"TI Common Platform Ethernet Switch (CPSW)",
2809 	.es_vlan_caps =		ETHERSWITCH_VLAN_DOT1Q,
2810 };
2811 
2812 static etherswitch_info_t *
2813 cpsw_getinfo(device_t dev)
2814 {
2815 	return (&etherswitch_info);
2816 }
2817 
2818 static int
2819 cpsw_getport(device_t dev, etherswitch_port_t *p)
2820 {
2821 	int err;
2822 	struct cpsw_softc *sc;
2823 	struct cpswp_softc *psc;
2824 	struct ifmediareq *ifmr;
2825 	uint32_t reg;
2826 
2827 	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2828 		return (ENXIO);
2829 
2830 	err = 0;
2831 	sc = device_get_softc(dev);
2832 	if (p->es_port == CPSW_CPU_PORT) {
2833 		p->es_flags |= ETHERSWITCH_PORT_CPU;
2834  		ifmr = &p->es_ifmr;
2835 		ifmr->ifm_current = ifmr->ifm_active =
2836 		    IFM_ETHER | IFM_1000_T | IFM_FDX;
2837 		ifmr->ifm_mask = 0;
2838 		ifmr->ifm_status = IFM_ACTIVE | IFM_AVALID;
2839 		ifmr->ifm_count = 0;
2840 	} else {
2841 		psc = device_get_softc(sc->port[p->es_port - 1].dev);
2842 		err = ifmedia_ioctl(psc->ifp, &p->es_ifr,
2843 		    &psc->mii->mii_media, SIOCGIFMEDIA);
2844 	}
2845 	reg = cpsw_read_4(sc, CPSW_PORT_P_VLAN(p->es_port));
2846 	p->es_pvid = reg & ETHERSWITCH_VID_MASK;
2847 
2848 	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2849 	if (reg & ALE_PORTCTL_DROP_UNTAGGED)
2850 		p->es_flags |= ETHERSWITCH_PORT_DROPUNTAGGED;
2851 	if (reg & ALE_PORTCTL_INGRESS)
2852 		p->es_flags |= ETHERSWITCH_PORT_INGRESS;
2853 
2854 	return (err);
2855 }
2856 
2857 static int
2858 cpsw_setport(device_t dev, etherswitch_port_t *p)
2859 {
2860 	struct cpsw_softc *sc;
2861 	struct cpswp_softc *psc;
2862 	struct ifmedia *ifm;
2863 	uint32_t reg;
2864 
2865 	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2866 		return (ENXIO);
2867 
2868 	sc = device_get_softc(dev);
2869 	if (p->es_pvid != 0) {
2870 		cpsw_write_4(sc, CPSW_PORT_P_VLAN(p->es_port),
2871 		    p->es_pvid & ETHERSWITCH_VID_MASK);
2872 	}
2873 
2874 	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2875 	if (p->es_flags & ETHERSWITCH_PORT_DROPUNTAGGED)
2876 		reg |= ALE_PORTCTL_DROP_UNTAGGED;
2877 	else
2878 		reg &= ~ALE_PORTCTL_DROP_UNTAGGED;
2879 	if (p->es_flags & ETHERSWITCH_PORT_INGRESS)
2880 		reg |= ALE_PORTCTL_INGRESS;
2881 	else
2882 		reg &= ~ALE_PORTCTL_INGRESS;
2883 	cpsw_write_4(sc, CPSW_ALE_PORTCTL(p->es_port), reg);
2884 
2885 	/* CPU port does not allow media settings. */
2886 	if (p->es_port == CPSW_CPU_PORT)
2887 		return (0);
2888 
2889 	psc = device_get_softc(sc->port[p->es_port - 1].dev);
2890 	ifm = &psc->mii->mii_media;
2891 
2892 	return (ifmedia_ioctl(psc->ifp, &p->es_ifr, ifm, SIOCSIFMEDIA));
2893 }
2894 
2895 static int
2896 cpsw_getconf(device_t dev, etherswitch_conf_t *conf)
2897 {
2898 
2899 	/* Return the VLAN mode. */
2900 	conf->cmd = ETHERSWITCH_CONF_VLAN_MODE;
2901 	conf->vlan_mode = ETHERSWITCH_VLAN_DOT1Q;
2902 
2903 	return (0);
2904 }
2905 
2906 static int
2907 cpsw_getvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2908 {
2909 	int i, vid;
2910 	uint32_t ale_entry[3];
2911 	struct cpsw_softc *sc;
2912 
2913 	sc = device_get_softc(dev);
2914 
2915 	if (vg->es_vlangroup >= CPSW_VLANS)
2916 		return (EINVAL);
2917 
2918 	vg->es_vid = 0;
2919 	vid = cpsw_vgroups[vg->es_vlangroup].vid;
2920 	if (vid == -1)
2921 		return (0);
2922 
2923 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2924 		cpsw_ale_read_entry(sc, i, ale_entry);
2925 		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2926 			continue;
2927 		if (vid != ALE_VLAN(ale_entry))
2928 			continue;
2929 
2930 		vg->es_fid = 0;
2931 		vg->es_vid = ALE_VLAN(ale_entry) | ETHERSWITCH_VID_VALID;
2932 		vg->es_member_ports = ALE_VLAN_MEMBERS(ale_entry);
2933 		vg->es_untagged_ports = ALE_VLAN_UNTAG(ale_entry);
2934 	}
2935 
2936 	return (0);
2937 }
2938 
2939 static void
2940 cpsw_remove_vlan(struct cpsw_softc *sc, int vlan)
2941 {
2942 	int i;
2943 	uint32_t ale_entry[3];
2944 
2945 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2946 		cpsw_ale_read_entry(sc, i, ale_entry);
2947 		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2948 			continue;
2949 		if (vlan != ALE_VLAN(ale_entry))
2950 			continue;
2951 		ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2952 		cpsw_ale_write_entry(sc, i, ale_entry);
2953 		break;
2954 	}
2955 }
2956 
2957 static int
2958 cpsw_setvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2959 {
2960 	int i;
2961 	struct cpsw_softc *sc;
2962 
2963 	sc = device_get_softc(dev);
2964 
2965 	for (i = 0; i < CPSW_VLANS; i++) {
2966 		/* Is this Vlan ID in use by another vlangroup ? */
2967 		if (vg->es_vlangroup != i && cpsw_vgroups[i].vid == vg->es_vid)
2968 			return (EINVAL);
2969 	}
2970 
2971 	if (vg->es_vid == 0) {
2972 		if (cpsw_vgroups[vg->es_vlangroup].vid == -1)
2973 			return (0);
2974 		cpsw_remove_vlan(sc, cpsw_vgroups[vg->es_vlangroup].vid);
2975 		cpsw_vgroups[vg->es_vlangroup].vid = -1;
2976 		vg->es_untagged_ports = 0;
2977 		vg->es_member_ports = 0;
2978 		vg->es_vid = 0;
2979 		return (0);
2980 	}
2981 
2982 	vg->es_vid &= ETHERSWITCH_VID_MASK;
2983 	vg->es_member_ports &= CPSW_PORTS_MASK;
2984 	vg->es_untagged_ports &= CPSW_PORTS_MASK;
2985 
2986 	if (cpsw_vgroups[vg->es_vlangroup].vid != -1 &&
2987 	    cpsw_vgroups[vg->es_vlangroup].vid != vg->es_vid)
2988 		return (EINVAL);
2989 
2990 	cpsw_vgroups[vg->es_vlangroup].vid = vg->es_vid;
2991 	cpsw_ale_update_vlan_table(sc, vg->es_vid, vg->es_member_ports,
2992 	    vg->es_untagged_ports, vg->es_member_ports, 0);
2993 
2994 	return (0);
2995 }
2996 
2997 static int
2998 cpsw_readreg(device_t dev, int addr)
2999 {
3000 
3001 	/* Not supported. */
3002 	return (0);
3003 }
3004 
3005 static int
3006 cpsw_writereg(device_t dev, int addr, int value)
3007 {
3008 
3009 	/* Not supported. */
3010 	return (0);
3011 }
3012 
3013 static int
3014 cpsw_readphy(device_t dev, int phy, int reg)
3015 {
3016 
3017 	/* Not supported. */
3018 	return (0);
3019 }
3020 
3021 static int
3022 cpsw_writephy(device_t dev, int phy, int reg, int data)
3023 {
3024 
3025 	/* Not supported. */
3026 	return (0);
3027 }
3028 #endif
3029