xref: /freebsd/sys/arm/ti/cpsw/if_cpsw.c (revision c0a4a7bb942fd3302f0093e4353820916d3661d1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
5  * Copyright (c) 2016 Rubicon Communications, LLC (Netgate)
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * TI Common Platform Ethernet Switch (CPSW) Driver
32  * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
33  *
34  * This controller is documented in the AM335x Technical Reference
35  * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
36  * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
37  *
38  * It is basically a single Ethernet port (port 0) wired internally to
39  * a 3-port store-and-forward switch connected to two independent
40  * "sliver" controllers (port 1 and port 2).  You can operate the
41  * controller in a variety of different ways by suitably configuring
42  * the slivers and the Address Lookup Engine (ALE) that routes packets
43  * between the ports.
44  *
45  * This code was developed and tested on a BeagleBone with
46  * an AM335x SoC.
47  */
48 
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51 
52 #include "opt_cpsw.h"
53 
54 #include <sys/param.h>
55 #include <sys/bus.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/mbuf.h>
59 #include <sys/module.h>
60 #include <sys/mutex.h>
61 #include <sys/rman.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/sysctl.h>
65 
66 #include <machine/bus.h>
67 #include <machine/resource.h>
68 #include <machine/stdarg.h>
69 
70 #include <net/ethernet.h>
71 #include <net/bpf.h>
72 #include <net/if.h>
73 #include <net/if_dl.h>
74 #include <net/if_media.h>
75 #include <net/if_types.h>
76 
77 #include <dev/extres/syscon/syscon.h>
78 #include "syscon_if.h"
79 #include <arm/ti/am335x/am335x_scm.h>
80 
81 #include <dev/mii/mii.h>
82 #include <dev/mii/miivar.h>
83 
84 #include <dev/ofw/ofw_bus.h>
85 #include <dev/ofw/ofw_bus_subr.h>
86 
87 #include <dev/fdt/fdt_common.h>
88 
89 #ifdef CPSW_ETHERSWITCH
90 #include <dev/etherswitch/etherswitch.h>
91 #include "etherswitch_if.h"
92 #endif
93 
94 #include "if_cpswreg.h"
95 #include "if_cpswvar.h"
96 
97 #include "miibus_if.h"
98 
99 /* Device probe/attach/detach. */
100 static int cpsw_probe(device_t);
101 static int cpsw_attach(device_t);
102 static int cpsw_detach(device_t);
103 static int cpswp_probe(device_t);
104 static int cpswp_attach(device_t);
105 static int cpswp_detach(device_t);
106 
107 static phandle_t cpsw_get_node(device_t, device_t);
108 
109 /* Device Init/shutdown. */
110 static int cpsw_shutdown(device_t);
111 static void cpswp_init(void *);
112 static void cpswp_init_locked(void *);
113 static void cpswp_stop_locked(struct cpswp_softc *);
114 
115 /* Device Suspend/Resume. */
116 static int cpsw_suspend(device_t);
117 static int cpsw_resume(device_t);
118 
119 /* Ioctl. */
120 static int cpswp_ioctl(if_t, u_long command, caddr_t data);
121 
122 static int cpswp_miibus_readreg(device_t, int phy, int reg);
123 static int cpswp_miibus_writereg(device_t, int phy, int reg, int value);
124 static void cpswp_miibus_statchg(device_t);
125 
126 /* Send/Receive packets. */
127 static void cpsw_intr_rx(void *arg);
128 static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
129 static void cpsw_rx_enqueue(struct cpsw_softc *);
130 static void cpswp_start(if_t);
131 static void cpsw_intr_tx(void *);
132 static void cpswp_tx_enqueue(struct cpswp_softc *);
133 static int cpsw_tx_dequeue(struct cpsw_softc *);
134 
135 /* Misc interrupts and watchdog. */
136 static void cpsw_intr_rx_thresh(void *);
137 static void cpsw_intr_misc(void *);
138 static void cpswp_tick(void *);
139 static void cpswp_ifmedia_sts(if_t, struct ifmediareq *);
140 static int cpswp_ifmedia_upd(if_t);
141 static void cpsw_tx_watchdog(void *);
142 
143 /* ALE support */
144 static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t, uint32_t *);
145 static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t, uint32_t *);
146 static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t, int, uint8_t *);
147 static void cpsw_ale_dump_table(struct cpsw_softc *);
148 static int cpsw_ale_update_vlan_table(struct cpsw_softc *, int, int, int, int,
149 	int);
150 static int cpswp_ale_update_addresses(struct cpswp_softc *, int);
151 
152 /* Statistics and sysctls. */
153 static void cpsw_add_sysctls(struct cpsw_softc *);
154 static void cpsw_stats_collect(struct cpsw_softc *);
155 static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
156 
157 #ifdef CPSW_ETHERSWITCH
158 static etherswitch_info_t *cpsw_getinfo(device_t);
159 static int cpsw_getport(device_t, etherswitch_port_t *);
160 static int cpsw_setport(device_t, etherswitch_port_t *);
161 static int cpsw_getconf(device_t, etherswitch_conf_t *);
162 static int cpsw_getvgroup(device_t, etherswitch_vlangroup_t *);
163 static int cpsw_setvgroup(device_t, etherswitch_vlangroup_t *);
164 static int cpsw_readreg(device_t, int);
165 static int cpsw_writereg(device_t, int, int);
166 static int cpsw_readphy(device_t, int, int);
167 static int cpsw_writephy(device_t, int, int, int);
168 #endif
169 
170 /*
171  * Arbitrary limit on number of segments in an mbuf to be transmitted.
172  * Packets with more segments than this will be defragmented before
173  * they are queued.
174  */
175 #define	CPSW_TXFRAGS		16
176 
177 /* Shared resources. */
178 static device_method_t cpsw_methods[] = {
179 	/* Device interface */
180 	DEVMETHOD(device_probe,		cpsw_probe),
181 	DEVMETHOD(device_attach,	cpsw_attach),
182 	DEVMETHOD(device_detach,	cpsw_detach),
183 	DEVMETHOD(device_shutdown,	cpsw_shutdown),
184 	DEVMETHOD(device_suspend,	cpsw_suspend),
185 	DEVMETHOD(device_resume,	cpsw_resume),
186 	/* Bus interface */
187 	DEVMETHOD(bus_add_child,	device_add_child_ordered),
188 	/* OFW methods */
189 	DEVMETHOD(ofw_bus_get_node,	cpsw_get_node),
190 #ifdef CPSW_ETHERSWITCH
191 	/* etherswitch interface */
192 	DEVMETHOD(etherswitch_getinfo,	cpsw_getinfo),
193 	DEVMETHOD(etherswitch_readreg,	cpsw_readreg),
194 	DEVMETHOD(etherswitch_writereg,	cpsw_writereg),
195 	DEVMETHOD(etherswitch_readphyreg,	cpsw_readphy),
196 	DEVMETHOD(etherswitch_writephyreg,	cpsw_writephy),
197 	DEVMETHOD(etherswitch_getport,	cpsw_getport),
198 	DEVMETHOD(etherswitch_setport,	cpsw_setport),
199 	DEVMETHOD(etherswitch_getvgroup,	cpsw_getvgroup),
200 	DEVMETHOD(etherswitch_setvgroup,	cpsw_setvgroup),
201 	DEVMETHOD(etherswitch_getconf,	cpsw_getconf),
202 #endif
203 	DEVMETHOD_END
204 };
205 
206 static driver_t cpsw_driver = {
207 	"cpswss",
208 	cpsw_methods,
209 	sizeof(struct cpsw_softc),
210 };
211 
212 DRIVER_MODULE(cpswss, simplebus, cpsw_driver, 0, 0);
213 
214 /* Port/Slave resources. */
215 static device_method_t cpswp_methods[] = {
216 	/* Device interface */
217 	DEVMETHOD(device_probe,		cpswp_probe),
218 	DEVMETHOD(device_attach,	cpswp_attach),
219 	DEVMETHOD(device_detach,	cpswp_detach),
220 	/* MII interface */
221 	DEVMETHOD(miibus_readreg,	cpswp_miibus_readreg),
222 	DEVMETHOD(miibus_writereg,	cpswp_miibus_writereg),
223 	DEVMETHOD(miibus_statchg,	cpswp_miibus_statchg),
224 	DEVMETHOD_END
225 };
226 
227 static driver_t cpswp_driver = {
228 	"cpsw",
229 	cpswp_methods,
230 	sizeof(struct cpswp_softc),
231 };
232 
233 #ifdef CPSW_ETHERSWITCH
234 DRIVER_MODULE(etherswitch, cpswss, etherswitch_driver, 0, 0);
235 MODULE_DEPEND(cpswss, etherswitch, 1, 1, 1);
236 #endif
237 
238 DRIVER_MODULE(cpsw, cpswss, cpswp_driver, 0, 0);
239 DRIVER_MODULE(miibus, cpsw, miibus_driver, 0, 0);
240 MODULE_DEPEND(cpsw, ether, 1, 1, 1);
241 MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
242 
243 #ifdef CPSW_ETHERSWITCH
244 static struct cpsw_vlangroups cpsw_vgroups[CPSW_VLANS];
245 #endif
246 
247 static uint32_t slave_mdio_addr[] = { 0x4a100200, 0x4a100300 };
248 
249 static struct resource_spec irq_res_spec[] = {
250 	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
251 	{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
252 	{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
253 	{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
254 	{ -1, 0 }
255 };
256 
257 static struct {
258 	void (*cb)(void *);
259 } cpsw_intr_cb[] = {
260 	{ cpsw_intr_rx_thresh },
261 	{ cpsw_intr_rx },
262 	{ cpsw_intr_tx },
263 	{ cpsw_intr_misc },
264 };
265 
266 /* Number of entries here must match size of stats
267  * array in struct cpswp_softc. */
268 static struct cpsw_stat {
269 	int	reg;
270 	char *oid;
271 } cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
272 	{0x00, "GoodRxFrames"},
273 	{0x04, "BroadcastRxFrames"},
274 	{0x08, "MulticastRxFrames"},
275 	{0x0C, "PauseRxFrames"},
276 	{0x10, "RxCrcErrors"},
277 	{0x14, "RxAlignErrors"},
278 	{0x18, "OversizeRxFrames"},
279 	{0x1c, "RxJabbers"},
280 	{0x20, "ShortRxFrames"},
281 	{0x24, "RxFragments"},
282 	{0x30, "RxOctets"},
283 	{0x34, "GoodTxFrames"},
284 	{0x38, "BroadcastTxFrames"},
285 	{0x3c, "MulticastTxFrames"},
286 	{0x40, "PauseTxFrames"},
287 	{0x44, "DeferredTxFrames"},
288 	{0x48, "CollisionsTxFrames"},
289 	{0x4c, "SingleCollisionTxFrames"},
290 	{0x50, "MultipleCollisionTxFrames"},
291 	{0x54, "ExcessiveCollisions"},
292 	{0x58, "LateCollisions"},
293 	{0x5c, "TxUnderrun"},
294 	{0x60, "CarrierSenseErrors"},
295 	{0x64, "TxOctets"},
296 	{0x68, "RxTx64OctetFrames"},
297 	{0x6c, "RxTx65to127OctetFrames"},
298 	{0x70, "RxTx128to255OctetFrames"},
299 	{0x74, "RxTx256to511OctetFrames"},
300 	{0x78, "RxTx512to1024OctetFrames"},
301 	{0x7c, "RxTx1024upOctetFrames"},
302 	{0x80, "NetOctets"},
303 	{0x84, "RxStartOfFrameOverruns"},
304 	{0x88, "RxMiddleOfFrameOverruns"},
305 	{0x8c, "RxDmaOverruns"}
306 };
307 
308 /*
309  * Basic debug support.
310  */
311 
312 static void
313 cpsw_debugf_head(const char *funcname)
314 {
315 	int t = (int)(time_second % (24 * 60 * 60));
316 
317 	printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
318 }
319 
320 static void
321 cpsw_debugf(const char *fmt, ...)
322 {
323 	va_list ap;
324 
325 	va_start(ap, fmt);
326 	vprintf(fmt, ap);
327 	va_end(ap);
328 	printf("\n");
329 
330 }
331 
332 #define	CPSW_DEBUGF(_sc, a) do {					\
333 	if ((_sc)->debug) {						\
334 		cpsw_debugf_head(__func__);				\
335 		cpsw_debugf a;						\
336 	}								\
337 } while (0)
338 
339 /*
340  * Locking macros
341  */
342 #define	CPSW_TX_LOCK(sc) do {						\
343 		mtx_assert(&(sc)->rx.lock, MA_NOTOWNED);		\
344 		mtx_lock(&(sc)->tx.lock);				\
345 } while (0)
346 
347 #define	CPSW_TX_UNLOCK(sc)	mtx_unlock(&(sc)->tx.lock)
348 #define	CPSW_TX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->tx.lock, MA_OWNED)
349 
350 #define	CPSW_RX_LOCK(sc) do {						\
351 		mtx_assert(&(sc)->tx.lock, MA_NOTOWNED);		\
352 		mtx_lock(&(sc)->rx.lock);				\
353 } while (0)
354 
355 #define	CPSW_RX_UNLOCK(sc)		mtx_unlock(&(sc)->rx.lock)
356 #define	CPSW_RX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->rx.lock, MA_OWNED)
357 
358 #define CPSW_PORT_LOCK(_sc) do {					\
359 		mtx_assert(&(_sc)->lock, MA_NOTOWNED);			\
360 		mtx_lock(&(_sc)->lock);					\
361 } while (0)
362 
363 #define	CPSW_PORT_UNLOCK(_sc)	mtx_unlock(&(_sc)->lock)
364 #define	CPSW_PORT_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->lock, MA_OWNED)
365 
366 /*
367  * Read/Write macros
368  */
369 #define	cpsw_read_4(_sc, _reg)		bus_read_4((_sc)->mem_res, (_reg))
370 #define	cpsw_write_4(_sc, _reg, _val)					\
371 	bus_write_4((_sc)->mem_res, (_reg), (_val))
372 
373 #define	cpsw_cpdma_bd_offset(i)	(CPSW_CPPI_RAM_OFFSET + ((i)*16))
374 
375 #define	cpsw_cpdma_bd_paddr(sc, slot)					\
376 	BUS_SPACE_PHYSADDR(sc->mem_res, slot->bd_offset)
377 #define	cpsw_cpdma_read_bd(sc, slot, val)				\
378 	bus_read_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
379 #define	cpsw_cpdma_write_bd(sc, slot, val)				\
380 	bus_write_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
381 #define	cpsw_cpdma_write_bd_next(sc, slot, next_slot)			\
382 	cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
383 #define	cpsw_cpdma_write_bd_flags(sc, slot, val)			\
384 	bus_write_2(sc->mem_res, slot->bd_offset + 14, val)
385 #define	cpsw_cpdma_read_bd_flags(sc, slot)				\
386 	bus_read_2(sc->mem_res, slot->bd_offset + 14)
387 #define	cpsw_write_hdp_slot(sc, queue, slot)				\
388 	cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
389 #define	CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
390 #define	cpsw_read_cp(sc, queue)						\
391 	cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
392 #define	cpsw_write_cp(sc, queue, val)					\
393 	cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
394 #define	cpsw_write_cp_slot(sc, queue, slot)				\
395 	cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
396 
397 #if 0
398 /* XXX temporary function versions for debugging. */
399 static void
400 cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
401 {
402 	uint32_t reg = queue->hdp_offset;
403 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
404 	CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
405 	cpsw_write_4(sc, reg, v);
406 }
407 
408 static void
409 cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
410 {
411 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
412 	CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
413 	cpsw_write_cp(sc, queue, v);
414 }
415 #endif
416 
417 /*
418  * Expanded dump routines for verbose debugging.
419  */
420 static void
421 cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
422 {
423 	static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
424 	    "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
425 	    "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
426 	    "Port0"};
427 	struct cpsw_cpdma_bd bd;
428 	const char *sep;
429 	int i;
430 
431 	cpsw_cpdma_read_bd(sc, slot, &bd);
432 	printf("BD Addr : 0x%08x   Next  : 0x%08x\n",
433 	    cpsw_cpdma_bd_paddr(sc, slot), bd.next);
434 	printf("  BufPtr: 0x%08x   BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
435 	printf("  BufOff: 0x%08x   PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
436 	printf("  Flags: ");
437 	sep = "";
438 	for (i = 0; i < 16; ++i) {
439 		if (bd.flags & (1 << (15 - i))) {
440 			printf("%s%s", sep, flags[i]);
441 			sep = ",";
442 		}
443 	}
444 	printf("\n");
445 	if (slot->mbuf) {
446 		printf("  Ether:  %14D\n",
447 		    (char *)(slot->mbuf->m_data), " ");
448 		printf("  Packet: %16D\n",
449 		    (char *)(slot->mbuf->m_data) + 14, " ");
450 	}
451 }
452 
453 #define	CPSW_DUMP_SLOT(cs, slot) do {				\
454 	IF_DEBUG(sc) {						\
455 		cpsw_dump_slot(sc, slot);			\
456 	}							\
457 } while (0)
458 
459 static void
460 cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
461 {
462 	struct cpsw_slot *slot;
463 	int i = 0;
464 	int others = 0;
465 
466 	STAILQ_FOREACH(slot, q, next) {
467 		if (i > CPSW_TXFRAGS)
468 			++others;
469 		else
470 			cpsw_dump_slot(sc, slot);
471 		++i;
472 	}
473 	if (others)
474 		printf(" ... and %d more.\n", others);
475 	printf("\n");
476 }
477 
478 #define CPSW_DUMP_QUEUE(sc, q) do {				\
479 	IF_DEBUG(sc) {						\
480 		cpsw_dump_queue(sc, q);				\
481 	}							\
482 } while (0)
483 
484 static void
485 cpsw_init_slots(struct cpsw_softc *sc)
486 {
487 	struct cpsw_slot *slot;
488 	int i;
489 
490 	STAILQ_INIT(&sc->avail);
491 
492 	/* Put the slot descriptors onto the global avail list. */
493 	for (i = 0; i < nitems(sc->_slots); i++) {
494 		slot = &sc->_slots[i];
495 		slot->bd_offset = cpsw_cpdma_bd_offset(i);
496 		STAILQ_INSERT_TAIL(&sc->avail, slot, next);
497 	}
498 }
499 
500 static int
501 cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
502 {
503 	const int max_slots = nitems(sc->_slots);
504 	struct cpsw_slot *slot;
505 	int i;
506 
507 	if (requested < 0)
508 		requested = max_slots;
509 
510 	for (i = 0; i < requested; ++i) {
511 		slot = STAILQ_FIRST(&sc->avail);
512 		if (slot == NULL)
513 			return (0);
514 		if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
515 			device_printf(sc->dev, "failed to create dmamap\n");
516 			return (ENOMEM);
517 		}
518 		STAILQ_REMOVE_HEAD(&sc->avail, next);
519 		STAILQ_INSERT_TAIL(&queue->avail, slot, next);
520 		++queue->avail_queue_len;
521 		++queue->queue_slots;
522 	}
523 	return (0);
524 }
525 
526 static void
527 cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
528 {
529 	int error __diagused;
530 
531 	if (slot->dmamap) {
532 		if (slot->mbuf)
533 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
534 		error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
535 		KASSERT(error == 0, ("Mapping still active"));
536 		slot->dmamap = NULL;
537 	}
538 	if (slot->mbuf) {
539 		m_freem(slot->mbuf);
540 		slot->mbuf = NULL;
541 	}
542 }
543 
544 static void
545 cpsw_reset(struct cpsw_softc *sc)
546 {
547 	int i;
548 
549 	callout_stop(&sc->watchdog.callout);
550 
551 	/* Reset RMII/RGMII wrapper. */
552 	cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
553 	while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
554 		;
555 
556 	/* Disable TX and RX interrupts for all cores. */
557 	for (i = 0; i < 3; ++i) {
558 		cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
559 		cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
560 		cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
561 		cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
562 	}
563 
564 	/* Reset CPSW subsystem. */
565 	cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
566 	while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
567 		;
568 
569 	/* Reset Sliver port 1 and 2 */
570 	for (i = 0; i < 2; i++) {
571 		/* Reset */
572 		cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
573 		while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
574 			;
575 	}
576 
577 	/* Reset DMA controller. */
578 	cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
579 	while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
580 		;
581 
582 	/* Disable TX & RX DMA */
583 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
584 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
585 
586 	/* Clear all queues. */
587 	for (i = 0; i < 8; i++) {
588 		cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
589 		cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
590 		cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
591 		cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
592 	}
593 
594 	/* Clear all interrupt Masks */
595 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
596 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
597 }
598 
599 static void
600 cpsw_init(struct cpsw_softc *sc)
601 {
602 	struct cpsw_slot *slot;
603 	uint32_t reg;
604 
605 	/* Disable the interrupt pacing. */
606 	reg = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
607 	reg &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
608 	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, reg);
609 
610 	/* Clear ALE */
611 	cpsw_write_4(sc, CPSW_ALE_CONTROL, CPSW_ALE_CTL_CLEAR_TBL);
612 
613 	/* Enable ALE */
614 	reg = CPSW_ALE_CTL_ENABLE;
615 	if (sc->dualemac)
616 		reg |= CPSW_ALE_CTL_VLAN_AWARE;
617 	cpsw_write_4(sc, CPSW_ALE_CONTROL, reg);
618 
619 	/* Set Host Port Mapping. */
620 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
621 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
622 
623 	/* Initialize ALE: set host port to forwarding(3). */
624 	cpsw_write_4(sc, CPSW_ALE_PORTCTL(0),
625 	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
626 
627 	cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
628 
629 	/* Enable statistics for ports 0, 1 and 2 */
630 	cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
631 
632 	/* Turn off flow control. */
633 	cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
634 
635 	/* Make IP hdr aligned with 4 */
636 	cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
637 
638 	/* Initialize RX Buffer Descriptors */
639 	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), 0);
640 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
641 
642 	/* Enable TX & RX DMA */
643 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
644 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
645 
646 	/* Enable Interrupts for core 0 */
647 	cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
648 	cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
649 	cpsw_write_4(sc, CPSW_WR_C_TX_EN(0), 0xFF);
650 	cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x1F);
651 
652 	/* Enable host Error Interrupt */
653 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
654 
655 	/* Enable interrupts for RX and TX on Channel 0 */
656 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET,
657 	    CPSW_CPDMA_RX_INT(0) | CPSW_CPDMA_RX_INT_THRESH(0));
658 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_SET, 1);
659 
660 	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
661 	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
662 	cpsw_write_4(sc, MDIOCONTROL, MDIOCTL_ENABLE | MDIOCTL_FAULTENB | 0xff);
663 
664 	/* Select MII in GMII_SEL, Internal Delay mode */
665 	//ti_scm_reg_write_4(0x650, 0);
666 
667 	/* Initialize active queues. */
668 	slot = STAILQ_FIRST(&sc->tx.active);
669 	if (slot != NULL)
670 		cpsw_write_hdp_slot(sc, &sc->tx, slot);
671 	slot = STAILQ_FIRST(&sc->rx.active);
672 	if (slot != NULL)
673 		cpsw_write_hdp_slot(sc, &sc->rx, slot);
674 	cpsw_rx_enqueue(sc);
675 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), sc->rx.active_queue_len);
676 	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), CPSW_TXFRAGS);
677 
678 	/* Activate network interface. */
679 	sc->rx.running = 1;
680 	sc->tx.running = 1;
681 	sc->watchdog.timer = 0;
682 	callout_init(&sc->watchdog.callout, 0);
683 	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
684 }
685 
686 /*
687  *
688  * Device Probe, Attach, Detach.
689  *
690  */
691 
692 static int
693 cpsw_probe(device_t dev)
694 {
695 
696 	if (!ofw_bus_status_okay(dev))
697 		return (ENXIO);
698 
699 	if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
700 		return (ENXIO);
701 
702 	device_set_desc(dev, "3-port Switch Ethernet Subsystem");
703 	return (BUS_PROBE_DEFAULT);
704 }
705 
706 static int
707 cpsw_intr_attach(struct cpsw_softc *sc)
708 {
709 	int i;
710 
711 	for (i = 0; i < CPSW_INTR_COUNT; i++) {
712 		if (bus_setup_intr(sc->dev, sc->irq_res[i],
713 		    INTR_TYPE_NET | INTR_MPSAFE, NULL,
714 		    cpsw_intr_cb[i].cb, sc, &sc->ih_cookie[i]) != 0) {
715 			return (-1);
716 		}
717 	}
718 
719 	return (0);
720 }
721 
722 static void
723 cpsw_intr_detach(struct cpsw_softc *sc)
724 {
725 	int i;
726 
727 	for (i = 0; i < CPSW_INTR_COUNT; i++) {
728 		if (sc->ih_cookie[i]) {
729 			bus_teardown_intr(sc->dev, sc->irq_res[i],
730 			    sc->ih_cookie[i]);
731 		}
732 	}
733 }
734 
735 static int
736 cpsw_get_fdt_data(struct cpsw_softc *sc, int port)
737 {
738 	char *name;
739 	int len, phy, vlan;
740 	pcell_t phy_id[3], vlan_id;
741 	phandle_t child;
742 	unsigned long mdio_child_addr;
743 
744 	/* Find any slave with phy-handle/phy_id */
745 	phy = -1;
746 	vlan = -1;
747 	for (child = OF_child(sc->node); child != 0; child = OF_peer(child)) {
748 		if (OF_getprop_alloc(child, "name", (void **)&name) < 0)
749 			continue;
750 		if (sscanf(name, "slave@%lx", &mdio_child_addr) != 1) {
751 			OF_prop_free(name);
752 			continue;
753 		}
754 		OF_prop_free(name);
755 
756 		if (mdio_child_addr != slave_mdio_addr[port] &&
757 		    mdio_child_addr != (slave_mdio_addr[port] & 0xFFF))
758 			continue;
759 
760 		if (fdt_get_phyaddr(child, NULL, &phy, NULL) != 0){
761 			/* Users with old DTB will have phy_id instead */
762 			phy = -1;
763 			len = OF_getproplen(child, "phy_id");
764 			if (len / sizeof(pcell_t) == 2) {
765 				/* Get phy address from fdt */
766 				if (OF_getencprop(child, "phy_id", phy_id, len) > 0)
767 					phy = phy_id[1];
768 			}
769 		}
770 
771 		len = OF_getproplen(child, "dual_emac_res_vlan");
772 		if (len / sizeof(pcell_t) == 1) {
773 			/* Get phy address from fdt */
774 			if (OF_getencprop(child, "dual_emac_res_vlan",
775 			    &vlan_id, len) > 0) {
776 				vlan = vlan_id;
777 			}
778 		}
779 
780 		break;
781 	}
782 	if (phy == -1)
783 		return (ENXIO);
784 	sc->port[port].phy = phy;
785 	sc->port[port].vlan = vlan;
786 
787 	return (0);
788 }
789 
790 static int
791 cpsw_attach(device_t dev)
792 {
793 	int error, i;
794 	struct cpsw_softc *sc;
795 	uint32_t reg;
796 
797 	sc = device_get_softc(dev);
798 	sc->dev = dev;
799 	sc->node = ofw_bus_get_node(dev);
800 	getbinuptime(&sc->attach_uptime);
801 
802 	if (OF_getencprop(sc->node, "active_slave", &sc->active_slave,
803 	    sizeof(sc->active_slave)) <= 0) {
804 		sc->active_slave = 0;
805 	}
806 	if (sc->active_slave > 1)
807 		sc->active_slave = 1;
808 
809 	if (OF_hasprop(sc->node, "dual_emac"))
810 		sc->dualemac = 1;
811 
812 	for (i = 0; i < CPSW_PORTS; i++) {
813 		if (!sc->dualemac && i != sc->active_slave)
814 			continue;
815 		if (cpsw_get_fdt_data(sc, i) != 0) {
816 			device_printf(dev,
817 			    "failed to get PHY address from FDT\n");
818 			return (ENXIO);
819 		}
820 	}
821 
822 	/* Initialize mutexes */
823 	mtx_init(&sc->tx.lock, device_get_nameunit(dev),
824 	    "cpsw TX lock", MTX_DEF);
825 	mtx_init(&sc->rx.lock, device_get_nameunit(dev),
826 	    "cpsw RX lock", MTX_DEF);
827 
828 	/* Allocate IRQ resources */
829 	error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
830 	if (error) {
831 		device_printf(dev, "could not allocate IRQ resources\n");
832 		cpsw_detach(dev);
833 		return (ENXIO);
834 	}
835 
836 	sc->mem_rid = 0;
837 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
838 	    &sc->mem_rid, RF_ACTIVE);
839 	if (sc->mem_res == NULL) {
840 		device_printf(sc->dev, "failed to allocate memory resource\n");
841 		cpsw_detach(dev);
842 		return (ENXIO);
843 	}
844 
845 	reg = cpsw_read_4(sc, CPSW_SS_IDVER);
846 	device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
847 		reg & 0xFF, (reg >> 11) & 0x1F);
848 
849 	cpsw_add_sysctls(sc);
850 
851 	/* Allocate a busdma tag and DMA safe memory for mbufs. */
852 	error = bus_dma_tag_create(
853 		bus_get_dma_tag(sc->dev),	/* parent */
854 		1, 0,				/* alignment, boundary */
855 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
856 		BUS_SPACE_MAXADDR,		/* highaddr */
857 		NULL, NULL,			/* filtfunc, filtfuncarg */
858 		MCLBYTES, CPSW_TXFRAGS,		/* maxsize, nsegments */
859 		MCLBYTES, 0,			/* maxsegsz, flags */
860 		NULL, NULL,			/* lockfunc, lockfuncarg */
861 		&sc->mbuf_dtag);		/* dmatag */
862 	if (error) {
863 		device_printf(dev, "bus_dma_tag_create failed\n");
864 		cpsw_detach(dev);
865 		return (error);
866 	}
867 
868 	/* Allocate a NULL buffer for padding. */
869 	sc->nullpad = malloc(ETHER_MIN_LEN, M_DEVBUF, M_WAITOK | M_ZERO);
870 
871 	cpsw_init_slots(sc);
872 
873 	/* Allocate slots to TX and RX queues. */
874 	STAILQ_INIT(&sc->rx.avail);
875 	STAILQ_INIT(&sc->rx.active);
876 	STAILQ_INIT(&sc->tx.avail);
877 	STAILQ_INIT(&sc->tx.active);
878 	// For now:  128 slots to TX, rest to RX.
879 	// XXX TODO: start with 32/64 and grow dynamically based on demand.
880 	if (cpsw_add_slots(sc, &sc->tx, 128) ||
881 	    cpsw_add_slots(sc, &sc->rx, -1)) {
882 		device_printf(dev, "failed to allocate dmamaps\n");
883 		cpsw_detach(dev);
884 		return (ENOMEM);
885 	}
886 	device_printf(dev, "Initial queue size TX=%d RX=%d\n",
887 	    sc->tx.queue_slots, sc->rx.queue_slots);
888 
889 	sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
890 	sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
891 
892 	if (cpsw_intr_attach(sc) == -1) {
893 		device_printf(dev, "failed to setup interrupts\n");
894 		cpsw_detach(dev);
895 		return (ENXIO);
896 	}
897 
898 #ifdef CPSW_ETHERSWITCH
899 	for (i = 0; i < CPSW_VLANS; i++)
900 		cpsw_vgroups[i].vid = -1;
901 #endif
902 
903 	/* Reset the controller. */
904 	cpsw_reset(sc);
905 	cpsw_init(sc);
906 
907 	for (i = 0; i < CPSW_PORTS; i++) {
908 		if (!sc->dualemac && i != sc->active_slave)
909 			continue;
910 		sc->port[i].dev = device_add_child(dev, "cpsw", i);
911 		if (sc->port[i].dev == NULL) {
912 			cpsw_detach(dev);
913 			return (ENXIO);
914 		}
915 	}
916 	bus_generic_probe(dev);
917 	bus_generic_attach(dev);
918 
919 	return (0);
920 }
921 
922 static int
923 cpsw_detach(device_t dev)
924 {
925 	struct cpsw_softc *sc;
926 	int error, i;
927 
928 	bus_generic_detach(dev);
929  	sc = device_get_softc(dev);
930 
931 	for (i = 0; i < CPSW_PORTS; i++) {
932 		if (sc->port[i].dev)
933 			device_delete_child(dev, sc->port[i].dev);
934 	}
935 
936 	if (device_is_attached(dev)) {
937 		callout_stop(&sc->watchdog.callout);
938 		callout_drain(&sc->watchdog.callout);
939 	}
940 
941 	/* Stop and release all interrupts */
942 	cpsw_intr_detach(sc);
943 
944 	/* Free dmamaps and mbufs */
945 	for (i = 0; i < nitems(sc->_slots); ++i)
946 		cpsw_free_slot(sc, &sc->_slots[i]);
947 
948 	/* Free null padding buffer. */
949 	if (sc->nullpad)
950 		free(sc->nullpad, M_DEVBUF);
951 
952 	/* Free DMA tag */
953 	if (sc->mbuf_dtag) {
954 		error = bus_dma_tag_destroy(sc->mbuf_dtag);
955 		KASSERT(error == 0, ("Unable to destroy DMA tag"));
956 	}
957 
958 	/* Free IO memory handler */
959 	if (sc->mem_res != NULL)
960 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res);
961 	bus_release_resources(dev, irq_res_spec, sc->irq_res);
962 
963 	/* Destroy mutexes */
964 	mtx_destroy(&sc->rx.lock);
965 	mtx_destroy(&sc->tx.lock);
966 
967 	/* Detach the switch device, if present. */
968 	error = bus_generic_detach(dev);
969 	if (error != 0)
970 		return (error);
971 
972 	return (device_delete_children(dev));
973 }
974 
975 static phandle_t
976 cpsw_get_node(device_t bus, device_t dev)
977 {
978 
979 	/* Share controller node with port device. */
980 	return (ofw_bus_get_node(bus));
981 }
982 
983 static int
984 cpswp_probe(device_t dev)
985 {
986 
987 	if (device_get_unit(dev) > 1) {
988 		device_printf(dev, "Only two ports are supported.\n");
989 		return (ENXIO);
990 	}
991 	device_set_desc(dev, "Ethernet Switch Port");
992 
993 	return (BUS_PROBE_DEFAULT);
994 }
995 
996 static int
997 cpswp_attach(device_t dev)
998 {
999 	int error;
1000 	if_t ifp;
1001 	struct cpswp_softc *sc;
1002 	uint32_t reg;
1003 	uint8_t mac_addr[ETHER_ADDR_LEN];
1004 	phandle_t opp_table;
1005 	struct syscon *syscon;
1006 
1007 	sc = device_get_softc(dev);
1008 	sc->dev = dev;
1009 	sc->pdev = device_get_parent(dev);
1010 	sc->swsc = device_get_softc(sc->pdev);
1011 	sc->unit = device_get_unit(dev);
1012 	sc->phy = sc->swsc->port[sc->unit].phy;
1013 	sc->vlan = sc->swsc->port[sc->unit].vlan;
1014 	if (sc->swsc->dualemac && sc->vlan == -1)
1015 		sc->vlan = sc->unit + 1;
1016 
1017 	if (sc->unit == 0) {
1018 		sc->physel = MDIOUSERPHYSEL0;
1019 		sc->phyaccess = MDIOUSERACCESS0;
1020 	} else {
1021 		sc->physel = MDIOUSERPHYSEL1;
1022 		sc->phyaccess = MDIOUSERACCESS1;
1023 	}
1024 
1025 	mtx_init(&sc->lock, device_get_nameunit(dev), "cpsw port lock",
1026 	    MTX_DEF);
1027 
1028 	/* Allocate network interface */
1029 	ifp = sc->ifp = if_alloc(IFT_ETHER);
1030 	if (ifp == NULL) {
1031 		cpswp_detach(dev);
1032 		return (ENXIO);
1033 	}
1034 
1035 	if_initname(ifp, device_get_name(sc->dev), sc->unit);
1036 	if_setsoftc(ifp, sc);
1037 	if_setflags(ifp, IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST);
1038 
1039 	if_setcapenable(ifp, if_getcapabilities(ifp));
1040 
1041 	if_setinitfn(ifp, cpswp_init);
1042 	if_setstartfn(ifp, cpswp_start);
1043 	if_setioctlfn(ifp, cpswp_ioctl);
1044 
1045 	if_setsendqlen(ifp, sc->swsc->tx.queue_slots);
1046 	if_setsendqready(ifp);
1047 
1048 	/* FIXME: For now; Go and kidnap syscon from opp-table */
1049 	/* ti,cpsw actually have an optional syscon reference but only for am33xx?? */
1050 	opp_table = OF_finddevice("/opp-table");
1051 	if (opp_table == -1) {
1052 		device_printf(dev, "Cant find /opp-table\n");
1053 		cpswp_detach(dev);
1054 		return (ENXIO);
1055 	}
1056 	if (!OF_hasprop(opp_table, "syscon")) {
1057 		device_printf(dev, "/opp-table doesnt have required syscon property\n");
1058 		cpswp_detach(dev);
1059 		return (ENXIO);
1060 	}
1061 	if (syscon_get_by_ofw_property(dev, opp_table, "syscon", &syscon) != 0) {
1062 		device_printf(dev, "Failed to get syscon\n");
1063 		cpswp_detach(dev);
1064 		return (ENXIO);
1065 	}
1066 
1067 	/* Get high part of MAC address from control module (mac_id[0|1]_hi) */
1068 	reg = SYSCON_READ_4(syscon, SCM_MAC_ID0_HI + sc->unit * 8);
1069 	mac_addr[0] = reg & 0xFF;
1070 	mac_addr[1] = (reg >>  8) & 0xFF;
1071 	mac_addr[2] = (reg >> 16) & 0xFF;
1072 	mac_addr[3] = (reg >> 24) & 0xFF;
1073 
1074 	/* Get low part of MAC address from control module (mac_id[0|1]_lo) */
1075 	reg = SYSCON_READ_4(syscon, SCM_MAC_ID0_LO + sc->unit * 8);
1076 	mac_addr[4] = reg & 0xFF;
1077 	mac_addr[5] = (reg >>  8) & 0xFF;
1078 
1079 	error = mii_attach(dev, &sc->miibus, ifp, cpswp_ifmedia_upd,
1080 	    cpswp_ifmedia_sts, BMSR_DEFCAPMASK, sc->phy, MII_OFFSET_ANY, 0);
1081 	if (error) {
1082 		device_printf(dev, "attaching PHYs failed\n");
1083 		cpswp_detach(dev);
1084 		return (error);
1085 	}
1086 	sc->mii = device_get_softc(sc->miibus);
1087 
1088 	/* Select PHY and enable interrupts */
1089 	cpsw_write_4(sc->swsc, sc->physel,
1090 	    MDIO_PHYSEL_LINKINTENB | (sc->phy & 0x1F));
1091 
1092 	ether_ifattach(sc->ifp, mac_addr);
1093 	callout_init(&sc->mii_callout, 0);
1094 
1095 	return (0);
1096 }
1097 
1098 static int
1099 cpswp_detach(device_t dev)
1100 {
1101 	struct cpswp_softc *sc;
1102 
1103 	sc = device_get_softc(dev);
1104 	CPSW_DEBUGF(sc->swsc, (""));
1105 	if (device_is_attached(dev)) {
1106 		ether_ifdetach(sc->ifp);
1107 		CPSW_PORT_LOCK(sc);
1108 		cpswp_stop_locked(sc);
1109 		CPSW_PORT_UNLOCK(sc);
1110 		callout_drain(&sc->mii_callout);
1111 	}
1112 
1113 	bus_generic_detach(dev);
1114 
1115 	if_free(sc->ifp);
1116 	mtx_destroy(&sc->lock);
1117 
1118 	return (0);
1119 }
1120 
1121 /*
1122  *
1123  * Init/Shutdown.
1124  *
1125  */
1126 
1127 static int
1128 cpsw_ports_down(struct cpsw_softc *sc)
1129 {
1130 	struct cpswp_softc *psc;
1131 	if_t ifp1, ifp2;
1132 
1133 	if (!sc->dualemac)
1134 		return (1);
1135 	psc = device_get_softc(sc->port[0].dev);
1136 	ifp1 = psc->ifp;
1137 	psc = device_get_softc(sc->port[1].dev);
1138 	ifp2 = psc->ifp;
1139 	if ((ifp1->if_flags & IFF_UP) == 0 && (ifp2->if_flags & IFF_UP) == 0)
1140 		return (1);
1141 
1142 	return (0);
1143 }
1144 
1145 static void
1146 cpswp_init(void *arg)
1147 {
1148 	struct cpswp_softc *sc = arg;
1149 
1150 	CPSW_DEBUGF(sc->swsc, (""));
1151 	CPSW_PORT_LOCK(sc);
1152 	cpswp_init_locked(arg);
1153 	CPSW_PORT_UNLOCK(sc);
1154 }
1155 
1156 static void
1157 cpswp_init_locked(void *arg)
1158 {
1159 #ifdef CPSW_ETHERSWITCH
1160 	int i;
1161 #endif
1162 	struct cpswp_softc *sc = arg;
1163 	if_t ifp;
1164 	uint32_t reg;
1165 
1166 	CPSW_DEBUGF(sc->swsc, (""));
1167 	CPSW_PORT_LOCK_ASSERT(sc);
1168 	ifp = sc->ifp;
1169 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1170 		return;
1171 
1172 	getbinuptime(&sc->init_uptime);
1173 
1174 	if (!sc->swsc->rx.running && !sc->swsc->tx.running) {
1175 		/* Reset the controller. */
1176 		cpsw_reset(sc->swsc);
1177 		cpsw_init(sc->swsc);
1178 	}
1179 
1180 	/* Set Slave Mapping. */
1181 	cpsw_write_4(sc->swsc, CPSW_SL_RX_PRI_MAP(sc->unit), 0x76543210);
1182 	cpsw_write_4(sc->swsc, CPSW_PORT_P_TX_PRI_MAP(sc->unit + 1),
1183 	    0x33221100);
1184 	cpsw_write_4(sc->swsc, CPSW_SL_RX_MAXLEN(sc->unit), 0x5f2);
1185 	/* Enable MAC RX/TX modules. */
1186 	/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
1187 	/* Huh?  Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
1188 	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1189 	reg |= CPSW_SL_MACTL_GMII_ENABLE;
1190 	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1191 
1192 	/* Initialize ALE: set port to forwarding, initialize addrs */
1193 	cpsw_write_4(sc->swsc, CPSW_ALE_PORTCTL(sc->unit + 1),
1194 	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
1195 	cpswp_ale_update_addresses(sc, 1);
1196 
1197 	if (sc->swsc->dualemac) {
1198 		/* Set Port VID. */
1199 		cpsw_write_4(sc->swsc, CPSW_PORT_P_VLAN(sc->unit + 1),
1200 		    sc->vlan & 0xfff);
1201 		cpsw_ale_update_vlan_table(sc->swsc, sc->vlan,
1202 		    (1 << (sc->unit + 1)) | (1 << 0), /* Member list */
1203 		    (1 << (sc->unit + 1)) | (1 << 0), /* Untagged egress */
1204 		    (1 << (sc->unit + 1)) | (1 << 0), 0); /* mcast reg flood */
1205 #ifdef CPSW_ETHERSWITCH
1206 		for (i = 0; i < CPSW_VLANS; i++) {
1207 			if (cpsw_vgroups[i].vid != -1)
1208 				continue;
1209 			cpsw_vgroups[i].vid = sc->vlan;
1210 			break;
1211 		}
1212 #endif
1213 	}
1214 
1215 	mii_mediachg(sc->mii);
1216 	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
1217 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
1218 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1219 }
1220 
1221 static int
1222 cpsw_shutdown(device_t dev)
1223 {
1224 	struct cpsw_softc *sc;
1225 	struct cpswp_softc *psc;
1226 	int i;
1227 
1228  	sc = device_get_softc(dev);
1229 	CPSW_DEBUGF(sc, (""));
1230 	for (i = 0; i < CPSW_PORTS; i++) {
1231 		if (!sc->dualemac && i != sc->active_slave)
1232 			continue;
1233 		psc = device_get_softc(sc->port[i].dev);
1234 		CPSW_PORT_LOCK(psc);
1235 		cpswp_stop_locked(psc);
1236 		CPSW_PORT_UNLOCK(psc);
1237 	}
1238 
1239 	return (0);
1240 }
1241 
1242 static void
1243 cpsw_rx_teardown(struct cpsw_softc *sc)
1244 {
1245 	int i = 0;
1246 
1247 	CPSW_RX_LOCK(sc);
1248 	CPSW_DEBUGF(sc, ("starting RX teardown"));
1249 	sc->rx.teardown = 1;
1250 	cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
1251 	CPSW_RX_UNLOCK(sc);
1252 	while (sc->rx.running) {
1253 		if (++i > 10) {
1254 			device_printf(sc->dev,
1255 			    "Unable to cleanly shutdown receiver\n");
1256 			return;
1257 		}
1258 		DELAY(200);
1259 	}
1260 	if (!sc->rx.running)
1261 		CPSW_DEBUGF(sc, ("finished RX teardown (%d retries)", i));
1262 }
1263 
1264 static void
1265 cpsw_tx_teardown(struct cpsw_softc *sc)
1266 {
1267 	int i = 0;
1268 
1269 	CPSW_TX_LOCK(sc);
1270 	CPSW_DEBUGF(sc, ("starting TX teardown"));
1271 	/* Start the TX queue teardown if queue is not empty. */
1272 	if (STAILQ_FIRST(&sc->tx.active) != NULL)
1273 		cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
1274 	else
1275 		sc->tx.teardown = 1;
1276 	cpsw_tx_dequeue(sc);
1277 	while (sc->tx.running && ++i < 10) {
1278 		DELAY(200);
1279 		cpsw_tx_dequeue(sc);
1280 	}
1281 	if (sc->tx.running) {
1282 		device_printf(sc->dev,
1283 		    "Unable to cleanly shutdown transmitter\n");
1284 	}
1285 	CPSW_DEBUGF(sc,
1286 	    ("finished TX teardown (%d retries, %d idle buffers)", i,
1287 	     sc->tx.active_queue_len));
1288 	CPSW_TX_UNLOCK(sc);
1289 }
1290 
1291 static void
1292 cpswp_stop_locked(struct cpswp_softc *sc)
1293 {
1294 	if_t ifp;
1295 	uint32_t reg;
1296 
1297 	ifp = sc->ifp;
1298 	CPSW_DEBUGF(sc->swsc, (""));
1299 	CPSW_PORT_LOCK_ASSERT(sc);
1300 
1301 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1302 		return;
1303 
1304 	/* Disable interface */
1305 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1306 	if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1307 
1308 	/* Stop ticker */
1309 	callout_stop(&sc->mii_callout);
1310 
1311 	/* Tear down the RX/TX queues. */
1312 	if (cpsw_ports_down(sc->swsc)) {
1313 		cpsw_rx_teardown(sc->swsc);
1314 		cpsw_tx_teardown(sc->swsc);
1315 	}
1316 
1317 	/* Stop MAC RX/TX modules. */
1318 	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1319 	reg &= ~CPSW_SL_MACTL_GMII_ENABLE;
1320 	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1321 
1322 	if (cpsw_ports_down(sc->swsc)) {
1323 		/* Capture stats before we reset controller. */
1324 		cpsw_stats_collect(sc->swsc);
1325 
1326 		cpsw_reset(sc->swsc);
1327 		cpsw_init(sc->swsc);
1328 	}
1329 }
1330 
1331 /*
1332  *  Suspend/Resume.
1333  */
1334 
1335 static int
1336 cpsw_suspend(device_t dev)
1337 {
1338 	struct cpsw_softc *sc;
1339 	struct cpswp_softc *psc;
1340 	int i;
1341 
1342 	sc = device_get_softc(dev);
1343 	CPSW_DEBUGF(sc, (""));
1344 	for (i = 0; i < CPSW_PORTS; i++) {
1345 		if (!sc->dualemac && i != sc->active_slave)
1346 			continue;
1347 		psc = device_get_softc(sc->port[i].dev);
1348 		CPSW_PORT_LOCK(psc);
1349 		cpswp_stop_locked(psc);
1350 		CPSW_PORT_UNLOCK(psc);
1351 	}
1352 
1353 	return (0);
1354 }
1355 
1356 static int
1357 cpsw_resume(device_t dev)
1358 {
1359 	struct cpsw_softc *sc;
1360 
1361 	sc  = device_get_softc(dev);
1362 	CPSW_DEBUGF(sc, ("UNIMPLEMENTED"));
1363 
1364 	return (0);
1365 }
1366 
1367 /*
1368  *
1369  *  IOCTL
1370  *
1371  */
1372 
1373 static void
1374 cpsw_set_promisc(struct cpswp_softc *sc, int set)
1375 {
1376 	uint32_t reg;
1377 
1378 	/*
1379 	 * Enabling promiscuous mode requires ALE_BYPASS to be enabled.
1380 	 * That disables the ALE forwarding logic and causes every
1381 	 * packet to be sent only to the host port.  In bypass mode,
1382 	 * the ALE processes host port transmit packets the same as in
1383 	 * normal mode.
1384 	 */
1385 	reg = cpsw_read_4(sc->swsc, CPSW_ALE_CONTROL);
1386 	reg &= ~CPSW_ALE_CTL_BYPASS;
1387 	if (set)
1388 		reg |= CPSW_ALE_CTL_BYPASS;
1389 	cpsw_write_4(sc->swsc, CPSW_ALE_CONTROL, reg);
1390 }
1391 
1392 static void
1393 cpsw_set_allmulti(struct cpswp_softc *sc, int set)
1394 {
1395 	if (set) {
1396 		printf("All-multicast mode unimplemented\n");
1397 	}
1398 }
1399 
1400 static int
1401 cpswp_ioctl(if_t ifp, u_long command, caddr_t data)
1402 {
1403 	struct cpswp_softc *sc;
1404 	struct ifreq *ifr;
1405 	int error;
1406 	uint32_t changed;
1407 
1408 	error = 0;
1409 	sc = if_getsoftc(ifp);
1410 	ifr = (struct ifreq *)data;
1411 
1412 	switch (command) {
1413 	case SIOCSIFCAP:
1414 		changed = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
1415 		if (changed & IFCAP_HWCSUM) {
1416 			if ((ifr->ifr_reqcap & changed) & IFCAP_HWCSUM)
1417 				if_setcapenablebit(ifp, IFCAP_HWCSUM, 0);
1418 			else
1419 				if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
1420 		}
1421 		error = 0;
1422 		break;
1423 	case SIOCSIFFLAGS:
1424 		CPSW_PORT_LOCK(sc);
1425 		if (if_getflags(ifp) & IFF_UP) {
1426 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1427 				changed = if_getflags(ifp) ^ sc->if_flags;
1428 				CPSW_DEBUGF(sc->swsc,
1429 				    ("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)",
1430 				    changed));
1431 				if (changed & IFF_PROMISC)
1432 					cpsw_set_promisc(sc,
1433 					    if_getflags(ifp) & IFF_PROMISC);
1434 				if (changed & IFF_ALLMULTI)
1435 					cpsw_set_allmulti(sc,
1436 					    if_getflags(ifp) & IFF_ALLMULTI);
1437 			} else {
1438 				CPSW_DEBUGF(sc->swsc,
1439 				    ("SIOCSIFFLAGS: starting up"));
1440 				cpswp_init_locked(sc);
1441 			}
1442 		} else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1443 			CPSW_DEBUGF(sc->swsc, ("SIOCSIFFLAGS: shutting down"));
1444 			cpswp_stop_locked(sc);
1445 		}
1446 
1447 		sc->if_flags = if_getflags(ifp);
1448 		CPSW_PORT_UNLOCK(sc);
1449 		break;
1450 	case SIOCADDMULTI:
1451 		cpswp_ale_update_addresses(sc, 0);
1452 		break;
1453 	case SIOCDELMULTI:
1454 		/* Ugh.  DELMULTI doesn't provide the specific address
1455 		   being removed, so the best we can do is remove
1456 		   everything and rebuild it all. */
1457 		cpswp_ale_update_addresses(sc, 1);
1458 		break;
1459 	case SIOCGIFMEDIA:
1460 	case SIOCSIFMEDIA:
1461 		error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
1462 		break;
1463 	default:
1464 		error = ether_ioctl(ifp, command, data);
1465 	}
1466 	return (error);
1467 }
1468 
1469 /*
1470  *
1471  * MIIBUS
1472  *
1473  */
1474 static int
1475 cpswp_miibus_ready(struct cpsw_softc *sc, uint32_t reg)
1476 {
1477 	uint32_t r, retries = CPSW_MIIBUS_RETRIES;
1478 
1479 	while (--retries) {
1480 		r = cpsw_read_4(sc, reg);
1481 		if ((r & MDIO_PHYACCESS_GO) == 0)
1482 			return (1);
1483 		DELAY(CPSW_MIIBUS_DELAY);
1484 	}
1485 
1486 	return (0);
1487 }
1488 
1489 static int
1490 cpswp_miibus_readreg(device_t dev, int phy, int reg)
1491 {
1492 	struct cpswp_softc *sc;
1493 	uint32_t cmd, r;
1494 
1495 	sc = device_get_softc(dev);
1496 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1497 		device_printf(dev, "MDIO not ready to read\n");
1498 		return (0);
1499 	}
1500 
1501 	/* Set GO, reg, phy */
1502 	cmd = MDIO_PHYACCESS_GO | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
1503 	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1504 
1505 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1506 		device_printf(dev, "MDIO timed out during read\n");
1507 		return (0);
1508 	}
1509 
1510 	r = cpsw_read_4(sc->swsc, sc->phyaccess);
1511 	if ((r & MDIO_PHYACCESS_ACK) == 0) {
1512 		device_printf(dev, "Failed to read from PHY.\n");
1513 		r = 0;
1514 	}
1515 	return (r & 0xFFFF);
1516 }
1517 
1518 static int
1519 cpswp_miibus_writereg(device_t dev, int phy, int reg, int value)
1520 {
1521 	struct cpswp_softc *sc;
1522 	uint32_t cmd;
1523 
1524 	sc = device_get_softc(dev);
1525 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1526 		device_printf(dev, "MDIO not ready to write\n");
1527 		return (0);
1528 	}
1529 
1530 	/* Set GO, WRITE, reg, phy, and value */
1531 	cmd = MDIO_PHYACCESS_GO | MDIO_PHYACCESS_WRITE |
1532 	    (reg & 0x1F) << 21 | (phy & 0x1F) << 16 | (value & 0xFFFF);
1533 	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1534 
1535 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1536 		device_printf(dev, "MDIO timed out during write\n");
1537 		return (0);
1538 	}
1539 
1540 	return (0);
1541 }
1542 
1543 static void
1544 cpswp_miibus_statchg(device_t dev)
1545 {
1546 	struct cpswp_softc *sc;
1547 	uint32_t mac_control, reg;
1548 
1549 	sc = device_get_softc(dev);
1550 	CPSW_DEBUGF(sc->swsc, (""));
1551 
1552 	reg = CPSW_SL_MACCONTROL(sc->unit);
1553 	mac_control = cpsw_read_4(sc->swsc, reg);
1554 	mac_control &= ~(CPSW_SL_MACTL_GIG | CPSW_SL_MACTL_IFCTL_A |
1555 	    CPSW_SL_MACTL_IFCTL_B | CPSW_SL_MACTL_FULLDUPLEX);
1556 
1557 	switch(IFM_SUBTYPE(sc->mii->mii_media_active)) {
1558 	case IFM_1000_SX:
1559 	case IFM_1000_LX:
1560 	case IFM_1000_CX:
1561 	case IFM_1000_T:
1562 		mac_control |= CPSW_SL_MACTL_GIG;
1563 		break;
1564 
1565 	case IFM_100_TX:
1566 		mac_control |= CPSW_SL_MACTL_IFCTL_A;
1567 		break;
1568 	}
1569 	if (sc->mii->mii_media_active & IFM_FDX)
1570 		mac_control |= CPSW_SL_MACTL_FULLDUPLEX;
1571 
1572 	cpsw_write_4(sc->swsc, reg, mac_control);
1573 }
1574 
1575 /*
1576  *
1577  * Transmit/Receive Packets.
1578  *
1579  */
1580 static void
1581 cpsw_intr_rx(void *arg)
1582 {
1583 	struct cpsw_softc *sc;
1584 	if_t ifp;
1585 	struct mbuf *received, *next;
1586 
1587 	sc = (struct cpsw_softc *)arg;
1588 	CPSW_RX_LOCK(sc);
1589 	if (sc->rx.teardown) {
1590 		sc->rx.running = 0;
1591 		sc->rx.teardown = 0;
1592 		cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
1593 	}
1594 	received = cpsw_rx_dequeue(sc);
1595 	cpsw_rx_enqueue(sc);
1596 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
1597 	CPSW_RX_UNLOCK(sc);
1598 
1599 	while (received != NULL) {
1600 		next = received->m_nextpkt;
1601 		received->m_nextpkt = NULL;
1602 		ifp = received->m_pkthdr.rcvif;
1603 		if_input(ifp, received);
1604 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1605 		received = next;
1606 	}
1607 }
1608 
1609 static struct mbuf *
1610 cpsw_rx_dequeue(struct cpsw_softc *sc)
1611 {
1612 	int nsegs, port, removed;
1613 	struct cpsw_cpdma_bd bd;
1614 	struct cpsw_slot *last, *slot;
1615 	struct cpswp_softc *psc;
1616 	struct mbuf *m, *m0, *mb_head, *mb_tail;
1617 	uint16_t m0_flags;
1618 
1619 	nsegs = 0;
1620 	m0 = NULL;
1621 	last = NULL;
1622 	mb_head = NULL;
1623 	mb_tail = NULL;
1624 	removed = 0;
1625 
1626 	/* Pull completed packets off hardware RX queue. */
1627 	while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
1628 		cpsw_cpdma_read_bd(sc, slot, &bd);
1629 
1630 		/*
1631 		 * Stop on packets still in use by hardware, but do not stop
1632 		 * on packets with the teardown complete flag, they will be
1633 		 * discarded later.
1634 		 */
1635 		if ((bd.flags & (CPDMA_BD_OWNER | CPDMA_BD_TDOWNCMPLT)) ==
1636 		    CPDMA_BD_OWNER)
1637 			break;
1638 
1639 		last = slot;
1640 		++removed;
1641 		STAILQ_REMOVE_HEAD(&sc->rx.active, next);
1642 		STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
1643 
1644 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
1645 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1646 
1647 		m = slot->mbuf;
1648 		slot->mbuf = NULL;
1649 
1650 		if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
1651 			CPSW_DEBUGF(sc, ("RX teardown is complete"));
1652 			m_freem(m);
1653 			sc->rx.running = 0;
1654 			sc->rx.teardown = 0;
1655 			break;
1656 		}
1657 
1658 		port = (bd.flags & CPDMA_BD_PORT_MASK) - 1;
1659 		KASSERT(port >= 0 && port <= 1,
1660 		    ("patcket received with invalid port: %d", port));
1661 		psc = device_get_softc(sc->port[port].dev);
1662 
1663 		/* Set up mbuf */
1664 		m->m_data += bd.bufoff;
1665 		m->m_len = bd.buflen;
1666 		if (bd.flags & CPDMA_BD_SOP) {
1667 			m->m_pkthdr.len = bd.pktlen;
1668 			m->m_pkthdr.rcvif = psc->ifp;
1669 			m->m_flags |= M_PKTHDR;
1670 			m0_flags = bd.flags;
1671 			m0 = m;
1672 		}
1673 		nsegs++;
1674 		m->m_next = NULL;
1675 		m->m_nextpkt = NULL;
1676 		if (bd.flags & CPDMA_BD_EOP && m0 != NULL) {
1677 			if (m0_flags & CPDMA_BD_PASS_CRC)
1678 				m_adj(m0, -ETHER_CRC_LEN);
1679 			m0_flags = 0;
1680 			m0 = NULL;
1681 			if (nsegs > sc->rx.longest_chain)
1682 				sc->rx.longest_chain = nsegs;
1683 			nsegs = 0;
1684 		}
1685 
1686 		if ((if_getcapenable(psc->ifp) & IFCAP_RXCSUM) != 0) {
1687 			/* check for valid CRC by looking into pkt_err[5:4] */
1688 			if ((bd.flags &
1689 			    (CPDMA_BD_SOP | CPDMA_BD_PKT_ERR_MASK)) ==
1690 			    CPDMA_BD_SOP) {
1691 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1692 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1693 				m->m_pkthdr.csum_data = 0xffff;
1694 			}
1695 		}
1696 
1697 		if (STAILQ_FIRST(&sc->rx.active) != NULL &&
1698 		    (bd.flags & (CPDMA_BD_EOP | CPDMA_BD_EOQ)) ==
1699 		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
1700 			cpsw_write_hdp_slot(sc, &sc->rx,
1701 			    STAILQ_FIRST(&sc->rx.active));
1702 			sc->rx.queue_restart++;
1703 		}
1704 
1705 		/* Add mbuf to packet list to be returned. */
1706 		if (mb_tail != NULL && (bd.flags & CPDMA_BD_SOP)) {
1707 			mb_tail->m_nextpkt = m;
1708 		} else if (mb_tail != NULL) {
1709 			mb_tail->m_next = m;
1710 		} else if (mb_tail == NULL && (bd.flags & CPDMA_BD_SOP) == 0) {
1711 			if (bootverbose)
1712 				printf(
1713 				    "%s: %s: discanding fragment packet w/o header\n",
1714 				    __func__, if_name(psc->ifp));
1715 			m_freem(m);
1716 			continue;
1717 		} else {
1718 			mb_head = m;
1719 		}
1720 		mb_tail = m;
1721 	}
1722 
1723 	if (removed != 0) {
1724 		cpsw_write_cp_slot(sc, &sc->rx, last);
1725 		sc->rx.queue_removes += removed;
1726 		sc->rx.avail_queue_len += removed;
1727 		sc->rx.active_queue_len -= removed;
1728 		if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
1729 			sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
1730 		CPSW_DEBUGF(sc, ("Removed %d received packet(s) from RX queue", removed));
1731 	}
1732 
1733 	return (mb_head);
1734 }
1735 
1736 static void
1737 cpsw_rx_enqueue(struct cpsw_softc *sc)
1738 {
1739 	bus_dma_segment_t seg[1];
1740 	struct cpsw_cpdma_bd bd;
1741 	struct cpsw_slot *first_new_slot, *last_old_slot, *next, *slot;
1742 	int error, nsegs, added = 0;
1743 
1744 	/* Register new mbufs with hardware. */
1745 	first_new_slot = NULL;
1746 	last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
1747 	while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
1748 		if (first_new_slot == NULL)
1749 			first_new_slot = slot;
1750 		if (slot->mbuf == NULL) {
1751 			slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1752 			if (slot->mbuf == NULL) {
1753 				device_printf(sc->dev,
1754 				    "Unable to fill RX queue\n");
1755 				break;
1756 			}
1757 			slot->mbuf->m_len =
1758 			    slot->mbuf->m_pkthdr.len =
1759 			    slot->mbuf->m_ext.ext_size;
1760 		}
1761 
1762 		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1763 		    slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
1764 
1765 		KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
1766 		KASSERT(error == 0, ("DMA error (error=%d)", error));
1767 		if (error != 0 || nsegs != 1) {
1768 			device_printf(sc->dev,
1769 			    "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
1770 			    __func__, nsegs, error);
1771 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1772 			m_freem(slot->mbuf);
1773 			slot->mbuf = NULL;
1774 			break;
1775 		}
1776 
1777 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
1778 
1779 		/* Create and submit new rx descriptor. */
1780 		if ((next = STAILQ_NEXT(slot, next)) != NULL)
1781 			bd.next = cpsw_cpdma_bd_paddr(sc, next);
1782 		else
1783 			bd.next = 0;
1784 		bd.bufptr = seg->ds_addr;
1785 		bd.bufoff = 0;
1786 		bd.buflen = MCLBYTES - 1;
1787 		bd.pktlen = bd.buflen;
1788 		bd.flags = CPDMA_BD_OWNER;
1789 		cpsw_cpdma_write_bd(sc, slot, &bd);
1790 		++added;
1791 
1792 		STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
1793 		STAILQ_INSERT_TAIL(&sc->rx.active, slot, next);
1794 	}
1795 
1796 	if (added == 0 || first_new_slot == NULL)
1797 		return;
1798 
1799 	CPSW_DEBUGF(sc, ("Adding %d buffers to RX queue", added));
1800 
1801 	/* Link new entries to hardware RX queue. */
1802 	if (last_old_slot == NULL) {
1803 		/* Start a fresh queue. */
1804 		cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1805 	} else {
1806 		/* Add buffers to end of current queue. */
1807 		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1808 	}
1809 	sc->rx.queue_adds += added;
1810 	sc->rx.avail_queue_len -= added;
1811 	sc->rx.active_queue_len += added;
1812 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), added);
1813 	if (sc->rx.active_queue_len > sc->rx.max_active_queue_len)
1814 		sc->rx.max_active_queue_len = sc->rx.active_queue_len;
1815 }
1816 
1817 static void
1818 cpswp_start(if_t ifp)
1819 {
1820 	struct cpswp_softc *sc;
1821 
1822 	sc = if_getsoftc(ifp);
1823 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
1824 	    sc->swsc->tx.running == 0) {
1825 		return;
1826 	}
1827 	CPSW_TX_LOCK(sc->swsc);
1828 	cpswp_tx_enqueue(sc);
1829 	cpsw_tx_dequeue(sc->swsc);
1830 	CPSW_TX_UNLOCK(sc->swsc);
1831 }
1832 
1833 static void
1834 cpsw_intr_tx(void *arg)
1835 {
1836 	struct cpsw_softc *sc;
1837 
1838 	sc = (struct cpsw_softc *)arg;
1839 	CPSW_TX_LOCK(sc);
1840 	if (cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)) == 0xfffffffc)
1841 		cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1842 	cpsw_tx_dequeue(sc);
1843 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 2);
1844 	CPSW_TX_UNLOCK(sc);
1845 }
1846 
1847 static void
1848 cpswp_tx_enqueue(struct cpswp_softc *sc)
1849 {
1850 	bus_dma_segment_t segs[CPSW_TXFRAGS];
1851 	struct cpsw_cpdma_bd bd;
1852 	struct cpsw_slot *first_new_slot, *last, *last_old_slot, *next, *slot;
1853 	struct mbuf *m0;
1854 	int error, nsegs, seg, added = 0, padlen;
1855 
1856 	/* Pull pending packets from IF queue and prep them for DMA. */
1857 	last = NULL;
1858 	first_new_slot = NULL;
1859 	last_old_slot = STAILQ_LAST(&sc->swsc->tx.active, cpsw_slot, next);
1860 	while ((slot = STAILQ_FIRST(&sc->swsc->tx.avail)) != NULL) {
1861 		m0 = if_dequeue(sc->ifp);
1862 		if (m0 == NULL)
1863 			break;
1864 
1865 		slot->mbuf = m0;
1866 		padlen = ETHER_MIN_LEN - ETHER_CRC_LEN - m0->m_pkthdr.len;
1867 		if (padlen < 0)
1868 			padlen = 0;
1869 		else if (padlen > 0)
1870 			m_append(slot->mbuf, padlen, sc->swsc->nullpad);
1871 
1872 		/* Create mapping in DMA memory */
1873 		error = bus_dmamap_load_mbuf_sg(sc->swsc->mbuf_dtag,
1874 		    slot->dmamap, slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1875 		/* If the packet is too fragmented, try to simplify. */
1876 		if (error == EFBIG ||
1877 		    (error == 0 && nsegs > sc->swsc->tx.avail_queue_len)) {
1878 			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1879 			m0 = m_defrag(slot->mbuf, M_NOWAIT);
1880 			if (m0 == NULL) {
1881 				device_printf(sc->dev,
1882 				    "Can't defragment packet; dropping\n");
1883 				m_freem(slot->mbuf);
1884 			} else {
1885 				CPSW_DEBUGF(sc->swsc,
1886 				    ("Requeueing defragmented packet"));
1887 				if_sendq_prepend(sc->ifp, m0);
1888 			}
1889 			slot->mbuf = NULL;
1890 			continue;
1891 		}
1892 		if (error != 0) {
1893 			device_printf(sc->dev,
1894 			    "%s: Can't setup DMA (error=%d), dropping packet\n",
1895 			    __func__, error);
1896 			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1897 			m_freem(slot->mbuf);
1898 			slot->mbuf = NULL;
1899 			break;
1900 		}
1901 
1902 		bus_dmamap_sync(sc->swsc->mbuf_dtag, slot->dmamap,
1903 				BUS_DMASYNC_PREWRITE);
1904 
1905 		CPSW_DEBUGF(sc->swsc,
1906 		    ("Queueing TX packet: %d segments + %d pad bytes",
1907 		    nsegs, padlen));
1908 
1909 		if (first_new_slot == NULL)
1910 			first_new_slot = slot;
1911 
1912 		/* Link from the previous descriptor. */
1913 		if (last != NULL)
1914 			cpsw_cpdma_write_bd_next(sc->swsc, last, slot);
1915 
1916 		slot->ifp = sc->ifp;
1917 
1918 		/* If there is only one segment, the for() loop
1919 		 * gets skipped and the single buffer gets set up
1920 		 * as both SOP and EOP. */
1921 		if (nsegs > 1) {
1922 			next = STAILQ_NEXT(slot, next);
1923 			bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1924 		} else
1925 			bd.next = 0;
1926 		/* Start by setting up the first buffer. */
1927 		bd.bufptr = segs[0].ds_addr;
1928 		bd.bufoff = 0;
1929 		bd.buflen = segs[0].ds_len;
1930 		bd.pktlen = m_length(slot->mbuf, NULL);
1931 		bd.flags =  CPDMA_BD_SOP | CPDMA_BD_OWNER;
1932 		if (sc->swsc->dualemac) {
1933 			bd.flags |= CPDMA_BD_TO_PORT;
1934 			bd.flags |= ((sc->unit + 1) & CPDMA_BD_PORT_MASK);
1935 		}
1936 		for (seg = 1; seg < nsegs; ++seg) {
1937 			/* Save the previous buffer (which isn't EOP) */
1938 			cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1939 			STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1940 			STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1941 			slot = STAILQ_FIRST(&sc->swsc->tx.avail);
1942 
1943 			/* Setup next buffer (which isn't SOP) */
1944 			if (nsegs > seg + 1) {
1945 				next = STAILQ_NEXT(slot, next);
1946 				bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1947 			} else
1948 				bd.next = 0;
1949 			bd.bufptr = segs[seg].ds_addr;
1950 			bd.bufoff = 0;
1951 			bd.buflen = segs[seg].ds_len;
1952 			bd.pktlen = 0;
1953 			bd.flags = CPDMA_BD_OWNER;
1954 		}
1955 
1956 		/* Save the final buffer. */
1957 		bd.flags |= CPDMA_BD_EOP;
1958 		cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1959 		STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1960 		STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1961 
1962 		last = slot;
1963 		added += nsegs;
1964 		if (nsegs > sc->swsc->tx.longest_chain)
1965 			sc->swsc->tx.longest_chain = nsegs;
1966 
1967 		BPF_MTAP(sc->ifp, m0);
1968 	}
1969 
1970 	if (first_new_slot == NULL)
1971 		return;
1972 
1973 	/* Attach the list of new buffers to the hardware TX queue. */
1974 	if (last_old_slot != NULL &&
1975 	    (cpsw_cpdma_read_bd_flags(sc->swsc, last_old_slot) &
1976 	     CPDMA_BD_EOQ) == 0) {
1977 		/* Add buffers to end of current queue. */
1978 		cpsw_cpdma_write_bd_next(sc->swsc, last_old_slot,
1979 		    first_new_slot);
1980 	} else {
1981 		/* Start a fresh queue. */
1982 		cpsw_write_hdp_slot(sc->swsc, &sc->swsc->tx, first_new_slot);
1983 	}
1984 	sc->swsc->tx.queue_adds += added;
1985 	sc->swsc->tx.avail_queue_len -= added;
1986 	sc->swsc->tx.active_queue_len += added;
1987 	if (sc->swsc->tx.active_queue_len > sc->swsc->tx.max_active_queue_len) {
1988 		sc->swsc->tx.max_active_queue_len = sc->swsc->tx.active_queue_len;
1989 	}
1990 	CPSW_DEBUGF(sc->swsc, ("Queued %d TX packet(s)", added));
1991 }
1992 
1993 static int
1994 cpsw_tx_dequeue(struct cpsw_softc *sc)
1995 {
1996 	struct cpsw_slot *slot, *last_removed_slot = NULL;
1997 	struct cpsw_cpdma_bd bd;
1998 	uint32_t flags, removed = 0;
1999 
2000 	/* Pull completed buffers off the hardware TX queue. */
2001 	slot = STAILQ_FIRST(&sc->tx.active);
2002 	while (slot != NULL) {
2003 		flags = cpsw_cpdma_read_bd_flags(sc, slot);
2004 
2005 		/* TearDown complete is only marked on the SOP for the packet. */
2006 		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) ==
2007 		    (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) {
2008 			sc->tx.teardown = 1;
2009 		}
2010 
2011 		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_OWNER)) ==
2012 		    (CPDMA_BD_SOP | CPDMA_BD_OWNER) && sc->tx.teardown == 0)
2013 			break; /* Hardware is still using this packet. */
2014 
2015 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
2016 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
2017 		m_freem(slot->mbuf);
2018 		slot->mbuf = NULL;
2019 
2020 		if (slot->ifp) {
2021 			if (sc->tx.teardown == 0)
2022 				if_inc_counter(slot->ifp, IFCOUNTER_OPACKETS, 1);
2023 			else
2024 				if_inc_counter(slot->ifp, IFCOUNTER_OQDROPS, 1);
2025 		}
2026 
2027 		/* Dequeue any additional buffers used by this packet. */
2028 		while (slot != NULL && slot->mbuf == NULL) {
2029 			STAILQ_REMOVE_HEAD(&sc->tx.active, next);
2030 			STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
2031 			++removed;
2032 			last_removed_slot = slot;
2033 			slot = STAILQ_FIRST(&sc->tx.active);
2034 		}
2035 
2036 		cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
2037 
2038 		/* Restart the TX queue if necessary. */
2039 		cpsw_cpdma_read_bd(sc, last_removed_slot, &bd);
2040 		if (slot != NULL && bd.next != 0 && (bd.flags &
2041 		    (CPDMA_BD_EOP | CPDMA_BD_OWNER | CPDMA_BD_EOQ)) ==
2042 		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
2043 			cpsw_write_hdp_slot(sc, &sc->tx, slot);
2044 			sc->tx.queue_restart++;
2045 			break;
2046 		}
2047 	}
2048 
2049 	if (removed != 0) {
2050 		sc->tx.queue_removes += removed;
2051 		sc->tx.active_queue_len -= removed;
2052 		sc->tx.avail_queue_len += removed;
2053 		if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
2054 			sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
2055 		CPSW_DEBUGF(sc, ("TX removed %d completed packet(s)", removed));
2056 	}
2057 
2058 	if (sc->tx.teardown && STAILQ_EMPTY(&sc->tx.active)) {
2059 		CPSW_DEBUGF(sc, ("TX teardown is complete"));
2060 		sc->tx.teardown = 0;
2061 		sc->tx.running = 0;
2062 	}
2063 
2064 	return (removed);
2065 }
2066 
2067 /*
2068  *
2069  * Miscellaneous interrupts.
2070  *
2071  */
2072 
2073 static void
2074 cpsw_intr_rx_thresh(void *arg)
2075 {
2076 	struct cpsw_softc *sc;
2077 	if_t ifp;
2078 	struct mbuf *received, *next;
2079 
2080 	sc = (struct cpsw_softc *)arg;
2081 	CPSW_RX_LOCK(sc);
2082 	received = cpsw_rx_dequeue(sc);
2083 	cpsw_rx_enqueue(sc);
2084 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
2085 	CPSW_RX_UNLOCK(sc);
2086 
2087 	while (received != NULL) {
2088 		next = received->m_nextpkt;
2089 		received->m_nextpkt = NULL;
2090 		ifp = received->m_pkthdr.rcvif;
2091 		if_input(ifp, received);
2092 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2093 		received = next;
2094 	}
2095 }
2096 
2097 static void
2098 cpsw_intr_misc_host_error(struct cpsw_softc *sc)
2099 {
2100 	uint32_t intstat;
2101 	uint32_t dmastat;
2102 	int txerr, rxerr, txchan, rxchan;
2103 
2104 	printf("\n\n");
2105 	device_printf(sc->dev,
2106 	    "HOST ERROR:  PROGRAMMING ERROR DETECTED BY HARDWARE\n");
2107 	printf("\n\n");
2108 	intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
2109 	device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
2110 	dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
2111 	device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
2112 
2113 	txerr = (dmastat >> 20) & 15;
2114 	txchan = (dmastat >> 16) & 7;
2115 	rxerr = (dmastat >> 12) & 15;
2116 	rxchan = (dmastat >> 8) & 7;
2117 
2118 	switch (txerr) {
2119 	case 0: break;
2120 	case 1:	printf("SOP error on TX channel %d\n", txchan);
2121 		break;
2122 	case 2:	printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
2123 		break;
2124 	case 3:	printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
2125 		break;
2126 	case 4:	printf("Zero Buffer Pointer on TX channel %d\n", txchan);
2127 		break;
2128 	case 5:	printf("Zero Buffer Length on TX channel %d\n", txchan);
2129 		break;
2130 	case 6:	printf("Packet length error on TX channel %d\n", txchan);
2131 		break;
2132 	default: printf("Unknown error on TX channel %d\n", txchan);
2133 		break;
2134 	}
2135 
2136 	if (txerr != 0) {
2137 		printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
2138 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
2139 		printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
2140 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
2141 		cpsw_dump_queue(sc, &sc->tx.active);
2142 	}
2143 
2144 	switch (rxerr) {
2145 	case 0: break;
2146 	case 2:	printf("Ownership bit not set on RX channel %d\n", rxchan);
2147 		break;
2148 	case 4:	printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
2149 		break;
2150 	case 5:	printf("Zero Buffer Length on RX channel %d\n", rxchan);
2151 		break;
2152 	case 6:	printf("Buffer offset too big on RX channel %d\n", rxchan);
2153 		break;
2154 	default: printf("Unknown RX error on RX channel %d\n", rxchan);
2155 		break;
2156 	}
2157 
2158 	if (rxerr != 0) {
2159 		printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
2160 		    rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
2161 		printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
2162 		    rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
2163 		cpsw_dump_queue(sc, &sc->rx.active);
2164 	}
2165 
2166 	printf("\nALE Table\n");
2167 	cpsw_ale_dump_table(sc);
2168 
2169 	// XXX do something useful here??
2170 	panic("CPSW HOST ERROR INTERRUPT");
2171 
2172 	// Suppress this interrupt in the future.
2173 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
2174 	printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
2175 	// The watchdog will probably reset the controller
2176 	// in a little while.  It will probably fail again.
2177 }
2178 
2179 static void
2180 cpsw_intr_misc(void *arg)
2181 {
2182 	struct cpsw_softc *sc = arg;
2183 	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
2184 
2185 	if (stat & CPSW_WR_C_MISC_EVNT_PEND)
2186 		CPSW_DEBUGF(sc, ("Time sync event interrupt unimplemented"));
2187 	if (stat & CPSW_WR_C_MISC_STAT_PEND)
2188 		cpsw_stats_collect(sc);
2189 	if (stat & CPSW_WR_C_MISC_HOST_PEND)
2190 		cpsw_intr_misc_host_error(sc);
2191 	if (stat & CPSW_WR_C_MISC_MDIOLINK) {
2192 		cpsw_write_4(sc, MDIOLINKINTMASKED,
2193 		    cpsw_read_4(sc, MDIOLINKINTMASKED));
2194 	}
2195 	if (stat & CPSW_WR_C_MISC_MDIOUSER) {
2196 		CPSW_DEBUGF(sc,
2197 		    ("MDIO operation completed interrupt unimplemented"));
2198 	}
2199 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
2200 }
2201 
2202 /*
2203  *
2204  * Periodic Checks and Watchdog.
2205  *
2206  */
2207 
2208 static void
2209 cpswp_tick(void *msc)
2210 {
2211 	struct cpswp_softc *sc = msc;
2212 
2213 	/* Check for media type change */
2214 	mii_tick(sc->mii);
2215 	if (sc->media_status != sc->mii->mii_media.ifm_media) {
2216 		printf("%s: media type changed (ifm_media=%x)\n", __func__,
2217 			sc->mii->mii_media.ifm_media);
2218 		cpswp_ifmedia_upd(sc->ifp);
2219 	}
2220 
2221 	/* Schedule another timeout one second from now */
2222 	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
2223 }
2224 
2225 static void
2226 cpswp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2227 {
2228 	struct cpswp_softc *sc;
2229 	struct mii_data *mii;
2230 
2231 	sc = if_getsoftc(ifp);
2232 	CPSW_DEBUGF(sc->swsc, (""));
2233 	CPSW_PORT_LOCK(sc);
2234 
2235 	mii = sc->mii;
2236 	mii_pollstat(mii);
2237 
2238 	ifmr->ifm_active = mii->mii_media_active;
2239 	ifmr->ifm_status = mii->mii_media_status;
2240 	CPSW_PORT_UNLOCK(sc);
2241 }
2242 
2243 static int
2244 cpswp_ifmedia_upd(if_t ifp)
2245 {
2246 	struct cpswp_softc *sc;
2247 
2248 	sc = if_getsoftc(ifp);
2249 	CPSW_DEBUGF(sc->swsc, (""));
2250 	CPSW_PORT_LOCK(sc);
2251 	mii_mediachg(sc->mii);
2252 	sc->media_status = sc->mii->mii_media.ifm_media;
2253 	CPSW_PORT_UNLOCK(sc);
2254 
2255 	return (0);
2256 }
2257 
2258 static void
2259 cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
2260 {
2261 	struct cpswp_softc *psc;
2262 	int i;
2263 
2264 	cpsw_debugf_head("CPSW watchdog");
2265 	device_printf(sc->dev, "watchdog timeout\n");
2266 	printf("CPSW_CPDMA_TX%d_HDP=0x%x\n", 0,
2267 	    cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(0)));
2268 	printf("CPSW_CPDMA_TX%d_CP=0x%x\n", 0,
2269 	    cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)));
2270 	cpsw_dump_queue(sc, &sc->tx.active);
2271 	for (i = 0; i < CPSW_PORTS; i++) {
2272 		if (!sc->dualemac && i != sc->active_slave)
2273 			continue;
2274 		psc = device_get_softc(sc->port[i].dev);
2275 		CPSW_PORT_LOCK(psc);
2276 		cpswp_stop_locked(psc);
2277 		CPSW_PORT_UNLOCK(psc);
2278 	}
2279 }
2280 
2281 static void
2282 cpsw_tx_watchdog(void *msc)
2283 {
2284 	struct cpsw_softc *sc;
2285 
2286 	sc = msc;
2287 	CPSW_TX_LOCK(sc);
2288 	if (sc->tx.active_queue_len == 0 || !sc->tx.running) {
2289 		sc->watchdog.timer = 0; /* Nothing to do. */
2290 	} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
2291 		sc->watchdog.timer = 0;  /* Stuff done while we weren't looking. */
2292 	} else if (cpsw_tx_dequeue(sc) > 0) {
2293 		sc->watchdog.timer = 0;  /* We just did something. */
2294 	} else {
2295 		/* There was something to do but it didn't get done. */
2296 		++sc->watchdog.timer;
2297 		if (sc->watchdog.timer > 5) {
2298 			sc->watchdog.timer = 0;
2299 			++sc->watchdog.resets;
2300 			cpsw_tx_watchdog_full_reset(sc);
2301 		}
2302 	}
2303 	sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
2304 	CPSW_TX_UNLOCK(sc);
2305 
2306 	/* Schedule another timeout one second from now */
2307 	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
2308 }
2309 
2310 /*
2311  *
2312  * ALE support routines.
2313  *
2314  */
2315 
2316 static void
2317 cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2318 {
2319 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
2320 	ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
2321 	ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
2322 	ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
2323 }
2324 
2325 static void
2326 cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2327 {
2328 	cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
2329 	cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
2330 	cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
2331 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
2332 }
2333 
2334 static void
2335 cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
2336 {
2337 	int i;
2338 	uint32_t ale_entry[3];
2339 
2340 	/* First four entries are link address and broadcast. */
2341 	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2342 		cpsw_ale_read_entry(sc, i, ale_entry);
2343 		if ((ALE_TYPE(ale_entry) == ALE_TYPE_ADDR ||
2344 		    ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR) &&
2345 		    ALE_MCAST(ale_entry)  == 1) { /* MCast link addr */
2346 			ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2347 			cpsw_ale_write_entry(sc, i, ale_entry);
2348 		}
2349 	}
2350 }
2351 
2352 static int
2353 cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, int vlan,
2354 	uint8_t *mac)
2355 {
2356 	int free_index = -1, matching_index = -1, i;
2357 	uint32_t ale_entry[3], ale_type;
2358 
2359 	/* Find a matching entry or a free entry. */
2360 	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2361 		cpsw_ale_read_entry(sc, i, ale_entry);
2362 
2363 		/* Entry Type[61:60] is 0 for free entry */
2364 		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2365 			free_index = i;
2366 
2367 		if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
2368 		    (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
2369 		    (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
2370 		    (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
2371 		    (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
2372 		    (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
2373 			matching_index = i;
2374 			break;
2375 		}
2376 	}
2377 
2378 	if (matching_index < 0) {
2379 		if (free_index < 0)
2380 			return (ENOMEM);
2381 		i = free_index;
2382 	}
2383 
2384 	if (vlan != -1)
2385 		ale_type = ALE_TYPE_VLAN_ADDR << 28 | vlan << 16;
2386 	else
2387 		ale_type = ALE_TYPE_ADDR << 28;
2388 
2389 	/* Set MAC address */
2390 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2391 	ale_entry[1] = mac[0] << 8 | mac[1];
2392 
2393 	/* Entry type[61:60] and Mcast fwd state[63:62] is fw(3). */
2394 	ale_entry[1] |= ALE_MCAST_FWD | ale_type;
2395 
2396 	/* Set portmask [68:66] */
2397 	ale_entry[2] = (portmap & 7) << 2;
2398 
2399 	cpsw_ale_write_entry(sc, i, ale_entry);
2400 
2401 	return 0;
2402 }
2403 
2404 static void
2405 cpsw_ale_dump_table(struct cpsw_softc *sc) {
2406 	int i;
2407 	uint32_t ale_entry[3];
2408 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2409 		cpsw_ale_read_entry(sc, i, ale_entry);
2410 		switch (ALE_TYPE(ale_entry)) {
2411 		case ALE_TYPE_VLAN:
2412 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2413 				ale_entry[1], ale_entry[0]);
2414 			printf("type: %u ", ALE_TYPE(ale_entry));
2415 			printf("vlan: %u ", ALE_VLAN(ale_entry));
2416 			printf("untag: %u ", ALE_VLAN_UNTAG(ale_entry));
2417 			printf("reg flood: %u ", ALE_VLAN_REGFLOOD(ale_entry));
2418 			printf("unreg flood: %u ", ALE_VLAN_UNREGFLOOD(ale_entry));
2419 			printf("members: %u ", ALE_VLAN_MEMBERS(ale_entry));
2420 			printf("\n");
2421 			break;
2422 		case ALE_TYPE_ADDR:
2423 		case ALE_TYPE_VLAN_ADDR:
2424 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2425 				ale_entry[1], ale_entry[0]);
2426 			printf("type: %u ", ALE_TYPE(ale_entry));
2427 			printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
2428 				(ale_entry[1] >> 8) & 0xFF,
2429 				(ale_entry[1] >> 0) & 0xFF,
2430 				(ale_entry[0] >>24) & 0xFF,
2431 				(ale_entry[0] >>16) & 0xFF,
2432 				(ale_entry[0] >> 8) & 0xFF,
2433 				(ale_entry[0] >> 0) & 0xFF);
2434 			printf(ALE_MCAST(ale_entry) ? "mcast " : "ucast ");
2435 			if (ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR)
2436 				printf("vlan: %u ", ALE_VLAN(ale_entry));
2437 			printf("port: %u ", ALE_PORTS(ale_entry));
2438 			printf("\n");
2439 			break;
2440 		}
2441 	}
2442 	printf("\n");
2443 }
2444 
2445 static u_int
2446 cpswp_set_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2447 {
2448 	struct cpswp_softc *sc = arg;
2449 	uint32_t portmask;
2450 
2451 	if (sc->swsc->dualemac)
2452 		portmask = 1 << (sc->unit + 1) | 1 << 0;
2453 	else
2454 		portmask = 7;
2455 
2456 	cpsw_ale_mc_entry_set(sc->swsc, portmask, sc->vlan, LLADDR(sdl));
2457 
2458 	return (1);
2459 }
2460 
2461 static int
2462 cpswp_ale_update_addresses(struct cpswp_softc *sc, int purge)
2463 {
2464 	uint8_t *mac;
2465 	uint32_t ale_entry[3], ale_type, portmask;
2466 
2467 	if (sc->swsc->dualemac) {
2468 		ale_type = ALE_TYPE_VLAN_ADDR << 28 | sc->vlan << 16;
2469 		portmask = 1 << (sc->unit + 1) | 1 << 0;
2470 	} else {
2471 		ale_type = ALE_TYPE_ADDR << 28;
2472 		portmask = 7;
2473 	}
2474 
2475 	/*
2476 	 * Route incoming packets for our MAC address to Port 0 (host).
2477 	 * For simplicity, keep this entry at table index 0 for port 1 and
2478 	 * at index 2 for port 2 in the ALE.
2479 	 */
2480 	mac = LLADDR((struct sockaddr_dl *)if_getifaddr(sc->ifp)->ifa_addr);
2481 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2482 	ale_entry[1] = ale_type | mac[0] << 8 | mac[1]; /* addr entry + mac */
2483 	ale_entry[2] = 0; /* port = 0 */
2484 	cpsw_ale_write_entry(sc->swsc, 0 + 2 * sc->unit, ale_entry);
2485 
2486 	/* Set outgoing MAC Address for slave port. */
2487 	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_HI(sc->unit + 1),
2488 	    mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
2489 	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_LO(sc->unit + 1),
2490 	    mac[5] << 8 | mac[4]);
2491 
2492 	/* Keep the broadcast address at table entry 1 (or 3). */
2493 	ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
2494 	/* ALE_MCAST_FWD, Addr type, upper 16 bits of Mac */
2495 	ale_entry[1] = ALE_MCAST_FWD | ale_type | 0xffff;
2496 	ale_entry[2] = portmask << 2;
2497 	cpsw_ale_write_entry(sc->swsc, 1 + 2 * sc->unit, ale_entry);
2498 
2499 	/* SIOCDELMULTI doesn't specify the particular address
2500 	   being removed, so we have to remove all and rebuild. */
2501 	if (purge)
2502 		cpsw_ale_remove_all_mc_entries(sc->swsc);
2503 
2504         /* Set other multicast addrs desired. */
2505 	if_foreach_llmaddr(sc->ifp, cpswp_set_maddr, sc);
2506 
2507 	return (0);
2508 }
2509 
2510 static int
2511 cpsw_ale_update_vlan_table(struct cpsw_softc *sc, int vlan, int ports,
2512 	int untag, int mcregflood, int mcunregflood)
2513 {
2514 	int free_index, i, matching_index;
2515 	uint32_t ale_entry[3];
2516 
2517 	free_index = matching_index = -1;
2518 	/* Find a matching entry or a free entry. */
2519 	for (i = 5; i < CPSW_MAX_ALE_ENTRIES; i++) {
2520 		cpsw_ale_read_entry(sc, i, ale_entry);
2521 
2522 		/* Entry Type[61:60] is 0 for free entry */
2523 		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2524 			free_index = i;
2525 
2526 		if (ALE_VLAN(ale_entry) == vlan) {
2527 			matching_index = i;
2528 			break;
2529 		}
2530 	}
2531 
2532 	if (matching_index < 0) {
2533 		if (free_index < 0)
2534 			return (-1);
2535 		i = free_index;
2536 	}
2537 
2538 	ale_entry[0] = (untag & 7) << 24 | (mcregflood & 7) << 16 |
2539 	    (mcunregflood & 7) << 8 | (ports & 7);
2540 	ale_entry[1] = ALE_TYPE_VLAN << 28 | vlan << 16;
2541 	ale_entry[2] = 0;
2542 	cpsw_ale_write_entry(sc, i, ale_entry);
2543 
2544 	return (0);
2545 }
2546 
2547 /*
2548  *
2549  * Statistics and Sysctls.
2550  *
2551  */
2552 
2553 #if 0
2554 static void
2555 cpsw_stats_dump(struct cpsw_softc *sc)
2556 {
2557 	int i;
2558 	uint32_t r;
2559 
2560 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2561 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2562 		    cpsw_stat_sysctls[i].reg);
2563 		CPSW_DEBUGF(sc, ("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
2564 		    (intmax_t)sc->shadow_stats[i], r,
2565 		    (intmax_t)sc->shadow_stats[i] + r));
2566 	}
2567 }
2568 #endif
2569 
2570 static void
2571 cpsw_stats_collect(struct cpsw_softc *sc)
2572 {
2573 	int i;
2574 	uint32_t r;
2575 
2576 	CPSW_DEBUGF(sc, ("Controller shadow statistics updated."));
2577 
2578 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2579 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2580 		    cpsw_stat_sysctls[i].reg);
2581 		sc->shadow_stats[i] += r;
2582 		cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg,
2583 		    r);
2584 	}
2585 }
2586 
2587 static int
2588 cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
2589 {
2590 	struct cpsw_softc *sc;
2591 	struct cpsw_stat *stat;
2592 	uint64_t result;
2593 
2594 	sc = (struct cpsw_softc *)arg1;
2595 	stat = &cpsw_stat_sysctls[oidp->oid_number];
2596 	result = sc->shadow_stats[oidp->oid_number];
2597 	result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
2598 	return (sysctl_handle_64(oidp, &result, 0, req));
2599 }
2600 
2601 static int
2602 cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
2603 {
2604 	struct cpsw_softc *sc;
2605 	struct bintime t;
2606 	unsigned result;
2607 
2608 	sc = (struct cpsw_softc *)arg1;
2609 	getbinuptime(&t);
2610 	bintime_sub(&t, &sc->attach_uptime);
2611 	result = t.sec;
2612 	return (sysctl_handle_int(oidp, &result, 0, req));
2613 }
2614 
2615 static int
2616 cpsw_intr_coalesce(SYSCTL_HANDLER_ARGS)
2617 {
2618 	int error;
2619 	struct cpsw_softc *sc;
2620 	uint32_t ctrl, intr_per_ms;
2621 
2622 	sc = (struct cpsw_softc *)arg1;
2623 	error = sysctl_handle_int(oidp, &sc->coal_us, 0, req);
2624 	if (error != 0 || req->newptr == NULL)
2625 		return (error);
2626 
2627 	ctrl = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
2628 	ctrl &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
2629 	if (sc->coal_us == 0) {
2630 		/* Disable the interrupt pace hardware. */
2631 		cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2632 		cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), 0);
2633 		cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), 0);
2634 		return (0);
2635 	}
2636 
2637 	if (sc->coal_us > CPSW_WR_C_IMAX_US_MAX)
2638 		sc->coal_us = CPSW_WR_C_IMAX_US_MAX;
2639 	if (sc->coal_us < CPSW_WR_C_IMAX_US_MIN)
2640 		sc->coal_us = CPSW_WR_C_IMAX_US_MIN;
2641 	intr_per_ms = 1000 / sc->coal_us;
2642 	/* Just to make sure... */
2643 	if (intr_per_ms > CPSW_WR_C_IMAX_MAX)
2644 		intr_per_ms = CPSW_WR_C_IMAX_MAX;
2645 	if (intr_per_ms < CPSW_WR_C_IMAX_MIN)
2646 		intr_per_ms = CPSW_WR_C_IMAX_MIN;
2647 
2648 	/* Set the prescale to produce 4us pulses from the 125 Mhz clock. */
2649 	ctrl |= (125 * 4) & CPSW_WR_INT_PRESCALE_MASK;
2650 
2651 	/* Enable the interrupt pace hardware. */
2652 	cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), intr_per_ms);
2653 	cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), intr_per_ms);
2654 	ctrl |= CPSW_WR_INT_C0_RX_PULSE | CPSW_WR_INT_C0_TX_PULSE;
2655 	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2656 
2657 	return (0);
2658 }
2659 
2660 static int
2661 cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
2662 {
2663 	struct cpsw_softc *swsc;
2664 	struct cpswp_softc *sc;
2665 	struct bintime t;
2666 	unsigned result;
2667 
2668 	swsc = arg1;
2669 	sc = device_get_softc(swsc->port[arg2].dev);
2670 	if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
2671 		getbinuptime(&t);
2672 		bintime_sub(&t, &sc->init_uptime);
2673 		result = t.sec;
2674 	} else
2675 		result = 0;
2676 	return (sysctl_handle_int(oidp, &result, 0, req));
2677 }
2678 
2679 static void
2680 cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2681 	struct cpsw_queue *queue)
2682 {
2683 	struct sysctl_oid_list *parent;
2684 
2685 	parent = SYSCTL_CHILDREN(node);
2686 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
2687 	    CTLFLAG_RD, &queue->queue_slots, 0,
2688 	    "Total buffers currently assigned to this queue");
2689 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
2690 	    CTLFLAG_RD, &queue->active_queue_len, 0,
2691 	    "Buffers currently registered with hardware controller");
2692 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
2693 	    CTLFLAG_RD, &queue->max_active_queue_len, 0,
2694 	    "Max value of activeBuffers since last driver reset");
2695 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
2696 	    CTLFLAG_RD, &queue->avail_queue_len, 0,
2697 	    "Buffers allocated to this queue but not currently "
2698 	    "registered with hardware controller");
2699 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
2700 	    CTLFLAG_RD, &queue->max_avail_queue_len, 0,
2701 	    "Max value of availBuffers since last driver reset");
2702 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
2703 	    CTLFLAG_RD, &queue->queue_adds, 0,
2704 	    "Total buffers added to queue");
2705 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
2706 	    CTLFLAG_RD, &queue->queue_removes, 0,
2707 	    "Total buffers removed from queue");
2708 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "queueRestart",
2709 	    CTLFLAG_RD, &queue->queue_restart, 0,
2710 	    "Total times the queue has been restarted");
2711 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
2712 	    CTLFLAG_RD, &queue->longest_chain, 0,
2713 	    "Max buffers used for a single packet");
2714 }
2715 
2716 static void
2717 cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2718 	struct cpsw_softc *sc)
2719 {
2720 	struct sysctl_oid_list *parent;
2721 
2722 	parent = SYSCTL_CHILDREN(node);
2723 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
2724 	    CTLFLAG_RD, &sc->watchdog.resets, 0,
2725 	    "Total number of watchdog resets");
2726 }
2727 
2728 static void
2729 cpsw_add_sysctls(struct cpsw_softc *sc)
2730 {
2731 	struct sysctl_ctx_list *ctx;
2732 	struct sysctl_oid *stats_node, *queue_node, *node;
2733 	struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
2734 	struct sysctl_oid_list *ports_parent, *port_parent;
2735 	char port[16];
2736 	int i;
2737 
2738 	ctx = device_get_sysctl_ctx(sc->dev);
2739 	parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
2740 
2741 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "debug",
2742 	    CTLFLAG_RW, &sc->debug, 0, "Enable switch debug messages");
2743 
2744 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
2745 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2746 	    sc, 0, cpsw_stat_attached, "IU",
2747 	    "Time since driver attach");
2748 
2749 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "intr_coalesce_us",
2750 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
2751 	    sc, 0, cpsw_intr_coalesce, "IU",
2752 	    "minimum time between interrupts");
2753 
2754 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "ports",
2755 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Ports Statistics");
2756 	ports_parent = SYSCTL_CHILDREN(node);
2757 	for (i = 0; i < CPSW_PORTS; i++) {
2758 		if (!sc->dualemac && i != sc->active_slave)
2759 			continue;
2760 		port[0] = '0' + i;
2761 		port[1] = '\0';
2762 		node = SYSCTL_ADD_NODE(ctx, ports_parent, OID_AUTO,
2763 		    port, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
2764 		    "CPSW Port Statistics");
2765 		port_parent = SYSCTL_CHILDREN(node);
2766 		SYSCTL_ADD_PROC(ctx, port_parent, OID_AUTO, "uptime",
2767 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, i,
2768 		    cpsw_stat_uptime, "IU", "Seconds since driver init");
2769 	}
2770 
2771 	stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
2772 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Statistics");
2773 	stats_parent = SYSCTL_CHILDREN(stats_node);
2774 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2775 		SYSCTL_ADD_PROC(ctx, stats_parent, i,
2776 				cpsw_stat_sysctls[i].oid,
2777 				CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2778 				sc, 0, cpsw_stats_sysctl, "IU",
2779 				cpsw_stat_sysctls[i].oid);
2780 	}
2781 
2782 	queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
2783 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Queue Statistics");
2784 	queue_parent = SYSCTL_CHILDREN(queue_node);
2785 
2786 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
2787 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Statistics");
2788 	cpsw_add_queue_sysctls(ctx, node, &sc->tx);
2789 
2790 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
2791 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Statistics");
2792 	cpsw_add_queue_sysctls(ctx, node, &sc->rx);
2793 
2794 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
2795 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Watchdog Statistics");
2796 	cpsw_add_watchdog_sysctls(ctx, node, sc);
2797 }
2798 
2799 #ifdef CPSW_ETHERSWITCH
2800 static etherswitch_info_t etherswitch_info = {
2801 	.es_nports =		CPSW_PORTS + 1,
2802 	.es_nvlangroups =	CPSW_VLANS,
2803 	.es_name =		"TI Common Platform Ethernet Switch (CPSW)",
2804 	.es_vlan_caps =		ETHERSWITCH_VLAN_DOT1Q,
2805 };
2806 
2807 static etherswitch_info_t *
2808 cpsw_getinfo(device_t dev)
2809 {
2810 	return (&etherswitch_info);
2811 }
2812 
2813 static int
2814 cpsw_getport(device_t dev, etherswitch_port_t *p)
2815 {
2816 	int err;
2817 	struct cpsw_softc *sc;
2818 	struct cpswp_softc *psc;
2819 	struct ifmediareq *ifmr;
2820 	uint32_t reg;
2821 
2822 	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2823 		return (ENXIO);
2824 
2825 	err = 0;
2826 	sc = device_get_softc(dev);
2827 	if (p->es_port == CPSW_CPU_PORT) {
2828 		p->es_flags |= ETHERSWITCH_PORT_CPU;
2829  		ifmr = &p->es_ifmr;
2830 		ifmr->ifm_current = ifmr->ifm_active =
2831 		    IFM_ETHER | IFM_1000_T | IFM_FDX;
2832 		ifmr->ifm_mask = 0;
2833 		ifmr->ifm_status = IFM_ACTIVE | IFM_AVALID;
2834 		ifmr->ifm_count = 0;
2835 	} else {
2836 		psc = device_get_softc(sc->port[p->es_port - 1].dev);
2837 		err = ifmedia_ioctl(psc->ifp, &p->es_ifr,
2838 		    &psc->mii->mii_media, SIOCGIFMEDIA);
2839 	}
2840 	reg = cpsw_read_4(sc, CPSW_PORT_P_VLAN(p->es_port));
2841 	p->es_pvid = reg & ETHERSWITCH_VID_MASK;
2842 
2843 	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2844 	if (reg & ALE_PORTCTL_DROP_UNTAGGED)
2845 		p->es_flags |= ETHERSWITCH_PORT_DROPUNTAGGED;
2846 	if (reg & ALE_PORTCTL_INGRESS)
2847 		p->es_flags |= ETHERSWITCH_PORT_INGRESS;
2848 
2849 	return (err);
2850 }
2851 
2852 static int
2853 cpsw_setport(device_t dev, etherswitch_port_t *p)
2854 {
2855 	struct cpsw_softc *sc;
2856 	struct cpswp_softc *psc;
2857 	struct ifmedia *ifm;
2858 	uint32_t reg;
2859 
2860 	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2861 		return (ENXIO);
2862 
2863 	sc = device_get_softc(dev);
2864 	if (p->es_pvid != 0) {
2865 		cpsw_write_4(sc, CPSW_PORT_P_VLAN(p->es_port),
2866 		    p->es_pvid & ETHERSWITCH_VID_MASK);
2867 	}
2868 
2869 	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2870 	if (p->es_flags & ETHERSWITCH_PORT_DROPUNTAGGED)
2871 		reg |= ALE_PORTCTL_DROP_UNTAGGED;
2872 	else
2873 		reg &= ~ALE_PORTCTL_DROP_UNTAGGED;
2874 	if (p->es_flags & ETHERSWITCH_PORT_INGRESS)
2875 		reg |= ALE_PORTCTL_INGRESS;
2876 	else
2877 		reg &= ~ALE_PORTCTL_INGRESS;
2878 	cpsw_write_4(sc, CPSW_ALE_PORTCTL(p->es_port), reg);
2879 
2880 	/* CPU port does not allow media settings. */
2881 	if (p->es_port == CPSW_CPU_PORT)
2882 		return (0);
2883 
2884 	psc = device_get_softc(sc->port[p->es_port - 1].dev);
2885 	ifm = &psc->mii->mii_media;
2886 
2887 	return (ifmedia_ioctl(psc->ifp, &p->es_ifr, ifm, SIOCSIFMEDIA));
2888 }
2889 
2890 static int
2891 cpsw_getconf(device_t dev, etherswitch_conf_t *conf)
2892 {
2893 
2894 	/* Return the VLAN mode. */
2895 	conf->cmd = ETHERSWITCH_CONF_VLAN_MODE;
2896 	conf->vlan_mode = ETHERSWITCH_VLAN_DOT1Q;
2897 
2898 	return (0);
2899 }
2900 
2901 static int
2902 cpsw_getvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2903 {
2904 	int i, vid;
2905 	uint32_t ale_entry[3];
2906 	struct cpsw_softc *sc;
2907 
2908 	sc = device_get_softc(dev);
2909 
2910 	if (vg->es_vlangroup >= CPSW_VLANS)
2911 		return (EINVAL);
2912 
2913 	vg->es_vid = 0;
2914 	vid = cpsw_vgroups[vg->es_vlangroup].vid;
2915 	if (vid == -1)
2916 		return (0);
2917 
2918 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2919 		cpsw_ale_read_entry(sc, i, ale_entry);
2920 		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2921 			continue;
2922 		if (vid != ALE_VLAN(ale_entry))
2923 			continue;
2924 
2925 		vg->es_fid = 0;
2926 		vg->es_vid = ALE_VLAN(ale_entry) | ETHERSWITCH_VID_VALID;
2927 		vg->es_member_ports = ALE_VLAN_MEMBERS(ale_entry);
2928 		vg->es_untagged_ports = ALE_VLAN_UNTAG(ale_entry);
2929 	}
2930 
2931 	return (0);
2932 }
2933 
2934 static void
2935 cpsw_remove_vlan(struct cpsw_softc *sc, int vlan)
2936 {
2937 	int i;
2938 	uint32_t ale_entry[3];
2939 
2940 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2941 		cpsw_ale_read_entry(sc, i, ale_entry);
2942 		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2943 			continue;
2944 		if (vlan != ALE_VLAN(ale_entry))
2945 			continue;
2946 		ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2947 		cpsw_ale_write_entry(sc, i, ale_entry);
2948 		break;
2949 	}
2950 }
2951 
2952 static int
2953 cpsw_setvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2954 {
2955 	int i;
2956 	struct cpsw_softc *sc;
2957 
2958 	sc = device_get_softc(dev);
2959 
2960 	for (i = 0; i < CPSW_VLANS; i++) {
2961 		/* Is this Vlan ID in use by another vlangroup ? */
2962 		if (vg->es_vlangroup != i && cpsw_vgroups[i].vid == vg->es_vid)
2963 			return (EINVAL);
2964 	}
2965 
2966 	if (vg->es_vid == 0) {
2967 		if (cpsw_vgroups[vg->es_vlangroup].vid == -1)
2968 			return (0);
2969 		cpsw_remove_vlan(sc, cpsw_vgroups[vg->es_vlangroup].vid);
2970 		cpsw_vgroups[vg->es_vlangroup].vid = -1;
2971 		vg->es_untagged_ports = 0;
2972 		vg->es_member_ports = 0;
2973 		vg->es_vid = 0;
2974 		return (0);
2975 	}
2976 
2977 	vg->es_vid &= ETHERSWITCH_VID_MASK;
2978 	vg->es_member_ports &= CPSW_PORTS_MASK;
2979 	vg->es_untagged_ports &= CPSW_PORTS_MASK;
2980 
2981 	if (cpsw_vgroups[vg->es_vlangroup].vid != -1 &&
2982 	    cpsw_vgroups[vg->es_vlangroup].vid != vg->es_vid)
2983 		return (EINVAL);
2984 
2985 	cpsw_vgroups[vg->es_vlangroup].vid = vg->es_vid;
2986 	cpsw_ale_update_vlan_table(sc, vg->es_vid, vg->es_member_ports,
2987 	    vg->es_untagged_ports, vg->es_member_ports, 0);
2988 
2989 	return (0);
2990 }
2991 
2992 static int
2993 cpsw_readreg(device_t dev, int addr)
2994 {
2995 
2996 	/* Not supported. */
2997 	return (0);
2998 }
2999 
3000 static int
3001 cpsw_writereg(device_t dev, int addr, int value)
3002 {
3003 
3004 	/* Not supported. */
3005 	return (0);
3006 }
3007 
3008 static int
3009 cpsw_readphy(device_t dev, int phy, int reg)
3010 {
3011 
3012 	/* Not supported. */
3013 	return (0);
3014 }
3015 
3016 static int
3017 cpsw_writephy(device_t dev, int phy, int reg, int data)
3018 {
3019 
3020 	/* Not supported. */
3021 	return (0);
3022 }
3023 #endif
3024