xref: /freebsd/sys/arm/ti/cpsw/if_cpsw.c (revision bdafb02fcb88389fd1ab684cfe734cb429d35618)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
5  * Copyright (c) 2016 Rubicon Communications, LLC (Netgate)
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * TI Common Platform Ethernet Switch (CPSW) Driver
32  * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
33  *
34  * This controller is documented in the AM335x Technical Reference
35  * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
36  * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
37  *
38  * It is basically a single Ethernet port (port 0) wired internally to
39  * a 3-port store-and-forward switch connected to two independent
40  * "sliver" controllers (port 1 and port 2).  You can operate the
41  * controller in a variety of different ways by suitably configuring
42  * the slivers and the Address Lookup Engine (ALE) that routes packets
43  * between the ports.
44  *
45  * This code was developed and tested on a BeagleBone with
46  * an AM335x SoC.
47  */
48 
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51 
52 #include "opt_cpsw.h"
53 
54 #include <sys/param.h>
55 #include <sys/bus.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/mbuf.h>
59 #include <sys/module.h>
60 #include <sys/mutex.h>
61 #include <sys/rman.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/sysctl.h>
65 
66 #include <machine/bus.h>
67 #include <machine/resource.h>
68 #include <machine/stdarg.h>
69 
70 #include <net/ethernet.h>
71 #include <net/bpf.h>
72 #include <net/if.h>
73 #include <net/if_dl.h>
74 #include <net/if_media.h>
75 #include <net/if_types.h>
76 
77 #include <arm/ti/ti_scm.h>
78 #include <arm/ti/am335x/am335x_scm.h>
79 
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82 
83 #include <dev/ofw/ofw_bus.h>
84 #include <dev/ofw/ofw_bus_subr.h>
85 
86 #ifdef CPSW_ETHERSWITCH
87 #include <dev/etherswitch/etherswitch.h>
88 #include "etherswitch_if.h"
89 #endif
90 
91 #include "if_cpswreg.h"
92 #include "if_cpswvar.h"
93 
94 #include "miibus_if.h"
95 
96 /* Device probe/attach/detach. */
97 static int cpsw_probe(device_t);
98 static int cpsw_attach(device_t);
99 static int cpsw_detach(device_t);
100 static int cpswp_probe(device_t);
101 static int cpswp_attach(device_t);
102 static int cpswp_detach(device_t);
103 
104 static phandle_t cpsw_get_node(device_t, device_t);
105 
106 /* Device Init/shutdown. */
107 static int cpsw_shutdown(device_t);
108 static void cpswp_init(void *);
109 static void cpswp_init_locked(void *);
110 static void cpswp_stop_locked(struct cpswp_softc *);
111 
112 /* Device Suspend/Resume. */
113 static int cpsw_suspend(device_t);
114 static int cpsw_resume(device_t);
115 
116 /* Ioctl. */
117 static int cpswp_ioctl(struct ifnet *, u_long command, caddr_t data);
118 
119 static int cpswp_miibus_readreg(device_t, int phy, int reg);
120 static int cpswp_miibus_writereg(device_t, int phy, int reg, int value);
121 static void cpswp_miibus_statchg(device_t);
122 
123 /* Send/Receive packets. */
124 static void cpsw_intr_rx(void *arg);
125 static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
126 static void cpsw_rx_enqueue(struct cpsw_softc *);
127 static void cpswp_start(struct ifnet *);
128 static void cpsw_intr_tx(void *);
129 static void cpswp_tx_enqueue(struct cpswp_softc *);
130 static int cpsw_tx_dequeue(struct cpsw_softc *);
131 
132 /* Misc interrupts and watchdog. */
133 static void cpsw_intr_rx_thresh(void *);
134 static void cpsw_intr_misc(void *);
135 static void cpswp_tick(void *);
136 static void cpswp_ifmedia_sts(struct ifnet *, struct ifmediareq *);
137 static int cpswp_ifmedia_upd(struct ifnet *);
138 static void cpsw_tx_watchdog(void *);
139 
140 /* ALE support */
141 static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t, uint32_t *);
142 static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t, uint32_t *);
143 static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t, int, uint8_t *);
144 static void cpsw_ale_dump_table(struct cpsw_softc *);
145 static int cpsw_ale_update_vlan_table(struct cpsw_softc *, int, int, int, int,
146 	int);
147 static int cpswp_ale_update_addresses(struct cpswp_softc *, int);
148 
149 /* Statistics and sysctls. */
150 static void cpsw_add_sysctls(struct cpsw_softc *);
151 static void cpsw_stats_collect(struct cpsw_softc *);
152 static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
153 
154 #ifdef CPSW_ETHERSWITCH
155 static etherswitch_info_t *cpsw_getinfo(device_t);
156 static int cpsw_getport(device_t, etherswitch_port_t *);
157 static int cpsw_setport(device_t, etherswitch_port_t *);
158 static int cpsw_getconf(device_t, etherswitch_conf_t *);
159 static int cpsw_getvgroup(device_t, etherswitch_vlangroup_t *);
160 static int cpsw_setvgroup(device_t, etherswitch_vlangroup_t *);
161 static int cpsw_readreg(device_t, int);
162 static int cpsw_writereg(device_t, int, int);
163 static int cpsw_readphy(device_t, int, int);
164 static int cpsw_writephy(device_t, int, int, int);
165 #endif
166 
167 /*
168  * Arbitrary limit on number of segments in an mbuf to be transmitted.
169  * Packets with more segments than this will be defragmented before
170  * they are queued.
171  */
172 #define	CPSW_TXFRAGS		16
173 
174 /* Shared resources. */
175 static device_method_t cpsw_methods[] = {
176 	/* Device interface */
177 	DEVMETHOD(device_probe,		cpsw_probe),
178 	DEVMETHOD(device_attach,	cpsw_attach),
179 	DEVMETHOD(device_detach,	cpsw_detach),
180 	DEVMETHOD(device_shutdown,	cpsw_shutdown),
181 	DEVMETHOD(device_suspend,	cpsw_suspend),
182 	DEVMETHOD(device_resume,	cpsw_resume),
183 	/* Bus interface */
184 	DEVMETHOD(bus_add_child,	device_add_child_ordered),
185 	/* OFW methods */
186 	DEVMETHOD(ofw_bus_get_node,	cpsw_get_node),
187 #ifdef CPSW_ETHERSWITCH
188 	/* etherswitch interface */
189 	DEVMETHOD(etherswitch_getinfo,	cpsw_getinfo),
190 	DEVMETHOD(etherswitch_readreg,	cpsw_readreg),
191 	DEVMETHOD(etherswitch_writereg,	cpsw_writereg),
192 	DEVMETHOD(etherswitch_readphyreg,	cpsw_readphy),
193 	DEVMETHOD(etherswitch_writephyreg,	cpsw_writephy),
194 	DEVMETHOD(etherswitch_getport,	cpsw_getport),
195 	DEVMETHOD(etherswitch_setport,	cpsw_setport),
196 	DEVMETHOD(etherswitch_getvgroup,	cpsw_getvgroup),
197 	DEVMETHOD(etherswitch_setvgroup,	cpsw_setvgroup),
198 	DEVMETHOD(etherswitch_getconf,	cpsw_getconf),
199 #endif
200 	DEVMETHOD_END
201 };
202 
203 static driver_t cpsw_driver = {
204 	"cpswss",
205 	cpsw_methods,
206 	sizeof(struct cpsw_softc),
207 };
208 
209 static devclass_t cpsw_devclass;
210 
211 DRIVER_MODULE(cpswss, simplebus, cpsw_driver, cpsw_devclass, 0, 0);
212 
213 /* Port/Slave resources. */
214 static device_method_t cpswp_methods[] = {
215 	/* Device interface */
216 	DEVMETHOD(device_probe,		cpswp_probe),
217 	DEVMETHOD(device_attach,	cpswp_attach),
218 	DEVMETHOD(device_detach,	cpswp_detach),
219 	/* MII interface */
220 	DEVMETHOD(miibus_readreg,	cpswp_miibus_readreg),
221 	DEVMETHOD(miibus_writereg,	cpswp_miibus_writereg),
222 	DEVMETHOD(miibus_statchg,	cpswp_miibus_statchg),
223 	DEVMETHOD_END
224 };
225 
226 static driver_t cpswp_driver = {
227 	"cpsw",
228 	cpswp_methods,
229 	sizeof(struct cpswp_softc),
230 };
231 
232 static devclass_t cpswp_devclass;
233 
234 #ifdef CPSW_ETHERSWITCH
235 DRIVER_MODULE(etherswitch, cpswss, etherswitch_driver, etherswitch_devclass, 0, 0);
236 MODULE_DEPEND(cpswss, etherswitch, 1, 1, 1);
237 #endif
238 
239 DRIVER_MODULE(cpsw, cpswss, cpswp_driver, cpswp_devclass, 0, 0);
240 DRIVER_MODULE(miibus, cpsw, miibus_driver, miibus_devclass, 0, 0);
241 MODULE_DEPEND(cpsw, ether, 1, 1, 1);
242 MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
243 
244 #ifdef CPSW_ETHERSWITCH
245 static struct cpsw_vlangroups cpsw_vgroups[CPSW_VLANS];
246 #endif
247 
248 static uint32_t slave_mdio_addr[] = { 0x4a100200, 0x4a100300 };
249 
250 static struct resource_spec irq_res_spec[] = {
251 	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
252 	{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
253 	{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
254 	{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
255 	{ -1, 0 }
256 };
257 
258 static struct {
259 	void (*cb)(void *);
260 } cpsw_intr_cb[] = {
261 	{ cpsw_intr_rx_thresh },
262 	{ cpsw_intr_rx },
263 	{ cpsw_intr_tx },
264 	{ cpsw_intr_misc },
265 };
266 
267 /* Number of entries here must match size of stats
268  * array in struct cpswp_softc. */
269 static struct cpsw_stat {
270 	int	reg;
271 	char *oid;
272 } cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
273 	{0x00, "GoodRxFrames"},
274 	{0x04, "BroadcastRxFrames"},
275 	{0x08, "MulticastRxFrames"},
276 	{0x0C, "PauseRxFrames"},
277 	{0x10, "RxCrcErrors"},
278 	{0x14, "RxAlignErrors"},
279 	{0x18, "OversizeRxFrames"},
280 	{0x1c, "RxJabbers"},
281 	{0x20, "ShortRxFrames"},
282 	{0x24, "RxFragments"},
283 	{0x30, "RxOctets"},
284 	{0x34, "GoodTxFrames"},
285 	{0x38, "BroadcastTxFrames"},
286 	{0x3c, "MulticastTxFrames"},
287 	{0x40, "PauseTxFrames"},
288 	{0x44, "DeferredTxFrames"},
289 	{0x48, "CollisionsTxFrames"},
290 	{0x4c, "SingleCollisionTxFrames"},
291 	{0x50, "MultipleCollisionTxFrames"},
292 	{0x54, "ExcessiveCollisions"},
293 	{0x58, "LateCollisions"},
294 	{0x5c, "TxUnderrun"},
295 	{0x60, "CarrierSenseErrors"},
296 	{0x64, "TxOctets"},
297 	{0x68, "RxTx64OctetFrames"},
298 	{0x6c, "RxTx65to127OctetFrames"},
299 	{0x70, "RxTx128to255OctetFrames"},
300 	{0x74, "RxTx256to511OctetFrames"},
301 	{0x78, "RxTx512to1024OctetFrames"},
302 	{0x7c, "RxTx1024upOctetFrames"},
303 	{0x80, "NetOctets"},
304 	{0x84, "RxStartOfFrameOverruns"},
305 	{0x88, "RxMiddleOfFrameOverruns"},
306 	{0x8c, "RxDmaOverruns"}
307 };
308 
309 /*
310  * Basic debug support.
311  */
312 
313 static void
314 cpsw_debugf_head(const char *funcname)
315 {
316 	int t = (int)(time_second % (24 * 60 * 60));
317 
318 	printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
319 }
320 
321 static void
322 cpsw_debugf(const char *fmt, ...)
323 {
324 	va_list ap;
325 
326 	va_start(ap, fmt);
327 	vprintf(fmt, ap);
328 	va_end(ap);
329 	printf("\n");
330 
331 }
332 
333 #define	CPSW_DEBUGF(_sc, a) do {					\
334 	if ((_sc)->debug) {						\
335 		cpsw_debugf_head(__func__);				\
336 		cpsw_debugf a;						\
337 	}								\
338 } while (0)
339 
340 /*
341  * Locking macros
342  */
343 #define	CPSW_TX_LOCK(sc) do {						\
344 		mtx_assert(&(sc)->rx.lock, MA_NOTOWNED);		\
345 		mtx_lock(&(sc)->tx.lock);				\
346 } while (0)
347 
348 #define	CPSW_TX_UNLOCK(sc)	mtx_unlock(&(sc)->tx.lock)
349 #define	CPSW_TX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->tx.lock, MA_OWNED)
350 
351 #define	CPSW_RX_LOCK(sc) do {						\
352 		mtx_assert(&(sc)->tx.lock, MA_NOTOWNED);		\
353 		mtx_lock(&(sc)->rx.lock);				\
354 } while (0)
355 
356 #define	CPSW_RX_UNLOCK(sc)		mtx_unlock(&(sc)->rx.lock)
357 #define	CPSW_RX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->rx.lock, MA_OWNED)
358 
359 #define CPSW_PORT_LOCK(_sc) do {					\
360 		mtx_assert(&(_sc)->lock, MA_NOTOWNED);			\
361 		mtx_lock(&(_sc)->lock);					\
362 } while (0)
363 
364 #define	CPSW_PORT_UNLOCK(_sc)	mtx_unlock(&(_sc)->lock)
365 #define	CPSW_PORT_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->lock, MA_OWNED)
366 
367 /*
368  * Read/Write macros
369  */
370 #define	cpsw_read_4(_sc, _reg)		bus_read_4((_sc)->mem_res, (_reg))
371 #define	cpsw_write_4(_sc, _reg, _val)					\
372 	bus_write_4((_sc)->mem_res, (_reg), (_val))
373 
374 #define	cpsw_cpdma_bd_offset(i)	(CPSW_CPPI_RAM_OFFSET + ((i)*16))
375 
376 #define	cpsw_cpdma_bd_paddr(sc, slot)					\
377 	BUS_SPACE_PHYSADDR(sc->mem_res, slot->bd_offset)
378 #define	cpsw_cpdma_read_bd(sc, slot, val)				\
379 	bus_read_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
380 #define	cpsw_cpdma_write_bd(sc, slot, val)				\
381 	bus_write_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
382 #define	cpsw_cpdma_write_bd_next(sc, slot, next_slot)			\
383 	cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
384 #define	cpsw_cpdma_write_bd_flags(sc, slot, val)			\
385 	bus_write_2(sc->mem_res, slot->bd_offset + 14, val)
386 #define	cpsw_cpdma_read_bd_flags(sc, slot)				\
387 	bus_read_2(sc->mem_res, slot->bd_offset + 14)
388 #define	cpsw_write_hdp_slot(sc, queue, slot)				\
389 	cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
390 #define	CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
391 #define	cpsw_read_cp(sc, queue)						\
392 	cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
393 #define	cpsw_write_cp(sc, queue, val)					\
394 	cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
395 #define	cpsw_write_cp_slot(sc, queue, slot)				\
396 	cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
397 
398 #if 0
399 /* XXX temporary function versions for debugging. */
400 static void
401 cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
402 {
403 	uint32_t reg = queue->hdp_offset;
404 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
405 	CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
406 	cpsw_write_4(sc, reg, v);
407 }
408 
409 static void
410 cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
411 {
412 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
413 	CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
414 	cpsw_write_cp(sc, queue, v);
415 }
416 #endif
417 
418 /*
419  * Expanded dump routines for verbose debugging.
420  */
421 static void
422 cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
423 {
424 	static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
425 	    "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
426 	    "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
427 	    "Port0"};
428 	struct cpsw_cpdma_bd bd;
429 	const char *sep;
430 	int i;
431 
432 	cpsw_cpdma_read_bd(sc, slot, &bd);
433 	printf("BD Addr : 0x%08x   Next  : 0x%08x\n",
434 	    cpsw_cpdma_bd_paddr(sc, slot), bd.next);
435 	printf("  BufPtr: 0x%08x   BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
436 	printf("  BufOff: 0x%08x   PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
437 	printf("  Flags: ");
438 	sep = "";
439 	for (i = 0; i < 16; ++i) {
440 		if (bd.flags & (1 << (15 - i))) {
441 			printf("%s%s", sep, flags[i]);
442 			sep = ",";
443 		}
444 	}
445 	printf("\n");
446 	if (slot->mbuf) {
447 		printf("  Ether:  %14D\n",
448 		    (char *)(slot->mbuf->m_data), " ");
449 		printf("  Packet: %16D\n",
450 		    (char *)(slot->mbuf->m_data) + 14, " ");
451 	}
452 }
453 
454 #define	CPSW_DUMP_SLOT(cs, slot) do {				\
455 	IF_DEBUG(sc) {						\
456 		cpsw_dump_slot(sc, slot);			\
457 	}							\
458 } while (0)
459 
460 static void
461 cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
462 {
463 	struct cpsw_slot *slot;
464 	int i = 0;
465 	int others = 0;
466 
467 	STAILQ_FOREACH(slot, q, next) {
468 		if (i > CPSW_TXFRAGS)
469 			++others;
470 		else
471 			cpsw_dump_slot(sc, slot);
472 		++i;
473 	}
474 	if (others)
475 		printf(" ... and %d more.\n", others);
476 	printf("\n");
477 }
478 
479 #define CPSW_DUMP_QUEUE(sc, q) do {				\
480 	IF_DEBUG(sc) {						\
481 		cpsw_dump_queue(sc, q);				\
482 	}							\
483 } while (0)
484 
485 static void
486 cpsw_init_slots(struct cpsw_softc *sc)
487 {
488 	struct cpsw_slot *slot;
489 	int i;
490 
491 	STAILQ_INIT(&sc->avail);
492 
493 	/* Put the slot descriptors onto the global avail list. */
494 	for (i = 0; i < nitems(sc->_slots); i++) {
495 		slot = &sc->_slots[i];
496 		slot->bd_offset = cpsw_cpdma_bd_offset(i);
497 		STAILQ_INSERT_TAIL(&sc->avail, slot, next);
498 	}
499 }
500 
501 static int
502 cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
503 {
504 	const int max_slots = nitems(sc->_slots);
505 	struct cpsw_slot *slot;
506 	int i;
507 
508 	if (requested < 0)
509 		requested = max_slots;
510 
511 	for (i = 0; i < requested; ++i) {
512 		slot = STAILQ_FIRST(&sc->avail);
513 		if (slot == NULL)
514 			return (0);
515 		if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
516 			device_printf(sc->dev, "failed to create dmamap\n");
517 			return (ENOMEM);
518 		}
519 		STAILQ_REMOVE_HEAD(&sc->avail, next);
520 		STAILQ_INSERT_TAIL(&queue->avail, slot, next);
521 		++queue->avail_queue_len;
522 		++queue->queue_slots;
523 	}
524 	return (0);
525 }
526 
527 static void
528 cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
529 {
530 	int error;
531 
532 	if (slot->dmamap) {
533 		if (slot->mbuf)
534 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
535 		error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
536 		KASSERT(error == 0, ("Mapping still active"));
537 		slot->dmamap = NULL;
538 	}
539 	if (slot->mbuf) {
540 		m_freem(slot->mbuf);
541 		slot->mbuf = NULL;
542 	}
543 }
544 
545 static void
546 cpsw_reset(struct cpsw_softc *sc)
547 {
548 	int i;
549 
550 	callout_stop(&sc->watchdog.callout);
551 
552 	/* Reset RMII/RGMII wrapper. */
553 	cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
554 	while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
555 		;
556 
557 	/* Disable TX and RX interrupts for all cores. */
558 	for (i = 0; i < 3; ++i) {
559 		cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
560 		cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
561 		cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
562 		cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
563 	}
564 
565 	/* Reset CPSW subsystem. */
566 	cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
567 	while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
568 		;
569 
570 	/* Reset Sliver port 1 and 2 */
571 	for (i = 0; i < 2; i++) {
572 		/* Reset */
573 		cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
574 		while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
575 			;
576 	}
577 
578 	/* Reset DMA controller. */
579 	cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
580 	while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
581 		;
582 
583 	/* Disable TX & RX DMA */
584 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
585 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
586 
587 	/* Clear all queues. */
588 	for (i = 0; i < 8; i++) {
589 		cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
590 		cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
591 		cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
592 		cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
593 	}
594 
595 	/* Clear all interrupt Masks */
596 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
597 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
598 }
599 
600 static void
601 cpsw_init(struct cpsw_softc *sc)
602 {
603 	struct cpsw_slot *slot;
604 	uint32_t reg;
605 
606 	/* Disable the interrupt pacing. */
607 	reg = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
608 	reg &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
609 	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, reg);
610 
611 	/* Clear ALE */
612 	cpsw_write_4(sc, CPSW_ALE_CONTROL, CPSW_ALE_CTL_CLEAR_TBL);
613 
614 	/* Enable ALE */
615 	reg = CPSW_ALE_CTL_ENABLE;
616 	if (sc->dualemac)
617 		reg |= CPSW_ALE_CTL_VLAN_AWARE;
618 	cpsw_write_4(sc, CPSW_ALE_CONTROL, reg);
619 
620 	/* Set Host Port Mapping. */
621 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
622 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
623 
624 	/* Initialize ALE: set host port to forwarding(3). */
625 	cpsw_write_4(sc, CPSW_ALE_PORTCTL(0),
626 	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
627 
628 	cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
629 
630 	/* Enable statistics for ports 0, 1 and 2 */
631 	cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
632 
633 	/* Turn off flow control. */
634 	cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
635 
636 	/* Make IP hdr aligned with 4 */
637 	cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
638 
639 	/* Initialize RX Buffer Descriptors */
640 	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), 0);
641 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
642 
643 	/* Enable TX & RX DMA */
644 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
645 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
646 
647 	/* Enable Interrupts for core 0 */
648 	cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
649 	cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
650 	cpsw_write_4(sc, CPSW_WR_C_TX_EN(0), 0xFF);
651 	cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x1F);
652 
653 	/* Enable host Error Interrupt */
654 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
655 
656 	/* Enable interrupts for RX and TX on Channel 0 */
657 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET,
658 	    CPSW_CPDMA_RX_INT(0) | CPSW_CPDMA_RX_INT_THRESH(0));
659 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_SET, 1);
660 
661 	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
662 	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
663 	cpsw_write_4(sc, MDIOCONTROL, MDIOCTL_ENABLE | MDIOCTL_FAULTENB | 0xff);
664 
665 	/* Select MII in GMII_SEL, Internal Delay mode */
666 	//ti_scm_reg_write_4(0x650, 0);
667 
668 	/* Initialize active queues. */
669 	slot = STAILQ_FIRST(&sc->tx.active);
670 	if (slot != NULL)
671 		cpsw_write_hdp_slot(sc, &sc->tx, slot);
672 	slot = STAILQ_FIRST(&sc->rx.active);
673 	if (slot != NULL)
674 		cpsw_write_hdp_slot(sc, &sc->rx, slot);
675 	cpsw_rx_enqueue(sc);
676 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), sc->rx.active_queue_len);
677 	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), CPSW_TXFRAGS);
678 
679 	/* Activate network interface. */
680 	sc->rx.running = 1;
681 	sc->tx.running = 1;
682 	sc->watchdog.timer = 0;
683 	callout_init(&sc->watchdog.callout, 0);
684 	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
685 }
686 
687 /*
688  *
689  * Device Probe, Attach, Detach.
690  *
691  */
692 
693 static int
694 cpsw_probe(device_t dev)
695 {
696 
697 	if (!ofw_bus_status_okay(dev))
698 		return (ENXIO);
699 
700 	if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
701 		return (ENXIO);
702 
703 	device_set_desc(dev, "3-port Switch Ethernet Subsystem");
704 	return (BUS_PROBE_DEFAULT);
705 }
706 
707 static int
708 cpsw_intr_attach(struct cpsw_softc *sc)
709 {
710 	int i;
711 
712 	for (i = 0; i < CPSW_INTR_COUNT; i++) {
713 		if (bus_setup_intr(sc->dev, sc->irq_res[i],
714 		    INTR_TYPE_NET | INTR_MPSAFE, NULL,
715 		    cpsw_intr_cb[i].cb, sc, &sc->ih_cookie[i]) != 0) {
716 			return (-1);
717 		}
718 	}
719 
720 	return (0);
721 }
722 
723 static void
724 cpsw_intr_detach(struct cpsw_softc *sc)
725 {
726 	int i;
727 
728 	for (i = 0; i < CPSW_INTR_COUNT; i++) {
729 		if (sc->ih_cookie[i]) {
730 			bus_teardown_intr(sc->dev, sc->irq_res[i],
731 			    sc->ih_cookie[i]);
732 		}
733 	}
734 }
735 
736 static int
737 cpsw_get_fdt_data(struct cpsw_softc *sc, int port)
738 {
739 	char *name;
740 	int len, phy, vlan;
741 	pcell_t phy_id[3], vlan_id;
742 	phandle_t child;
743 	unsigned long mdio_child_addr;
744 
745 	/* Find any slave with phy_id */
746 	phy = -1;
747 	vlan = -1;
748 	for (child = OF_child(sc->node); child != 0; child = OF_peer(child)) {
749 		if (OF_getprop_alloc(child, "name", (void **)&name) < 0)
750 			continue;
751 		if (sscanf(name, "slave@%lx", &mdio_child_addr) != 1) {
752 			OF_prop_free(name);
753 			continue;
754 		}
755 		OF_prop_free(name);
756 		if (mdio_child_addr != slave_mdio_addr[port])
757 			continue;
758 
759 		len = OF_getproplen(child, "phy_id");
760 		if (len / sizeof(pcell_t) == 2) {
761 			/* Get phy address from fdt */
762 			if (OF_getencprop(child, "phy_id", phy_id, len) > 0)
763 				phy = phy_id[1];
764 		}
765 
766 		len = OF_getproplen(child, "dual_emac_res_vlan");
767 		if (len / sizeof(pcell_t) == 1) {
768 			/* Get phy address from fdt */
769 			if (OF_getencprop(child, "dual_emac_res_vlan",
770 			    &vlan_id, len) > 0) {
771 				vlan = vlan_id;
772 			}
773 		}
774 
775 		break;
776 	}
777 	if (phy == -1)
778 		return (ENXIO);
779 	sc->port[port].phy = phy;
780 	sc->port[port].vlan = vlan;
781 
782 	return (0);
783 }
784 
785 static int
786 cpsw_attach(device_t dev)
787 {
788 	int error, i;
789 	struct cpsw_softc *sc;
790 	uint32_t reg;
791 
792 	sc = device_get_softc(dev);
793 	sc->dev = dev;
794 	sc->node = ofw_bus_get_node(dev);
795 	getbinuptime(&sc->attach_uptime);
796 
797 	if (OF_getencprop(sc->node, "active_slave", &sc->active_slave,
798 	    sizeof(sc->active_slave)) <= 0) {
799 		sc->active_slave = 0;
800 	}
801 	if (sc->active_slave > 1)
802 		sc->active_slave = 1;
803 
804 	if (OF_hasprop(sc->node, "dual_emac"))
805 		sc->dualemac = 1;
806 
807 	for (i = 0; i < CPSW_PORTS; i++) {
808 		if (!sc->dualemac && i != sc->active_slave)
809 			continue;
810 		if (cpsw_get_fdt_data(sc, i) != 0) {
811 			device_printf(dev,
812 			    "failed to get PHY address from FDT\n");
813 			return (ENXIO);
814 		}
815 	}
816 
817 	/* Initialize mutexes */
818 	mtx_init(&sc->tx.lock, device_get_nameunit(dev),
819 	    "cpsw TX lock", MTX_DEF);
820 	mtx_init(&sc->rx.lock, device_get_nameunit(dev),
821 	    "cpsw RX lock", MTX_DEF);
822 
823 	/* Allocate IRQ resources */
824 	error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
825 	if (error) {
826 		device_printf(dev, "could not allocate IRQ resources\n");
827 		cpsw_detach(dev);
828 		return (ENXIO);
829 	}
830 
831 	sc->mem_rid = 0;
832 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
833 	    &sc->mem_rid, RF_ACTIVE);
834 	if (sc->mem_res == NULL) {
835 		device_printf(sc->dev, "failed to allocate memory resource\n");
836 		cpsw_detach(dev);
837 		return (ENXIO);
838 	}
839 
840 	reg = cpsw_read_4(sc, CPSW_SS_IDVER);
841 	device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
842 		reg & 0xFF, (reg >> 11) & 0x1F);
843 
844 	cpsw_add_sysctls(sc);
845 
846 	/* Allocate a busdma tag and DMA safe memory for mbufs. */
847 	error = bus_dma_tag_create(
848 		bus_get_dma_tag(sc->dev),	/* parent */
849 		1, 0,				/* alignment, boundary */
850 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
851 		BUS_SPACE_MAXADDR,		/* highaddr */
852 		NULL, NULL,			/* filtfunc, filtfuncarg */
853 		MCLBYTES, CPSW_TXFRAGS,		/* maxsize, nsegments */
854 		MCLBYTES, 0,			/* maxsegsz, flags */
855 		NULL, NULL,			/* lockfunc, lockfuncarg */
856 		&sc->mbuf_dtag);		/* dmatag */
857 	if (error) {
858 		device_printf(dev, "bus_dma_tag_create failed\n");
859 		cpsw_detach(dev);
860 		return (error);
861 	}
862 
863 	/* Allocate a NULL buffer for padding. */
864 	sc->nullpad = malloc(ETHER_MIN_LEN, M_DEVBUF, M_WAITOK | M_ZERO);
865 
866 	cpsw_init_slots(sc);
867 
868 	/* Allocate slots to TX and RX queues. */
869 	STAILQ_INIT(&sc->rx.avail);
870 	STAILQ_INIT(&sc->rx.active);
871 	STAILQ_INIT(&sc->tx.avail);
872 	STAILQ_INIT(&sc->tx.active);
873 	// For now:  128 slots to TX, rest to RX.
874 	// XXX TODO: start with 32/64 and grow dynamically based on demand.
875 	if (cpsw_add_slots(sc, &sc->tx, 128) ||
876 	    cpsw_add_slots(sc, &sc->rx, -1)) {
877 		device_printf(dev, "failed to allocate dmamaps\n");
878 		cpsw_detach(dev);
879 		return (ENOMEM);
880 	}
881 	device_printf(dev, "Initial queue size TX=%d RX=%d\n",
882 	    sc->tx.queue_slots, sc->rx.queue_slots);
883 
884 	sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
885 	sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
886 
887 	if (cpsw_intr_attach(sc) == -1) {
888 		device_printf(dev, "failed to setup interrupts\n");
889 		cpsw_detach(dev);
890 		return (ENXIO);
891 	}
892 
893 #ifdef CPSW_ETHERSWITCH
894 	for (i = 0; i < CPSW_VLANS; i++)
895 		cpsw_vgroups[i].vid = -1;
896 #endif
897 
898 	/* Reset the controller. */
899 	cpsw_reset(sc);
900 	cpsw_init(sc);
901 
902 	for (i = 0; i < CPSW_PORTS; i++) {
903 		if (!sc->dualemac && i != sc->active_slave)
904 			continue;
905 		sc->port[i].dev = device_add_child(dev, "cpsw", i);
906 		if (sc->port[i].dev == NULL) {
907 			cpsw_detach(dev);
908 			return (ENXIO);
909 		}
910 	}
911 	bus_generic_probe(dev);
912 	bus_generic_attach(dev);
913 
914 	return (0);
915 }
916 
917 static int
918 cpsw_detach(device_t dev)
919 {
920 	struct cpsw_softc *sc;
921 	int error, i;
922 
923 	bus_generic_detach(dev);
924  	sc = device_get_softc(dev);
925 
926 	for (i = 0; i < CPSW_PORTS; i++) {
927 		if (sc->port[i].dev)
928 			device_delete_child(dev, sc->port[i].dev);
929 	}
930 
931 	if (device_is_attached(dev)) {
932 		callout_stop(&sc->watchdog.callout);
933 		callout_drain(&sc->watchdog.callout);
934 	}
935 
936 	/* Stop and release all interrupts */
937 	cpsw_intr_detach(sc);
938 
939 	/* Free dmamaps and mbufs */
940 	for (i = 0; i < nitems(sc->_slots); ++i)
941 		cpsw_free_slot(sc, &sc->_slots[i]);
942 
943 	/* Free null padding buffer. */
944 	if (sc->nullpad)
945 		free(sc->nullpad, M_DEVBUF);
946 
947 	/* Free DMA tag */
948 	if (sc->mbuf_dtag) {
949 		error = bus_dma_tag_destroy(sc->mbuf_dtag);
950 		KASSERT(error == 0, ("Unable to destroy DMA tag"));
951 	}
952 
953 	/* Free IO memory handler */
954 	if (sc->mem_res != NULL)
955 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res);
956 	bus_release_resources(dev, irq_res_spec, sc->irq_res);
957 
958 	/* Destroy mutexes */
959 	mtx_destroy(&sc->rx.lock);
960 	mtx_destroy(&sc->tx.lock);
961 
962 	/* Detach the switch device, if present. */
963 	error = bus_generic_detach(dev);
964 	if (error != 0)
965 		return (error);
966 
967 	return (device_delete_children(dev));
968 }
969 
970 static phandle_t
971 cpsw_get_node(device_t bus, device_t dev)
972 {
973 
974 	/* Share controller node with port device. */
975 	return (ofw_bus_get_node(bus));
976 }
977 
978 static int
979 cpswp_probe(device_t dev)
980 {
981 
982 	if (device_get_unit(dev) > 1) {
983 		device_printf(dev, "Only two ports are supported.\n");
984 		return (ENXIO);
985 	}
986 	device_set_desc(dev, "Ethernet Switch Port");
987 
988 	return (BUS_PROBE_DEFAULT);
989 }
990 
991 static int
992 cpswp_attach(device_t dev)
993 {
994 	int error;
995 	struct ifnet *ifp;
996 	struct cpswp_softc *sc;
997 	uint32_t reg;
998 	uint8_t mac_addr[ETHER_ADDR_LEN];
999 
1000 	sc = device_get_softc(dev);
1001 	sc->dev = dev;
1002 	sc->pdev = device_get_parent(dev);
1003 	sc->swsc = device_get_softc(sc->pdev);
1004 	sc->unit = device_get_unit(dev);
1005 	sc->phy = sc->swsc->port[sc->unit].phy;
1006 	sc->vlan = sc->swsc->port[sc->unit].vlan;
1007 	if (sc->swsc->dualemac && sc->vlan == -1)
1008 		sc->vlan = sc->unit + 1;
1009 
1010 	if (sc->unit == 0) {
1011 		sc->physel = MDIOUSERPHYSEL0;
1012 		sc->phyaccess = MDIOUSERACCESS0;
1013 	} else {
1014 		sc->physel = MDIOUSERPHYSEL1;
1015 		sc->phyaccess = MDIOUSERACCESS1;
1016 	}
1017 
1018 	mtx_init(&sc->lock, device_get_nameunit(dev), "cpsw port lock",
1019 	    MTX_DEF);
1020 
1021 	/* Allocate network interface */
1022 	ifp = sc->ifp = if_alloc(IFT_ETHER);
1023 	if (ifp == NULL) {
1024 		cpswp_detach(dev);
1025 		return (ENXIO);
1026 	}
1027 
1028 	if_initname(ifp, device_get_name(sc->dev), sc->unit);
1029 	ifp->if_softc = sc;
1030 	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
1031 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_HWCSUM; //FIXME VLAN?
1032 	ifp->if_capenable = ifp->if_capabilities;
1033 
1034 	ifp->if_init = cpswp_init;
1035 	ifp->if_start = cpswp_start;
1036 	ifp->if_ioctl = cpswp_ioctl;
1037 
1038 	ifp->if_snd.ifq_drv_maxlen = sc->swsc->tx.queue_slots;
1039 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1040 	IFQ_SET_READY(&ifp->if_snd);
1041 
1042 	/* Get high part of MAC address from control module (mac_id[0|1]_hi) */
1043 	ti_scm_reg_read_4(SCM_MAC_ID0_HI + sc->unit * 8, &reg);
1044 	mac_addr[0] = reg & 0xFF;
1045 	mac_addr[1] = (reg >>  8) & 0xFF;
1046 	mac_addr[2] = (reg >> 16) & 0xFF;
1047 	mac_addr[3] = (reg >> 24) & 0xFF;
1048 
1049 	/* Get low part of MAC address from control module (mac_id[0|1]_lo) */
1050 	ti_scm_reg_read_4(SCM_MAC_ID0_LO + sc->unit * 8, &reg);
1051 	mac_addr[4] = reg & 0xFF;
1052 	mac_addr[5] = (reg >>  8) & 0xFF;
1053 
1054 	error = mii_attach(dev, &sc->miibus, ifp, cpswp_ifmedia_upd,
1055 	    cpswp_ifmedia_sts, BMSR_DEFCAPMASK, sc->phy, MII_OFFSET_ANY, 0);
1056 	if (error) {
1057 		device_printf(dev, "attaching PHYs failed\n");
1058 		cpswp_detach(dev);
1059 		return (error);
1060 	}
1061 	sc->mii = device_get_softc(sc->miibus);
1062 
1063 	/* Select PHY and enable interrupts */
1064 	cpsw_write_4(sc->swsc, sc->physel,
1065 	    MDIO_PHYSEL_LINKINTENB | (sc->phy & 0x1F));
1066 
1067 	ether_ifattach(sc->ifp, mac_addr);
1068 	callout_init(&sc->mii_callout, 0);
1069 
1070 	return (0);
1071 }
1072 
1073 static int
1074 cpswp_detach(device_t dev)
1075 {
1076 	struct cpswp_softc *sc;
1077 
1078 	sc = device_get_softc(dev);
1079 	CPSW_DEBUGF(sc->swsc, (""));
1080 	if (device_is_attached(dev)) {
1081 		ether_ifdetach(sc->ifp);
1082 		CPSW_PORT_LOCK(sc);
1083 		cpswp_stop_locked(sc);
1084 		CPSW_PORT_UNLOCK(sc);
1085 		callout_drain(&sc->mii_callout);
1086 	}
1087 
1088 	bus_generic_detach(dev);
1089 
1090 	if_free(sc->ifp);
1091 	mtx_destroy(&sc->lock);
1092 
1093 	return (0);
1094 }
1095 
1096 /*
1097  *
1098  * Init/Shutdown.
1099  *
1100  */
1101 
1102 static int
1103 cpsw_ports_down(struct cpsw_softc *sc)
1104 {
1105 	struct cpswp_softc *psc;
1106 	struct ifnet *ifp1, *ifp2;
1107 
1108 	if (!sc->dualemac)
1109 		return (1);
1110 	psc = device_get_softc(sc->port[0].dev);
1111 	ifp1 = psc->ifp;
1112 	psc = device_get_softc(sc->port[1].dev);
1113 	ifp2 = psc->ifp;
1114 	if ((ifp1->if_flags & IFF_UP) == 0 && (ifp2->if_flags & IFF_UP) == 0)
1115 		return (1);
1116 
1117 	return (0);
1118 }
1119 
1120 static void
1121 cpswp_init(void *arg)
1122 {
1123 	struct cpswp_softc *sc = arg;
1124 
1125 	CPSW_DEBUGF(sc->swsc, (""));
1126 	CPSW_PORT_LOCK(sc);
1127 	cpswp_init_locked(arg);
1128 	CPSW_PORT_UNLOCK(sc);
1129 }
1130 
1131 static void
1132 cpswp_init_locked(void *arg)
1133 {
1134 #ifdef CPSW_ETHERSWITCH
1135 	int i;
1136 #endif
1137 	struct cpswp_softc *sc = arg;
1138 	struct ifnet *ifp;
1139 	uint32_t reg;
1140 
1141 	CPSW_DEBUGF(sc->swsc, (""));
1142 	CPSW_PORT_LOCK_ASSERT(sc);
1143 	ifp = sc->ifp;
1144 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1145 		return;
1146 
1147 	getbinuptime(&sc->init_uptime);
1148 
1149 	if (!sc->swsc->rx.running && !sc->swsc->tx.running) {
1150 		/* Reset the controller. */
1151 		cpsw_reset(sc->swsc);
1152 		cpsw_init(sc->swsc);
1153 	}
1154 
1155 	/* Set Slave Mapping. */
1156 	cpsw_write_4(sc->swsc, CPSW_SL_RX_PRI_MAP(sc->unit), 0x76543210);
1157 	cpsw_write_4(sc->swsc, CPSW_PORT_P_TX_PRI_MAP(sc->unit + 1),
1158 	    0x33221100);
1159 	cpsw_write_4(sc->swsc, CPSW_SL_RX_MAXLEN(sc->unit), 0x5f2);
1160 	/* Enable MAC RX/TX modules. */
1161 	/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
1162 	/* Huh?  Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
1163 	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1164 	reg |= CPSW_SL_MACTL_GMII_ENABLE;
1165 	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1166 
1167 	/* Initialize ALE: set port to forwarding, initialize addrs */
1168 	cpsw_write_4(sc->swsc, CPSW_ALE_PORTCTL(sc->unit + 1),
1169 	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
1170 	cpswp_ale_update_addresses(sc, 1);
1171 
1172 	if (sc->swsc->dualemac) {
1173 		/* Set Port VID. */
1174 		cpsw_write_4(sc->swsc, CPSW_PORT_P_VLAN(sc->unit + 1),
1175 		    sc->vlan & 0xfff);
1176 		cpsw_ale_update_vlan_table(sc->swsc, sc->vlan,
1177 		    (1 << (sc->unit + 1)) | (1 << 0), /* Member list */
1178 		    (1 << (sc->unit + 1)) | (1 << 0), /* Untagged egress */
1179 		    (1 << (sc->unit + 1)) | (1 << 0), 0); /* mcast reg flood */
1180 #ifdef CPSW_ETHERSWITCH
1181 		for (i = 0; i < CPSW_VLANS; i++) {
1182 			if (cpsw_vgroups[i].vid != -1)
1183 				continue;
1184 			cpsw_vgroups[i].vid = sc->vlan;
1185 			break;
1186 		}
1187 #endif
1188 	}
1189 
1190 	mii_mediachg(sc->mii);
1191 	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
1192 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1193 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1194 }
1195 
1196 static int
1197 cpsw_shutdown(device_t dev)
1198 {
1199 	struct cpsw_softc *sc;
1200 	struct cpswp_softc *psc;
1201 	int i;
1202 
1203  	sc = device_get_softc(dev);
1204 	CPSW_DEBUGF(sc, (""));
1205 	for (i = 0; i < CPSW_PORTS; i++) {
1206 		if (!sc->dualemac && i != sc->active_slave)
1207 			continue;
1208 		psc = device_get_softc(sc->port[i].dev);
1209 		CPSW_PORT_LOCK(psc);
1210 		cpswp_stop_locked(psc);
1211 		CPSW_PORT_UNLOCK(psc);
1212 	}
1213 
1214 	return (0);
1215 }
1216 
1217 static void
1218 cpsw_rx_teardown(struct cpsw_softc *sc)
1219 {
1220 	int i = 0;
1221 
1222 	CPSW_RX_LOCK(sc);
1223 	CPSW_DEBUGF(sc, ("starting RX teardown"));
1224 	sc->rx.teardown = 1;
1225 	cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
1226 	CPSW_RX_UNLOCK(sc);
1227 	while (sc->rx.running) {
1228 		if (++i > 10) {
1229 			device_printf(sc->dev,
1230 			    "Unable to cleanly shutdown receiver\n");
1231 			return;
1232 		}
1233 		DELAY(200);
1234 	}
1235 	if (!sc->rx.running)
1236 		CPSW_DEBUGF(sc, ("finished RX teardown (%d retries)", i));
1237 }
1238 
1239 static void
1240 cpsw_tx_teardown(struct cpsw_softc *sc)
1241 {
1242 	int i = 0;
1243 
1244 	CPSW_TX_LOCK(sc);
1245 	CPSW_DEBUGF(sc, ("starting TX teardown"));
1246 	/* Start the TX queue teardown if queue is not empty. */
1247 	if (STAILQ_FIRST(&sc->tx.active) != NULL)
1248 		cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
1249 	else
1250 		sc->tx.teardown = 1;
1251 	cpsw_tx_dequeue(sc);
1252 	while (sc->tx.running && ++i < 10) {
1253 		DELAY(200);
1254 		cpsw_tx_dequeue(sc);
1255 	}
1256 	if (sc->tx.running) {
1257 		device_printf(sc->dev,
1258 		    "Unable to cleanly shutdown transmitter\n");
1259 	}
1260 	CPSW_DEBUGF(sc,
1261 	    ("finished TX teardown (%d retries, %d idle buffers)", i,
1262 	     sc->tx.active_queue_len));
1263 	CPSW_TX_UNLOCK(sc);
1264 }
1265 
1266 static void
1267 cpswp_stop_locked(struct cpswp_softc *sc)
1268 {
1269 	struct ifnet *ifp;
1270 	uint32_t reg;
1271 
1272 	ifp = sc->ifp;
1273 	CPSW_DEBUGF(sc->swsc, (""));
1274 	CPSW_PORT_LOCK_ASSERT(sc);
1275 
1276 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1277 		return;
1278 
1279 	/* Disable interface */
1280 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1281 	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1282 
1283 	/* Stop ticker */
1284 	callout_stop(&sc->mii_callout);
1285 
1286 	/* Tear down the RX/TX queues. */
1287 	if (cpsw_ports_down(sc->swsc)) {
1288 		cpsw_rx_teardown(sc->swsc);
1289 		cpsw_tx_teardown(sc->swsc);
1290 	}
1291 
1292 	/* Stop MAC RX/TX modules. */
1293 	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1294 	reg &= ~CPSW_SL_MACTL_GMII_ENABLE;
1295 	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1296 
1297 	if (cpsw_ports_down(sc->swsc)) {
1298 		/* Capture stats before we reset controller. */
1299 		cpsw_stats_collect(sc->swsc);
1300 
1301 		cpsw_reset(sc->swsc);
1302 		cpsw_init(sc->swsc);
1303 	}
1304 }
1305 
1306 /*
1307  *  Suspend/Resume.
1308  */
1309 
1310 static int
1311 cpsw_suspend(device_t dev)
1312 {
1313 	struct cpsw_softc *sc;
1314 	struct cpswp_softc *psc;
1315 	int i;
1316 
1317 	sc = device_get_softc(dev);
1318 	CPSW_DEBUGF(sc, (""));
1319 	for (i = 0; i < CPSW_PORTS; i++) {
1320 		if (!sc->dualemac && i != sc->active_slave)
1321 			continue;
1322 		psc = device_get_softc(sc->port[i].dev);
1323 		CPSW_PORT_LOCK(psc);
1324 		cpswp_stop_locked(psc);
1325 		CPSW_PORT_UNLOCK(psc);
1326 	}
1327 
1328 	return (0);
1329 }
1330 
1331 static int
1332 cpsw_resume(device_t dev)
1333 {
1334 	struct cpsw_softc *sc;
1335 
1336 	sc  = device_get_softc(dev);
1337 	CPSW_DEBUGF(sc, ("UNIMPLEMENTED"));
1338 
1339 	return (0);
1340 }
1341 
1342 /*
1343  *
1344  *  IOCTL
1345  *
1346  */
1347 
1348 static void
1349 cpsw_set_promisc(struct cpswp_softc *sc, int set)
1350 {
1351 	uint32_t reg;
1352 
1353 	/*
1354 	 * Enabling promiscuous mode requires ALE_BYPASS to be enabled.
1355 	 * That disables the ALE forwarding logic and causes every
1356 	 * packet to be sent only to the host port.  In bypass mode,
1357 	 * the ALE processes host port transmit packets the same as in
1358 	 * normal mode.
1359 	 */
1360 	reg = cpsw_read_4(sc->swsc, CPSW_ALE_CONTROL);
1361 	reg &= ~CPSW_ALE_CTL_BYPASS;
1362 	if (set)
1363 		reg |= CPSW_ALE_CTL_BYPASS;
1364 	cpsw_write_4(sc->swsc, CPSW_ALE_CONTROL, reg);
1365 }
1366 
1367 static void
1368 cpsw_set_allmulti(struct cpswp_softc *sc, int set)
1369 {
1370 	if (set) {
1371 		printf("All-multicast mode unimplemented\n");
1372 	}
1373 }
1374 
1375 static int
1376 cpswp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1377 {
1378 	struct cpswp_softc *sc;
1379 	struct ifreq *ifr;
1380 	int error;
1381 	uint32_t changed;
1382 
1383 	error = 0;
1384 	sc = ifp->if_softc;
1385 	ifr = (struct ifreq *)data;
1386 
1387 	switch (command) {
1388 	case SIOCSIFCAP:
1389 		changed = ifp->if_capenable ^ ifr->ifr_reqcap;
1390 		if (changed & IFCAP_HWCSUM) {
1391 			if ((ifr->ifr_reqcap & changed) & IFCAP_HWCSUM)
1392 				ifp->if_capenable |= IFCAP_HWCSUM;
1393 			else
1394 				ifp->if_capenable &= ~IFCAP_HWCSUM;
1395 		}
1396 		error = 0;
1397 		break;
1398 	case SIOCSIFFLAGS:
1399 		CPSW_PORT_LOCK(sc);
1400 		if (ifp->if_flags & IFF_UP) {
1401 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1402 				changed = ifp->if_flags ^ sc->if_flags;
1403 				CPSW_DEBUGF(sc->swsc,
1404 				    ("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)",
1405 				    changed));
1406 				if (changed & IFF_PROMISC)
1407 					cpsw_set_promisc(sc,
1408 					    ifp->if_flags & IFF_PROMISC);
1409 				if (changed & IFF_ALLMULTI)
1410 					cpsw_set_allmulti(sc,
1411 					    ifp->if_flags & IFF_ALLMULTI);
1412 			} else {
1413 				CPSW_DEBUGF(sc->swsc,
1414 				    ("SIOCSIFFLAGS: starting up"));
1415 				cpswp_init_locked(sc);
1416 			}
1417 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1418 			CPSW_DEBUGF(sc->swsc, ("SIOCSIFFLAGS: shutting down"));
1419 			cpswp_stop_locked(sc);
1420 		}
1421 
1422 		sc->if_flags = ifp->if_flags;
1423 		CPSW_PORT_UNLOCK(sc);
1424 		break;
1425 	case SIOCADDMULTI:
1426 		cpswp_ale_update_addresses(sc, 0);
1427 		break;
1428 	case SIOCDELMULTI:
1429 		/* Ugh.  DELMULTI doesn't provide the specific address
1430 		   being removed, so the best we can do is remove
1431 		   everything and rebuild it all. */
1432 		cpswp_ale_update_addresses(sc, 1);
1433 		break;
1434 	case SIOCGIFMEDIA:
1435 	case SIOCSIFMEDIA:
1436 		error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
1437 		break;
1438 	default:
1439 		error = ether_ioctl(ifp, command, data);
1440 	}
1441 	return (error);
1442 }
1443 
1444 /*
1445  *
1446  * MIIBUS
1447  *
1448  */
1449 static int
1450 cpswp_miibus_ready(struct cpsw_softc *sc, uint32_t reg)
1451 {
1452 	uint32_t r, retries = CPSW_MIIBUS_RETRIES;
1453 
1454 	while (--retries) {
1455 		r = cpsw_read_4(sc, reg);
1456 		if ((r & MDIO_PHYACCESS_GO) == 0)
1457 			return (1);
1458 		DELAY(CPSW_MIIBUS_DELAY);
1459 	}
1460 
1461 	return (0);
1462 }
1463 
1464 static int
1465 cpswp_miibus_readreg(device_t dev, int phy, int reg)
1466 {
1467 	struct cpswp_softc *sc;
1468 	uint32_t cmd, r;
1469 
1470 	sc = device_get_softc(dev);
1471 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1472 		device_printf(dev, "MDIO not ready to read\n");
1473 		return (0);
1474 	}
1475 
1476 	/* Set GO, reg, phy */
1477 	cmd = MDIO_PHYACCESS_GO | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
1478 	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1479 
1480 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1481 		device_printf(dev, "MDIO timed out during read\n");
1482 		return (0);
1483 	}
1484 
1485 	r = cpsw_read_4(sc->swsc, sc->phyaccess);
1486 	if ((r & MDIO_PHYACCESS_ACK) == 0) {
1487 		device_printf(dev, "Failed to read from PHY.\n");
1488 		r = 0;
1489 	}
1490 	return (r & 0xFFFF);
1491 }
1492 
1493 static int
1494 cpswp_miibus_writereg(device_t dev, int phy, int reg, int value)
1495 {
1496 	struct cpswp_softc *sc;
1497 	uint32_t cmd;
1498 
1499 	sc = device_get_softc(dev);
1500 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1501 		device_printf(dev, "MDIO not ready to write\n");
1502 		return (0);
1503 	}
1504 
1505 	/* Set GO, WRITE, reg, phy, and value */
1506 	cmd = MDIO_PHYACCESS_GO | MDIO_PHYACCESS_WRITE |
1507 	    (reg & 0x1F) << 21 | (phy & 0x1F) << 16 | (value & 0xFFFF);
1508 	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1509 
1510 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1511 		device_printf(dev, "MDIO timed out during write\n");
1512 		return (0);
1513 	}
1514 
1515 	return (0);
1516 }
1517 
1518 static void
1519 cpswp_miibus_statchg(device_t dev)
1520 {
1521 	struct cpswp_softc *sc;
1522 	uint32_t mac_control, reg;
1523 
1524 	sc = device_get_softc(dev);
1525 	CPSW_DEBUGF(sc->swsc, (""));
1526 
1527 	reg = CPSW_SL_MACCONTROL(sc->unit);
1528 	mac_control = cpsw_read_4(sc->swsc, reg);
1529 	mac_control &= ~(CPSW_SL_MACTL_GIG | CPSW_SL_MACTL_IFCTL_A |
1530 	    CPSW_SL_MACTL_IFCTL_B | CPSW_SL_MACTL_FULLDUPLEX);
1531 
1532 	switch(IFM_SUBTYPE(sc->mii->mii_media_active)) {
1533 	case IFM_1000_SX:
1534 	case IFM_1000_LX:
1535 	case IFM_1000_CX:
1536 	case IFM_1000_T:
1537 		mac_control |= CPSW_SL_MACTL_GIG;
1538 		break;
1539 
1540 	case IFM_100_TX:
1541 		mac_control |= CPSW_SL_MACTL_IFCTL_A;
1542 		break;
1543 	}
1544 	if (sc->mii->mii_media_active & IFM_FDX)
1545 		mac_control |= CPSW_SL_MACTL_FULLDUPLEX;
1546 
1547 	cpsw_write_4(sc->swsc, reg, mac_control);
1548 }
1549 
1550 /*
1551  *
1552  * Transmit/Receive Packets.
1553  *
1554  */
1555 static void
1556 cpsw_intr_rx(void *arg)
1557 {
1558 	struct cpsw_softc *sc;
1559 	struct ifnet *ifp;
1560 	struct mbuf *received, *next;
1561 
1562 	sc = (struct cpsw_softc *)arg;
1563 	CPSW_RX_LOCK(sc);
1564 	if (sc->rx.teardown) {
1565 		sc->rx.running = 0;
1566 		sc->rx.teardown = 0;
1567 		cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
1568 	}
1569 	received = cpsw_rx_dequeue(sc);
1570 	cpsw_rx_enqueue(sc);
1571 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
1572 	CPSW_RX_UNLOCK(sc);
1573 
1574 	while (received != NULL) {
1575 		next = received->m_nextpkt;
1576 		received->m_nextpkt = NULL;
1577 		ifp = received->m_pkthdr.rcvif;
1578 		(*ifp->if_input)(ifp, received);
1579 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1580 		received = next;
1581 	}
1582 }
1583 
1584 static struct mbuf *
1585 cpsw_rx_dequeue(struct cpsw_softc *sc)
1586 {
1587 	int nsegs, port, removed;
1588 	struct cpsw_cpdma_bd bd;
1589 	struct cpsw_slot *last, *slot;
1590 	struct cpswp_softc *psc;
1591 	struct mbuf *m, *m0, *mb_head, *mb_tail;
1592 	uint16_t m0_flags;
1593 
1594 	nsegs = 0;
1595 	m0 = NULL;
1596 	last = NULL;
1597 	mb_head = NULL;
1598 	mb_tail = NULL;
1599 	removed = 0;
1600 
1601 	/* Pull completed packets off hardware RX queue. */
1602 	while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
1603 		cpsw_cpdma_read_bd(sc, slot, &bd);
1604 
1605 		/*
1606 		 * Stop on packets still in use by hardware, but do not stop
1607 		 * on packets with the teardown complete flag, they will be
1608 		 * discarded later.
1609 		 */
1610 		if ((bd.flags & (CPDMA_BD_OWNER | CPDMA_BD_TDOWNCMPLT)) ==
1611 		    CPDMA_BD_OWNER)
1612 			break;
1613 
1614 		last = slot;
1615 		++removed;
1616 		STAILQ_REMOVE_HEAD(&sc->rx.active, next);
1617 		STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
1618 
1619 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
1620 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1621 
1622 		m = slot->mbuf;
1623 		slot->mbuf = NULL;
1624 
1625 		if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
1626 			CPSW_DEBUGF(sc, ("RX teardown is complete"));
1627 			m_freem(m);
1628 			sc->rx.running = 0;
1629 			sc->rx.teardown = 0;
1630 			break;
1631 		}
1632 
1633 		port = (bd.flags & CPDMA_BD_PORT_MASK) - 1;
1634 		KASSERT(port >= 0 && port <= 1,
1635 		    ("patcket received with invalid port: %d", port));
1636 		psc = device_get_softc(sc->port[port].dev);
1637 
1638 		/* Set up mbuf */
1639 		m->m_data += bd.bufoff;
1640 		m->m_len = bd.buflen;
1641 		if (bd.flags & CPDMA_BD_SOP) {
1642 			m->m_pkthdr.len = bd.pktlen;
1643 			m->m_pkthdr.rcvif = psc->ifp;
1644 			m->m_flags |= M_PKTHDR;
1645 			m0_flags = bd.flags;
1646 			m0 = m;
1647 		}
1648 		nsegs++;
1649 		m->m_next = NULL;
1650 		m->m_nextpkt = NULL;
1651 		if (bd.flags & CPDMA_BD_EOP && m0 != NULL) {
1652 			if (m0_flags & CPDMA_BD_PASS_CRC)
1653 				m_adj(m0, -ETHER_CRC_LEN);
1654 			m0_flags = 0;
1655 			m0 = NULL;
1656 			if (nsegs > sc->rx.longest_chain)
1657 				sc->rx.longest_chain = nsegs;
1658 			nsegs = 0;
1659 		}
1660 
1661 		if ((psc->ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1662 			/* check for valid CRC by looking into pkt_err[5:4] */
1663 			if ((bd.flags &
1664 			    (CPDMA_BD_SOP | CPDMA_BD_PKT_ERR_MASK)) ==
1665 			    CPDMA_BD_SOP) {
1666 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1667 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1668 				m->m_pkthdr.csum_data = 0xffff;
1669 			}
1670 		}
1671 
1672 		if (STAILQ_FIRST(&sc->rx.active) != NULL &&
1673 		    (bd.flags & (CPDMA_BD_EOP | CPDMA_BD_EOQ)) ==
1674 		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
1675 			cpsw_write_hdp_slot(sc, &sc->rx,
1676 			    STAILQ_FIRST(&sc->rx.active));
1677 			sc->rx.queue_restart++;
1678 		}
1679 
1680 		/* Add mbuf to packet list to be returned. */
1681 		if (mb_tail != NULL && (bd.flags & CPDMA_BD_SOP)) {
1682 			mb_tail->m_nextpkt = m;
1683 		} else if (mb_tail != NULL) {
1684 			mb_tail->m_next = m;
1685 		} else if (mb_tail == NULL && (bd.flags & CPDMA_BD_SOP) == 0) {
1686 			if (bootverbose)
1687 				printf(
1688 				    "%s: %s: discanding fragment packet w/o header\n",
1689 				    __func__, psc->ifp->if_xname);
1690 			m_freem(m);
1691 			continue;
1692 		} else {
1693 			mb_head = m;
1694 		}
1695 		mb_tail = m;
1696 	}
1697 
1698 	if (removed != 0) {
1699 		cpsw_write_cp_slot(sc, &sc->rx, last);
1700 		sc->rx.queue_removes += removed;
1701 		sc->rx.avail_queue_len += removed;
1702 		sc->rx.active_queue_len -= removed;
1703 		if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
1704 			sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
1705 		CPSW_DEBUGF(sc, ("Removed %d received packet(s) from RX queue", removed));
1706 	}
1707 
1708 	return (mb_head);
1709 }
1710 
1711 static void
1712 cpsw_rx_enqueue(struct cpsw_softc *sc)
1713 {
1714 	bus_dma_segment_t seg[1];
1715 	struct cpsw_cpdma_bd bd;
1716 	struct cpsw_slot *first_new_slot, *last_old_slot, *next, *slot;
1717 	int error, nsegs, added = 0;
1718 
1719 	/* Register new mbufs with hardware. */
1720 	first_new_slot = NULL;
1721 	last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
1722 	while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
1723 		if (first_new_slot == NULL)
1724 			first_new_slot = slot;
1725 		if (slot->mbuf == NULL) {
1726 			slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1727 			if (slot->mbuf == NULL) {
1728 				device_printf(sc->dev,
1729 				    "Unable to fill RX queue\n");
1730 				break;
1731 			}
1732 			slot->mbuf->m_len =
1733 			    slot->mbuf->m_pkthdr.len =
1734 			    slot->mbuf->m_ext.ext_size;
1735 		}
1736 
1737 		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1738 		    slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
1739 
1740 		KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
1741 		KASSERT(error == 0, ("DMA error (error=%d)", error));
1742 		if (error != 0 || nsegs != 1) {
1743 			device_printf(sc->dev,
1744 			    "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
1745 			    __func__, nsegs, error);
1746 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1747 			m_freem(slot->mbuf);
1748 			slot->mbuf = NULL;
1749 			break;
1750 		}
1751 
1752 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
1753 
1754 		/* Create and submit new rx descriptor. */
1755 		if ((next = STAILQ_NEXT(slot, next)) != NULL)
1756 			bd.next = cpsw_cpdma_bd_paddr(sc, next);
1757 		else
1758 			bd.next = 0;
1759 		bd.bufptr = seg->ds_addr;
1760 		bd.bufoff = 0;
1761 		bd.buflen = MCLBYTES - 1;
1762 		bd.pktlen = bd.buflen;
1763 		bd.flags = CPDMA_BD_OWNER;
1764 		cpsw_cpdma_write_bd(sc, slot, &bd);
1765 		++added;
1766 
1767 		STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
1768 		STAILQ_INSERT_TAIL(&sc->rx.active, slot, next);
1769 	}
1770 
1771 	if (added == 0 || first_new_slot == NULL)
1772 		return;
1773 
1774 	CPSW_DEBUGF(sc, ("Adding %d buffers to RX queue", added));
1775 
1776 	/* Link new entries to hardware RX queue. */
1777 	if (last_old_slot == NULL) {
1778 		/* Start a fresh queue. */
1779 		cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1780 	} else {
1781 		/* Add buffers to end of current queue. */
1782 		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1783 	}
1784 	sc->rx.queue_adds += added;
1785 	sc->rx.avail_queue_len -= added;
1786 	sc->rx.active_queue_len += added;
1787 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), added);
1788 	if (sc->rx.active_queue_len > sc->rx.max_active_queue_len)
1789 		sc->rx.max_active_queue_len = sc->rx.active_queue_len;
1790 }
1791 
1792 static void
1793 cpswp_start(struct ifnet *ifp)
1794 {
1795 	struct cpswp_softc *sc;
1796 
1797 	sc = ifp->if_softc;
1798 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1799 	    sc->swsc->tx.running == 0) {
1800 		return;
1801 	}
1802 	CPSW_TX_LOCK(sc->swsc);
1803 	cpswp_tx_enqueue(sc);
1804 	cpsw_tx_dequeue(sc->swsc);
1805 	CPSW_TX_UNLOCK(sc->swsc);
1806 }
1807 
1808 static void
1809 cpsw_intr_tx(void *arg)
1810 {
1811 	struct cpsw_softc *sc;
1812 
1813 	sc = (struct cpsw_softc *)arg;
1814 	CPSW_TX_LOCK(sc);
1815 	if (cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)) == 0xfffffffc)
1816 		cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1817 	cpsw_tx_dequeue(sc);
1818 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 2);
1819 	CPSW_TX_UNLOCK(sc);
1820 }
1821 
1822 static void
1823 cpswp_tx_enqueue(struct cpswp_softc *sc)
1824 {
1825 	bus_dma_segment_t segs[CPSW_TXFRAGS];
1826 	struct cpsw_cpdma_bd bd;
1827 	struct cpsw_slot *first_new_slot, *last, *last_old_slot, *next, *slot;
1828 	struct mbuf *m0;
1829 	int error, nsegs, seg, added = 0, padlen;
1830 
1831 	/* Pull pending packets from IF queue and prep them for DMA. */
1832 	last = NULL;
1833 	first_new_slot = NULL;
1834 	last_old_slot = STAILQ_LAST(&sc->swsc->tx.active, cpsw_slot, next);
1835 	while ((slot = STAILQ_FIRST(&sc->swsc->tx.avail)) != NULL) {
1836 		IF_DEQUEUE(&sc->ifp->if_snd, m0);
1837 		if (m0 == NULL)
1838 			break;
1839 
1840 		slot->mbuf = m0;
1841 		padlen = ETHER_MIN_LEN - ETHER_CRC_LEN - m0->m_pkthdr.len;
1842 		if (padlen < 0)
1843 			padlen = 0;
1844 		else if (padlen > 0)
1845 			m_append(slot->mbuf, padlen, sc->swsc->nullpad);
1846 
1847 		/* Create mapping in DMA memory */
1848 		error = bus_dmamap_load_mbuf_sg(sc->swsc->mbuf_dtag,
1849 		    slot->dmamap, slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1850 		/* If the packet is too fragmented, try to simplify. */
1851 		if (error == EFBIG ||
1852 		    (error == 0 && nsegs > sc->swsc->tx.avail_queue_len)) {
1853 			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1854 			m0 = m_defrag(slot->mbuf, M_NOWAIT);
1855 			if (m0 == NULL) {
1856 				device_printf(sc->dev,
1857 				    "Can't defragment packet; dropping\n");
1858 				m_freem(slot->mbuf);
1859 			} else {
1860 				CPSW_DEBUGF(sc->swsc,
1861 				    ("Requeueing defragmented packet"));
1862 				IF_PREPEND(&sc->ifp->if_snd, m0);
1863 			}
1864 			slot->mbuf = NULL;
1865 			continue;
1866 		}
1867 		if (error != 0) {
1868 			device_printf(sc->dev,
1869 			    "%s: Can't setup DMA (error=%d), dropping packet\n",
1870 			    __func__, error);
1871 			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1872 			m_freem(slot->mbuf);
1873 			slot->mbuf = NULL;
1874 			break;
1875 		}
1876 
1877 		bus_dmamap_sync(sc->swsc->mbuf_dtag, slot->dmamap,
1878 				BUS_DMASYNC_PREWRITE);
1879 
1880 		CPSW_DEBUGF(sc->swsc,
1881 		    ("Queueing TX packet: %d segments + %d pad bytes",
1882 		    nsegs, padlen));
1883 
1884 		if (first_new_slot == NULL)
1885 			first_new_slot = slot;
1886 
1887 		/* Link from the previous descriptor. */
1888 		if (last != NULL)
1889 			cpsw_cpdma_write_bd_next(sc->swsc, last, slot);
1890 
1891 		slot->ifp = sc->ifp;
1892 
1893 		/* If there is only one segment, the for() loop
1894 		 * gets skipped and the single buffer gets set up
1895 		 * as both SOP and EOP. */
1896 		if (nsegs > 1) {
1897 			next = STAILQ_NEXT(slot, next);
1898 			bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1899 		} else
1900 			bd.next = 0;
1901 		/* Start by setting up the first buffer. */
1902 		bd.bufptr = segs[0].ds_addr;
1903 		bd.bufoff = 0;
1904 		bd.buflen = segs[0].ds_len;
1905 		bd.pktlen = m_length(slot->mbuf, NULL);
1906 		bd.flags =  CPDMA_BD_SOP | CPDMA_BD_OWNER;
1907 		if (sc->swsc->dualemac) {
1908 			bd.flags |= CPDMA_BD_TO_PORT;
1909 			bd.flags |= ((sc->unit + 1) & CPDMA_BD_PORT_MASK);
1910 		}
1911 		for (seg = 1; seg < nsegs; ++seg) {
1912 			/* Save the previous buffer (which isn't EOP) */
1913 			cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1914 			STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1915 			STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1916 			slot = STAILQ_FIRST(&sc->swsc->tx.avail);
1917 
1918 			/* Setup next buffer (which isn't SOP) */
1919 			if (nsegs > seg + 1) {
1920 				next = STAILQ_NEXT(slot, next);
1921 				bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1922 			} else
1923 				bd.next = 0;
1924 			bd.bufptr = segs[seg].ds_addr;
1925 			bd.bufoff = 0;
1926 			bd.buflen = segs[seg].ds_len;
1927 			bd.pktlen = 0;
1928 			bd.flags = CPDMA_BD_OWNER;
1929 		}
1930 
1931 		/* Save the final buffer. */
1932 		bd.flags |= CPDMA_BD_EOP;
1933 		cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1934 		STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1935 		STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1936 
1937 		last = slot;
1938 		added += nsegs;
1939 		if (nsegs > sc->swsc->tx.longest_chain)
1940 			sc->swsc->tx.longest_chain = nsegs;
1941 
1942 		BPF_MTAP(sc->ifp, m0);
1943 	}
1944 
1945 	if (first_new_slot == NULL)
1946 		return;
1947 
1948 	/* Attach the list of new buffers to the hardware TX queue. */
1949 	if (last_old_slot != NULL &&
1950 	    (cpsw_cpdma_read_bd_flags(sc->swsc, last_old_slot) &
1951 	     CPDMA_BD_EOQ) == 0) {
1952 		/* Add buffers to end of current queue. */
1953 		cpsw_cpdma_write_bd_next(sc->swsc, last_old_slot,
1954 		    first_new_slot);
1955 	} else {
1956 		/* Start a fresh queue. */
1957 		cpsw_write_hdp_slot(sc->swsc, &sc->swsc->tx, first_new_slot);
1958 	}
1959 	sc->swsc->tx.queue_adds += added;
1960 	sc->swsc->tx.avail_queue_len -= added;
1961 	sc->swsc->tx.active_queue_len += added;
1962 	if (sc->swsc->tx.active_queue_len > sc->swsc->tx.max_active_queue_len) {
1963 		sc->swsc->tx.max_active_queue_len = sc->swsc->tx.active_queue_len;
1964 	}
1965 	CPSW_DEBUGF(sc->swsc, ("Queued %d TX packet(s)", added));
1966 }
1967 
1968 static int
1969 cpsw_tx_dequeue(struct cpsw_softc *sc)
1970 {
1971 	struct cpsw_slot *slot, *last_removed_slot = NULL;
1972 	struct cpsw_cpdma_bd bd;
1973 	uint32_t flags, removed = 0;
1974 
1975 	/* Pull completed buffers off the hardware TX queue. */
1976 	slot = STAILQ_FIRST(&sc->tx.active);
1977 	while (slot != NULL) {
1978 		flags = cpsw_cpdma_read_bd_flags(sc, slot);
1979 
1980 		/* TearDown complete is only marked on the SOP for the packet. */
1981 		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) ==
1982 		    (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) {
1983 			sc->tx.teardown = 1;
1984 		}
1985 
1986 		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_OWNER)) ==
1987 		    (CPDMA_BD_SOP | CPDMA_BD_OWNER) && sc->tx.teardown == 0)
1988 			break; /* Hardware is still using this packet. */
1989 
1990 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
1991 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1992 		m_freem(slot->mbuf);
1993 		slot->mbuf = NULL;
1994 
1995 		if (slot->ifp) {
1996 			if (sc->tx.teardown == 0)
1997 				if_inc_counter(slot->ifp, IFCOUNTER_OPACKETS, 1);
1998 			else
1999 				if_inc_counter(slot->ifp, IFCOUNTER_OQDROPS, 1);
2000 		}
2001 
2002 		/* Dequeue any additional buffers used by this packet. */
2003 		while (slot != NULL && slot->mbuf == NULL) {
2004 			STAILQ_REMOVE_HEAD(&sc->tx.active, next);
2005 			STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
2006 			++removed;
2007 			last_removed_slot = slot;
2008 			slot = STAILQ_FIRST(&sc->tx.active);
2009 		}
2010 
2011 		cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
2012 
2013 		/* Restart the TX queue if necessary. */
2014 		cpsw_cpdma_read_bd(sc, last_removed_slot, &bd);
2015 		if (slot != NULL && bd.next != 0 && (bd.flags &
2016 		    (CPDMA_BD_EOP | CPDMA_BD_OWNER | CPDMA_BD_EOQ)) ==
2017 		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
2018 			cpsw_write_hdp_slot(sc, &sc->tx, slot);
2019 			sc->tx.queue_restart++;
2020 			break;
2021 		}
2022 	}
2023 
2024 	if (removed != 0) {
2025 		sc->tx.queue_removes += removed;
2026 		sc->tx.active_queue_len -= removed;
2027 		sc->tx.avail_queue_len += removed;
2028 		if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
2029 			sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
2030 		CPSW_DEBUGF(sc, ("TX removed %d completed packet(s)", removed));
2031 	}
2032 
2033 	if (sc->tx.teardown && STAILQ_EMPTY(&sc->tx.active)) {
2034 		CPSW_DEBUGF(sc, ("TX teardown is complete"));
2035 		sc->tx.teardown = 0;
2036 		sc->tx.running = 0;
2037 	}
2038 
2039 	return (removed);
2040 }
2041 
2042 /*
2043  *
2044  * Miscellaneous interrupts.
2045  *
2046  */
2047 
2048 static void
2049 cpsw_intr_rx_thresh(void *arg)
2050 {
2051 	struct cpsw_softc *sc;
2052 	struct ifnet *ifp;
2053 	struct mbuf *received, *next;
2054 
2055 	sc = (struct cpsw_softc *)arg;
2056 	CPSW_RX_LOCK(sc);
2057 	received = cpsw_rx_dequeue(sc);
2058 	cpsw_rx_enqueue(sc);
2059 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
2060 	CPSW_RX_UNLOCK(sc);
2061 
2062 	while (received != NULL) {
2063 		next = received->m_nextpkt;
2064 		received->m_nextpkt = NULL;
2065 		ifp = received->m_pkthdr.rcvif;
2066 		(*ifp->if_input)(ifp, received);
2067 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2068 		received = next;
2069 	}
2070 }
2071 
2072 static void
2073 cpsw_intr_misc_host_error(struct cpsw_softc *sc)
2074 {
2075 	uint32_t intstat;
2076 	uint32_t dmastat;
2077 	int txerr, rxerr, txchan, rxchan;
2078 
2079 	printf("\n\n");
2080 	device_printf(sc->dev,
2081 	    "HOST ERROR:  PROGRAMMING ERROR DETECTED BY HARDWARE\n");
2082 	printf("\n\n");
2083 	intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
2084 	device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
2085 	dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
2086 	device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
2087 
2088 	txerr = (dmastat >> 20) & 15;
2089 	txchan = (dmastat >> 16) & 7;
2090 	rxerr = (dmastat >> 12) & 15;
2091 	rxchan = (dmastat >> 8) & 7;
2092 
2093 	switch (txerr) {
2094 	case 0: break;
2095 	case 1:	printf("SOP error on TX channel %d\n", txchan);
2096 		break;
2097 	case 2:	printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
2098 		break;
2099 	case 3:	printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
2100 		break;
2101 	case 4:	printf("Zero Buffer Pointer on TX channel %d\n", txchan);
2102 		break;
2103 	case 5:	printf("Zero Buffer Length on TX channel %d\n", txchan);
2104 		break;
2105 	case 6:	printf("Packet length error on TX channel %d\n", txchan);
2106 		break;
2107 	default: printf("Unknown error on TX channel %d\n", txchan);
2108 		break;
2109 	}
2110 
2111 	if (txerr != 0) {
2112 		printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
2113 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
2114 		printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
2115 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
2116 		cpsw_dump_queue(sc, &sc->tx.active);
2117 	}
2118 
2119 	switch (rxerr) {
2120 	case 0: break;
2121 	case 2:	printf("Ownership bit not set on RX channel %d\n", rxchan);
2122 		break;
2123 	case 4:	printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
2124 		break;
2125 	case 5:	printf("Zero Buffer Length on RX channel %d\n", rxchan);
2126 		break;
2127 	case 6:	printf("Buffer offset too big on RX channel %d\n", rxchan);
2128 		break;
2129 	default: printf("Unknown RX error on RX channel %d\n", rxchan);
2130 		break;
2131 	}
2132 
2133 	if (rxerr != 0) {
2134 		printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
2135 		    rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
2136 		printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
2137 		    rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
2138 		cpsw_dump_queue(sc, &sc->rx.active);
2139 	}
2140 
2141 	printf("\nALE Table\n");
2142 	cpsw_ale_dump_table(sc);
2143 
2144 	// XXX do something useful here??
2145 	panic("CPSW HOST ERROR INTERRUPT");
2146 
2147 	// Suppress this interrupt in the future.
2148 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
2149 	printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
2150 	// The watchdog will probably reset the controller
2151 	// in a little while.  It will probably fail again.
2152 }
2153 
2154 static void
2155 cpsw_intr_misc(void *arg)
2156 {
2157 	struct cpsw_softc *sc = arg;
2158 	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
2159 
2160 	if (stat & CPSW_WR_C_MISC_EVNT_PEND)
2161 		CPSW_DEBUGF(sc, ("Time sync event interrupt unimplemented"));
2162 	if (stat & CPSW_WR_C_MISC_STAT_PEND)
2163 		cpsw_stats_collect(sc);
2164 	if (stat & CPSW_WR_C_MISC_HOST_PEND)
2165 		cpsw_intr_misc_host_error(sc);
2166 	if (stat & CPSW_WR_C_MISC_MDIOLINK) {
2167 		cpsw_write_4(sc, MDIOLINKINTMASKED,
2168 		    cpsw_read_4(sc, MDIOLINKINTMASKED));
2169 	}
2170 	if (stat & CPSW_WR_C_MISC_MDIOUSER) {
2171 		CPSW_DEBUGF(sc,
2172 		    ("MDIO operation completed interrupt unimplemented"));
2173 	}
2174 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
2175 }
2176 
2177 /*
2178  *
2179  * Periodic Checks and Watchdog.
2180  *
2181  */
2182 
2183 static void
2184 cpswp_tick(void *msc)
2185 {
2186 	struct cpswp_softc *sc = msc;
2187 
2188 	/* Check for media type change */
2189 	mii_tick(sc->mii);
2190 	if (sc->media_status != sc->mii->mii_media.ifm_media) {
2191 		printf("%s: media type changed (ifm_media=%x)\n", __func__,
2192 			sc->mii->mii_media.ifm_media);
2193 		cpswp_ifmedia_upd(sc->ifp);
2194 	}
2195 
2196 	/* Schedule another timeout one second from now */
2197 	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
2198 }
2199 
2200 static void
2201 cpswp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2202 {
2203 	struct cpswp_softc *sc;
2204 	struct mii_data *mii;
2205 
2206 	sc = ifp->if_softc;
2207 	CPSW_DEBUGF(sc->swsc, (""));
2208 	CPSW_PORT_LOCK(sc);
2209 
2210 	mii = sc->mii;
2211 	mii_pollstat(mii);
2212 
2213 	ifmr->ifm_active = mii->mii_media_active;
2214 	ifmr->ifm_status = mii->mii_media_status;
2215 	CPSW_PORT_UNLOCK(sc);
2216 }
2217 
2218 static int
2219 cpswp_ifmedia_upd(struct ifnet *ifp)
2220 {
2221 	struct cpswp_softc *sc;
2222 
2223 	sc = ifp->if_softc;
2224 	CPSW_DEBUGF(sc->swsc, (""));
2225 	CPSW_PORT_LOCK(sc);
2226 	mii_mediachg(sc->mii);
2227 	sc->media_status = sc->mii->mii_media.ifm_media;
2228 	CPSW_PORT_UNLOCK(sc);
2229 
2230 	return (0);
2231 }
2232 
2233 static void
2234 cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
2235 {
2236 	struct cpswp_softc *psc;
2237 	int i;
2238 
2239 	cpsw_debugf_head("CPSW watchdog");
2240 	device_printf(sc->dev, "watchdog timeout\n");
2241 	printf("CPSW_CPDMA_TX%d_HDP=0x%x\n", 0,
2242 	    cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(0)));
2243 	printf("CPSW_CPDMA_TX%d_CP=0x%x\n", 0,
2244 	    cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)));
2245 	cpsw_dump_queue(sc, &sc->tx.active);
2246 	for (i = 0; i < CPSW_PORTS; i++) {
2247 		if (!sc->dualemac && i != sc->active_slave)
2248 			continue;
2249 		psc = device_get_softc(sc->port[i].dev);
2250 		CPSW_PORT_LOCK(psc);
2251 		cpswp_stop_locked(psc);
2252 		CPSW_PORT_UNLOCK(psc);
2253 	}
2254 }
2255 
2256 static void
2257 cpsw_tx_watchdog(void *msc)
2258 {
2259 	struct cpsw_softc *sc;
2260 
2261 	sc = msc;
2262 	CPSW_TX_LOCK(sc);
2263 	if (sc->tx.active_queue_len == 0 || !sc->tx.running) {
2264 		sc->watchdog.timer = 0; /* Nothing to do. */
2265 	} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
2266 		sc->watchdog.timer = 0;  /* Stuff done while we weren't looking. */
2267 	} else if (cpsw_tx_dequeue(sc) > 0) {
2268 		sc->watchdog.timer = 0;  /* We just did something. */
2269 	} else {
2270 		/* There was something to do but it didn't get done. */
2271 		++sc->watchdog.timer;
2272 		if (sc->watchdog.timer > 5) {
2273 			sc->watchdog.timer = 0;
2274 			++sc->watchdog.resets;
2275 			cpsw_tx_watchdog_full_reset(sc);
2276 		}
2277 	}
2278 	sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
2279 	CPSW_TX_UNLOCK(sc);
2280 
2281 	/* Schedule another timeout one second from now */
2282 	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
2283 }
2284 
2285 /*
2286  *
2287  * ALE support routines.
2288  *
2289  */
2290 
2291 static void
2292 cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2293 {
2294 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
2295 	ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
2296 	ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
2297 	ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
2298 }
2299 
2300 static void
2301 cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2302 {
2303 	cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
2304 	cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
2305 	cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
2306 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
2307 }
2308 
2309 static void
2310 cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
2311 {
2312 	int i;
2313 	uint32_t ale_entry[3];
2314 
2315 	/* First four entries are link address and broadcast. */
2316 	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2317 		cpsw_ale_read_entry(sc, i, ale_entry);
2318 		if ((ALE_TYPE(ale_entry) == ALE_TYPE_ADDR ||
2319 		    ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR) &&
2320 		    ALE_MCAST(ale_entry)  == 1) { /* MCast link addr */
2321 			ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2322 			cpsw_ale_write_entry(sc, i, ale_entry);
2323 		}
2324 	}
2325 }
2326 
2327 static int
2328 cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, int vlan,
2329 	uint8_t *mac)
2330 {
2331 	int free_index = -1, matching_index = -1, i;
2332 	uint32_t ale_entry[3], ale_type;
2333 
2334 	/* Find a matching entry or a free entry. */
2335 	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2336 		cpsw_ale_read_entry(sc, i, ale_entry);
2337 
2338 		/* Entry Type[61:60] is 0 for free entry */
2339 		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2340 			free_index = i;
2341 
2342 		if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
2343 		    (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
2344 		    (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
2345 		    (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
2346 		    (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
2347 		    (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
2348 			matching_index = i;
2349 			break;
2350 		}
2351 	}
2352 
2353 	if (matching_index < 0) {
2354 		if (free_index < 0)
2355 			return (ENOMEM);
2356 		i = free_index;
2357 	}
2358 
2359 	if (vlan != -1)
2360 		ale_type = ALE_TYPE_VLAN_ADDR << 28 | vlan << 16;
2361 	else
2362 		ale_type = ALE_TYPE_ADDR << 28;
2363 
2364 	/* Set MAC address */
2365 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2366 	ale_entry[1] = mac[0] << 8 | mac[1];
2367 
2368 	/* Entry type[61:60] and Mcast fwd state[63:62] is fw(3). */
2369 	ale_entry[1] |= ALE_MCAST_FWD | ale_type;
2370 
2371 	/* Set portmask [68:66] */
2372 	ale_entry[2] = (portmap & 7) << 2;
2373 
2374 	cpsw_ale_write_entry(sc, i, ale_entry);
2375 
2376 	return 0;
2377 }
2378 
2379 static void
2380 cpsw_ale_dump_table(struct cpsw_softc *sc) {
2381 	int i;
2382 	uint32_t ale_entry[3];
2383 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2384 		cpsw_ale_read_entry(sc, i, ale_entry);
2385 		switch (ALE_TYPE(ale_entry)) {
2386 		case ALE_TYPE_VLAN:
2387 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2388 				ale_entry[1], ale_entry[0]);
2389 			printf("type: %u ", ALE_TYPE(ale_entry));
2390 			printf("vlan: %u ", ALE_VLAN(ale_entry));
2391 			printf("untag: %u ", ALE_VLAN_UNTAG(ale_entry));
2392 			printf("reg flood: %u ", ALE_VLAN_REGFLOOD(ale_entry));
2393 			printf("unreg flood: %u ", ALE_VLAN_UNREGFLOOD(ale_entry));
2394 			printf("members: %u ", ALE_VLAN_MEMBERS(ale_entry));
2395 			printf("\n");
2396 			break;
2397 		case ALE_TYPE_ADDR:
2398 		case ALE_TYPE_VLAN_ADDR:
2399 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2400 				ale_entry[1], ale_entry[0]);
2401 			printf("type: %u ", ALE_TYPE(ale_entry));
2402 			printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
2403 				(ale_entry[1] >> 8) & 0xFF,
2404 				(ale_entry[1] >> 0) & 0xFF,
2405 				(ale_entry[0] >>24) & 0xFF,
2406 				(ale_entry[0] >>16) & 0xFF,
2407 				(ale_entry[0] >> 8) & 0xFF,
2408 				(ale_entry[0] >> 0) & 0xFF);
2409 			printf(ALE_MCAST(ale_entry) ? "mcast " : "ucast ");
2410 			if (ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR)
2411 				printf("vlan: %u ", ALE_VLAN(ale_entry));
2412 			printf("port: %u ", ALE_PORTS(ale_entry));
2413 			printf("\n");
2414 			break;
2415 		}
2416 	}
2417 	printf("\n");
2418 }
2419 
2420 static int
2421 cpswp_ale_update_addresses(struct cpswp_softc *sc, int purge)
2422 {
2423 	uint8_t *mac;
2424 	uint32_t ale_entry[3], ale_type, portmask;
2425 	struct ifmultiaddr *ifma;
2426 
2427 	if (sc->swsc->dualemac) {
2428 		ale_type = ALE_TYPE_VLAN_ADDR << 28 | sc->vlan << 16;
2429 		portmask = 1 << (sc->unit + 1) | 1 << 0;
2430 	} else {
2431 		ale_type = ALE_TYPE_ADDR << 28;
2432 		portmask = 7;
2433 	}
2434 
2435 	/*
2436 	 * Route incoming packets for our MAC address to Port 0 (host).
2437 	 * For simplicity, keep this entry at table index 0 for port 1 and
2438 	 * at index 2 for port 2 in the ALE.
2439 	 */
2440         if_addr_rlock(sc->ifp);
2441 	mac = LLADDR((struct sockaddr_dl *)sc->ifp->if_addr->ifa_addr);
2442 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2443 	ale_entry[1] = ale_type | mac[0] << 8 | mac[1]; /* addr entry + mac */
2444 	ale_entry[2] = 0; /* port = 0 */
2445 	cpsw_ale_write_entry(sc->swsc, 0 + 2 * sc->unit, ale_entry);
2446 
2447 	/* Set outgoing MAC Address for slave port. */
2448 	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_HI(sc->unit + 1),
2449 	    mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
2450 	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_LO(sc->unit + 1),
2451 	    mac[5] << 8 | mac[4]);
2452         if_addr_runlock(sc->ifp);
2453 
2454 	/* Keep the broadcast address at table entry 1 (or 3). */
2455 	ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
2456 	/* ALE_MCAST_FWD, Addr type, upper 16 bits of Mac */
2457 	ale_entry[1] = ALE_MCAST_FWD | ale_type | 0xffff;
2458 	ale_entry[2] = portmask << 2;
2459 	cpsw_ale_write_entry(sc->swsc, 1 + 2 * sc->unit, ale_entry);
2460 
2461 	/* SIOCDELMULTI doesn't specify the particular address
2462 	   being removed, so we have to remove all and rebuild. */
2463 	if (purge)
2464 		cpsw_ale_remove_all_mc_entries(sc->swsc);
2465 
2466         /* Set other multicast addrs desired. */
2467         if_maddr_rlock(sc->ifp);
2468         CK_STAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
2469                 if (ifma->ifma_addr->sa_family != AF_LINK)
2470                         continue;
2471 		cpsw_ale_mc_entry_set(sc->swsc, portmask, sc->vlan,
2472 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
2473         }
2474         if_maddr_runlock(sc->ifp);
2475 
2476 	return (0);
2477 }
2478 
2479 static int
2480 cpsw_ale_update_vlan_table(struct cpsw_softc *sc, int vlan, int ports,
2481 	int untag, int mcregflood, int mcunregflood)
2482 {
2483 	int free_index, i, matching_index;
2484 	uint32_t ale_entry[3];
2485 
2486 	free_index = matching_index = -1;
2487 	/* Find a matching entry or a free entry. */
2488 	for (i = 5; i < CPSW_MAX_ALE_ENTRIES; i++) {
2489 		cpsw_ale_read_entry(sc, i, ale_entry);
2490 
2491 		/* Entry Type[61:60] is 0 for free entry */
2492 		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2493 			free_index = i;
2494 
2495 		if (ALE_VLAN(ale_entry) == vlan) {
2496 			matching_index = i;
2497 			break;
2498 		}
2499 	}
2500 
2501 	if (matching_index < 0) {
2502 		if (free_index < 0)
2503 			return (-1);
2504 		i = free_index;
2505 	}
2506 
2507 	ale_entry[0] = (untag & 7) << 24 | (mcregflood & 7) << 16 |
2508 	    (mcunregflood & 7) << 8 | (ports & 7);
2509 	ale_entry[1] = ALE_TYPE_VLAN << 28 | vlan << 16;
2510 	ale_entry[2] = 0;
2511 	cpsw_ale_write_entry(sc, i, ale_entry);
2512 
2513 	return (0);
2514 }
2515 
2516 /*
2517  *
2518  * Statistics and Sysctls.
2519  *
2520  */
2521 
2522 #if 0
2523 static void
2524 cpsw_stats_dump(struct cpsw_softc *sc)
2525 {
2526 	int i;
2527 	uint32_t r;
2528 
2529 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2530 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2531 		    cpsw_stat_sysctls[i].reg);
2532 		CPSW_DEBUGF(sc, ("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
2533 		    (intmax_t)sc->shadow_stats[i], r,
2534 		    (intmax_t)sc->shadow_stats[i] + r));
2535 	}
2536 }
2537 #endif
2538 
2539 static void
2540 cpsw_stats_collect(struct cpsw_softc *sc)
2541 {
2542 	int i;
2543 	uint32_t r;
2544 
2545 	CPSW_DEBUGF(sc, ("Controller shadow statistics updated."));
2546 
2547 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2548 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2549 		    cpsw_stat_sysctls[i].reg);
2550 		sc->shadow_stats[i] += r;
2551 		cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg,
2552 		    r);
2553 	}
2554 }
2555 
2556 static int
2557 cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
2558 {
2559 	struct cpsw_softc *sc;
2560 	struct cpsw_stat *stat;
2561 	uint64_t result;
2562 
2563 	sc = (struct cpsw_softc *)arg1;
2564 	stat = &cpsw_stat_sysctls[oidp->oid_number];
2565 	result = sc->shadow_stats[oidp->oid_number];
2566 	result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
2567 	return (sysctl_handle_64(oidp, &result, 0, req));
2568 }
2569 
2570 static int
2571 cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
2572 {
2573 	struct cpsw_softc *sc;
2574 	struct bintime t;
2575 	unsigned result;
2576 
2577 	sc = (struct cpsw_softc *)arg1;
2578 	getbinuptime(&t);
2579 	bintime_sub(&t, &sc->attach_uptime);
2580 	result = t.sec;
2581 	return (sysctl_handle_int(oidp, &result, 0, req));
2582 }
2583 
2584 static int
2585 cpsw_intr_coalesce(SYSCTL_HANDLER_ARGS)
2586 {
2587 	int error;
2588 	struct cpsw_softc *sc;
2589 	uint32_t ctrl, intr_per_ms;
2590 
2591 	sc = (struct cpsw_softc *)arg1;
2592 	error = sysctl_handle_int(oidp, &sc->coal_us, 0, req);
2593 	if (error != 0 || req->newptr == NULL)
2594 		return (error);
2595 
2596 	ctrl = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
2597 	ctrl &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
2598 	if (sc->coal_us == 0) {
2599 		/* Disable the interrupt pace hardware. */
2600 		cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2601 		cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), 0);
2602 		cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), 0);
2603 		return (0);
2604 	}
2605 
2606 	if (sc->coal_us > CPSW_WR_C_IMAX_US_MAX)
2607 		sc->coal_us = CPSW_WR_C_IMAX_US_MAX;
2608 	if (sc->coal_us < CPSW_WR_C_IMAX_US_MIN)
2609 		sc->coal_us = CPSW_WR_C_IMAX_US_MIN;
2610 	intr_per_ms = 1000 / sc->coal_us;
2611 	/* Just to make sure... */
2612 	if (intr_per_ms > CPSW_WR_C_IMAX_MAX)
2613 		intr_per_ms = CPSW_WR_C_IMAX_MAX;
2614 	if (intr_per_ms < CPSW_WR_C_IMAX_MIN)
2615 		intr_per_ms = CPSW_WR_C_IMAX_MIN;
2616 
2617 	/* Set the prescale to produce 4us pulses from the 125 Mhz clock. */
2618 	ctrl |= (125 * 4) & CPSW_WR_INT_PRESCALE_MASK;
2619 
2620 	/* Enable the interrupt pace hardware. */
2621 	cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), intr_per_ms);
2622 	cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), intr_per_ms);
2623 	ctrl |= CPSW_WR_INT_C0_RX_PULSE | CPSW_WR_INT_C0_TX_PULSE;
2624 	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2625 
2626 	return (0);
2627 }
2628 
2629 static int
2630 cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
2631 {
2632 	struct cpsw_softc *swsc;
2633 	struct cpswp_softc *sc;
2634 	struct bintime t;
2635 	unsigned result;
2636 
2637 	swsc = arg1;
2638 	sc = device_get_softc(swsc->port[arg2].dev);
2639 	if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
2640 		getbinuptime(&t);
2641 		bintime_sub(&t, &sc->init_uptime);
2642 		result = t.sec;
2643 	} else
2644 		result = 0;
2645 	return (sysctl_handle_int(oidp, &result, 0, req));
2646 }
2647 
2648 static void
2649 cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2650 	struct cpsw_queue *queue)
2651 {
2652 	struct sysctl_oid_list *parent;
2653 
2654 	parent = SYSCTL_CHILDREN(node);
2655 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
2656 	    CTLFLAG_RD, &queue->queue_slots, 0,
2657 	    "Total buffers currently assigned to this queue");
2658 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
2659 	    CTLFLAG_RD, &queue->active_queue_len, 0,
2660 	    "Buffers currently registered with hardware controller");
2661 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
2662 	    CTLFLAG_RD, &queue->max_active_queue_len, 0,
2663 	    "Max value of activeBuffers since last driver reset");
2664 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
2665 	    CTLFLAG_RD, &queue->avail_queue_len, 0,
2666 	    "Buffers allocated to this queue but not currently "
2667 	    "registered with hardware controller");
2668 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
2669 	    CTLFLAG_RD, &queue->max_avail_queue_len, 0,
2670 	    "Max value of availBuffers since last driver reset");
2671 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
2672 	    CTLFLAG_RD, &queue->queue_adds, 0,
2673 	    "Total buffers added to queue");
2674 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
2675 	    CTLFLAG_RD, &queue->queue_removes, 0,
2676 	    "Total buffers removed from queue");
2677 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "queueRestart",
2678 	    CTLFLAG_RD, &queue->queue_restart, 0,
2679 	    "Total times the queue has been restarted");
2680 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
2681 	    CTLFLAG_RD, &queue->longest_chain, 0,
2682 	    "Max buffers used for a single packet");
2683 }
2684 
2685 static void
2686 cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2687 	struct cpsw_softc *sc)
2688 {
2689 	struct sysctl_oid_list *parent;
2690 
2691 	parent = SYSCTL_CHILDREN(node);
2692 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
2693 	    CTLFLAG_RD, &sc->watchdog.resets, 0,
2694 	    "Total number of watchdog resets");
2695 }
2696 
2697 static void
2698 cpsw_add_sysctls(struct cpsw_softc *sc)
2699 {
2700 	struct sysctl_ctx_list *ctx;
2701 	struct sysctl_oid *stats_node, *queue_node, *node;
2702 	struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
2703 	struct sysctl_oid_list *ports_parent, *port_parent;
2704 	char port[16];
2705 	int i;
2706 
2707 	ctx = device_get_sysctl_ctx(sc->dev);
2708 	parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
2709 
2710 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "debug",
2711 	    CTLFLAG_RW, &sc->debug, 0, "Enable switch debug messages");
2712 
2713 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
2714 	    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_attached, "IU",
2715 	    "Time since driver attach");
2716 
2717 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "intr_coalesce_us",
2718 	    CTLTYPE_UINT | CTLFLAG_RW, sc, 0, cpsw_intr_coalesce, "IU",
2719 	    "minimum time between interrupts");
2720 
2721 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "ports",
2722 	    CTLFLAG_RD, NULL, "CPSW Ports Statistics");
2723 	ports_parent = SYSCTL_CHILDREN(node);
2724 	for (i = 0; i < CPSW_PORTS; i++) {
2725 		if (!sc->dualemac && i != sc->active_slave)
2726 			continue;
2727 		port[0] = '0' + i;
2728 		port[1] = '\0';
2729 		node = SYSCTL_ADD_NODE(ctx, ports_parent, OID_AUTO,
2730 		    port, CTLFLAG_RD, NULL, "CPSW Port Statistics");
2731 		port_parent = SYSCTL_CHILDREN(node);
2732 		SYSCTL_ADD_PROC(ctx, port_parent, OID_AUTO, "uptime",
2733 		    CTLTYPE_UINT | CTLFLAG_RD, sc, i,
2734 		    cpsw_stat_uptime, "IU", "Seconds since driver init");
2735 	}
2736 
2737 	stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
2738 				     CTLFLAG_RD, NULL, "CPSW Statistics");
2739 	stats_parent = SYSCTL_CHILDREN(stats_node);
2740 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2741 		SYSCTL_ADD_PROC(ctx, stats_parent, i,
2742 				cpsw_stat_sysctls[i].oid,
2743 				CTLTYPE_U64 | CTLFLAG_RD, sc, 0,
2744 				cpsw_stats_sysctl, "IU",
2745 				cpsw_stat_sysctls[i].oid);
2746 	}
2747 
2748 	queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
2749 	    CTLFLAG_RD, NULL, "CPSW Queue Statistics");
2750 	queue_parent = SYSCTL_CHILDREN(queue_node);
2751 
2752 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
2753 	    CTLFLAG_RD, NULL, "TX Queue Statistics");
2754 	cpsw_add_queue_sysctls(ctx, node, &sc->tx);
2755 
2756 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
2757 	    CTLFLAG_RD, NULL, "RX Queue Statistics");
2758 	cpsw_add_queue_sysctls(ctx, node, &sc->rx);
2759 
2760 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
2761 	    CTLFLAG_RD, NULL, "Watchdog Statistics");
2762 	cpsw_add_watchdog_sysctls(ctx, node, sc);
2763 }
2764 
2765 #ifdef CPSW_ETHERSWITCH
2766 static etherswitch_info_t etherswitch_info = {
2767 	.es_nports =		CPSW_PORTS + 1,
2768 	.es_nvlangroups =	CPSW_VLANS,
2769 	.es_name =		"TI Common Platform Ethernet Switch (CPSW)",
2770 	.es_vlan_caps =		ETHERSWITCH_VLAN_DOT1Q,
2771 };
2772 
2773 static etherswitch_info_t *
2774 cpsw_getinfo(device_t dev)
2775 {
2776 	return (&etherswitch_info);
2777 }
2778 
2779 static int
2780 cpsw_getport(device_t dev, etherswitch_port_t *p)
2781 {
2782 	int err;
2783 	struct cpsw_softc *sc;
2784 	struct cpswp_softc *psc;
2785 	struct ifmediareq *ifmr;
2786 	uint32_t reg;
2787 
2788 	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2789 		return (ENXIO);
2790 
2791 	err = 0;
2792 	sc = device_get_softc(dev);
2793 	if (p->es_port == CPSW_CPU_PORT) {
2794 		p->es_flags |= ETHERSWITCH_PORT_CPU;
2795  		ifmr = &p->es_ifmr;
2796 		ifmr->ifm_current = ifmr->ifm_active =
2797 		    IFM_ETHER | IFM_1000_T | IFM_FDX;
2798 		ifmr->ifm_mask = 0;
2799 		ifmr->ifm_status = IFM_ACTIVE | IFM_AVALID;
2800 		ifmr->ifm_count = 0;
2801 	} else {
2802 		psc = device_get_softc(sc->port[p->es_port - 1].dev);
2803 		err = ifmedia_ioctl(psc->ifp, &p->es_ifr,
2804 		    &psc->mii->mii_media, SIOCGIFMEDIA);
2805 	}
2806 	reg = cpsw_read_4(sc, CPSW_PORT_P_VLAN(p->es_port));
2807 	p->es_pvid = reg & ETHERSWITCH_VID_MASK;
2808 
2809 	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2810 	if (reg & ALE_PORTCTL_DROP_UNTAGGED)
2811 		p->es_flags |= ETHERSWITCH_PORT_DROPUNTAGGED;
2812 	if (reg & ALE_PORTCTL_INGRESS)
2813 		p->es_flags |= ETHERSWITCH_PORT_INGRESS;
2814 
2815 	return (err);
2816 }
2817 
2818 static int
2819 cpsw_setport(device_t dev, etherswitch_port_t *p)
2820 {
2821 	struct cpsw_softc *sc;
2822 	struct cpswp_softc *psc;
2823 	struct ifmedia *ifm;
2824 	uint32_t reg;
2825 
2826 	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2827 		return (ENXIO);
2828 
2829 	sc = device_get_softc(dev);
2830 	if (p->es_pvid != 0) {
2831 		cpsw_write_4(sc, CPSW_PORT_P_VLAN(p->es_port),
2832 		    p->es_pvid & ETHERSWITCH_VID_MASK);
2833 	}
2834 
2835 	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2836 	if (p->es_flags & ETHERSWITCH_PORT_DROPUNTAGGED)
2837 		reg |= ALE_PORTCTL_DROP_UNTAGGED;
2838 	else
2839 		reg &= ~ALE_PORTCTL_DROP_UNTAGGED;
2840 	if (p->es_flags & ETHERSWITCH_PORT_INGRESS)
2841 		reg |= ALE_PORTCTL_INGRESS;
2842 	else
2843 		reg &= ~ALE_PORTCTL_INGRESS;
2844 	cpsw_write_4(sc, CPSW_ALE_PORTCTL(p->es_port), reg);
2845 
2846 	/* CPU port does not allow media settings. */
2847 	if (p->es_port == CPSW_CPU_PORT)
2848 		return (0);
2849 
2850 	psc = device_get_softc(sc->port[p->es_port - 1].dev);
2851 	ifm = &psc->mii->mii_media;
2852 
2853 	return (ifmedia_ioctl(psc->ifp, &p->es_ifr, ifm, SIOCSIFMEDIA));
2854 }
2855 
2856 static int
2857 cpsw_getconf(device_t dev, etherswitch_conf_t *conf)
2858 {
2859 
2860 	/* Return the VLAN mode. */
2861 	conf->cmd = ETHERSWITCH_CONF_VLAN_MODE;
2862 	conf->vlan_mode = ETHERSWITCH_VLAN_DOT1Q;
2863 
2864 	return (0);
2865 }
2866 
2867 static int
2868 cpsw_getvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2869 {
2870 	int i, vid;
2871 	uint32_t ale_entry[3];
2872 	struct cpsw_softc *sc;
2873 
2874 	sc = device_get_softc(dev);
2875 
2876 	if (vg->es_vlangroup >= CPSW_VLANS)
2877 		return (EINVAL);
2878 
2879 	vg->es_vid = 0;
2880 	vid = cpsw_vgroups[vg->es_vlangroup].vid;
2881 	if (vid == -1)
2882 		return (0);
2883 
2884 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2885 		cpsw_ale_read_entry(sc, i, ale_entry);
2886 		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2887 			continue;
2888 		if (vid != ALE_VLAN(ale_entry))
2889 			continue;
2890 
2891 		vg->es_fid = 0;
2892 		vg->es_vid = ALE_VLAN(ale_entry) | ETHERSWITCH_VID_VALID;
2893 		vg->es_member_ports = ALE_VLAN_MEMBERS(ale_entry);
2894 		vg->es_untagged_ports = ALE_VLAN_UNTAG(ale_entry);
2895 	}
2896 
2897 	return (0);
2898 }
2899 
2900 static void
2901 cpsw_remove_vlan(struct cpsw_softc *sc, int vlan)
2902 {
2903 	int i;
2904 	uint32_t ale_entry[3];
2905 
2906 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2907 		cpsw_ale_read_entry(sc, i, ale_entry);
2908 		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2909 			continue;
2910 		if (vlan != ALE_VLAN(ale_entry))
2911 			continue;
2912 		ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2913 		cpsw_ale_write_entry(sc, i, ale_entry);
2914 		break;
2915 	}
2916 }
2917 
2918 static int
2919 cpsw_setvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2920 {
2921 	int i;
2922 	struct cpsw_softc *sc;
2923 
2924 	sc = device_get_softc(dev);
2925 
2926 	for (i = 0; i < CPSW_VLANS; i++) {
2927 		/* Is this Vlan ID in use by another vlangroup ? */
2928 		if (vg->es_vlangroup != i && cpsw_vgroups[i].vid == vg->es_vid)
2929 			return (EINVAL);
2930 	}
2931 
2932 	if (vg->es_vid == 0) {
2933 		if (cpsw_vgroups[vg->es_vlangroup].vid == -1)
2934 			return (0);
2935 		cpsw_remove_vlan(sc, cpsw_vgroups[vg->es_vlangroup].vid);
2936 		cpsw_vgroups[vg->es_vlangroup].vid = -1;
2937 		vg->es_untagged_ports = 0;
2938 		vg->es_member_ports = 0;
2939 		vg->es_vid = 0;
2940 		return (0);
2941 	}
2942 
2943 	vg->es_vid &= ETHERSWITCH_VID_MASK;
2944 	vg->es_member_ports &= CPSW_PORTS_MASK;
2945 	vg->es_untagged_ports &= CPSW_PORTS_MASK;
2946 
2947 	if (cpsw_vgroups[vg->es_vlangroup].vid != -1 &&
2948 	    cpsw_vgroups[vg->es_vlangroup].vid != vg->es_vid)
2949 		return (EINVAL);
2950 
2951 	cpsw_vgroups[vg->es_vlangroup].vid = vg->es_vid;
2952 	cpsw_ale_update_vlan_table(sc, vg->es_vid, vg->es_member_ports,
2953 	    vg->es_untagged_ports, vg->es_member_ports, 0);
2954 
2955 	return (0);
2956 }
2957 
2958 static int
2959 cpsw_readreg(device_t dev, int addr)
2960 {
2961 
2962 	/* Not supported. */
2963 	return (0);
2964 }
2965 
2966 static int
2967 cpsw_writereg(device_t dev, int addr, int value)
2968 {
2969 
2970 	/* Not supported. */
2971 	return (0);
2972 }
2973 
2974 static int
2975 cpsw_readphy(device_t dev, int phy, int reg)
2976 {
2977 
2978 	/* Not supported. */
2979 	return (0);
2980 }
2981 
2982 static int
2983 cpsw_writephy(device_t dev, int phy, int reg, int data)
2984 {
2985 
2986 	/* Not supported. */
2987 	return (0);
2988 }
2989 #endif
2990