xref: /freebsd/sys/arm/ti/cpsw/if_cpsw.c (revision 9ecd54f24fe9fa373e07c9fd7c052deb2188f545)
1 /*-
2  * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * TI Common Platform Ethernet Switch (CPSW) Driver
29  * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
30  *
31  * This controller is documented in the AM335x Technical Reference
32  * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
33  * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
34  *
35  * It is basically a single Ethernet port (port 0) wired internally to
36  * a 3-port store-and-forward switch connected to two independent
37  * "sliver" controllers (port 1 and port 2).  You can operate the
38  * controller in a variety of different ways by suitably configuring
39  * the slivers and the Address Lookup Engine (ALE) that routes packets
40  * between the ports.
41  *
42  * This code was developed and tested on a BeagleBone with
43  * an AM335x SoC.
44  */
45 
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/endian.h>
52 #include <sys/mbuf.h>
53 #include <sys/lock.h>
54 #include <sys/mutex.h>
55 #include <sys/kernel.h>
56 #include <sys/module.h>
57 #include <sys/socket.h>
58 #include <sys/sysctl.h>
59 
60 #include <net/ethernet.h>
61 #include <net/bpf.h>
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_types.h>
67 #include <net/if_var.h>
68 #include <net/if_vlan_var.h>
69 
70 #include <netinet/in_systm.h>
71 #include <netinet/in.h>
72 #include <netinet/ip.h>
73 
74 #include <sys/sockio.h>
75 #include <sys/bus.h>
76 #include <machine/bus.h>
77 #include <sys/rman.h>
78 #include <machine/resource.h>
79 
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82 
83 #include <dev/fdt/fdt_common.h>
84 #include <dev/ofw/ofw_bus.h>
85 #include <dev/ofw/ofw_bus_subr.h>
86 
87 #include "if_cpswreg.h"
88 #include "if_cpswvar.h"
89 
90 #include <arm/ti/ti_scm.h>
91 
92 #include "miibus_if.h"
93 
94 /* Device probe/attach/detach. */
95 static int cpsw_probe(device_t);
96 static void cpsw_init_slots(struct cpsw_softc *);
97 static int cpsw_attach(device_t);
98 static void cpsw_free_slot(struct cpsw_softc *, struct cpsw_slot *);
99 static int cpsw_detach(device_t);
100 
101 /* Device Init/shutdown. */
102 static void cpsw_init(void *);
103 static void cpsw_init_locked(void *);
104 static int cpsw_shutdown(device_t);
105 static void cpsw_shutdown_locked(struct cpsw_softc *);
106 
107 /* Device Suspend/Resume. */
108 static int cpsw_suspend(device_t);
109 static int cpsw_resume(device_t);
110 
111 /* Ioctl. */
112 static int cpsw_ioctl(struct ifnet *, u_long command, caddr_t data);
113 
114 static int cpsw_miibus_readreg(device_t, int phy, int reg);
115 static int cpsw_miibus_writereg(device_t, int phy, int reg, int value);
116 
117 /* Send/Receive packets. */
118 static void cpsw_intr_rx(void *arg);
119 static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
120 static void cpsw_rx_enqueue(struct cpsw_softc *);
121 static void cpsw_start(struct ifnet *);
122 static void cpsw_tx_enqueue(struct cpsw_softc *);
123 static int cpsw_tx_dequeue(struct cpsw_softc *);
124 
125 /* Misc interrupts and watchdog. */
126 static void cpsw_intr_rx_thresh(void *);
127 static void cpsw_intr_misc(void *);
128 static void cpsw_tick(void *);
129 static void cpsw_ifmedia_sts(struct ifnet *, struct ifmediareq *);
130 static int cpsw_ifmedia_upd(struct ifnet *);
131 static void cpsw_tx_watchdog(struct cpsw_softc *);
132 
133 /* ALE support */
134 static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t idx, uint32_t *ale_entry);
135 static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t idx, uint32_t *ale_entry);
136 static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t portmap, uint8_t *mac);
137 static int cpsw_ale_update_addresses(struct cpsw_softc *, int purge);
138 static void cpsw_ale_dump_table(struct cpsw_softc *);
139 
140 /* Statistics and sysctls. */
141 static void cpsw_add_sysctls(struct cpsw_softc *);
142 static void cpsw_stats_collect(struct cpsw_softc *);
143 static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
144 
145 /*
146  * Arbitrary limit on number of segments in an mbuf to be transmitted.
147  * Packets with more segments than this will be defragmented before
148  * they are queued.
149  */
150 #define CPSW_TXFRAGS 8
151 
152 
153 /*
154  * TODO: The CPSW subsystem (CPSW_SS) can drive two independent PHYs
155  * as separate Ethernet ports.  To properly support this, we should
156  * break this into two separate devices: a CPSW_SS device that owns
157  * the interrupts and actually talks to the CPSW hardware, and a
158  * separate CPSW Ethernet child device for each Ethernet port.  The RX
159  * interrupt, for example, would be part of CPSW_SS; it would receive
160  * a packet, note the input port, and then dispatch it to the child
161  * device's interface queue.  Similarly for transmit.
162  *
163  * It's not clear to me whether the device tree should be restructured
164  * with a cpsw_ss node and two child nodes.  That would allow specifying
165  * MAC addresses for each port, for example, but might be overkill.
166  *
167  * Unfortunately, I don't have hardware right now that supports two
168  * Ethernet ports via CPSW.
169  */
170 
171 static device_method_t cpsw_methods[] = {
172 	/* Device interface */
173 	DEVMETHOD(device_probe,		cpsw_probe),
174 	DEVMETHOD(device_attach,	cpsw_attach),
175 	DEVMETHOD(device_detach,	cpsw_detach),
176 	DEVMETHOD(device_shutdown,	cpsw_shutdown),
177 	DEVMETHOD(device_suspend,	cpsw_suspend),
178 	DEVMETHOD(device_resume,	cpsw_resume),
179 	/* MII interface */
180 	DEVMETHOD(miibus_readreg,	cpsw_miibus_readreg),
181 	DEVMETHOD(miibus_writereg,	cpsw_miibus_writereg),
182 	{ 0, 0 }
183 };
184 
185 static driver_t cpsw_driver = {
186 	"cpsw",
187 	cpsw_methods,
188 	sizeof(struct cpsw_softc),
189 };
190 
191 static devclass_t cpsw_devclass;
192 
193 DRIVER_MODULE(cpsw, simplebus, cpsw_driver, cpsw_devclass, 0, 0);
194 DRIVER_MODULE(miibus, cpsw, miibus_driver, miibus_devclass, 0, 0);
195 MODULE_DEPEND(cpsw, ether, 1, 1, 1);
196 MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
197 
198 static struct resource_spec res_spec[] = {
199 	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
200 	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
201 	{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
202 	{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
203 	{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
204 	{ -1, 0 }
205 };
206 
207 /* Number of entries here must match size of stats
208  * array in struct cpsw_softc. */
209 static struct cpsw_stat {
210 	int	reg;
211 	char *oid;
212 } cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
213 	{0x00, "GoodRxFrames"},
214 	{0x04, "BroadcastRxFrames"},
215 	{0x08, "MulticastRxFrames"},
216 	{0x0C, "PauseRxFrames"},
217 	{0x10, "RxCrcErrors"},
218 	{0x14, "RxAlignErrors"},
219 	{0x18, "OversizeRxFrames"},
220 	{0x1c, "RxJabbers"},
221 	{0x20, "ShortRxFrames"},
222 	{0x24, "RxFragments"},
223 	{0x30, "RxOctets"},
224 	{0x34, "GoodTxFrames"},
225 	{0x38, "BroadcastTxFrames"},
226 	{0x3c, "MulticastTxFrames"},
227 	{0x40, "PauseTxFrames"},
228 	{0x44, "DeferredTxFrames"},
229 	{0x48, "CollisionsTxFrames"},
230 	{0x4c, "SingleCollisionTxFrames"},
231 	{0x50, "MultipleCollisionTxFrames"},
232 	{0x54, "ExcessiveCollisions"},
233 	{0x58, "LateCollisions"},
234 	{0x5c, "TxUnderrun"},
235 	{0x60, "CarrierSenseErrors"},
236 	{0x64, "TxOctets"},
237 	{0x68, "RxTx64OctetFrames"},
238 	{0x6c, "RxTx65to127OctetFrames"},
239 	{0x70, "RxTx128to255OctetFrames"},
240 	{0x74, "RxTx256to511OctetFrames"},
241 	{0x78, "RxTx512to1024OctetFrames"},
242 	{0x7c, "RxTx1024upOctetFrames"},
243 	{0x80, "NetOctets"},
244 	{0x84, "RxStartOfFrameOverruns"},
245 	{0x88, "RxMiddleOfFrameOverruns"},
246 	{0x8c, "RxDmaOverruns"}
247 };
248 
249 /*
250  * Basic debug support.
251  */
252 
253 #define IF_DEBUG(sc)  if (sc->cpsw_if_flags & IFF_DEBUG)
254 
255 static void
256 cpsw_debugf_head(const char *funcname)
257 {
258 	int t = (int)(time_second % (24 * 60 * 60));
259 
260 	printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
261 }
262 
263 #include <machine/stdarg.h>
264 static void
265 cpsw_debugf(const char *fmt, ...)
266 {
267 	va_list ap;
268 
269 	va_start(ap, fmt);
270 	vprintf(fmt, ap);
271 	va_end(ap);
272 	printf("\n");
273 
274 }
275 
276 #define CPSW_DEBUGF(a) do {					\
277 	IF_DEBUG(sc) {						\
278 		cpsw_debugf_head(__func__);			\
279 		cpsw_debugf a;					\
280 	}							\
281 } while (0)
282 
283 
284 /*
285  * Locking macros
286  */
287 #define CPSW_TX_LOCK(sc) do {					\
288 		mtx_assert(&(sc)->rx.lock, MA_NOTOWNED);		\
289 		mtx_lock(&(sc)->tx.lock);				\
290 } while (0)
291 
292 #define CPSW_TX_UNLOCK(sc)	mtx_unlock(&(sc)->tx.lock)
293 #define CPSW_TX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->tx.lock, MA_OWNED)
294 
295 #define CPSW_RX_LOCK(sc) do {					\
296 		mtx_assert(&(sc)->tx.lock, MA_NOTOWNED);		\
297 		mtx_lock(&(sc)->rx.lock);				\
298 } while (0)
299 
300 #define CPSW_RX_UNLOCK(sc)		mtx_unlock(&(sc)->rx.lock)
301 #define CPSW_RX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->rx.lock, MA_OWNED)
302 
303 #define CPSW_GLOBAL_LOCK(sc) do {					\
304 		if ((mtx_owned(&(sc)->tx.lock) ? 1 : 0) !=	\
305 		    (mtx_owned(&(sc)->rx.lock) ? 1 : 0)) {		\
306 			panic("cpsw deadlock possibility detection!");	\
307 		}							\
308 		mtx_lock(&(sc)->tx.lock);				\
309 		mtx_lock(&(sc)->rx.lock);				\
310 } while (0)
311 
312 #define CPSW_GLOBAL_UNLOCK(sc) do {					\
313 		CPSW_RX_UNLOCK(sc);				\
314 		CPSW_TX_UNLOCK(sc);				\
315 } while (0)
316 
317 #define CPSW_GLOBAL_LOCK_ASSERT(sc) do {				\
318 		CPSW_TX_LOCK_ASSERT(sc);				\
319 		CPSW_RX_LOCK_ASSERT(sc);				\
320 } while (0)
321 
322 /*
323  * Read/Write macros
324  */
325 #define	cpsw_read_4(sc, reg)		bus_read_4(sc->res[0], reg)
326 #define	cpsw_write_4(sc, reg, val)	bus_write_4(sc->res[0], reg, val)
327 
328 #define	cpsw_cpdma_bd_offset(i)	(CPSW_CPPI_RAM_OFFSET + ((i)*16))
329 
330 #define	cpsw_cpdma_bd_paddr(sc, slot)				\
331 	BUS_SPACE_PHYSADDR(sc->res[0], slot->bd_offset)
332 #define	cpsw_cpdma_read_bd(sc, slot, val)				\
333 	bus_read_region_4(sc->res[0], slot->bd_offset, (uint32_t *) val, 4)
334 #define	cpsw_cpdma_write_bd(sc, slot, val)				\
335 	bus_write_region_4(sc->res[0], slot->bd_offset, (uint32_t *) val, 4)
336 #define	cpsw_cpdma_write_bd_next(sc, slot, next_slot)			\
337 	cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
338 #define	cpsw_cpdma_read_bd_flags(sc, slot)		\
339 	bus_read_2(sc->res[0], slot->bd_offset + 14)
340 #define	cpsw_write_hdp_slot(sc, queue, slot)				\
341 	cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
342 #define	CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
343 #define	cpsw_read_cp(sc, queue)				\
344 	cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
345 #define	cpsw_write_cp(sc, queue, val)				\
346 	cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
347 #define	cpsw_write_cp_slot(sc, queue, slot)		\
348 	cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
349 
350 #if 0
351 /* XXX temporary function versions for debugging. */
352 static void
353 cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
354 {
355 	uint32_t reg = queue->hdp_offset;
356 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
357 	CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
358 	cpsw_write_4(sc, reg, v);
359 }
360 
361 static void
362 cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
363 {
364 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
365 	CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
366 	cpsw_write_cp(sc, queue, v);
367 }
368 #endif
369 
370 /*
371  * Expanded dump routines for verbose debugging.
372  */
373 static void
374 cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
375 {
376 	static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
377 	    "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
378 	    "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
379 	    "Port0"};
380 	struct cpsw_cpdma_bd bd;
381 	const char *sep;
382 	int i;
383 
384 	cpsw_cpdma_read_bd(sc, slot, &bd);
385 	printf("BD Addr: 0x%08x   Next: 0x%08x\n", cpsw_cpdma_bd_paddr(sc, slot), bd.next);
386 	printf("  BufPtr: 0x%08x   BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
387 	printf("  BufOff: 0x%08x   PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
388 	printf("  Flags: ");
389 	sep = "";
390 	for (i = 0; i < 16; ++i) {
391 		if (bd.flags & (1 << (15 - i))) {
392 			printf("%s%s", sep, flags[i]);
393 			sep = ",";
394 		}
395 	}
396 	printf("\n");
397 	if (slot->mbuf) {
398 		printf("  Ether:  %14D\n",
399 		    (char *)(slot->mbuf->m_hdr.mh_data), " ");
400 		printf("  Packet: %16D\n",
401 		    (char *)(slot->mbuf->m_hdr.mh_data) + 14, " ");
402 	}
403 }
404 
405 #define CPSW_DUMP_SLOT(cs, slot) do {				\
406 	IF_DEBUG(sc) {						\
407 		cpsw_dump_slot(sc, slot);			\
408 	}							\
409 } while (0)
410 
411 
412 static void
413 cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
414 {
415 	struct cpsw_slot *slot;
416 	int i = 0;
417 	int others = 0;
418 
419 	STAILQ_FOREACH(slot, q, next) {
420 		if (i > 4)
421 			++others;
422 		else
423 			cpsw_dump_slot(sc, slot);
424 		++i;
425 	}
426 	if (others)
427 		printf(" ... and %d more.\n", others);
428 	printf("\n");
429 }
430 
431 #define CPSW_DUMP_QUEUE(sc, q) do {				\
432 	IF_DEBUG(sc) {						\
433 		cpsw_dump_queue(sc, q);				\
434 	}							\
435 } while (0)
436 
437 
438 /*
439  *
440  * Device Probe, Attach, Detach.
441  *
442  */
443 
444 static int
445 cpsw_probe(device_t dev)
446 {
447 
448 	if (!ofw_bus_status_okay(dev))
449 		return (ENXIO);
450 
451 	if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
452 		return (ENXIO);
453 
454 	device_set_desc(dev, "3-port Switch Ethernet Subsystem");
455 	return (BUS_PROBE_DEFAULT);
456 }
457 
458 
459 static void
460 cpsw_init_slots(struct cpsw_softc *sc)
461 {
462 	struct cpsw_slot *slot;
463 	int i;
464 
465 	STAILQ_INIT(&sc->avail);
466 
467 	/* Put the slot descriptors onto the global avail list. */
468 	for (i = 0; i < sizeof(sc->_slots) / sizeof(sc->_slots[0]); i++) {
469 		slot = &sc->_slots[i];
470 		slot->bd_offset = cpsw_cpdma_bd_offset(i);
471 		STAILQ_INSERT_TAIL(&sc->avail, slot, next);
472 	}
473 }
474 
475 /*
476  * bind an interrupt, add the relevant info to sc->interrupts
477  */
478 static int
479 cpsw_attach_interrupt(struct cpsw_softc *sc, struct resource *res, driver_intr_t *handler, const char *description)
480 {
481 	void **pcookie;
482 	int error;
483 
484 	sc->interrupts[sc->interrupt_count].res = res;
485 	sc->interrupts[sc->interrupt_count].description = description;
486 	pcookie = &sc->interrupts[sc->interrupt_count].ih_cookie;
487 
488 	error = bus_setup_intr(sc->dev, res, INTR_TYPE_NET | INTR_MPSAFE,
489 	    NULL, *handler, sc, pcookie);
490 	if (error)
491 		device_printf(sc->dev,
492 		    "could not setup %s\n", description);
493 	else
494 		++sc->interrupt_count;
495 	return (error);
496 }
497 
498 /*
499  * teardown everything in sc->interrupts.
500  */
501 static void
502 cpsw_detach_interrupts(struct cpsw_softc *sc)
503 {
504 	int error;
505 	int i;
506 
507 	for (i = 0; i < sizeof(sc->interrupts) / sizeof(sc->interrupts[0]); ++i) {
508 		if (!sc->interrupts[i].ih_cookie)
509 			continue;
510 		error = bus_teardown_intr(sc->dev,
511 		    sc->interrupts[i].res, sc->interrupts[i].ih_cookie);
512 		if (error)
513 			device_printf(sc->dev, "could not release %s\n",
514 			    sc->interrupts[i].description);
515 		sc->interrupts[i].ih_cookie = NULL;
516 	}
517 }
518 
519 static int
520 cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
521 {
522 	const int max_slots = sizeof(sc->_slots) / sizeof(sc->_slots[0]);
523 	struct cpsw_slot *slot;
524 	int i;
525 
526 	if (requested < 0)
527 		requested = max_slots;
528 
529 	for (i = 0; i < requested; ++i) {
530 		slot = STAILQ_FIRST(&sc->avail);
531 		if (slot == NULL)
532 			return (0);
533 		if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
534 			if_printf(sc->ifp, "failed to create dmamap\n");
535 			return (ENOMEM);
536 		}
537 		STAILQ_REMOVE_HEAD(&sc->avail, next);
538 		STAILQ_INSERT_TAIL(&queue->avail, slot, next);
539 		++queue->avail_queue_len;
540 		++queue->queue_slots;
541 	}
542 	return (0);
543 }
544 
545 static int
546 cpsw_attach(device_t dev)
547 {
548 	bus_dma_segment_t segs[1];
549 	struct cpsw_softc *sc = device_get_softc(dev);
550 	struct mii_softc *miisc;
551 	struct ifnet *ifp;
552 	void *phy_sc;
553 	int error, phy, nsegs;
554 	uint32_t reg;
555 
556 	CPSW_DEBUGF((""));
557 
558 	getbinuptime(&sc->attach_uptime);
559 	sc->dev = dev;
560 	sc->node = ofw_bus_get_node(dev);
561 
562 	/* Get phy address from fdt */
563 	if (fdt_get_phyaddr(sc->node, sc->dev, &phy, &phy_sc) != 0) {
564 		device_printf(dev, "failed to get PHY address from FDT\n");
565 		return (ENXIO);
566 	}
567 	/* Initialize mutexes */
568 	mtx_init(&sc->tx.lock, device_get_nameunit(dev),
569 	    "cpsw TX lock", MTX_DEF);
570 	mtx_init(&sc->rx.lock, device_get_nameunit(dev),
571 	    "cpsw RX lock", MTX_DEF);
572 
573 	/* Allocate IO and IRQ resources */
574 	error = bus_alloc_resources(dev, res_spec, sc->res);
575 	if (error) {
576 		device_printf(dev, "could not allocate resources\n");
577 		cpsw_detach(dev);
578 		return (ENXIO);
579 	}
580 
581 	reg = cpsw_read_4(sc, CPSW_SS_IDVER);
582 	device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
583 		reg & 0xFF, (reg >> 11) & 0x1F);
584 
585 	cpsw_add_sysctls(sc);
586 
587 	/* Allocate a busdma tag and DMA safe memory for mbufs. */
588 	error = bus_dma_tag_create(
589 		bus_get_dma_tag(sc->dev),	/* parent */
590 		1, 0,				/* alignment, boundary */
591 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
592 		BUS_SPACE_MAXADDR,		/* highaddr */
593 		NULL, NULL,			/* filtfunc, filtfuncarg */
594 		MCLBYTES, CPSW_TXFRAGS,		/* maxsize, nsegments */
595 		MCLBYTES, 0,			/* maxsegsz, flags */
596 		NULL, NULL,			/* lockfunc, lockfuncarg */
597 		&sc->mbuf_dtag);		/* dmatag */
598 	if (error) {
599 		device_printf(dev, "bus_dma_tag_create failed\n");
600 		cpsw_detach(dev);
601 		return (error);
602 	}
603 
604 	/* Allocate network interface */
605 	ifp = sc->ifp = if_alloc(IFT_ETHER);
606 	if (ifp == NULL) {
607 		device_printf(dev, "if_alloc() failed\n");
608 		cpsw_detach(dev);
609 		return (ENOMEM);
610 	}
611 
612 	/* Allocate the null mbuf and pre-sync it. */
613 	sc->null_mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
614 	memset(sc->null_mbuf->m_hdr.mh_data, 0, sc->null_mbuf->m_ext.ext_size);
615 	bus_dmamap_create(sc->mbuf_dtag, 0, &sc->null_mbuf_dmamap);
616 	bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, sc->null_mbuf_dmamap,
617 	    sc->null_mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
618 	bus_dmamap_sync(sc->mbuf_dtag, sc->null_mbuf_dmamap,
619 	    BUS_DMASYNC_PREWRITE);
620 	sc->null_mbuf_paddr = segs[0].ds_addr;
621 
622 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
623 	ifp->if_softc = sc;
624 	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
625 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_HWCSUM; //FIXME VLAN?
626 	ifp->if_capenable = ifp->if_capabilities;
627 
628 	ifp->if_init = cpsw_init;
629 	ifp->if_start = cpsw_start;
630 	ifp->if_ioctl = cpsw_ioctl;
631 
632 	cpsw_init_slots(sc);
633 
634 	/* Allocate slots to TX and RX queues. */
635 	STAILQ_INIT(&sc->rx.avail);
636 	STAILQ_INIT(&sc->rx.active);
637 	STAILQ_INIT(&sc->tx.avail);
638 	STAILQ_INIT(&sc->tx.active);
639 	// For now:  128 slots to TX, rest to RX.
640 	// XXX TODO: start with 32/64 and grow dynamically based on demand.
641 	if (cpsw_add_slots(sc, &sc->tx, 128) || cpsw_add_slots(sc, &sc->rx, -1)) {
642 		device_printf(dev, "failed to allocate dmamaps\n");
643 		cpsw_detach(dev);
644 		return (ENOMEM);
645 	}
646 	device_printf(dev, "Initial queue size TX=%d RX=%d\n",
647 	    sc->tx.queue_slots, sc->rx.queue_slots);
648 
649 	ifp->if_snd.ifq_drv_maxlen = sc->tx.queue_slots;
650 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
651 	IFQ_SET_READY(&ifp->if_snd);
652 
653 	sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
654 	sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
655 
656 	/* Get high part of MAC address from control module (mac_id0_hi) */
657 	/* TODO: Get MAC ID1 as well as MAC ID0. */
658 	ti_scm_reg_read_4(0x634, &reg);
659 	sc->mac_addr[0] = reg & 0xFF;
660 	sc->mac_addr[1] = (reg >>  8) & 0xFF;
661 	sc->mac_addr[2] = (reg >> 16) & 0xFF;
662 	sc->mac_addr[3] = (reg >> 24) & 0xFF;
663 
664 	/* Get low part of MAC address from control module (mac_id0_lo) */
665 	ti_scm_reg_read_4(0x630, &reg);
666 	sc->mac_addr[4] = reg & 0xFF;
667 	sc->mac_addr[5] = (reg >>  8) & 0xFF;
668 
669 	ether_ifattach(ifp, sc->mac_addr);
670 	callout_init(&sc->watchdog.callout, 0);
671 
672 	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
673 	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
674 	cpsw_write_4(sc, MDIOCONTROL, 1 << 30 | 1 << 18 | 0xFF);
675 
676 	/* Clear ALE */
677 	cpsw_write_4(sc, CPSW_ALE_CONTROL, 1 << 30);
678 
679 	/* Attach PHY(s) */
680 	error = mii_attach(dev, &sc->miibus, ifp, cpsw_ifmedia_upd,
681 	    cpsw_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
682 	if (error) {
683 		device_printf(dev, "attaching PHYs failed\n");
684 		cpsw_detach(dev);
685 		return (error);
686 	}
687 	sc->mii = device_get_softc(sc->miibus);
688 
689 	/* Tell the MAC where to find the PHY so autoneg works */
690 	miisc = LIST_FIRST(&sc->mii->mii_phys);
691 
692 	/* Select PHY and enable interrupts */
693 	cpsw_write_4(sc, MDIOUSERPHYSEL0, 1 << 6 | (miisc->mii_phy & 0x1F));
694 
695 	/* Note: We don't use sc->res[3] (TX interrupt) */
696 	if (cpsw_attach_interrupt(sc, sc->res[1],
697 		cpsw_intr_rx_thresh, "CPSW RX threshold interrupt") ||
698 	    cpsw_attach_interrupt(sc, sc->res[2],
699 		cpsw_intr_rx, "CPSW RX interrupt") ||
700 	    cpsw_attach_interrupt(sc, sc->res[4],
701 		cpsw_intr_misc, "CPSW misc interrupt")) {
702 		cpsw_detach(dev);
703 		return (ENXIO);
704 	}
705 
706 	return (0);
707 }
708 
709 static void
710 cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
711 {
712 	int error;
713 
714 	if (slot->dmamap) {
715 		error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
716 		KASSERT(error == 0, ("Mapping still active"));
717 		slot->dmamap = NULL;
718 	}
719 	if (slot->mbuf) {
720 		m_freem(slot->mbuf);
721 		slot->mbuf = NULL;
722 	}
723 }
724 
725 static int
726 cpsw_detach(device_t dev)
727 {
728 	struct cpsw_softc *sc = device_get_softc(dev);
729 	int error, i;
730 
731 	CPSW_DEBUGF((""));
732 
733 	/* Stop controller and free TX queue */
734 	if (device_is_attached(dev)) {
735 		ether_ifdetach(sc->ifp);
736 		CPSW_GLOBAL_LOCK(sc);
737 		cpsw_shutdown_locked(sc);
738 		CPSW_GLOBAL_UNLOCK(sc);
739 		callout_drain(&sc->watchdog.callout);
740 	}
741 
742 	bus_generic_detach(dev);
743 	device_delete_child(dev, sc->miibus);
744 
745 	/* Stop and release all interrupts */
746 	cpsw_detach_interrupts(sc);
747 
748 	/* Free dmamaps and mbufs */
749 	for (i = 0; i < sizeof(sc->_slots) / sizeof(sc->_slots[0]); ++i) {
750 		cpsw_free_slot(sc, &sc->_slots[i]);
751 	}
752 
753 	/* Free DMA tag */
754 	error = bus_dma_tag_destroy(sc->mbuf_dtag);
755 	KASSERT(error == 0, ("Unable to destroy DMA tag"));
756 
757 	/* Free IO memory handler */
758 	bus_release_resources(dev, res_spec, sc->res);
759 
760 	/* Destroy mutexes */
761 	mtx_destroy(&sc->rx.lock);
762 	mtx_destroy(&sc->tx.lock);
763 
764 	return (0);
765 }
766 
767 /*
768  *
769  * Init/Shutdown.
770  *
771  */
772 
773 static void
774 cpsw_reset(struct cpsw_softc *sc)
775 {
776 	int i;
777 
778 	/* Reset RMII/RGMII wrapper. */
779 	cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
780 	while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
781 		;
782 
783 	/* Disable TX and RX interrupts for all cores. */
784 	for (i = 0; i < 3; ++i) {
785 		cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
786 		cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
787 		cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
788 		cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
789 	}
790 
791 	/* Reset CPSW subsystem. */
792 	cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
793 	while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
794 		;
795 
796 	/* Reset Sliver port 1 and 2 */
797 	for (i = 0; i < 2; i++) {
798 		/* Reset */
799 		cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
800 		while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
801 			;
802 	}
803 
804 	/* Reset DMA controller. */
805 	cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
806 	while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
807 		;
808 
809 	/* Disable TX & RX DMA */
810 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
811 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
812 
813 	/* Clear all queues. */
814 	for (i = 0; i < 8; i++) {
815 		cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
816 		cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
817 		cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
818 		cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
819 	}
820 
821 	/* Clear all interrupt Masks */
822 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
823 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
824 }
825 
826 static void
827 cpsw_init(void *arg)
828 {
829 	struct cpsw_softc *sc = arg;
830 
831 	CPSW_DEBUGF((""));
832 	CPSW_GLOBAL_LOCK(sc);
833 	cpsw_init_locked(arg);
834 	CPSW_GLOBAL_UNLOCK(sc);
835 }
836 
837 static void
838 cpsw_init_locked(void *arg)
839 {
840 	struct ifnet *ifp;
841 	struct cpsw_softc *sc = arg;
842 	struct cpsw_slot *slot;
843 	uint32_t i;
844 
845 	CPSW_DEBUGF((""));
846 	ifp = sc->ifp;
847 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
848 		return;
849 
850 	getbinuptime(&sc->init_uptime);
851 
852 	/* Reset the controller. */
853 	cpsw_reset(sc);
854 
855 	/* Enable ALE */
856 	cpsw_write_4(sc, CPSW_ALE_CONTROL, 1 << 31 | 1 << 4);
857 
858 	/* Init Sliver port 1 and 2 */
859 	for (i = 0; i < 2; i++) {
860 		/* Set Slave Mapping */
861 		cpsw_write_4(sc, CPSW_SL_RX_PRI_MAP(i), 0x76543210);
862 		cpsw_write_4(sc, CPSW_PORT_P_TX_PRI_MAP(i + 1), 0x33221100);
863 		cpsw_write_4(sc, CPSW_SL_RX_MAXLEN(i), 0x5f2);
864 		/* Set MACCONTROL for ports 0,1: IFCTL_B(16), IFCTL_A(15),
865 		   GMII_EN(5), FULLDUPLEX(1) */
866 		/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
867 		/* Huh?  Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
868 		cpsw_write_4(sc, CPSW_SL_MACCONTROL(i), 1 << 15 | 1 << 5 | 1);
869 	}
870 
871 	/* Set Host Port Mapping */
872 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
873 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
874 
875 	/* Initialize ALE: all ports set to forwarding(3), initialize addrs */
876 	for (i = 0; i < 3; i++)
877 		cpsw_write_4(sc, CPSW_ALE_PORTCTL(i), 3);
878 	cpsw_ale_update_addresses(sc, 1);
879 
880 	cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
881 
882 	/* Enable statistics for ports 0, 1 and 2 */
883 	cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
884 
885 	/* Experiment:  Turn off flow control */
886 	/* This seems to fix the watchdog resets that have plagued
887 	   earlier versions of this driver; I'm not yet sure if there
888 	   are negative effects yet. */
889 	cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
890 
891 	/* Make IP hdr aligned with 4 */
892 	cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
893 
894 	/* Initialize RX Buffer Descriptors */
895 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
896 
897 	/* Enable TX & RX DMA */
898 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
899 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
900 
901 	/* Enable Interrupts for core 0 */
902 	cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
903 	cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
904 	cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x3F);
905 
906 	/* Enable host Error Interrupt */
907 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
908 
909 	/* Enable interrupts for RX Channel 0 */
910 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET, 1);
911 
912 	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
913 	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
914 	cpsw_write_4(sc, MDIOCONTROL, 1 << 30 | 1 << 18 | 0xFF);
915 
916 	/* Select MII in GMII_SEL, Internal Delay mode */
917 	//ti_scm_reg_write_4(0x650, 0);
918 
919 	/* Initialize active queues. */
920 	slot = STAILQ_FIRST(&sc->tx.active);
921 	if (slot != NULL)
922 		cpsw_write_hdp_slot(sc, &sc->tx, slot);
923 	slot = STAILQ_FIRST(&sc->rx.active);
924 	if (slot != NULL)
925 		cpsw_write_hdp_slot(sc, &sc->rx, slot);
926 	cpsw_rx_enqueue(sc);
927 
928 	/* Activate network interface */
929 	sc->rx.running = 1;
930 	sc->tx.running = 1;
931 	sc->watchdog.timer = 0;
932 	callout_reset(&sc->watchdog.callout, hz, cpsw_tick, sc);
933 	sc->ifp->if_drv_flags |= IFF_DRV_RUNNING;
934 	sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
935 
936 }
937 
938 static int
939 cpsw_shutdown(device_t dev)
940 {
941 	struct cpsw_softc *sc = device_get_softc(dev);
942 
943 	CPSW_DEBUGF((""));
944 	CPSW_GLOBAL_LOCK(sc);
945 	cpsw_shutdown_locked(sc);
946 	CPSW_GLOBAL_UNLOCK(sc);
947 	return (0);
948 }
949 
950 static void
951 cpsw_rx_teardown_locked(struct cpsw_softc *sc)
952 {
953 	struct mbuf *received, *next;
954 	int i = 0;
955 
956 	CPSW_DEBUGF(("starting RX teardown"));
957 	cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
958 	for (;;) {
959 		received = cpsw_rx_dequeue(sc);
960 		CPSW_GLOBAL_UNLOCK(sc);
961 		while (received != NULL) {
962 			next = received->m_nextpkt;
963 			received->m_nextpkt = NULL;
964 			(*sc->ifp->if_input)(sc->ifp, received);
965 			received = next;
966 		}
967 		CPSW_GLOBAL_LOCK(sc);
968 		if (!sc->rx.running) {
969 			CPSW_DEBUGF(("finished RX teardown (%d retries)", i));
970 			return;
971 		}
972 		if (++i > 10) {
973 			if_printf(sc->ifp, "Unable to cleanly shutdown receiver\n");
974 			return;
975 		}
976 		DELAY(10);
977 	}
978 }
979 
980 static void
981 cpsw_tx_teardown_locked(struct cpsw_softc *sc)
982 {
983 	int i = 0;
984 
985 	CPSW_DEBUGF(("starting TX teardown"));
986 	cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
987 	cpsw_tx_dequeue(sc);
988 	while (sc->tx.running && ++i < 10) {
989 		DELAY(10);
990 		cpsw_tx_dequeue(sc);
991 	}
992 	if (sc->tx.running)
993 		if_printf(sc->ifp, "Unable to cleanly shutdown transmitter\n");
994 	CPSW_DEBUGF(("finished TX teardown (%d retries, %d idle buffers)",
995 	    i, sc->tx.active_queue_len));
996 }
997 
998 static void
999 cpsw_shutdown_locked(struct cpsw_softc *sc)
1000 {
1001 	struct ifnet *ifp;
1002 
1003 	CPSW_DEBUGF((""));
1004 	CPSW_GLOBAL_LOCK_ASSERT(sc);
1005 	ifp = sc->ifp;
1006 
1007 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1008 		return;
1009 
1010 	/* Disable interface */
1011 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1012 	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1013 
1014 	/* Stop ticker */
1015 	callout_stop(&sc->watchdog.callout);
1016 
1017 	/* Tear down the RX/TX queues. */
1018 	cpsw_rx_teardown_locked(sc);
1019 	cpsw_tx_teardown_locked(sc);
1020 
1021 	/* Capture stats before we reset controller. */
1022 	cpsw_stats_collect(sc);
1023 
1024 	cpsw_reset(sc);
1025 }
1026 
1027 /*
1028  *  Suspend/Resume.
1029  */
1030 
1031 static int
1032 cpsw_suspend(device_t dev)
1033 {
1034 	struct cpsw_softc *sc = device_get_softc(dev);
1035 
1036 	CPSW_DEBUGF((""));
1037 	CPSW_GLOBAL_LOCK(sc);
1038 	cpsw_shutdown_locked(sc);
1039 	CPSW_GLOBAL_UNLOCK(sc);
1040 	return (0);
1041 }
1042 
1043 static int
1044 cpsw_resume(device_t dev)
1045 {
1046 	struct cpsw_softc *sc = device_get_softc(dev);
1047 
1048 	CPSW_DEBUGF(("UNIMPLEMENTED"));
1049 	return (0);
1050 }
1051 
1052 /*
1053  *
1054  *  IOCTL
1055  *
1056  */
1057 
1058 static void
1059 cpsw_set_promisc(struct cpsw_softc *sc, int set)
1060 {
1061 	/*
1062 	 * Enabling promiscuous mode requires two bits of work: First,
1063 	 * ALE_BYPASS needs to be enabled.  That disables the ALE
1064 	 * forwarding logic and causes every packet to be sent to the
1065 	 * host port.  That makes us promiscuous wrt received packets.
1066 	 *
1067 	 * With ALE forwarding disabled, the transmitter needs to set
1068 	 * an explicit output port on every packet to route it to the
1069 	 * correct egress.  This should be doable for systems such as
1070 	 * BeagleBone where only one egress port is actually wired to
1071 	 * a PHY.  If you have both egress ports wired up, life gets a
1072 	 * lot more interesting.
1073 	 *
1074 	 * Hmmm.... NetBSD driver uses ALE_BYPASS always and doesn't
1075 	 * seem to set explicit egress ports.  Does that mean they
1076 	 * are always promiscuous?
1077 	 */
1078 	if (set) {
1079 		printf("Promiscuous mode unimplemented\n");
1080 	}
1081 }
1082 
1083 static void
1084 cpsw_set_allmulti(struct cpsw_softc *sc, int set)
1085 {
1086 	if (set) {
1087 		printf("All-multicast mode unimplemented\n");
1088 	}
1089 }
1090 
1091 static int
1092 cpsw_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1093 {
1094 	struct cpsw_softc *sc = ifp->if_softc;
1095 	struct ifreq *ifr = (struct ifreq *)data;
1096 	int error;
1097 	uint32_t changed;
1098 
1099 	error = 0;
1100 
1101 	switch (command) {
1102 	case SIOCSIFFLAGS:
1103 		CPSW_GLOBAL_LOCK(sc);
1104 		if (ifp->if_flags & IFF_UP) {
1105 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1106 				changed = ifp->if_flags ^ sc->cpsw_if_flags;
1107 				CPSW_DEBUGF(("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)", changed));
1108 				if (changed & IFF_PROMISC)
1109 					cpsw_set_promisc(sc,
1110 					    ifp->if_flags & IFF_PROMISC);
1111 				if (changed & IFF_ALLMULTI)
1112 					cpsw_set_allmulti(sc,
1113 					    ifp->if_flags & IFF_ALLMULTI);
1114 			} else {
1115 				CPSW_DEBUGF(("SIOCSIFFLAGS: UP but not RUNNING; starting up"));
1116 				cpsw_init_locked(sc);
1117 			}
1118 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1119 			CPSW_DEBUGF(("SIOCSIFFLAGS: not UP but RUNNING; shutting down"));
1120 			cpsw_shutdown_locked(sc);
1121 		}
1122 
1123 		sc->cpsw_if_flags = ifp->if_flags;
1124 		CPSW_GLOBAL_UNLOCK(sc);
1125 		break;
1126 	case SIOCADDMULTI:
1127 		cpsw_ale_update_addresses(sc, 0);
1128 		break;
1129 	case SIOCDELMULTI:
1130 		/* Ugh.  DELMULTI doesn't provide the specific address
1131 		   being removed, so the best we can do is remove
1132 		   everything and rebuild it all. */
1133 		cpsw_ale_update_addresses(sc, 1);
1134 		break;
1135 	case SIOCGIFMEDIA:
1136 	case SIOCSIFMEDIA:
1137 		error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
1138 		break;
1139 	default:
1140 		error = ether_ioctl(ifp, command, data);
1141 	}
1142 	return (error);
1143 }
1144 
1145 /*
1146  *
1147  * MIIBUS
1148  *
1149  */
1150 static int
1151 cpsw_miibus_ready(struct cpsw_softc *sc)
1152 {
1153 	uint32_t r, retries = CPSW_MIIBUS_RETRIES;
1154 
1155 	while (--retries) {
1156 		r = cpsw_read_4(sc, MDIOUSERACCESS0);
1157 		if ((r & 1 << 31) == 0)
1158 			return 1;
1159 		DELAY(CPSW_MIIBUS_DELAY);
1160 	}
1161 	return 0;
1162 }
1163 
1164 static int
1165 cpsw_miibus_readreg(device_t dev, int phy, int reg)
1166 {
1167 	struct cpsw_softc *sc = device_get_softc(dev);
1168 	uint32_t cmd, r;
1169 
1170 	if (!cpsw_miibus_ready(sc)) {
1171 		device_printf(dev, "MDIO not ready to read\n");
1172 		return 0;
1173 	}
1174 
1175 	/* Set GO, reg, phy */
1176 	cmd = 1 << 31 | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
1177 	cpsw_write_4(sc, MDIOUSERACCESS0, cmd);
1178 
1179 	if (!cpsw_miibus_ready(sc)) {
1180 		device_printf(dev, "MDIO timed out during read\n");
1181 		return 0;
1182 	}
1183 
1184 	r = cpsw_read_4(sc, MDIOUSERACCESS0);
1185 	if((r & 1 << 29) == 0) {
1186 		device_printf(dev, "Failed to read from PHY.\n");
1187 		r = 0;
1188 	}
1189 	return (r & 0xFFFF);
1190 }
1191 
1192 static int
1193 cpsw_miibus_writereg(device_t dev, int phy, int reg, int value)
1194 {
1195 	struct cpsw_softc *sc = device_get_softc(dev);
1196 	uint32_t cmd;
1197 
1198 	if (!cpsw_miibus_ready(sc)) {
1199 		device_printf(dev, "MDIO not ready to write\n");
1200 		return 0;
1201 	}
1202 
1203 	/* Set GO, WRITE, reg, phy, and value */
1204 	cmd = 3 << 30 | (reg & 0x1F) << 21 | (phy & 0x1F) << 16
1205 	    | (value & 0xFFFF);
1206 	cpsw_write_4(sc, MDIOUSERACCESS0, cmd);
1207 
1208 	if (!cpsw_miibus_ready(sc)) {
1209 		device_printf(dev, "MDIO timed out during write\n");
1210 		return 0;
1211 	}
1212 
1213 	if((cpsw_read_4(sc, MDIOUSERACCESS0) & (1 << 29)) == 0)
1214 		device_printf(dev, "Failed to write to PHY.\n");
1215 
1216 	return 0;
1217 }
1218 
1219 /*
1220  *
1221  * Transmit/Receive Packets.
1222  *
1223  */
1224 
1225 
1226 static void
1227 cpsw_intr_rx(void *arg)
1228 {
1229 	struct cpsw_softc *sc = arg;
1230 	struct mbuf *received, *next;
1231 
1232 	CPSW_RX_LOCK(sc);
1233 	received = cpsw_rx_dequeue(sc);
1234 	cpsw_rx_enqueue(sc);
1235 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
1236 	CPSW_RX_UNLOCK(sc);
1237 
1238 	while (received != NULL) {
1239 		next = received->m_nextpkt;
1240 		received->m_nextpkt = NULL;
1241 		(*sc->ifp->if_input)(sc->ifp, received);
1242 		received = next;
1243 	}
1244 }
1245 
1246 static struct mbuf *
1247 cpsw_rx_dequeue(struct cpsw_softc *sc)
1248 {
1249 	struct cpsw_cpdma_bd bd;
1250 	struct cpsw_slot *slot;
1251 	struct ifnet *ifp;
1252 	struct mbuf *mb_head, *mb_tail;
1253 	int removed = 0;
1254 
1255 	ifp = sc->ifp;
1256 	mb_head = mb_tail = NULL;
1257 
1258 	/* Pull completed packets off hardware RX queue. */
1259 	while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
1260 		cpsw_cpdma_read_bd(sc, slot, &bd);
1261 		if (bd.flags & CPDMA_BD_OWNER)
1262 			break; /* Still in use by hardware */
1263 
1264 		CPSW_DEBUGF(("Removing received packet from RX queue"));
1265 		++removed;
1266 		STAILQ_REMOVE_HEAD(&sc->rx.active, next);
1267 		STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
1268 
1269 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
1270 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1271 
1272 		if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
1273 			CPSW_DEBUGF(("RX teardown in progress"));
1274 			m_freem(slot->mbuf);
1275 			slot->mbuf = NULL;
1276 			cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
1277 			sc->rx.running = 0;
1278 			break;
1279 		}
1280 
1281 		cpsw_write_cp_slot(sc, &sc->rx, slot);
1282 
1283 		/* Set up mbuf */
1284 		/* TODO: track SOP/EOP bits to assemble a full mbuf
1285 		   out of received fragments. */
1286 		slot->mbuf->m_hdr.mh_data += bd.bufoff;
1287 		slot->mbuf->m_hdr.mh_len = bd.pktlen - 4;
1288 		slot->mbuf->m_pkthdr.len = bd.pktlen - 4;
1289 		slot->mbuf->m_flags |= M_PKTHDR;
1290 		slot->mbuf->m_pkthdr.rcvif = ifp;
1291 		slot->mbuf->m_nextpkt = NULL;
1292 
1293 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1294 			/* check for valid CRC by looking into pkt_err[5:4] */
1295 			if ((bd.flags & CPDMA_BD_PKT_ERR_MASK) == 0) {
1296 				slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1297 				slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1298 				slot->mbuf->m_pkthdr.csum_data = 0xffff;
1299 			}
1300 		}
1301 
1302 		/* Add mbuf to packet list to be returned. */
1303 		if (mb_tail) {
1304 			mb_tail->m_nextpkt = slot->mbuf;
1305 		} else {
1306 			mb_head = slot->mbuf;
1307 		}
1308 		mb_tail = slot->mbuf;
1309 		slot->mbuf = NULL;
1310 	}
1311 
1312 	if (removed != 0) {
1313 		sc->rx.queue_removes += removed;
1314 		sc->rx.active_queue_len -= removed;
1315 		sc->rx.avail_queue_len += removed;
1316 		if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
1317 			sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
1318 	}
1319 	return (mb_head);
1320 }
1321 
1322 static void
1323 cpsw_rx_enqueue(struct cpsw_softc *sc)
1324 {
1325 	bus_dma_segment_t seg[1];
1326 	struct cpsw_cpdma_bd bd;
1327 	struct ifnet *ifp = sc->ifp;
1328 	struct cpsw_slots tmpqueue = STAILQ_HEAD_INITIALIZER(tmpqueue);
1329 	struct cpsw_slot *slot, *prev_slot = NULL;
1330 	struct cpsw_slot *last_old_slot, *first_new_slot;
1331 	int error, nsegs, added = 0;
1332 
1333 	/* Register new mbufs with hardware. */
1334 	while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
1335 		if (slot->mbuf == NULL) {
1336 			slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1337 			if (slot->mbuf == NULL) {
1338 				if_printf(sc->ifp, "Unable to fill RX queue\n");
1339 				break;
1340 			}
1341 			slot->mbuf->m_len =
1342 			    slot->mbuf->m_pkthdr.len =
1343 			    slot->mbuf->m_ext.ext_size;
1344 		}
1345 
1346 		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1347 		    slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
1348 
1349 		KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
1350 		KASSERT(error == 0, ("DMA error (error=%d)", error));
1351 		if (error != 0 || nsegs != 1) {
1352 			if_printf(ifp,
1353 			    "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
1354 			    __func__, nsegs, error);
1355 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1356 			m_freem(slot->mbuf);
1357 			slot->mbuf = NULL;
1358 			break;
1359 		}
1360 
1361 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
1362 
1363 		/* Create and submit new rx descriptor*/
1364 		bd.next = 0;
1365 		bd.bufptr = seg->ds_addr;
1366 		bd.bufoff = 0;
1367 		bd.buflen = MCLBYTES - 1;
1368 		bd.pktlen = bd.buflen;
1369 		bd.flags = CPDMA_BD_OWNER;
1370 		cpsw_cpdma_write_bd(sc, slot, &bd);
1371 		++added;
1372 
1373 		if (prev_slot != NULL)
1374 			cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1375 		prev_slot = slot;
1376 		STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
1377 		sc->rx.avail_queue_len--;
1378 		STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1379 	}
1380 
1381 	if (added == 0)
1382 		return;
1383 
1384 	CPSW_DEBUGF(("Adding %d buffers to RX queue", added));
1385 
1386 	/* Link new entries to hardware RX queue. */
1387 	last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
1388 	first_new_slot = STAILQ_FIRST(&tmpqueue);
1389 	STAILQ_CONCAT(&sc->rx.active, &tmpqueue);
1390 	if (first_new_slot == NULL) {
1391 		return;
1392 	} else if (last_old_slot == NULL) {
1393 		/* Start a fresh queue. */
1394 		cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1395 	} else {
1396 		/* Add buffers to end of current queue. */
1397 		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1398 		/* If underrun, restart queue. */
1399 		if (cpsw_cpdma_read_bd_flags(sc, last_old_slot) & CPDMA_BD_EOQ) {
1400 			cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1401 		}
1402 	}
1403 	sc->rx.queue_adds += added;
1404 	sc->rx.active_queue_len += added;
1405 	if (sc->rx.active_queue_len > sc->rx.max_active_queue_len) {
1406 		sc->rx.max_active_queue_len = sc->rx.active_queue_len;
1407 	}
1408 }
1409 
1410 static void
1411 cpsw_start(struct ifnet *ifp)
1412 {
1413 	struct cpsw_softc *sc = ifp->if_softc;
1414 
1415 	CPSW_TX_LOCK(sc);
1416 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && sc->tx.running) {
1417 		cpsw_tx_enqueue(sc);
1418 		cpsw_tx_dequeue(sc);
1419 	}
1420 	CPSW_TX_UNLOCK(sc);
1421 }
1422 
1423 static void
1424 cpsw_tx_enqueue(struct cpsw_softc *sc)
1425 {
1426 	bus_dma_segment_t segs[CPSW_TXFRAGS];
1427 	struct cpsw_cpdma_bd bd;
1428 	struct cpsw_slots tmpqueue = STAILQ_HEAD_INITIALIZER(tmpqueue);
1429 	struct cpsw_slot *slot, *prev_slot = NULL;
1430 	struct cpsw_slot *last_old_slot, *first_new_slot;
1431 	struct mbuf *m0;
1432 	int error, nsegs, seg, added = 0, padlen;
1433 
1434 	/* Pull pending packets from IF queue and prep them for DMA. */
1435 	while ((slot = STAILQ_FIRST(&sc->tx.avail)) != NULL) {
1436 		IF_DEQUEUE(&sc->ifp->if_snd, m0);
1437 		if (m0 == NULL)
1438 			break;
1439 
1440 		slot->mbuf = m0;
1441 		padlen = ETHER_MIN_LEN - slot->mbuf->m_pkthdr.len;
1442 		if (padlen < 0)
1443 			padlen = 0;
1444 
1445 		/* Create mapping in DMA memory */
1446 		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1447 		    slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1448 		/* If the packet is too fragmented, try to simplify. */
1449 		if (error == EFBIG ||
1450 		    (error == 0 &&
1451 			nsegs + (padlen > 0 ? 1 : 0) > sc->tx.avail_queue_len)) {
1452 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1453 			if (padlen > 0) /* May as well add padding. */
1454 				m_append(slot->mbuf, padlen,
1455 				    sc->null_mbuf->m_hdr.mh_data);
1456 			m0 = m_defrag(slot->mbuf, M_NOWAIT);
1457 			if (m0 == NULL) {
1458 				if_printf(sc->ifp,
1459 				    "Can't defragment packet; dropping\n");
1460 				m_freem(slot->mbuf);
1461 			} else {
1462 				CPSW_DEBUGF(("Requeueing defragmented packet"));
1463 				IF_PREPEND(&sc->ifp->if_snd, m0);
1464 			}
1465 			slot->mbuf = NULL;
1466 			continue;
1467 		}
1468 		if (error != 0) {
1469 			if_printf(sc->ifp,
1470 			    "%s: Can't setup DMA (error=%d), dropping packet\n",
1471 			    __func__, error);
1472 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1473 			m_freem(slot->mbuf);
1474 			slot->mbuf = NULL;
1475 			break;
1476 		}
1477 
1478 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap,
1479 				BUS_DMASYNC_PREWRITE);
1480 
1481 
1482 		CPSW_DEBUGF(("Queueing TX packet: %d segments + %d pad bytes",
1483 			nsegs, padlen));
1484 
1485 		/* If there is only one segment, the for() loop
1486 		 * gets skipped and the single buffer gets set up
1487 		 * as both SOP and EOP. */
1488 		/* Start by setting up the first buffer */
1489 		bd.next = 0;
1490 		bd.bufptr = segs[0].ds_addr;
1491 		bd.bufoff = 0;
1492 		bd.buflen = segs[0].ds_len;
1493 		bd.pktlen = m_length(slot->mbuf, NULL) + padlen;
1494 		bd.flags =  CPDMA_BD_SOP | CPDMA_BD_OWNER;
1495 		for (seg = 1; seg < nsegs; ++seg) {
1496 			/* Save the previous buffer (which isn't EOP) */
1497 			cpsw_cpdma_write_bd(sc, slot, &bd);
1498 			if (prev_slot != NULL)
1499 				cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1500 			prev_slot = slot;
1501 			STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
1502 			sc->tx.avail_queue_len--;
1503 			STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1504 			++added;
1505 			slot = STAILQ_FIRST(&sc->tx.avail);
1506 
1507 			/* Setup next buffer (which isn't SOP) */
1508 			bd.next = 0;
1509 			bd.bufptr = segs[seg].ds_addr;
1510 			bd.bufoff = 0;
1511 			bd.buflen = segs[seg].ds_len;
1512 			bd.pktlen = 0;
1513 			bd.flags = CPDMA_BD_OWNER;
1514 		}
1515 		/* Save the final buffer. */
1516 		if (padlen <= 0)
1517 			bd.flags |= CPDMA_BD_EOP;
1518 		cpsw_cpdma_write_bd(sc, slot, &bd);
1519 		if (prev_slot != NULL)
1520 			cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1521 		prev_slot = slot;
1522 		STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
1523 		sc->tx.avail_queue_len--;
1524 		STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1525 		++added;
1526 
1527 		if (padlen > 0) {
1528 			slot = STAILQ_FIRST(&sc->tx.avail);
1529 			STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
1530 			sc->tx.avail_queue_len--;
1531 			STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1532 			++added;
1533 
1534 			/* Setup buffer of null pad bytes (definitely EOP) */
1535 			cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1536 			prev_slot = slot;
1537 			bd.next = 0;
1538 			bd.bufptr = sc->null_mbuf_paddr;
1539 			bd.bufoff = 0;
1540 			bd.buflen = padlen;
1541 			bd.pktlen = 0;
1542 			bd.flags = CPDMA_BD_EOP | CPDMA_BD_OWNER;
1543 			cpsw_cpdma_write_bd(sc, slot, &bd);
1544 			++nsegs;
1545 		}
1546 
1547 		if (nsegs > sc->tx.longest_chain)
1548 			sc->tx.longest_chain = nsegs;
1549 
1550 		// TODO: Should we defer the BPF tap until
1551 		// after all packets are queued?
1552 		BPF_MTAP(sc->ifp, m0);
1553 	}
1554 
1555 	/* Attach the list of new buffers to the hardware TX queue. */
1556 	last_old_slot = STAILQ_LAST(&sc->tx.active, cpsw_slot, next);
1557 	first_new_slot = STAILQ_FIRST(&tmpqueue);
1558 	STAILQ_CONCAT(&sc->tx.active, &tmpqueue);
1559 	if (first_new_slot == NULL) {
1560 		return;
1561 	} else if (last_old_slot == NULL) {
1562 		/* Start a fresh queue. */
1563 		cpsw_write_hdp_slot(sc, &sc->tx, first_new_slot);
1564 	} else {
1565 		/* Add buffers to end of current queue. */
1566 		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1567 		/* If underrun, restart queue. */
1568 		if (cpsw_cpdma_read_bd_flags(sc, last_old_slot) & CPDMA_BD_EOQ) {
1569 			cpsw_write_hdp_slot(sc, &sc->tx, first_new_slot);
1570 		}
1571 	}
1572 	sc->tx.queue_adds += added;
1573 	sc->tx.active_queue_len += added;
1574 	if (sc->tx.active_queue_len > sc->tx.max_active_queue_len) {
1575 		sc->tx.max_active_queue_len = sc->tx.active_queue_len;
1576 	}
1577 }
1578 
1579 static int
1580 cpsw_tx_dequeue(struct cpsw_softc *sc)
1581 {
1582 	struct cpsw_slot *slot, *last_removed_slot = NULL;
1583 	uint32_t flags, removed = 0;
1584 
1585 	slot = STAILQ_FIRST(&sc->tx.active);
1586 	if (slot == NULL && cpsw_read_cp(sc, &sc->tx) == 0xfffffffc) {
1587 		CPSW_DEBUGF(("TX teardown of an empty queue"));
1588 		cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1589 		sc->tx.running = 0;
1590 		return (0);
1591 	}
1592 
1593 	/* Pull completed buffers off the hardware TX queue. */
1594 	while (slot != NULL) {
1595 		flags = cpsw_cpdma_read_bd_flags(sc, slot);
1596 		if (flags & CPDMA_BD_OWNER)
1597 			break; /* Hardware is still using this packet. */
1598 
1599 		CPSW_DEBUGF(("TX removing completed packet"));
1600 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
1601 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1602 		m_freem(slot->mbuf);
1603 		slot->mbuf = NULL;
1604 
1605 		/* Dequeue any additional buffers used by this packet. */
1606 		while (slot != NULL && slot->mbuf == NULL) {
1607 			STAILQ_REMOVE_HEAD(&sc->tx.active, next);
1608 			STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
1609 			++removed;
1610 			last_removed_slot = slot;
1611 			slot = STAILQ_FIRST(&sc->tx.active);
1612 		}
1613 
1614 		/* TearDown complete is only marked on the SOP for the packet. */
1615 		if (flags & CPDMA_BD_TDOWNCMPLT) {
1616 			CPSW_DEBUGF(("TX teardown in progress"));
1617 			cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1618 			// TODO: Increment a count of dropped TX packets
1619 			sc->tx.running = 0;
1620 			break;
1621 		}
1622 	}
1623 
1624 	if (removed != 0) {
1625 		cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
1626 		sc->tx.queue_removes += removed;
1627 		sc->tx.active_queue_len -= removed;
1628 		sc->tx.avail_queue_len += removed;
1629 		if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
1630 			sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
1631 	}
1632 	return (removed);
1633 }
1634 
1635 /*
1636  *
1637  * Miscellaneous interrupts.
1638  *
1639  */
1640 
1641 static void
1642 cpsw_intr_rx_thresh(void *arg)
1643 {
1644 	struct cpsw_softc *sc = arg;
1645 	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_RX_THRESH_STAT(0));
1646 
1647 	CPSW_DEBUGF(("stat=%x", stat));
1648 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
1649 }
1650 
1651 static void
1652 cpsw_intr_misc_host_error(struct cpsw_softc *sc)
1653 {
1654 	uint32_t intstat;
1655 	uint32_t dmastat;
1656 	int txerr, rxerr, txchan, rxchan;
1657 
1658 	printf("\n\n");
1659 	device_printf(sc->dev,
1660 	    "HOST ERROR:  PROGRAMMING ERROR DETECTED BY HARDWARE\n");
1661 	printf("\n\n");
1662 	intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
1663 	device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
1664 	dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
1665 	device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
1666 
1667 	txerr = (dmastat >> 20) & 15;
1668 	txchan = (dmastat >> 16) & 7;
1669 	rxerr = (dmastat >> 12) & 15;
1670 	rxchan = (dmastat >> 8) & 7;
1671 
1672 	switch (txerr) {
1673 	case 0: break;
1674 	case 1:	printf("SOP error on TX channel %d\n", txchan);
1675 		break;
1676 	case 2:	printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
1677 		break;
1678 	case 3:	printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
1679 		break;
1680 	case 4:	printf("Zero Buffer Pointer on TX channel %d\n", txchan);
1681 		break;
1682 	case 5:	printf("Zero Buffer Length on TX channel %d\n", txchan);
1683 		break;
1684 	case 6:	printf("Packet length error on TX channel %d\n", txchan);
1685 		break;
1686 	default: printf("Unknown error on TX channel %d\n", txchan);
1687 		break;
1688 	}
1689 
1690 	if (txerr != 0) {
1691 		printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
1692 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
1693 		printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
1694 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
1695 		cpsw_dump_queue(sc, &sc->tx.active);
1696 	}
1697 
1698 	switch (rxerr) {
1699 	case 0: break;
1700 	case 2:	printf("Ownership bit not set on RX channel %d\n", rxchan);
1701 		break;
1702 	case 4:	printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
1703 		break;
1704 	case 5:	printf("Zero Buffer Length on RX channel %d\n", rxchan);
1705 		break;
1706 	case 6:	printf("Buffer offset too big on RX channel %d\n", rxchan);
1707 		break;
1708 	default: printf("Unknown RX error on RX channel %d\n", rxchan);
1709 		break;
1710 	}
1711 
1712 	if (rxerr != 0) {
1713 		printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
1714 		    rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
1715 		printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
1716 		    rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
1717 		cpsw_dump_queue(sc, &sc->rx.active);
1718 	}
1719 
1720 	printf("\nALE Table\n");
1721 	cpsw_ale_dump_table(sc);
1722 
1723 	// XXX do something useful here??
1724 	panic("CPSW HOST ERROR INTERRUPT");
1725 
1726 	// Suppress this interrupt in the future.
1727 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
1728 	printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
1729 	// The watchdog will probably reset the controller
1730 	// in a little while.  It will probably fail again.
1731 }
1732 
1733 static void
1734 cpsw_intr_misc(void *arg)
1735 {
1736 	struct cpsw_softc *sc = arg;
1737 	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
1738 
1739 	if (stat & 16)
1740 		CPSW_DEBUGF(("Time sync event interrupt unimplemented"));
1741 	if (stat & 8)
1742 		cpsw_stats_collect(sc);
1743 	if (stat & 4)
1744 		cpsw_intr_misc_host_error(sc);
1745 	if (stat & 2)
1746 		CPSW_DEBUGF(("MDIO link change interrupt unimplemented"));
1747 	if (stat & 1)
1748 		CPSW_DEBUGF(("MDIO operation completed interrupt unimplemented"));
1749 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
1750 }
1751 
1752 /*
1753  *
1754  * Periodic Checks and Watchdog.
1755  *
1756  */
1757 
1758 static void
1759 cpsw_tick(void *msc)
1760 {
1761 	struct cpsw_softc *sc = msc;
1762 
1763 	/* Check for TX timeout */
1764 	cpsw_tx_watchdog(sc);
1765 
1766 	/* Check for media type change */
1767 	mii_tick(sc->mii);
1768 	if(sc->cpsw_media_status != sc->mii->mii_media.ifm_media) {
1769 		printf("%s: media type changed (ifm_media=%x)\n", __func__,
1770 			sc->mii->mii_media.ifm_media);
1771 		cpsw_ifmedia_upd(sc->ifp);
1772 	}
1773 
1774 	/* Schedule another timeout one second from now */
1775 	callout_reset(&sc->watchdog.callout, hz, cpsw_tick, sc);
1776 }
1777 
1778 static void
1779 cpsw_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1780 {
1781 	struct cpsw_softc *sc = ifp->if_softc;
1782 	struct mii_data *mii;
1783 
1784 	CPSW_DEBUGF((""));
1785 	CPSW_TX_LOCK(sc);
1786 
1787 	mii = sc->mii;
1788 	mii_pollstat(mii);
1789 
1790 	ifmr->ifm_active = mii->mii_media_active;
1791 	ifmr->ifm_status = mii->mii_media_status;
1792 
1793 	CPSW_TX_UNLOCK(sc);
1794 }
1795 
1796 static int
1797 cpsw_ifmedia_upd(struct ifnet *ifp)
1798 {
1799 	struct cpsw_softc *sc = ifp->if_softc;
1800 
1801 	CPSW_DEBUGF((""));
1802 	if (ifp->if_flags & IFF_UP) {
1803 		CPSW_GLOBAL_LOCK(sc);
1804 		sc->cpsw_media_status = sc->mii->mii_media.ifm_media;
1805 		mii_mediachg(sc->mii);
1806 		cpsw_init_locked(sc);
1807 		CPSW_GLOBAL_UNLOCK(sc);
1808 	}
1809 
1810 	return (0);
1811 }
1812 
1813 static void
1814 cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
1815 {
1816 	cpsw_debugf_head("CPSW watchdog");
1817 	if_printf(sc->ifp, "watchdog timeout\n");
1818 	cpsw_shutdown_locked(sc);
1819 	cpsw_init_locked(sc);
1820 }
1821 
1822 static void
1823 cpsw_tx_watchdog(struct cpsw_softc *sc)
1824 {
1825 	struct ifnet *ifp = sc->ifp;
1826 
1827 	CPSW_GLOBAL_LOCK(sc);
1828 	if (sc->tx.active_queue_len == 0 || (ifp->if_flags & IFF_UP) == 0 ||
1829 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || !sc->tx.running) {
1830 		sc->watchdog.timer = 0; /* Nothing to do. */
1831 	} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
1832 		sc->watchdog.timer = 0;  /* Stuff done while we weren't looking. */
1833 	} else if (cpsw_tx_dequeue(sc) > 0) {
1834 		sc->watchdog.timer = 0;  /* We just did something. */
1835 	} else {
1836 		/* There was something to do but it didn't get done. */
1837 		++sc->watchdog.timer;
1838 		if (sc->watchdog.timer > 2) {
1839 			sc->watchdog.timer = 0;
1840 			++ifp->if_oerrors;
1841 			++sc->watchdog.resets;
1842 			cpsw_tx_watchdog_full_reset(sc);
1843 		}
1844 	}
1845 	sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
1846 	CPSW_GLOBAL_UNLOCK(sc);
1847 }
1848 
1849 /*
1850  *
1851  * ALE support routines.
1852  *
1853  */
1854 
1855 static void
1856 cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
1857 {
1858 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
1859 	ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
1860 	ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
1861 	ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
1862 }
1863 
1864 static void
1865 cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
1866 {
1867 	cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
1868 	cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
1869 	cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
1870 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
1871 }
1872 
1873 static int
1874 cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
1875 {
1876 	int i;
1877 	uint32_t ale_entry[3];
1878 
1879 	/* First two entries are link address and broadcast. */
1880 	for (i = 2; i < CPSW_MAX_ALE_ENTRIES; i++) {
1881 		cpsw_ale_read_entry(sc, i, ale_entry);
1882 		if (((ale_entry[1] >> 28) & 3) == 1 && /* Address entry */
1883 		    ((ale_entry[1] >> 8) & 1) == 1) { /* MCast link addr */
1884 			ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
1885 			cpsw_ale_write_entry(sc, i, ale_entry);
1886 		}
1887 	}
1888 	return CPSW_MAX_ALE_ENTRIES;
1889 }
1890 
1891 static int
1892 cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, uint8_t *mac)
1893 {
1894 	int free_index = -1, matching_index = -1, i;
1895 	uint32_t ale_entry[3];
1896 
1897 	/* Find a matching entry or a free entry. */
1898 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
1899 		cpsw_ale_read_entry(sc, i, ale_entry);
1900 
1901 		/* Entry Type[61:60] is 0 for free entry */
1902 		if (free_index < 0 && ((ale_entry[1] >> 28) & 3) == 0) {
1903 			free_index = i;
1904 		}
1905 
1906 		if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
1907 		    (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
1908 		    (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
1909 		    (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
1910 		    (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
1911 		    (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
1912 			matching_index = i;
1913 			break;
1914 		}
1915 	}
1916 
1917 	if (matching_index < 0) {
1918 		if (free_index < 0)
1919 			return (ENOMEM);
1920 		i = free_index;
1921 	}
1922 
1923 	/* Set MAC address */
1924 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
1925 	ale_entry[1] = mac[0] << 8 | mac[1];
1926 
1927 	/* Entry type[61:60] is addr entry(1), Mcast fwd state[63:62] is fw(3)*/
1928 	ale_entry[1] |= 0xd0 << 24;
1929 
1930 	/* Set portmask [68:66] */
1931 	ale_entry[2] = (portmap & 7) << 2;
1932 
1933 	cpsw_ale_write_entry(sc, i, ale_entry);
1934 
1935 	return 0;
1936 }
1937 
1938 static void
1939 cpsw_ale_dump_table(struct cpsw_softc *sc) {
1940 	int i;
1941 	uint32_t ale_entry[3];
1942 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
1943 		cpsw_ale_read_entry(sc, i, ale_entry);
1944 		if (ale_entry[0] || ale_entry[1] || ale_entry[2]) {
1945 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[0],
1946 				ale_entry[1], ale_entry[2]);
1947 			printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
1948 				(ale_entry[1] >> 8) & 0xFF,
1949 				(ale_entry[1] >> 0) & 0xFF,
1950 				(ale_entry[0] >>24) & 0xFF,
1951 				(ale_entry[0] >>16) & 0xFF,
1952 				(ale_entry[0] >> 8) & 0xFF,
1953 				(ale_entry[0] >> 0) & 0xFF);
1954 			printf(((ale_entry[1] >> 8) & 1) ? "mcast " : "ucast ");
1955 			printf("type: %u ", (ale_entry[1] >> 28) & 3);
1956 			printf("port: %u ", (ale_entry[2] >> 2) & 7);
1957 			printf("\n");
1958 		}
1959 	}
1960 	printf("\n");
1961 }
1962 
1963 static int
1964 cpsw_ale_update_addresses(struct cpsw_softc *sc, int purge)
1965 {
1966 	uint8_t *mac;
1967 	uint32_t ale_entry[3];
1968 	struct ifnet *ifp = sc->ifp;
1969 	struct ifmultiaddr *ifma;
1970 	int i;
1971 
1972 	/* Route incoming packets for our MAC address to Port 0 (host). */
1973 	/* For simplicity, keep this entry at table index 0 in the ALE. */
1974         if_addr_rlock(ifp);
1975 	mac = LLADDR((struct sockaddr_dl *)ifp->if_addr->ifa_addr);
1976 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
1977 	ale_entry[1] = 0x10 << 24 | mac[0] << 8 | mac[1]; /* addr entry + mac */
1978 	ale_entry[2] = 0; /* port = 0 */
1979 	cpsw_ale_write_entry(sc, 0, ale_entry);
1980 
1981 	/* Set outgoing MAC Address for Ports 1 and 2. */
1982 	for (i = 1; i < 3; ++i) {
1983 		cpsw_write_4(sc, CPSW_PORT_P_SA_HI(i),
1984 		    mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
1985 		cpsw_write_4(sc, CPSW_PORT_P_SA_LO(i),
1986 		    mac[5] << 8 | mac[4]);
1987 	}
1988         if_addr_runlock(ifp);
1989 
1990 	/* Keep the broadcast address at table entry 1. */
1991 	ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
1992 	ale_entry[1] = 0xd000ffff; /* FW (3 << 30), Addr entry (1 << 24), upper 16 bits of Mac */
1993 	ale_entry[2] = 0x0000001c; /* Forward to all ports */
1994 	cpsw_ale_write_entry(sc, 1, ale_entry);
1995 
1996 	/* SIOCDELMULTI doesn't specify the particular address
1997 	   being removed, so we have to remove all and rebuild. */
1998 	if (purge)
1999 		cpsw_ale_remove_all_mc_entries(sc);
2000 
2001         /* Set other multicast addrs desired. */
2002         if_maddr_rlock(ifp);
2003         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2004                 if (ifma->ifma_addr->sa_family != AF_LINK)
2005                         continue;
2006 		cpsw_ale_mc_entry_set(sc, 7,
2007 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
2008         }
2009         if_maddr_runlock(ifp);
2010 
2011 	return (0);
2012 }
2013 
2014 /*
2015  *
2016  * Statistics and Sysctls.
2017  *
2018  */
2019 
2020 #if 0
2021 static void
2022 cpsw_stats_dump(struct cpsw_softc *sc)
2023 {
2024 	int i;
2025 	uint32_t r;
2026 
2027 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2028 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2029 		    cpsw_stat_sysctls[i].reg);
2030 		CPSW_DEBUGF(("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
2031 			     (intmax_t)sc->shadow_stats[i], r,
2032 			     (intmax_t)sc->shadow_stats[i] + r));
2033 	}
2034 }
2035 #endif
2036 
2037 static void
2038 cpsw_stats_collect(struct cpsw_softc *sc)
2039 {
2040 	int i;
2041 	uint32_t r;
2042 
2043 	CPSW_DEBUGF(("Controller shadow statistics updated."));
2044 
2045 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2046 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2047 		    cpsw_stat_sysctls[i].reg);
2048 		sc->shadow_stats[i] += r;
2049 		cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg, r);
2050 	}
2051 }
2052 
2053 static int
2054 cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
2055 {
2056 	struct cpsw_softc *sc;
2057 	struct cpsw_stat *stat;
2058 	uint64_t result;
2059 
2060 	sc = (struct cpsw_softc *)arg1;
2061 	stat = &cpsw_stat_sysctls[oidp->oid_number];
2062 	result = sc->shadow_stats[oidp->oid_number];
2063 	result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
2064 	return (sysctl_handle_64(oidp, &result, 0, req));
2065 }
2066 
2067 static int
2068 cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
2069 {
2070 	struct cpsw_softc *sc;
2071 	struct bintime t;
2072 	unsigned result;
2073 
2074 	sc = (struct cpsw_softc *)arg1;
2075 	getbinuptime(&t);
2076 	bintime_sub(&t, &sc->attach_uptime);
2077 	result = t.sec;
2078 	return (sysctl_handle_int(oidp, &result, 0, req));
2079 }
2080 
2081 static int
2082 cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
2083 {
2084 	struct cpsw_softc *sc;
2085 	struct bintime t;
2086 	unsigned result;
2087 
2088 	sc = (struct cpsw_softc *)arg1;
2089 	if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
2090 		getbinuptime(&t);
2091 		bintime_sub(&t, &sc->init_uptime);
2092 		result = t.sec;
2093 	} else
2094 		result = 0;
2095 	return (sysctl_handle_int(oidp, &result, 0, req));
2096 }
2097 
2098 static void
2099 cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node, struct cpsw_queue *queue)
2100 {
2101 	struct sysctl_oid_list *parent;
2102 
2103 	parent = SYSCTL_CHILDREN(node);
2104 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
2105 	    CTLFLAG_RD, &queue->queue_slots, 0,
2106 	    "Total buffers currently assigned to this queue");
2107 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
2108 	    CTLFLAG_RD, &queue->active_queue_len, 0,
2109 	    "Buffers currently registered with hardware controller");
2110 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
2111 	    CTLFLAG_RD, &queue->max_active_queue_len, 0,
2112 	    "Max value of activeBuffers since last driver reset");
2113 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
2114 	    CTLFLAG_RD, &queue->avail_queue_len, 0,
2115 	    "Buffers allocated to this queue but not currently "
2116 	    "registered with hardware controller");
2117 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
2118 	    CTLFLAG_RD, &queue->max_avail_queue_len, 0,
2119 	    "Max value of availBuffers since last driver reset");
2120 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
2121 	    CTLFLAG_RD, &queue->queue_adds, 0,
2122 	    "Total buffers added to queue");
2123 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
2124 	    CTLFLAG_RD, &queue->queue_removes, 0,
2125 	    "Total buffers removed from queue");
2126 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
2127 	    CTLFLAG_RD, &queue->longest_chain, 0,
2128 	    "Max buffers used for a single packet");
2129 }
2130 
2131 static void
2132 cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node, struct cpsw_softc *sc)
2133 {
2134 	struct sysctl_oid_list *parent;
2135 
2136 	parent = SYSCTL_CHILDREN(node);
2137 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
2138 	    CTLFLAG_RD, &sc->watchdog.resets, 0,
2139 	    "Total number of watchdog resets");
2140 }
2141 
2142 static void
2143 cpsw_add_sysctls(struct cpsw_softc *sc)
2144 {
2145 	struct sysctl_ctx_list *ctx;
2146 	struct sysctl_oid *stats_node, *queue_node, *node;
2147 	struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
2148 	int i;
2149 
2150 	ctx = device_get_sysctl_ctx(sc->dev);
2151 	parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
2152 
2153 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
2154 	    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_attached, "IU",
2155 	    "Time since driver attach");
2156 
2157 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "uptime",
2158 	    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_uptime, "IU",
2159 	    "Seconds since driver init");
2160 
2161 	stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
2162 				     CTLFLAG_RD, NULL, "CPSW Statistics");
2163 	stats_parent = SYSCTL_CHILDREN(stats_node);
2164 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2165 		SYSCTL_ADD_PROC(ctx, stats_parent, i,
2166 				cpsw_stat_sysctls[i].oid,
2167 				CTLTYPE_U64 | CTLFLAG_RD, sc, 0,
2168 				cpsw_stats_sysctl, "IU",
2169 				cpsw_stat_sysctls[i].oid);
2170 	}
2171 
2172 	queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
2173 	    CTLFLAG_RD, NULL, "CPSW Queue Statistics");
2174 	queue_parent = SYSCTL_CHILDREN(queue_node);
2175 
2176 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
2177 	    CTLFLAG_RD, NULL, "TX Queue Statistics");
2178 	cpsw_add_queue_sysctls(ctx, node, &sc->tx);
2179 
2180 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
2181 	    CTLFLAG_RD, NULL, "RX Queue Statistics");
2182 	cpsw_add_queue_sysctls(ctx, node, &sc->rx);
2183 
2184 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
2185 	    CTLFLAG_RD, NULL, "Watchdog Statistics");
2186 	cpsw_add_watchdog_sysctls(ctx, node, sc);
2187 }
2188 
2189