xref: /freebsd/sys/arm/ti/cpsw/if_cpsw.c (revision 8d20be1e22095c27faf8fe8b2f0d089739cc742e)
1 /*-
2  * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * TI Common Platform Ethernet Switch (CPSW) Driver
29  * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
30  *
31  * This controller is documented in the AM335x Technical Reference
32  * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
33  * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
34  *
35  * It is basically a single Ethernet port (port 0) wired internally to
36  * a 3-port store-and-forward switch connected to two independent
37  * "sliver" controllers (port 1 and port 2).  You can operate the
38  * controller in a variety of different ways by suitably configuring
39  * the slivers and the Address Lookup Engine (ALE) that routes packets
40  * between the ports.
41  *
42  * This code was developed and tested on a BeagleBone with
43  * an AM335x SoC.
44  */
45 
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/endian.h>
52 #include <sys/mbuf.h>
53 #include <sys/lock.h>
54 #include <sys/mutex.h>
55 #include <sys/kernel.h>
56 #include <sys/module.h>
57 #include <sys/socket.h>
58 #include <sys/sysctl.h>
59 
60 #include <net/ethernet.h>
61 #include <net/bpf.h>
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_types.h>
67 #include <net/if_var.h>
68 #include <net/if_vlan_var.h>
69 
70 #include <netinet/in_systm.h>
71 #include <netinet/in.h>
72 #include <netinet/ip.h>
73 
74 #include <sys/sockio.h>
75 #include <sys/bus.h>
76 #include <machine/bus.h>
77 #include <sys/rman.h>
78 #include <machine/resource.h>
79 
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82 
83 #include <dev/fdt/fdt_common.h>
84 #include <dev/ofw/ofw_bus.h>
85 #include <dev/ofw/ofw_bus_subr.h>
86 
87 #include "if_cpswreg.h"
88 #include "if_cpswvar.h"
89 
90 #include <arm/ti/ti_scm.h>
91 
92 #include "miibus_if.h"
93 
94 /* Device probe/attach/detach. */
95 static int cpsw_probe(device_t);
96 static void cpsw_init_slots(struct cpsw_softc *);
97 static int cpsw_attach(device_t);
98 static void cpsw_free_slot(struct cpsw_softc *, struct cpsw_slot *);
99 static int cpsw_detach(device_t);
100 
101 /* Device Init/shutdown. */
102 static void cpsw_init(void *);
103 static void cpsw_init_locked(void *);
104 static int cpsw_shutdown(device_t);
105 static void cpsw_shutdown_locked(struct cpsw_softc *);
106 
107 /* Device Suspend/Resume. */
108 static int cpsw_suspend(device_t);
109 static int cpsw_resume(device_t);
110 
111 /* Ioctl. */
112 static int cpsw_ioctl(struct ifnet *, u_long command, caddr_t data);
113 
114 static int cpsw_miibus_readreg(device_t, int phy, int reg);
115 static int cpsw_miibus_writereg(device_t, int phy, int reg, int value);
116 
117 /* Send/Receive packets. */
118 static void cpsw_intr_rx(void *arg);
119 static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
120 static void cpsw_rx_enqueue(struct cpsw_softc *);
121 static void cpsw_start(struct ifnet *);
122 static void cpsw_tx_enqueue(struct cpsw_softc *);
123 static int cpsw_tx_dequeue(struct cpsw_softc *);
124 
125 /* Misc interrupts and watchdog. */
126 static void cpsw_intr_rx_thresh(void *);
127 static void cpsw_intr_misc(void *);
128 static void cpsw_tick(void *);
129 static void cpsw_ifmedia_sts(struct ifnet *, struct ifmediareq *);
130 static int cpsw_ifmedia_upd(struct ifnet *);
131 static void cpsw_tx_watchdog(struct cpsw_softc *);
132 
133 /* ALE support */
134 static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t idx, uint32_t *ale_entry);
135 static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t idx, uint32_t *ale_entry);
136 static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t portmap, uint8_t *mac);
137 static int cpsw_ale_update_addresses(struct cpsw_softc *, int purge);
138 static void cpsw_ale_dump_table(struct cpsw_softc *);
139 
140 /* Statistics and sysctls. */
141 static void cpsw_add_sysctls(struct cpsw_softc *);
142 static void cpsw_stats_collect(struct cpsw_softc *);
143 static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
144 
145 /*
146  * Arbitrary limit on number of segments in an mbuf to be transmitted.
147  * Packets with more segments than this will be defragmented before
148  * they are queued.
149  */
150 #define CPSW_TXFRAGS 8
151 
152 
153 /*
154  * TODO: The CPSW subsystem (CPSW_SS) can drive two independent PHYs
155  * as separate Ethernet ports.  To properly support this, we should
156  * break this into two separate devices: a CPSW_SS device that owns
157  * the interrupts and actually talks to the CPSW hardware, and a
158  * separate CPSW Ethernet child device for each Ethernet port.  The RX
159  * interrupt, for example, would be part of CPSW_SS; it would receive
160  * a packet, note the input port, and then dispatch it to the child
161  * device's interface queue.  Similarly for transmit.
162  *
163  * It's not clear to me whether the device tree should be restructured
164  * with a cpsw_ss node and two child nodes.  That would allow specifying
165  * MAC addresses for each port, for example, but might be overkill.
166  *
167  * Unfortunately, I don't have hardware right now that supports two
168  * Ethernet ports via CPSW.
169  */
170 
171 static device_method_t cpsw_methods[] = {
172 	/* Device interface */
173 	DEVMETHOD(device_probe,		cpsw_probe),
174 	DEVMETHOD(device_attach,	cpsw_attach),
175 	DEVMETHOD(device_detach,	cpsw_detach),
176 	DEVMETHOD(device_shutdown,	cpsw_shutdown),
177 	DEVMETHOD(device_suspend,	cpsw_suspend),
178 	DEVMETHOD(device_resume,	cpsw_resume),
179 	/* MII interface */
180 	DEVMETHOD(miibus_readreg,	cpsw_miibus_readreg),
181 	DEVMETHOD(miibus_writereg,	cpsw_miibus_writereg),
182 	{ 0, 0 }
183 };
184 
185 static driver_t cpsw_driver = {
186 	"cpsw",
187 	cpsw_methods,
188 	sizeof(struct cpsw_softc),
189 };
190 
191 static devclass_t cpsw_devclass;
192 
193 DRIVER_MODULE(cpsw, simplebus, cpsw_driver, cpsw_devclass, 0, 0);
194 DRIVER_MODULE(miibus, cpsw, miibus_driver, miibus_devclass, 0, 0);
195 MODULE_DEPEND(cpsw, ether, 1, 1, 1);
196 MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
197 
198 static struct resource_spec res_spec[] = {
199 	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
200 	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
201 	{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
202 	{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
203 	{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
204 	{ -1, 0 }
205 };
206 
207 /* Number of entries here must match size of stats
208  * array in struct cpsw_softc. */
209 static struct cpsw_stat {
210 	int	reg;
211 	char *oid;
212 } cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
213 	{0x00, "GoodRxFrames"},
214 	{0x04, "BroadcastRxFrames"},
215 	{0x08, "MulticastRxFrames"},
216 	{0x0C, "PauseRxFrames"},
217 	{0x10, "RxCrcErrors"},
218 	{0x14, "RxAlignErrors"},
219 	{0x18, "OversizeRxFrames"},
220 	{0x1c, "RxJabbers"},
221 	{0x20, "ShortRxFrames"},
222 	{0x24, "RxFragments"},
223 	{0x30, "RxOctets"},
224 	{0x34, "GoodTxFrames"},
225 	{0x38, "BroadcastTxFrames"},
226 	{0x3c, "MulticastTxFrames"},
227 	{0x40, "PauseTxFrames"},
228 	{0x44, "DeferredTxFrames"},
229 	{0x48, "CollisionsTxFrames"},
230 	{0x4c, "SingleCollisionTxFrames"},
231 	{0x50, "MultipleCollisionTxFrames"},
232 	{0x54, "ExcessiveCollisions"},
233 	{0x58, "LateCollisions"},
234 	{0x5c, "TxUnderrun"},
235 	{0x60, "CarrierSenseErrors"},
236 	{0x64, "TxOctets"},
237 	{0x68, "RxTx64OctetFrames"},
238 	{0x6c, "RxTx65to127OctetFrames"},
239 	{0x70, "RxTx128to255OctetFrames"},
240 	{0x74, "RxTx256to511OctetFrames"},
241 	{0x78, "RxTx512to1024OctetFrames"},
242 	{0x7c, "RxTx1024upOctetFrames"},
243 	{0x80, "NetOctets"},
244 	{0x84, "RxStartOfFrameOverruns"},
245 	{0x88, "RxMiddleOfFrameOverruns"},
246 	{0x8c, "RxDmaOverruns"}
247 };
248 
249 /*
250  * Basic debug support.
251  */
252 
253 #define IF_DEBUG(sc)  if (sc->cpsw_if_flags & IFF_DEBUG)
254 
255 static void
256 cpsw_debugf_head(const char *funcname)
257 {
258 	int t = (int)(time_second % (24 * 60 * 60));
259 
260 	printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
261 }
262 
263 #include <machine/stdarg.h>
264 static void
265 cpsw_debugf(const char *fmt, ...)
266 {
267 	va_list ap;
268 
269 	va_start(ap, fmt);
270 	vprintf(fmt, ap);
271 	va_end(ap);
272 	printf("\n");
273 
274 }
275 
276 #define CPSW_DEBUGF(a) do {					\
277 	IF_DEBUG(sc) {						\
278 		cpsw_debugf_head(__func__);			\
279 		cpsw_debugf a;					\
280 	}							\
281 } while (0)
282 
283 
284 /*
285  * Locking macros
286  */
287 #define CPSW_TX_LOCK(sc) do {					\
288 		mtx_assert(&(sc)->rx.lock, MA_NOTOWNED);		\
289 		mtx_lock(&(sc)->tx.lock);				\
290 } while (0)
291 
292 #define CPSW_TX_UNLOCK(sc)	mtx_unlock(&(sc)->tx.lock)
293 #define CPSW_TX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->tx.lock, MA_OWNED)
294 
295 #define CPSW_RX_LOCK(sc) do {					\
296 		mtx_assert(&(sc)->tx.lock, MA_NOTOWNED);		\
297 		mtx_lock(&(sc)->rx.lock);				\
298 } while (0)
299 
300 #define CPSW_RX_UNLOCK(sc)		mtx_unlock(&(sc)->rx.lock)
301 #define CPSW_RX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->rx.lock, MA_OWNED)
302 
303 #define CPSW_GLOBAL_LOCK(sc) do {					\
304 		if ((mtx_owned(&(sc)->tx.lock) ? 1 : 0) !=	\
305 		    (mtx_owned(&(sc)->rx.lock) ? 1 : 0)) {		\
306 			panic("cpsw deadlock possibility detection!");	\
307 		}							\
308 		mtx_lock(&(sc)->tx.lock);				\
309 		mtx_lock(&(sc)->rx.lock);				\
310 } while (0)
311 
312 #define CPSW_GLOBAL_UNLOCK(sc) do {					\
313 		CPSW_RX_UNLOCK(sc);				\
314 		CPSW_TX_UNLOCK(sc);				\
315 } while (0)
316 
317 #define CPSW_GLOBAL_LOCK_ASSERT(sc) do {				\
318 		CPSW_TX_LOCK_ASSERT(sc);				\
319 		CPSW_RX_LOCK_ASSERT(sc);				\
320 } while (0)
321 
322 /*
323  * Read/Write macros
324  */
325 #define	cpsw_read_4(sc, reg)		bus_read_4(sc->res[0], reg)
326 #define	cpsw_write_4(sc, reg, val)	bus_write_4(sc->res[0], reg, val)
327 
328 #define	cpsw_cpdma_bd_offset(i)	(CPSW_CPPI_RAM_OFFSET + ((i)*16))
329 
330 #define	cpsw_cpdma_bd_paddr(sc, slot)				\
331 	BUS_SPACE_PHYSADDR(sc->res[0], slot->bd_offset)
332 #define	cpsw_cpdma_read_bd(sc, slot, val)				\
333 	bus_read_region_4(sc->res[0], slot->bd_offset, (uint32_t *) val, 4)
334 #define	cpsw_cpdma_write_bd(sc, slot, val)				\
335 	bus_write_region_4(sc->res[0], slot->bd_offset, (uint32_t *) val, 4)
336 #define	cpsw_cpdma_write_bd_next(sc, slot, next_slot)			\
337 	cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
338 #define	cpsw_cpdma_read_bd_flags(sc, slot)		\
339 	bus_read_2(sc->res[0], slot->bd_offset + 14)
340 #define	cpsw_write_hdp_slot(sc, queue, slot)				\
341 	cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
342 #define	CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
343 #define	cpsw_read_cp(sc, queue)				\
344 	cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
345 #define	cpsw_write_cp(sc, queue, val)				\
346 	cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
347 #define	cpsw_write_cp_slot(sc, queue, slot)		\
348 	cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
349 
350 #if 0
351 /* XXX temporary function versions for debugging. */
352 static void
353 cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
354 {
355 	uint32_t reg = queue->hdp_offset;
356 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
357 	CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
358 	cpsw_write_4(sc, reg, v);
359 }
360 
361 static void
362 cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
363 {
364 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
365 	CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
366 	cpsw_write_cp(sc, queue, v);
367 }
368 #endif
369 
370 /*
371  * Expanded dump routines for verbose debugging.
372  */
373 static void
374 cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
375 {
376 	static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
377 	    "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
378 	    "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
379 	    "Port0"};
380 	struct cpsw_cpdma_bd bd;
381 	const char *sep;
382 	int i;
383 
384 	cpsw_cpdma_read_bd(sc, slot, &bd);
385 	printf("BD Addr: 0x%08x   Next: 0x%08x\n", cpsw_cpdma_bd_paddr(sc, slot), bd.next);
386 	printf("  BufPtr: 0x%08x   BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
387 	printf("  BufOff: 0x%08x   PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
388 	printf("  Flags: ");
389 	sep = "";
390 	for (i = 0; i < 16; ++i) {
391 		if (bd.flags & (1 << (15 - i))) {
392 			printf("%s%s", sep, flags[i]);
393 			sep = ",";
394 		}
395 	}
396 	printf("\n");
397 	if (slot->mbuf) {
398 		printf("  Ether:  %14D\n",
399 		    (char *)(slot->mbuf->m_hdr.mh_data), " ");
400 		printf("  Packet: %16D\n",
401 		    (char *)(slot->mbuf->m_hdr.mh_data) + 14, " ");
402 	}
403 }
404 
405 #define CPSW_DUMP_SLOT(cs, slot) do {				\
406 	IF_DEBUG(sc) {						\
407 		cpsw_dump_slot(sc, slot);			\
408 	}							\
409 } while (0)
410 
411 
412 static void
413 cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
414 {
415 	struct cpsw_slot *slot;
416 	int i = 0;
417 	int others = 0;
418 
419 	STAILQ_FOREACH(slot, q, next) {
420 		if (i > 4)
421 			++others;
422 		else
423 			cpsw_dump_slot(sc, slot);
424 		++i;
425 	}
426 	if (others)
427 		printf(" ... and %d more.\n", others);
428 	printf("\n");
429 }
430 
431 #define CPSW_DUMP_QUEUE(sc, q) do {				\
432 	IF_DEBUG(sc) {						\
433 		cpsw_dump_queue(sc, q);				\
434 	}							\
435 } while (0)
436 
437 
438 /*
439  *
440  * Device Probe, Attach, Detach.
441  *
442  */
443 
444 static int
445 cpsw_probe(device_t dev)
446 {
447 
448 	if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
449 		return (ENXIO);
450 
451 	device_set_desc(dev, "3-port Switch Ethernet Subsystem");
452 	return (BUS_PROBE_DEFAULT);
453 }
454 
455 
456 static void
457 cpsw_init_slots(struct cpsw_softc *sc)
458 {
459 	struct cpsw_slot *slot;
460 	int i;
461 
462 	STAILQ_INIT(&sc->avail);
463 
464 	/* Put the slot descriptors onto the global avail list. */
465 	for (i = 0; i < sizeof(sc->_slots) / sizeof(sc->_slots[0]); i++) {
466 		slot = &sc->_slots[i];
467 		slot->bd_offset = cpsw_cpdma_bd_offset(i);
468 		STAILQ_INSERT_TAIL(&sc->avail, slot, next);
469 	}
470 }
471 
472 /*
473  * bind an interrupt, add the relevant info to sc->interrupts
474  */
475 static int
476 cpsw_attach_interrupt(struct cpsw_softc *sc, struct resource *res, driver_intr_t *handler, const char *description)
477 {
478 	void **pcookie;
479 	int error;
480 
481 	sc->interrupts[sc->interrupt_count].res = res;
482 	sc->interrupts[sc->interrupt_count].description = description;
483 	pcookie = &sc->interrupts[sc->interrupt_count].ih_cookie;
484 
485 	error = bus_setup_intr(sc->dev, res, INTR_TYPE_NET | INTR_MPSAFE,
486 	    NULL, *handler, sc, pcookie);
487 	if (error)
488 		device_printf(sc->dev,
489 		    "could not setup %s\n", description);
490 	else
491 		++sc->interrupt_count;
492 	return (error);
493 }
494 
495 /*
496  * teardown everything in sc->interrupts.
497  */
498 static void
499 cpsw_detach_interrupts(struct cpsw_softc *sc)
500 {
501 	int error;
502 	int i;
503 
504 	for (i = 0; i < sizeof(sc->interrupts) / sizeof(sc->interrupts[0]); ++i) {
505 		if (!sc->interrupts[i].ih_cookie)
506 			continue;
507 		error = bus_teardown_intr(sc->dev,
508 		    sc->interrupts[i].res, sc->interrupts[i].ih_cookie);
509 		if (error)
510 			device_printf(sc->dev, "could not release %s\n",
511 			    sc->interrupts[i].description);
512 		sc->interrupts[i].ih_cookie = NULL;
513 	}
514 }
515 
516 static int
517 cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
518 {
519 	const int max_slots = sizeof(sc->_slots) / sizeof(sc->_slots[0]);
520 	struct cpsw_slot *slot;
521 	int i;
522 
523 	if (requested < 0)
524 		requested = max_slots;
525 
526 	for (i = 0; i < requested; ++i) {
527 		slot = STAILQ_FIRST(&sc->avail);
528 		if (slot == NULL)
529 			return (0);
530 		if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
531 			if_printf(sc->ifp, "failed to create dmamap\n");
532 			return (ENOMEM);
533 		}
534 		STAILQ_REMOVE_HEAD(&sc->avail, next);
535 		STAILQ_INSERT_TAIL(&queue->avail, slot, next);
536 		++queue->avail_queue_len;
537 		++queue->queue_slots;
538 	}
539 	return (0);
540 }
541 
542 static int
543 cpsw_attach(device_t dev)
544 {
545 	bus_dma_segment_t segs[1];
546 	struct cpsw_softc *sc = device_get_softc(dev);
547 	struct mii_softc *miisc;
548 	struct ifnet *ifp;
549 	void *phy_sc;
550 	int error, phy, nsegs;
551 	uint32_t reg;
552 
553 	CPSW_DEBUGF((""));
554 
555 	getbinuptime(&sc->attach_uptime);
556 	sc->dev = dev;
557 	sc->node = ofw_bus_get_node(dev);
558 
559 	/* Get phy address from fdt */
560 	if (fdt_get_phyaddr(sc->node, sc->dev, &phy, &phy_sc) != 0) {
561 		device_printf(dev, "failed to get PHY address from FDT\n");
562 		return (ENXIO);
563 	}
564 	/* Initialize mutexes */
565 	mtx_init(&sc->tx.lock, device_get_nameunit(dev),
566 	    "cpsw TX lock", MTX_DEF);
567 	mtx_init(&sc->rx.lock, device_get_nameunit(dev),
568 	    "cpsw RX lock", MTX_DEF);
569 
570 	/* Allocate IO and IRQ resources */
571 	error = bus_alloc_resources(dev, res_spec, sc->res);
572 	if (error) {
573 		device_printf(dev, "could not allocate resources\n");
574 		cpsw_detach(dev);
575 		return (ENXIO);
576 	}
577 
578 	reg = cpsw_read_4(sc, CPSW_SS_IDVER);
579 	device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
580 		reg & 0xFF, (reg >> 11) & 0x1F);
581 
582 	cpsw_add_sysctls(sc);
583 
584 	/* Allocate a busdma tag and DMA safe memory for mbufs. */
585 	error = bus_dma_tag_create(
586 		bus_get_dma_tag(sc->dev),	/* parent */
587 		1, 0,				/* alignment, boundary */
588 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
589 		BUS_SPACE_MAXADDR,		/* highaddr */
590 		NULL, NULL,			/* filtfunc, filtfuncarg */
591 		MCLBYTES, CPSW_TXFRAGS,		/* maxsize, nsegments */
592 		MCLBYTES, 0,			/* maxsegsz, flags */
593 		NULL, NULL,			/* lockfunc, lockfuncarg */
594 		&sc->mbuf_dtag);		/* dmatag */
595 	if (error) {
596 		device_printf(dev, "bus_dma_tag_create failed\n");
597 		cpsw_detach(dev);
598 		return (error);
599 	}
600 
601 	/* Allocate network interface */
602 	ifp = sc->ifp = if_alloc(IFT_ETHER);
603 	if (ifp == NULL) {
604 		device_printf(dev, "if_alloc() failed\n");
605 		cpsw_detach(dev);
606 		return (ENOMEM);
607 	}
608 
609 	/* Allocate the null mbuf and pre-sync it. */
610 	sc->null_mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
611 	memset(sc->null_mbuf->m_hdr.mh_data, 0, sc->null_mbuf->m_ext.ext_size);
612 	bus_dmamap_create(sc->mbuf_dtag, 0, &sc->null_mbuf_dmamap);
613 	bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, sc->null_mbuf_dmamap,
614 	    sc->null_mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
615 	bus_dmamap_sync(sc->mbuf_dtag, sc->null_mbuf_dmamap,
616 	    BUS_DMASYNC_PREWRITE);
617 	sc->null_mbuf_paddr = segs[0].ds_addr;
618 
619 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
620 	ifp->if_softc = sc;
621 	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
622 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_HWCSUM; //FIXME VLAN?
623 	ifp->if_capenable = ifp->if_capabilities;
624 
625 	ifp->if_init = cpsw_init;
626 	ifp->if_start = cpsw_start;
627 	ifp->if_ioctl = cpsw_ioctl;
628 
629 	cpsw_init_slots(sc);
630 
631 	/* Allocate slots to TX and RX queues. */
632 	STAILQ_INIT(&sc->rx.avail);
633 	STAILQ_INIT(&sc->rx.active);
634 	STAILQ_INIT(&sc->tx.avail);
635 	STAILQ_INIT(&sc->tx.active);
636 	// For now:  128 slots to TX, rest to RX.
637 	// XXX TODO: start with 32/64 and grow dynamically based on demand.
638 	if (cpsw_add_slots(sc, &sc->tx, 128) || cpsw_add_slots(sc, &sc->rx, -1)) {
639 		device_printf(dev, "failed to allocate dmamaps\n");
640 		cpsw_detach(dev);
641 		return (ENOMEM);
642 	}
643 	device_printf(dev, "Initial queue size TX=%d RX=%d\n",
644 	    sc->tx.queue_slots, sc->rx.queue_slots);
645 
646 	ifp->if_snd.ifq_drv_maxlen = sc->tx.queue_slots;
647 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
648 	IFQ_SET_READY(&ifp->if_snd);
649 
650 	sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
651 	sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
652 
653 	/* Get high part of MAC address from control module (mac_id0_hi) */
654 	/* TODO: Get MAC ID1 as well as MAC ID0. */
655 	ti_scm_reg_read_4(0x634, &reg);
656 	sc->mac_addr[0] = reg & 0xFF;
657 	sc->mac_addr[1] = (reg >>  8) & 0xFF;
658 	sc->mac_addr[2] = (reg >> 16) & 0xFF;
659 	sc->mac_addr[3] = (reg >> 24) & 0xFF;
660 
661 	/* Get low part of MAC address from control module (mac_id0_lo) */
662 	ti_scm_reg_read_4(0x630, &reg);
663 	sc->mac_addr[4] = reg & 0xFF;
664 	sc->mac_addr[5] = (reg >>  8) & 0xFF;
665 
666 	ether_ifattach(ifp, sc->mac_addr);
667 	callout_init(&sc->watchdog.callout, 0);
668 
669 	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
670 	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
671 	cpsw_write_4(sc, MDIOCONTROL, 1 << 30 | 1 << 18 | 0xFF);
672 
673 	/* Clear ALE */
674 	cpsw_write_4(sc, CPSW_ALE_CONTROL, 1 << 30);
675 
676 	/* Attach PHY(s) */
677 	error = mii_attach(dev, &sc->miibus, ifp, cpsw_ifmedia_upd,
678 	    cpsw_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
679 	if (error) {
680 		device_printf(dev, "attaching PHYs failed\n");
681 		cpsw_detach(dev);
682 		return (error);
683 	}
684 	sc->mii = device_get_softc(sc->miibus);
685 
686 	/* Tell the MAC where to find the PHY so autoneg works */
687 	miisc = LIST_FIRST(&sc->mii->mii_phys);
688 
689 	/* Select PHY and enable interrupts */
690 	cpsw_write_4(sc, MDIOUSERPHYSEL0, 1 << 6 | (miisc->mii_phy & 0x1F));
691 
692 	/* Note: We don't use sc->res[3] (TX interrupt) */
693 	if (cpsw_attach_interrupt(sc, sc->res[1],
694 		cpsw_intr_rx_thresh, "CPSW RX threshold interrupt") ||
695 	    cpsw_attach_interrupt(sc, sc->res[2],
696 		cpsw_intr_rx, "CPSW RX interrupt") ||
697 	    cpsw_attach_interrupt(sc, sc->res[4],
698 		cpsw_intr_misc, "CPSW misc interrupt")) {
699 		cpsw_detach(dev);
700 		return (ENXIO);
701 	}
702 
703 	return (0);
704 }
705 
706 static void
707 cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
708 {
709 	int error;
710 
711 	if (slot->dmamap) {
712 		error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
713 		KASSERT(error == 0, ("Mapping still active"));
714 		slot->dmamap = NULL;
715 	}
716 	if (slot->mbuf) {
717 		m_freem(slot->mbuf);
718 		slot->mbuf = NULL;
719 	}
720 }
721 
722 static int
723 cpsw_detach(device_t dev)
724 {
725 	struct cpsw_softc *sc = device_get_softc(dev);
726 	int error, i;
727 
728 	CPSW_DEBUGF((""));
729 
730 	/* Stop controller and free TX queue */
731 	if (device_is_attached(dev)) {
732 		ether_ifdetach(sc->ifp);
733 		CPSW_GLOBAL_LOCK(sc);
734 		cpsw_shutdown_locked(sc);
735 		CPSW_GLOBAL_UNLOCK(sc);
736 		callout_drain(&sc->watchdog.callout);
737 	}
738 
739 	bus_generic_detach(dev);
740 	device_delete_child(dev, sc->miibus);
741 
742 	/* Stop and release all interrupts */
743 	cpsw_detach_interrupts(sc);
744 
745 	/* Free dmamaps and mbufs */
746 	for (i = 0; i < sizeof(sc->_slots) / sizeof(sc->_slots[0]); ++i) {
747 		cpsw_free_slot(sc, &sc->_slots[i]);
748 	}
749 
750 	/* Free DMA tag */
751 	error = bus_dma_tag_destroy(sc->mbuf_dtag);
752 	KASSERT(error == 0, ("Unable to destroy DMA tag"));
753 
754 	/* Free IO memory handler */
755 	bus_release_resources(dev, res_spec, sc->res);
756 
757 	/* Destroy mutexes */
758 	mtx_destroy(&sc->rx.lock);
759 	mtx_destroy(&sc->tx.lock);
760 
761 	return (0);
762 }
763 
764 /*
765  *
766  * Init/Shutdown.
767  *
768  */
769 
770 static void
771 cpsw_reset(struct cpsw_softc *sc)
772 {
773 	int i;
774 
775 	/* Reset RMII/RGMII wrapper. */
776 	cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
777 	while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
778 		;
779 
780 	/* Disable TX and RX interrupts for all cores. */
781 	for (i = 0; i < 3; ++i) {
782 		cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
783 		cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
784 		cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
785 		cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
786 	}
787 
788 	/* Reset CPSW subsystem. */
789 	cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
790 	while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
791 		;
792 
793 	/* Reset Sliver port 1 and 2 */
794 	for (i = 0; i < 2; i++) {
795 		/* Reset */
796 		cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
797 		while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
798 			;
799 	}
800 
801 	/* Reset DMA controller. */
802 	cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
803 	while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
804 		;
805 
806 	/* Disable TX & RX DMA */
807 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
808 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
809 
810 	/* Clear all queues. */
811 	for (i = 0; i < 8; i++) {
812 		cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
813 		cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
814 		cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
815 		cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
816 	}
817 
818 	/* Clear all interrupt Masks */
819 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
820 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
821 }
822 
823 static void
824 cpsw_init(void *arg)
825 {
826 	struct cpsw_softc *sc = arg;
827 
828 	CPSW_DEBUGF((""));
829 	CPSW_GLOBAL_LOCK(sc);
830 	cpsw_init_locked(arg);
831 	CPSW_GLOBAL_UNLOCK(sc);
832 }
833 
834 static void
835 cpsw_init_locked(void *arg)
836 {
837 	struct ifnet *ifp;
838 	struct cpsw_softc *sc = arg;
839 	struct cpsw_slot *slot;
840 	uint32_t i;
841 
842 	CPSW_DEBUGF((""));
843 	ifp = sc->ifp;
844 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
845 		return;
846 
847 	getbinuptime(&sc->init_uptime);
848 
849 	/* Reset the controller. */
850 	cpsw_reset(sc);
851 
852 	/* Enable ALE */
853 	cpsw_write_4(sc, CPSW_ALE_CONTROL, 1 << 31 | 1 << 4);
854 
855 	/* Init Sliver port 1 and 2 */
856 	for (i = 0; i < 2; i++) {
857 		/* Set Slave Mapping */
858 		cpsw_write_4(sc, CPSW_SL_RX_PRI_MAP(i), 0x76543210);
859 		cpsw_write_4(sc, CPSW_PORT_P_TX_PRI_MAP(i + 1), 0x33221100);
860 		cpsw_write_4(sc, CPSW_SL_RX_MAXLEN(i), 0x5f2);
861 		/* Set MACCONTROL for ports 0,1: IFCTL_B(16), IFCTL_A(15),
862 		   GMII_EN(5), FULLDUPLEX(1) */
863 		/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
864 		/* Huh?  Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
865 		cpsw_write_4(sc, CPSW_SL_MACCONTROL(i), 1 << 15 | 1 << 5 | 1);
866 	}
867 
868 	/* Set Host Port Mapping */
869 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
870 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
871 
872 	/* Initialize ALE: all ports set to forwarding(3), initialize addrs */
873 	for (i = 0; i < 3; i++)
874 		cpsw_write_4(sc, CPSW_ALE_PORTCTL(i), 3);
875 	cpsw_ale_update_addresses(sc, 1);
876 
877 	cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
878 
879 	/* Enable statistics for ports 0, 1 and 2 */
880 	cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
881 
882 	/* Experiment:  Turn off flow control */
883 	/* This seems to fix the watchdog resets that have plagued
884 	   earlier versions of this driver; I'm not yet sure if there
885 	   are negative effects yet. */
886 	cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
887 
888 	/* Make IP hdr aligned with 4 */
889 	cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
890 
891 	/* Initialize RX Buffer Descriptors */
892 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
893 
894 	/* Enable TX & RX DMA */
895 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
896 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
897 
898 	/* Enable Interrupts for core 0 */
899 	cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
900 	cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
901 	cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x3F);
902 
903 	/* Enable host Error Interrupt */
904 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
905 
906 	/* Enable interrupts for RX Channel 0 */
907 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET, 1);
908 
909 	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
910 	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
911 	cpsw_write_4(sc, MDIOCONTROL, 1 << 30 | 1 << 18 | 0xFF);
912 
913 	/* Select MII in GMII_SEL, Internal Delay mode */
914 	//ti_scm_reg_write_4(0x650, 0);
915 
916 	/* Initialize active queues. */
917 	slot = STAILQ_FIRST(&sc->tx.active);
918 	if (slot != NULL)
919 		cpsw_write_hdp_slot(sc, &sc->tx, slot);
920 	slot = STAILQ_FIRST(&sc->rx.active);
921 	if (slot != NULL)
922 		cpsw_write_hdp_slot(sc, &sc->rx, slot);
923 	cpsw_rx_enqueue(sc);
924 
925 	/* Activate network interface */
926 	sc->rx.running = 1;
927 	sc->tx.running = 1;
928 	sc->watchdog.timer = 0;
929 	callout_reset(&sc->watchdog.callout, hz, cpsw_tick, sc);
930 	sc->ifp->if_drv_flags |= IFF_DRV_RUNNING;
931 	sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
932 
933 }
934 
935 static int
936 cpsw_shutdown(device_t dev)
937 {
938 	struct cpsw_softc *sc = device_get_softc(dev);
939 
940 	CPSW_DEBUGF((""));
941 	CPSW_GLOBAL_LOCK(sc);
942 	cpsw_shutdown_locked(sc);
943 	CPSW_GLOBAL_UNLOCK(sc);
944 	return (0);
945 }
946 
947 static void
948 cpsw_rx_teardown_locked(struct cpsw_softc *sc)
949 {
950 	struct mbuf *received, *next;
951 	int i = 0;
952 
953 	CPSW_DEBUGF(("starting RX teardown"));
954 	cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
955 	for (;;) {
956 		received = cpsw_rx_dequeue(sc);
957 		CPSW_GLOBAL_UNLOCK(sc);
958 		while (received != NULL) {
959 			next = received->m_nextpkt;
960 			received->m_nextpkt = NULL;
961 			(*sc->ifp->if_input)(sc->ifp, received);
962 			received = next;
963 		}
964 		CPSW_GLOBAL_LOCK(sc);
965 		if (!sc->rx.running) {
966 			CPSW_DEBUGF(("finished RX teardown (%d retries)", i));
967 			return;
968 		}
969 		if (++i > 10) {
970 			if_printf(sc->ifp, "Unable to cleanly shutdown receiver\n");
971 			return;
972 		}
973 		DELAY(10);
974 	}
975 }
976 
977 static void
978 cpsw_tx_teardown_locked(struct cpsw_softc *sc)
979 {
980 	int i = 0;
981 
982 	CPSW_DEBUGF(("starting TX teardown"));
983 	cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
984 	cpsw_tx_dequeue(sc);
985 	while (sc->tx.running && ++i < 10) {
986 		DELAY(10);
987 		cpsw_tx_dequeue(sc);
988 	}
989 	if (sc->tx.running)
990 		if_printf(sc->ifp, "Unable to cleanly shutdown transmitter\n");
991 	CPSW_DEBUGF(("finished TX teardown (%d retries, %d idle buffers)",
992 	    i, sc->tx.active_queue_len));
993 }
994 
995 static void
996 cpsw_shutdown_locked(struct cpsw_softc *sc)
997 {
998 	struct ifnet *ifp;
999 
1000 	CPSW_DEBUGF((""));
1001 	CPSW_GLOBAL_LOCK_ASSERT(sc);
1002 	ifp = sc->ifp;
1003 
1004 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1005 		return;
1006 
1007 	/* Disable interface */
1008 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1009 	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1010 
1011 	/* Stop ticker */
1012 	callout_stop(&sc->watchdog.callout);
1013 
1014 	/* Tear down the RX/TX queues. */
1015 	cpsw_rx_teardown_locked(sc);
1016 	cpsw_tx_teardown_locked(sc);
1017 
1018 	/* Capture stats before we reset controller. */
1019 	cpsw_stats_collect(sc);
1020 
1021 	cpsw_reset(sc);
1022 }
1023 
1024 /*
1025  *  Suspend/Resume.
1026  */
1027 
1028 static int
1029 cpsw_suspend(device_t dev)
1030 {
1031 	struct cpsw_softc *sc = device_get_softc(dev);
1032 
1033 	CPSW_DEBUGF((""));
1034 	CPSW_GLOBAL_LOCK(sc);
1035 	cpsw_shutdown_locked(sc);
1036 	CPSW_GLOBAL_UNLOCK(sc);
1037 	return (0);
1038 }
1039 
1040 static int
1041 cpsw_resume(device_t dev)
1042 {
1043 	struct cpsw_softc *sc = device_get_softc(dev);
1044 
1045 	CPSW_DEBUGF(("UNIMPLEMENTED"));
1046 	return (0);
1047 }
1048 
1049 /*
1050  *
1051  *  IOCTL
1052  *
1053  */
1054 
1055 static void
1056 cpsw_set_promisc(struct cpsw_softc *sc, int set)
1057 {
1058 	/*
1059 	 * Enabling promiscuous mode requires two bits of work: First,
1060 	 * ALE_BYPASS needs to be enabled.  That disables the ALE
1061 	 * forwarding logic and causes every packet to be sent to the
1062 	 * host port.  That makes us promiscuous wrt received packets.
1063 	 *
1064 	 * With ALE forwarding disabled, the transmitter needs to set
1065 	 * an explicit output port on every packet to route it to the
1066 	 * correct egress.  This should be doable for systems such as
1067 	 * BeagleBone where only one egress port is actually wired to
1068 	 * a PHY.  If you have both egress ports wired up, life gets a
1069 	 * lot more interesting.
1070 	 *
1071 	 * Hmmm.... NetBSD driver uses ALE_BYPASS always and doesn't
1072 	 * seem to set explicit egress ports.  Does that mean they
1073 	 * are always promiscuous?
1074 	 */
1075 	if (set) {
1076 		printf("Promiscuous mode unimplemented\n");
1077 	}
1078 }
1079 
1080 static void
1081 cpsw_set_allmulti(struct cpsw_softc *sc, int set)
1082 {
1083 	if (set) {
1084 		printf("All-multicast mode unimplemented\n");
1085 	}
1086 }
1087 
1088 static int
1089 cpsw_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1090 {
1091 	struct cpsw_softc *sc = ifp->if_softc;
1092 	struct ifreq *ifr = (struct ifreq *)data;
1093 	int error;
1094 	uint32_t changed;
1095 
1096 	error = 0;
1097 
1098 	switch (command) {
1099 	case SIOCSIFFLAGS:
1100 		CPSW_GLOBAL_LOCK(sc);
1101 		if (ifp->if_flags & IFF_UP) {
1102 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1103 				changed = ifp->if_flags ^ sc->cpsw_if_flags;
1104 				CPSW_DEBUGF(("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)", changed));
1105 				if (changed & IFF_PROMISC)
1106 					cpsw_set_promisc(sc,
1107 					    ifp->if_flags & IFF_PROMISC);
1108 				if (changed & IFF_ALLMULTI)
1109 					cpsw_set_allmulti(sc,
1110 					    ifp->if_flags & IFF_ALLMULTI);
1111 			} else {
1112 				CPSW_DEBUGF(("SIOCSIFFLAGS: UP but not RUNNING; starting up"));
1113 				cpsw_init_locked(sc);
1114 			}
1115 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1116 			CPSW_DEBUGF(("SIOCSIFFLAGS: not UP but RUNNING; shutting down"));
1117 			cpsw_shutdown_locked(sc);
1118 		}
1119 
1120 		sc->cpsw_if_flags = ifp->if_flags;
1121 		CPSW_GLOBAL_UNLOCK(sc);
1122 		break;
1123 	case SIOCADDMULTI:
1124 		cpsw_ale_update_addresses(sc, 0);
1125 		break;
1126 	case SIOCDELMULTI:
1127 		/* Ugh.  DELMULTI doesn't provide the specific address
1128 		   being removed, so the best we can do is remove
1129 		   everything and rebuild it all. */
1130 		cpsw_ale_update_addresses(sc, 1);
1131 		break;
1132 	case SIOCGIFMEDIA:
1133 	case SIOCSIFMEDIA:
1134 		error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
1135 		break;
1136 	default:
1137 		error = ether_ioctl(ifp, command, data);
1138 	}
1139 	return (error);
1140 }
1141 
1142 /*
1143  *
1144  * MIIBUS
1145  *
1146  */
1147 static int
1148 cpsw_miibus_ready(struct cpsw_softc *sc)
1149 {
1150 	uint32_t r, retries = CPSW_MIIBUS_RETRIES;
1151 
1152 	while (--retries) {
1153 		r = cpsw_read_4(sc, MDIOUSERACCESS0);
1154 		if ((r & 1 << 31) == 0)
1155 			return 1;
1156 		DELAY(CPSW_MIIBUS_DELAY);
1157 	}
1158 	return 0;
1159 }
1160 
1161 static int
1162 cpsw_miibus_readreg(device_t dev, int phy, int reg)
1163 {
1164 	struct cpsw_softc *sc = device_get_softc(dev);
1165 	uint32_t cmd, r;
1166 
1167 	if (!cpsw_miibus_ready(sc)) {
1168 		device_printf(dev, "MDIO not ready to read\n");
1169 		return 0;
1170 	}
1171 
1172 	/* Set GO, reg, phy */
1173 	cmd = 1 << 31 | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
1174 	cpsw_write_4(sc, MDIOUSERACCESS0, cmd);
1175 
1176 	if (!cpsw_miibus_ready(sc)) {
1177 		device_printf(dev, "MDIO timed out during read\n");
1178 		return 0;
1179 	}
1180 
1181 	r = cpsw_read_4(sc, MDIOUSERACCESS0);
1182 	if((r & 1 << 29) == 0) {
1183 		device_printf(dev, "Failed to read from PHY.\n");
1184 		r = 0;
1185 	}
1186 	return (r & 0xFFFF);
1187 }
1188 
1189 static int
1190 cpsw_miibus_writereg(device_t dev, int phy, int reg, int value)
1191 {
1192 	struct cpsw_softc *sc = device_get_softc(dev);
1193 	uint32_t cmd;
1194 
1195 	if (!cpsw_miibus_ready(sc)) {
1196 		device_printf(dev, "MDIO not ready to write\n");
1197 		return 0;
1198 	}
1199 
1200 	/* Set GO, WRITE, reg, phy, and value */
1201 	cmd = 3 << 30 | (reg & 0x1F) << 21 | (phy & 0x1F) << 16
1202 	    | (value & 0xFFFF);
1203 	cpsw_write_4(sc, MDIOUSERACCESS0, cmd);
1204 
1205 	if (!cpsw_miibus_ready(sc)) {
1206 		device_printf(dev, "MDIO timed out during write\n");
1207 		return 0;
1208 	}
1209 
1210 	if((cpsw_read_4(sc, MDIOUSERACCESS0) & (1 << 29)) == 0)
1211 		device_printf(dev, "Failed to write to PHY.\n");
1212 
1213 	return 0;
1214 }
1215 
1216 /*
1217  *
1218  * Transmit/Receive Packets.
1219  *
1220  */
1221 
1222 
1223 static void
1224 cpsw_intr_rx(void *arg)
1225 {
1226 	struct cpsw_softc *sc = arg;
1227 	struct mbuf *received, *next;
1228 
1229 	CPSW_RX_LOCK(sc);
1230 	received = cpsw_rx_dequeue(sc);
1231 	cpsw_rx_enqueue(sc);
1232 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
1233 	CPSW_RX_UNLOCK(sc);
1234 
1235 	while (received != NULL) {
1236 		next = received->m_nextpkt;
1237 		received->m_nextpkt = NULL;
1238 		(*sc->ifp->if_input)(sc->ifp, received);
1239 		received = next;
1240 	}
1241 }
1242 
1243 static struct mbuf *
1244 cpsw_rx_dequeue(struct cpsw_softc *sc)
1245 {
1246 	struct cpsw_cpdma_bd bd;
1247 	struct cpsw_slot *slot;
1248 	struct ifnet *ifp;
1249 	struct mbuf *mb_head, *mb_tail;
1250 	int removed = 0;
1251 
1252 	ifp = sc->ifp;
1253 	mb_head = mb_tail = NULL;
1254 
1255 	/* Pull completed packets off hardware RX queue. */
1256 	while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
1257 		cpsw_cpdma_read_bd(sc, slot, &bd);
1258 		if (bd.flags & CPDMA_BD_OWNER)
1259 			break; /* Still in use by hardware */
1260 
1261 		CPSW_DEBUGF(("Removing received packet from RX queue"));
1262 		++removed;
1263 		STAILQ_REMOVE_HEAD(&sc->rx.active, next);
1264 		STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
1265 
1266 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
1267 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1268 
1269 		if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
1270 			CPSW_DEBUGF(("RX teardown in progress"));
1271 			m_freem(slot->mbuf);
1272 			slot->mbuf = NULL;
1273 			cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
1274 			sc->rx.running = 0;
1275 			break;
1276 		}
1277 
1278 		cpsw_write_cp_slot(sc, &sc->rx, slot);
1279 
1280 		/* Set up mbuf */
1281 		/* TODO: track SOP/EOP bits to assemble a full mbuf
1282 		   out of received fragments. */
1283 		slot->mbuf->m_hdr.mh_data += bd.bufoff;
1284 		slot->mbuf->m_hdr.mh_len = bd.pktlen - 4;
1285 		slot->mbuf->m_pkthdr.len = bd.pktlen - 4;
1286 		slot->mbuf->m_flags |= M_PKTHDR;
1287 		slot->mbuf->m_pkthdr.rcvif = ifp;
1288 		slot->mbuf->m_nextpkt = NULL;
1289 
1290 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1291 			/* check for valid CRC by looking into pkt_err[5:4] */
1292 			if ((bd.flags & CPDMA_BD_PKT_ERR_MASK) == 0) {
1293 				slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1294 				slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1295 				slot->mbuf->m_pkthdr.csum_data = 0xffff;
1296 			}
1297 		}
1298 
1299 		/* Add mbuf to packet list to be returned. */
1300 		if (mb_tail) {
1301 			mb_tail->m_nextpkt = slot->mbuf;
1302 		} else {
1303 			mb_head = slot->mbuf;
1304 		}
1305 		mb_tail = slot->mbuf;
1306 		slot->mbuf = NULL;
1307 	}
1308 
1309 	if (removed != 0) {
1310 		sc->rx.queue_removes += removed;
1311 		sc->rx.active_queue_len -= removed;
1312 		sc->rx.avail_queue_len += removed;
1313 		if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
1314 			sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
1315 	}
1316 	return (mb_head);
1317 }
1318 
1319 static void
1320 cpsw_rx_enqueue(struct cpsw_softc *sc)
1321 {
1322 	bus_dma_segment_t seg[1];
1323 	struct cpsw_cpdma_bd bd;
1324 	struct ifnet *ifp = sc->ifp;
1325 	struct cpsw_slots tmpqueue = STAILQ_HEAD_INITIALIZER(tmpqueue);
1326 	struct cpsw_slot *slot, *prev_slot = NULL;
1327 	struct cpsw_slot *last_old_slot, *first_new_slot;
1328 	int error, nsegs, added = 0;
1329 
1330 	/* Register new mbufs with hardware. */
1331 	while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
1332 		if (slot->mbuf == NULL) {
1333 			slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1334 			if (slot->mbuf == NULL) {
1335 				if_printf(sc->ifp, "Unable to fill RX queue\n");
1336 				break;
1337 			}
1338 			slot->mbuf->m_len =
1339 			    slot->mbuf->m_pkthdr.len =
1340 			    slot->mbuf->m_ext.ext_size;
1341 		}
1342 
1343 		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1344 		    slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
1345 
1346 		KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
1347 		KASSERT(error == 0, ("DMA error (error=%d)", error));
1348 		if (error != 0 || nsegs != 1) {
1349 			if_printf(ifp,
1350 			    "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
1351 			    __func__, nsegs, error);
1352 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1353 			m_freem(slot->mbuf);
1354 			slot->mbuf = NULL;
1355 			break;
1356 		}
1357 
1358 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
1359 
1360 		/* Create and submit new rx descriptor*/
1361 		bd.next = 0;
1362 		bd.bufptr = seg->ds_addr;
1363 		bd.bufoff = 0;
1364 		bd.buflen = MCLBYTES - 1;
1365 		bd.pktlen = bd.buflen;
1366 		bd.flags = CPDMA_BD_OWNER;
1367 		cpsw_cpdma_write_bd(sc, slot, &bd);
1368 		++added;
1369 
1370 		if (prev_slot != NULL)
1371 			cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1372 		prev_slot = slot;
1373 		STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
1374 		sc->rx.avail_queue_len--;
1375 		STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1376 	}
1377 
1378 	if (added == 0)
1379 		return;
1380 
1381 	CPSW_DEBUGF(("Adding %d buffers to RX queue", added));
1382 
1383 	/* Link new entries to hardware RX queue. */
1384 	last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
1385 	first_new_slot = STAILQ_FIRST(&tmpqueue);
1386 	STAILQ_CONCAT(&sc->rx.active, &tmpqueue);
1387 	if (first_new_slot == NULL) {
1388 		return;
1389 	} else if (last_old_slot == NULL) {
1390 		/* Start a fresh queue. */
1391 		cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1392 	} else {
1393 		/* Add buffers to end of current queue. */
1394 		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1395 		/* If underrun, restart queue. */
1396 		if (cpsw_cpdma_read_bd_flags(sc, last_old_slot) & CPDMA_BD_EOQ) {
1397 			cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1398 		}
1399 	}
1400 	sc->rx.queue_adds += added;
1401 	sc->rx.active_queue_len += added;
1402 	if (sc->rx.active_queue_len > sc->rx.max_active_queue_len) {
1403 		sc->rx.max_active_queue_len = sc->rx.active_queue_len;
1404 	}
1405 }
1406 
1407 static void
1408 cpsw_start(struct ifnet *ifp)
1409 {
1410 	struct cpsw_softc *sc = ifp->if_softc;
1411 
1412 	CPSW_TX_LOCK(sc);
1413 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && sc->tx.running) {
1414 		cpsw_tx_enqueue(sc);
1415 		cpsw_tx_dequeue(sc);
1416 	}
1417 	CPSW_TX_UNLOCK(sc);
1418 }
1419 
1420 static void
1421 cpsw_tx_enqueue(struct cpsw_softc *sc)
1422 {
1423 	bus_dma_segment_t segs[CPSW_TXFRAGS];
1424 	struct cpsw_cpdma_bd bd;
1425 	struct cpsw_slots tmpqueue = STAILQ_HEAD_INITIALIZER(tmpqueue);
1426 	struct cpsw_slot *slot, *prev_slot = NULL;
1427 	struct cpsw_slot *last_old_slot, *first_new_slot;
1428 	struct mbuf *m0;
1429 	int error, nsegs, seg, added = 0, padlen;
1430 
1431 	/* Pull pending packets from IF queue and prep them for DMA. */
1432 	while ((slot = STAILQ_FIRST(&sc->tx.avail)) != NULL) {
1433 		IF_DEQUEUE(&sc->ifp->if_snd, m0);
1434 		if (m0 == NULL)
1435 			break;
1436 
1437 		slot->mbuf = m0;
1438 		padlen = ETHER_MIN_LEN - slot->mbuf->m_pkthdr.len;
1439 		if (padlen < 0)
1440 			padlen = 0;
1441 
1442 		/* Create mapping in DMA memory */
1443 		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1444 		    slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1445 		/* If the packet is too fragmented, try to simplify. */
1446 		if (error == EFBIG ||
1447 		    (error == 0 &&
1448 			nsegs + (padlen > 0 ? 1 : 0) > sc->tx.avail_queue_len)) {
1449 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1450 			if (padlen > 0) /* May as well add padding. */
1451 				m_append(slot->mbuf, padlen,
1452 				    sc->null_mbuf->m_hdr.mh_data);
1453 			m0 = m_defrag(slot->mbuf, M_NOWAIT);
1454 			if (m0 == NULL) {
1455 				if_printf(sc->ifp,
1456 				    "Can't defragment packet; dropping\n");
1457 				m_freem(slot->mbuf);
1458 			} else {
1459 				CPSW_DEBUGF(("Requeueing defragmented packet"));
1460 				IF_PREPEND(&sc->ifp->if_snd, m0);
1461 			}
1462 			slot->mbuf = NULL;
1463 			continue;
1464 		}
1465 		if (error != 0) {
1466 			if_printf(sc->ifp,
1467 			    "%s: Can't setup DMA (error=%d), dropping packet\n",
1468 			    __func__, error);
1469 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1470 			m_freem(slot->mbuf);
1471 			slot->mbuf = NULL;
1472 			break;
1473 		}
1474 
1475 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap,
1476 				BUS_DMASYNC_PREWRITE);
1477 
1478 
1479 		CPSW_DEBUGF(("Queueing TX packet: %d segments + %d pad bytes",
1480 			nsegs, padlen));
1481 
1482 		/* If there is only one segment, the for() loop
1483 		 * gets skipped and the single buffer gets set up
1484 		 * as both SOP and EOP. */
1485 		/* Start by setting up the first buffer */
1486 		bd.next = 0;
1487 		bd.bufptr = segs[0].ds_addr;
1488 		bd.bufoff = 0;
1489 		bd.buflen = segs[0].ds_len;
1490 		bd.pktlen = m_length(slot->mbuf, NULL) + padlen;
1491 		bd.flags =  CPDMA_BD_SOP | CPDMA_BD_OWNER;
1492 		for (seg = 1; seg < nsegs; ++seg) {
1493 			/* Save the previous buffer (which isn't EOP) */
1494 			cpsw_cpdma_write_bd(sc, slot, &bd);
1495 			if (prev_slot != NULL)
1496 				cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1497 			prev_slot = slot;
1498 			STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
1499 			sc->tx.avail_queue_len--;
1500 			STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1501 			++added;
1502 			slot = STAILQ_FIRST(&sc->tx.avail);
1503 
1504 			/* Setup next buffer (which isn't SOP) */
1505 			bd.next = 0;
1506 			bd.bufptr = segs[seg].ds_addr;
1507 			bd.bufoff = 0;
1508 			bd.buflen = segs[seg].ds_len;
1509 			bd.pktlen = 0;
1510 			bd.flags = CPDMA_BD_OWNER;
1511 		}
1512 		/* Save the final buffer. */
1513 		if (padlen <= 0)
1514 			bd.flags |= CPDMA_BD_EOP;
1515 		cpsw_cpdma_write_bd(sc, slot, &bd);
1516 		if (prev_slot != NULL)
1517 			cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1518 		prev_slot = slot;
1519 		STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
1520 		sc->tx.avail_queue_len--;
1521 		STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1522 		++added;
1523 
1524 		if (padlen > 0) {
1525 			slot = STAILQ_FIRST(&sc->tx.avail);
1526 			STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
1527 			sc->tx.avail_queue_len--;
1528 			STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1529 			++added;
1530 
1531 			/* Setup buffer of null pad bytes (definitely EOP) */
1532 			cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1533 			prev_slot = slot;
1534 			bd.next = 0;
1535 			bd.bufptr = sc->null_mbuf_paddr;
1536 			bd.bufoff = 0;
1537 			bd.buflen = padlen;
1538 			bd.pktlen = 0;
1539 			bd.flags = CPDMA_BD_EOP | CPDMA_BD_OWNER;
1540 			cpsw_cpdma_write_bd(sc, slot, &bd);
1541 			++nsegs;
1542 		}
1543 
1544 		if (nsegs > sc->tx.longest_chain)
1545 			sc->tx.longest_chain = nsegs;
1546 
1547 		// TODO: Should we defer the BPF tap until
1548 		// after all packets are queued?
1549 		BPF_MTAP(sc->ifp, m0);
1550 	}
1551 
1552 	/* Attach the list of new buffers to the hardware TX queue. */
1553 	last_old_slot = STAILQ_LAST(&sc->tx.active, cpsw_slot, next);
1554 	first_new_slot = STAILQ_FIRST(&tmpqueue);
1555 	STAILQ_CONCAT(&sc->tx.active, &tmpqueue);
1556 	if (first_new_slot == NULL) {
1557 		return;
1558 	} else if (last_old_slot == NULL) {
1559 		/* Start a fresh queue. */
1560 		cpsw_write_hdp_slot(sc, &sc->tx, first_new_slot);
1561 	} else {
1562 		/* Add buffers to end of current queue. */
1563 		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1564 		/* If underrun, restart queue. */
1565 		if (cpsw_cpdma_read_bd_flags(sc, last_old_slot) & CPDMA_BD_EOQ) {
1566 			cpsw_write_hdp_slot(sc, &sc->tx, first_new_slot);
1567 		}
1568 	}
1569 	sc->tx.queue_adds += added;
1570 	sc->tx.active_queue_len += added;
1571 	if (sc->tx.active_queue_len > sc->tx.max_active_queue_len) {
1572 		sc->tx.max_active_queue_len = sc->tx.active_queue_len;
1573 	}
1574 }
1575 
1576 static int
1577 cpsw_tx_dequeue(struct cpsw_softc *sc)
1578 {
1579 	struct cpsw_slot *slot, *last_removed_slot = NULL;
1580 	uint32_t flags, removed = 0;
1581 
1582 	slot = STAILQ_FIRST(&sc->tx.active);
1583 	if (slot == NULL && cpsw_read_cp(sc, &sc->tx) == 0xfffffffc) {
1584 		CPSW_DEBUGF(("TX teardown of an empty queue"));
1585 		cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1586 		sc->tx.running = 0;
1587 		return (0);
1588 	}
1589 
1590 	/* Pull completed buffers off the hardware TX queue. */
1591 	while (slot != NULL) {
1592 		flags = cpsw_cpdma_read_bd_flags(sc, slot);
1593 		if (flags & CPDMA_BD_OWNER)
1594 			break; /* Hardware is still using this packet. */
1595 
1596 		CPSW_DEBUGF(("TX removing completed packet"));
1597 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
1598 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1599 		m_freem(slot->mbuf);
1600 		slot->mbuf = NULL;
1601 
1602 		/* Dequeue any additional buffers used by this packet. */
1603 		while (slot != NULL && slot->mbuf == NULL) {
1604 			STAILQ_REMOVE_HEAD(&sc->tx.active, next);
1605 			STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
1606 			++removed;
1607 			last_removed_slot = slot;
1608 			slot = STAILQ_FIRST(&sc->tx.active);
1609 		}
1610 
1611 		/* TearDown complete is only marked on the SOP for the packet. */
1612 		if (flags & CPDMA_BD_TDOWNCMPLT) {
1613 			CPSW_DEBUGF(("TX teardown in progress"));
1614 			cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1615 			// TODO: Increment a count of dropped TX packets
1616 			sc->tx.running = 0;
1617 			break;
1618 		}
1619 	}
1620 
1621 	if (removed != 0) {
1622 		cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
1623 		sc->tx.queue_removes += removed;
1624 		sc->tx.active_queue_len -= removed;
1625 		sc->tx.avail_queue_len += removed;
1626 		if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
1627 			sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
1628 	}
1629 	return (removed);
1630 }
1631 
1632 /*
1633  *
1634  * Miscellaneous interrupts.
1635  *
1636  */
1637 
1638 static void
1639 cpsw_intr_rx_thresh(void *arg)
1640 {
1641 	struct cpsw_softc *sc = arg;
1642 	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_RX_THRESH_STAT(0));
1643 
1644 	CPSW_DEBUGF(("stat=%x", stat));
1645 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
1646 }
1647 
1648 static void
1649 cpsw_intr_misc_host_error(struct cpsw_softc *sc)
1650 {
1651 	uint32_t intstat;
1652 	uint32_t dmastat;
1653 	int txerr, rxerr, txchan, rxchan;
1654 
1655 	printf("\n\n");
1656 	device_printf(sc->dev,
1657 	    "HOST ERROR:  PROGRAMMING ERROR DETECTED BY HARDWARE\n");
1658 	printf("\n\n");
1659 	intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
1660 	device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
1661 	dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
1662 	device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
1663 
1664 	txerr = (dmastat >> 20) & 15;
1665 	txchan = (dmastat >> 16) & 7;
1666 	rxerr = (dmastat >> 12) & 15;
1667 	rxchan = (dmastat >> 8) & 7;
1668 
1669 	switch (txerr) {
1670 	case 0: break;
1671 	case 1:	printf("SOP error on TX channel %d\n", txchan);
1672 		break;
1673 	case 2:	printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
1674 		break;
1675 	case 3:	printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
1676 		break;
1677 	case 4:	printf("Zero Buffer Pointer on TX channel %d\n", txchan);
1678 		break;
1679 	case 5:	printf("Zero Buffer Length on TX channel %d\n", txchan);
1680 		break;
1681 	case 6:	printf("Packet length error on TX channel %d\n", txchan);
1682 		break;
1683 	default: printf("Unknown error on TX channel %d\n", txchan);
1684 		break;
1685 	}
1686 
1687 	if (txerr != 0) {
1688 		printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
1689 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
1690 		printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
1691 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
1692 		cpsw_dump_queue(sc, &sc->tx.active);
1693 	}
1694 
1695 	switch (rxerr) {
1696 	case 0: break;
1697 	case 2:	printf("Ownership bit not set on RX channel %d\n", rxchan);
1698 		break;
1699 	case 4:	printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
1700 		break;
1701 	case 5:	printf("Zero Buffer Length on RX channel %d\n", rxchan);
1702 		break;
1703 	case 6:	printf("Buffer offset too big on RX channel %d\n", rxchan);
1704 		break;
1705 	default: printf("Unknown RX error on RX channel %d\n", rxchan);
1706 		break;
1707 	}
1708 
1709 	if (rxerr != 0) {
1710 		printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
1711 		    rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
1712 		printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
1713 		    rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
1714 		cpsw_dump_queue(sc, &sc->rx.active);
1715 	}
1716 
1717 	printf("\nALE Table\n");
1718 	cpsw_ale_dump_table(sc);
1719 
1720 	// XXX do something useful here??
1721 	panic("CPSW HOST ERROR INTERRUPT");
1722 
1723 	// Suppress this interrupt in the future.
1724 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
1725 	printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
1726 	// The watchdog will probably reset the controller
1727 	// in a little while.  It will probably fail again.
1728 }
1729 
1730 static void
1731 cpsw_intr_misc(void *arg)
1732 {
1733 	struct cpsw_softc *sc = arg;
1734 	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
1735 
1736 	if (stat & 16)
1737 		CPSW_DEBUGF(("Time sync event interrupt unimplemented"));
1738 	if (stat & 8)
1739 		cpsw_stats_collect(sc);
1740 	if (stat & 4)
1741 		cpsw_intr_misc_host_error(sc);
1742 	if (stat & 2)
1743 		CPSW_DEBUGF(("MDIO link change interrupt unimplemented"));
1744 	if (stat & 1)
1745 		CPSW_DEBUGF(("MDIO operation completed interrupt unimplemented"));
1746 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
1747 }
1748 
1749 /*
1750  *
1751  * Periodic Checks and Watchdog.
1752  *
1753  */
1754 
1755 static void
1756 cpsw_tick(void *msc)
1757 {
1758 	struct cpsw_softc *sc = msc;
1759 
1760 	/* Check for TX timeout */
1761 	cpsw_tx_watchdog(sc);
1762 
1763 	/* Check for media type change */
1764 	mii_tick(sc->mii);
1765 	if(sc->cpsw_media_status != sc->mii->mii_media.ifm_media) {
1766 		printf("%s: media type changed (ifm_media=%x)\n", __func__,
1767 			sc->mii->mii_media.ifm_media);
1768 		cpsw_ifmedia_upd(sc->ifp);
1769 	}
1770 
1771 	/* Schedule another timeout one second from now */
1772 	callout_reset(&sc->watchdog.callout, hz, cpsw_tick, sc);
1773 }
1774 
1775 static void
1776 cpsw_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1777 {
1778 	struct cpsw_softc *sc = ifp->if_softc;
1779 	struct mii_data *mii;
1780 
1781 	CPSW_DEBUGF((""));
1782 	CPSW_TX_LOCK(sc);
1783 
1784 	mii = sc->mii;
1785 	mii_pollstat(mii);
1786 
1787 	ifmr->ifm_active = mii->mii_media_active;
1788 	ifmr->ifm_status = mii->mii_media_status;
1789 
1790 	CPSW_TX_UNLOCK(sc);
1791 }
1792 
1793 static int
1794 cpsw_ifmedia_upd(struct ifnet *ifp)
1795 {
1796 	struct cpsw_softc *sc = ifp->if_softc;
1797 
1798 	CPSW_DEBUGF((""));
1799 	if (ifp->if_flags & IFF_UP) {
1800 		CPSW_GLOBAL_LOCK(sc);
1801 		sc->cpsw_media_status = sc->mii->mii_media.ifm_media;
1802 		mii_mediachg(sc->mii);
1803 		cpsw_init_locked(sc);
1804 		CPSW_GLOBAL_UNLOCK(sc);
1805 	}
1806 
1807 	return (0);
1808 }
1809 
1810 static void
1811 cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
1812 {
1813 	cpsw_debugf_head("CPSW watchdog");
1814 	if_printf(sc->ifp, "watchdog timeout\n");
1815 	cpsw_shutdown_locked(sc);
1816 	cpsw_init_locked(sc);
1817 }
1818 
1819 static void
1820 cpsw_tx_watchdog(struct cpsw_softc *sc)
1821 {
1822 	struct ifnet *ifp = sc->ifp;
1823 
1824 	CPSW_GLOBAL_LOCK(sc);
1825 	if (sc->tx.active_queue_len == 0 || (ifp->if_flags & IFF_UP) == 0 ||
1826 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || !sc->tx.running) {
1827 		sc->watchdog.timer = 0; /* Nothing to do. */
1828 	} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
1829 		sc->watchdog.timer = 0;  /* Stuff done while we weren't looking. */
1830 	} else if (cpsw_tx_dequeue(sc) > 0) {
1831 		sc->watchdog.timer = 0;  /* We just did something. */
1832 	} else {
1833 		/* There was something to do but it didn't get done. */
1834 		++sc->watchdog.timer;
1835 		if (sc->watchdog.timer > 2) {
1836 			sc->watchdog.timer = 0;
1837 			++ifp->if_oerrors;
1838 			++sc->watchdog.resets;
1839 			cpsw_tx_watchdog_full_reset(sc);
1840 		}
1841 	}
1842 	sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
1843 	CPSW_GLOBAL_UNLOCK(sc);
1844 }
1845 
1846 /*
1847  *
1848  * ALE support routines.
1849  *
1850  */
1851 
1852 static void
1853 cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
1854 {
1855 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
1856 	ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
1857 	ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
1858 	ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
1859 }
1860 
1861 static void
1862 cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
1863 {
1864 	cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
1865 	cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
1866 	cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
1867 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
1868 }
1869 
1870 static int
1871 cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
1872 {
1873 	int i;
1874 	uint32_t ale_entry[3];
1875 
1876 	/* First two entries are link address and broadcast. */
1877 	for (i = 2; i < CPSW_MAX_ALE_ENTRIES; i++) {
1878 		cpsw_ale_read_entry(sc, i, ale_entry);
1879 		if (((ale_entry[1] >> 28) & 3) == 1 && /* Address entry */
1880 		    ((ale_entry[1] >> 8) & 1) == 1) { /* MCast link addr */
1881 			ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
1882 			cpsw_ale_write_entry(sc, i, ale_entry);
1883 		}
1884 	}
1885 	return CPSW_MAX_ALE_ENTRIES;
1886 }
1887 
1888 static int
1889 cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, uint8_t *mac)
1890 {
1891 	int free_index = -1, matching_index = -1, i;
1892 	uint32_t ale_entry[3];
1893 
1894 	/* Find a matching entry or a free entry. */
1895 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
1896 		cpsw_ale_read_entry(sc, i, ale_entry);
1897 
1898 		/* Entry Type[61:60] is 0 for free entry */
1899 		if (free_index < 0 && ((ale_entry[1] >> 28) & 3) == 0) {
1900 			free_index = i;
1901 		}
1902 
1903 		if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
1904 		    (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
1905 		    (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
1906 		    (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
1907 		    (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
1908 		    (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
1909 			matching_index = i;
1910 			break;
1911 		}
1912 	}
1913 
1914 	if (matching_index < 0) {
1915 		if (free_index < 0)
1916 			return (ENOMEM);
1917 		i = free_index;
1918 	}
1919 
1920 	/* Set MAC address */
1921 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
1922 	ale_entry[1] = mac[0] << 8 | mac[1];
1923 
1924 	/* Entry type[61:60] is addr entry(1), Mcast fwd state[63:62] is fw(3)*/
1925 	ale_entry[1] |= 0xd0 << 24;
1926 
1927 	/* Set portmask [68:66] */
1928 	ale_entry[2] = (portmap & 7) << 2;
1929 
1930 	cpsw_ale_write_entry(sc, i, ale_entry);
1931 
1932 	return 0;
1933 }
1934 
1935 static void
1936 cpsw_ale_dump_table(struct cpsw_softc *sc) {
1937 	int i;
1938 	uint32_t ale_entry[3];
1939 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
1940 		cpsw_ale_read_entry(sc, i, ale_entry);
1941 		if (ale_entry[0] || ale_entry[1] || ale_entry[2]) {
1942 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[0],
1943 				ale_entry[1], ale_entry[2]);
1944 			printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
1945 				(ale_entry[1] >> 8) & 0xFF,
1946 				(ale_entry[1] >> 0) & 0xFF,
1947 				(ale_entry[0] >>24) & 0xFF,
1948 				(ale_entry[0] >>16) & 0xFF,
1949 				(ale_entry[0] >> 8) & 0xFF,
1950 				(ale_entry[0] >> 0) & 0xFF);
1951 			printf(((ale_entry[1] >> 8) & 1) ? "mcast " : "ucast ");
1952 			printf("type: %u ", (ale_entry[1] >> 28) & 3);
1953 			printf("port: %u ", (ale_entry[2] >> 2) & 7);
1954 			printf("\n");
1955 		}
1956 	}
1957 	printf("\n");
1958 }
1959 
1960 static int
1961 cpsw_ale_update_addresses(struct cpsw_softc *sc, int purge)
1962 {
1963 	uint8_t *mac;
1964 	uint32_t ale_entry[3];
1965 	struct ifnet *ifp = sc->ifp;
1966 	struct ifmultiaddr *ifma;
1967 	int i;
1968 
1969 	/* Route incoming packets for our MAC address to Port 0 (host). */
1970 	/* For simplicity, keep this entry at table index 0 in the ALE. */
1971         if_addr_rlock(ifp);
1972 	mac = LLADDR((struct sockaddr_dl *)ifp->if_addr->ifa_addr);
1973 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
1974 	ale_entry[1] = 0x10 << 24 | mac[0] << 8 | mac[1]; /* addr entry + mac */
1975 	ale_entry[2] = 0; /* port = 0 */
1976 	cpsw_ale_write_entry(sc, 0, ale_entry);
1977 
1978 	/* Set outgoing MAC Address for Ports 1 and 2. */
1979 	for (i = 1; i < 3; ++i) {
1980 		cpsw_write_4(sc, CPSW_PORT_P_SA_HI(i),
1981 		    mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
1982 		cpsw_write_4(sc, CPSW_PORT_P_SA_LO(i),
1983 		    mac[5] << 8 | mac[4]);
1984 	}
1985         if_addr_runlock(ifp);
1986 
1987 	/* Keep the broadcast address at table entry 1. */
1988 	ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
1989 	ale_entry[1] = 0xd000ffff; /* FW (3 << 30), Addr entry (1 << 24), upper 16 bits of Mac */
1990 	ale_entry[2] = 0x0000001c; /* Forward to all ports */
1991 	cpsw_ale_write_entry(sc, 1, ale_entry);
1992 
1993 	/* SIOCDELMULTI doesn't specify the particular address
1994 	   being removed, so we have to remove all and rebuild. */
1995 	if (purge)
1996 		cpsw_ale_remove_all_mc_entries(sc);
1997 
1998         /* Set other multicast addrs desired. */
1999         if_maddr_rlock(ifp);
2000         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2001                 if (ifma->ifma_addr->sa_family != AF_LINK)
2002                         continue;
2003 		cpsw_ale_mc_entry_set(sc, 7,
2004 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
2005         }
2006         if_maddr_runlock(ifp);
2007 
2008 	return (0);
2009 }
2010 
2011 /*
2012  *
2013  * Statistics and Sysctls.
2014  *
2015  */
2016 
2017 #if 0
2018 static void
2019 cpsw_stats_dump(struct cpsw_softc *sc)
2020 {
2021 	int i;
2022 	uint32_t r;
2023 
2024 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2025 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2026 		    cpsw_stat_sysctls[i].reg);
2027 		CPSW_DEBUGF(("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
2028 			     (intmax_t)sc->shadow_stats[i], r,
2029 			     (intmax_t)sc->shadow_stats[i] + r));
2030 	}
2031 }
2032 #endif
2033 
2034 static void
2035 cpsw_stats_collect(struct cpsw_softc *sc)
2036 {
2037 	int i;
2038 	uint32_t r;
2039 
2040 	CPSW_DEBUGF(("Controller shadow statistics updated."));
2041 
2042 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2043 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2044 		    cpsw_stat_sysctls[i].reg);
2045 		sc->shadow_stats[i] += r;
2046 		cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg, r);
2047 	}
2048 }
2049 
2050 static int
2051 cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
2052 {
2053 	struct cpsw_softc *sc;
2054 	struct cpsw_stat *stat;
2055 	uint64_t result;
2056 
2057 	sc = (struct cpsw_softc *)arg1;
2058 	stat = &cpsw_stat_sysctls[oidp->oid_number];
2059 	result = sc->shadow_stats[oidp->oid_number];
2060 	result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
2061 	return (sysctl_handle_64(oidp, &result, 0, req));
2062 }
2063 
2064 static int
2065 cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
2066 {
2067 	struct cpsw_softc *sc;
2068 	struct bintime t;
2069 	unsigned result;
2070 
2071 	sc = (struct cpsw_softc *)arg1;
2072 	getbinuptime(&t);
2073 	bintime_sub(&t, &sc->attach_uptime);
2074 	result = t.sec;
2075 	return (sysctl_handle_int(oidp, &result, 0, req));
2076 }
2077 
2078 static int
2079 cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
2080 {
2081 	struct cpsw_softc *sc;
2082 	struct bintime t;
2083 	unsigned result;
2084 
2085 	sc = (struct cpsw_softc *)arg1;
2086 	if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
2087 		getbinuptime(&t);
2088 		bintime_sub(&t, &sc->init_uptime);
2089 		result = t.sec;
2090 	} else
2091 		result = 0;
2092 	return (sysctl_handle_int(oidp, &result, 0, req));
2093 }
2094 
2095 static void
2096 cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node, struct cpsw_queue *queue)
2097 {
2098 	struct sysctl_oid_list *parent;
2099 
2100 	parent = SYSCTL_CHILDREN(node);
2101 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
2102 	    CTLFLAG_RD, &queue->queue_slots, 0,
2103 	    "Total buffers currently assigned to this queue");
2104 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
2105 	    CTLFLAG_RD, &queue->active_queue_len, 0,
2106 	    "Buffers currently registered with hardware controller");
2107 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
2108 	    CTLFLAG_RD, &queue->max_active_queue_len, 0,
2109 	    "Max value of activeBuffers since last driver reset");
2110 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
2111 	    CTLFLAG_RD, &queue->avail_queue_len, 0,
2112 	    "Buffers allocated to this queue but not currently "
2113 	    "registered with hardware controller");
2114 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
2115 	    CTLFLAG_RD, &queue->max_avail_queue_len, 0,
2116 	    "Max value of availBuffers since last driver reset");
2117 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
2118 	    CTLFLAG_RD, &queue->queue_adds, 0,
2119 	    "Total buffers added to queue");
2120 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
2121 	    CTLFLAG_RD, &queue->queue_removes, 0,
2122 	    "Total buffers removed from queue");
2123 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
2124 	    CTLFLAG_RD, &queue->longest_chain, 0,
2125 	    "Max buffers used for a single packet");
2126 }
2127 
2128 static void
2129 cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node, struct cpsw_softc *sc)
2130 {
2131 	struct sysctl_oid_list *parent;
2132 
2133 	parent = SYSCTL_CHILDREN(node);
2134 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
2135 	    CTLFLAG_RD, &sc->watchdog.resets, 0,
2136 	    "Total number of watchdog resets");
2137 }
2138 
2139 static void
2140 cpsw_add_sysctls(struct cpsw_softc *sc)
2141 {
2142 	struct sysctl_ctx_list *ctx;
2143 	struct sysctl_oid *stats_node, *queue_node, *node;
2144 	struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
2145 	int i;
2146 
2147 	ctx = device_get_sysctl_ctx(sc->dev);
2148 	parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
2149 
2150 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
2151 	    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_attached, "IU",
2152 	    "Time since driver attach");
2153 
2154 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "uptime",
2155 	    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_uptime, "IU",
2156 	    "Seconds since driver init");
2157 
2158 	stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
2159 				     CTLFLAG_RD, NULL, "CPSW Statistics");
2160 	stats_parent = SYSCTL_CHILDREN(stats_node);
2161 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2162 		SYSCTL_ADD_PROC(ctx, stats_parent, i,
2163 				cpsw_stat_sysctls[i].oid,
2164 				CTLTYPE_U64 | CTLFLAG_RD, sc, 0,
2165 				cpsw_stats_sysctl, "IU",
2166 				cpsw_stat_sysctls[i].oid);
2167 	}
2168 
2169 	queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
2170 	    CTLFLAG_RD, NULL, "CPSW Queue Statistics");
2171 	queue_parent = SYSCTL_CHILDREN(queue_node);
2172 
2173 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
2174 	    CTLFLAG_RD, NULL, "TX Queue Statistics");
2175 	cpsw_add_queue_sysctls(ctx, node, &sc->tx);
2176 
2177 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
2178 	    CTLFLAG_RD, NULL, "RX Queue Statistics");
2179 	cpsw_add_queue_sysctls(ctx, node, &sc->rx);
2180 
2181 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
2182 	    CTLFLAG_RD, NULL, "Watchdog Statistics");
2183 	cpsw_add_watchdog_sysctls(ctx, node, sc);
2184 }
2185 
2186