xref: /freebsd/sys/arm/ti/cpsw/if_cpsw.c (revision 731d06abf2105cc0873fa84e972178f9f37ca760)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
5  * Copyright (c) 2016 Rubicon Communications, LLC (Netgate)
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * TI Common Platform Ethernet Switch (CPSW) Driver
32  * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
33  *
34  * This controller is documented in the AM335x Technical Reference
35  * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
36  * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
37  *
38  * It is basically a single Ethernet port (port 0) wired internally to
39  * a 3-port store-and-forward switch connected to two independent
40  * "sliver" controllers (port 1 and port 2).  You can operate the
41  * controller in a variety of different ways by suitably configuring
42  * the slivers and the Address Lookup Engine (ALE) that routes packets
43  * between the ports.
44  *
45  * This code was developed and tested on a BeagleBone with
46  * an AM335x SoC.
47  */
48 
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51 
52 #include "opt_cpsw.h"
53 
54 #include <sys/param.h>
55 #include <sys/bus.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/mbuf.h>
59 #include <sys/module.h>
60 #include <sys/mutex.h>
61 #include <sys/rman.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/sysctl.h>
65 
66 #include <machine/bus.h>
67 #include <machine/resource.h>
68 #include <machine/stdarg.h>
69 
70 #include <net/ethernet.h>
71 #include <net/bpf.h>
72 #include <net/if.h>
73 #include <net/if_dl.h>
74 #include <net/if_media.h>
75 #include <net/if_types.h>
76 
77 #include <arm/ti/ti_scm.h>
78 #include <arm/ti/am335x/am335x_scm.h>
79 
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82 
83 #include <dev/ofw/ofw_bus.h>
84 #include <dev/ofw/ofw_bus_subr.h>
85 
86 #include <dev/fdt/fdt_common.h>
87 
88 #ifdef CPSW_ETHERSWITCH
89 #include <dev/etherswitch/etherswitch.h>
90 #include "etherswitch_if.h"
91 #endif
92 
93 #include "if_cpswreg.h"
94 #include "if_cpswvar.h"
95 
96 #include "miibus_if.h"
97 
98 /* Device probe/attach/detach. */
99 static int cpsw_probe(device_t);
100 static int cpsw_attach(device_t);
101 static int cpsw_detach(device_t);
102 static int cpswp_probe(device_t);
103 static int cpswp_attach(device_t);
104 static int cpswp_detach(device_t);
105 
106 static phandle_t cpsw_get_node(device_t, device_t);
107 
108 /* Device Init/shutdown. */
109 static int cpsw_shutdown(device_t);
110 static void cpswp_init(void *);
111 static void cpswp_init_locked(void *);
112 static void cpswp_stop_locked(struct cpswp_softc *);
113 
114 /* Device Suspend/Resume. */
115 static int cpsw_suspend(device_t);
116 static int cpsw_resume(device_t);
117 
118 /* Ioctl. */
119 static int cpswp_ioctl(struct ifnet *, u_long command, caddr_t data);
120 
121 static int cpswp_miibus_readreg(device_t, int phy, int reg);
122 static int cpswp_miibus_writereg(device_t, int phy, int reg, int value);
123 static void cpswp_miibus_statchg(device_t);
124 
125 /* Send/Receive packets. */
126 static void cpsw_intr_rx(void *arg);
127 static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
128 static void cpsw_rx_enqueue(struct cpsw_softc *);
129 static void cpswp_start(struct ifnet *);
130 static void cpsw_intr_tx(void *);
131 static void cpswp_tx_enqueue(struct cpswp_softc *);
132 static int cpsw_tx_dequeue(struct cpsw_softc *);
133 
134 /* Misc interrupts and watchdog. */
135 static void cpsw_intr_rx_thresh(void *);
136 static void cpsw_intr_misc(void *);
137 static void cpswp_tick(void *);
138 static void cpswp_ifmedia_sts(struct ifnet *, struct ifmediareq *);
139 static int cpswp_ifmedia_upd(struct ifnet *);
140 static void cpsw_tx_watchdog(void *);
141 
142 /* ALE support */
143 static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t, uint32_t *);
144 static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t, uint32_t *);
145 static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t, int, uint8_t *);
146 static void cpsw_ale_dump_table(struct cpsw_softc *);
147 static int cpsw_ale_update_vlan_table(struct cpsw_softc *, int, int, int, int,
148 	int);
149 static int cpswp_ale_update_addresses(struct cpswp_softc *, int);
150 
151 /* Statistics and sysctls. */
152 static void cpsw_add_sysctls(struct cpsw_softc *);
153 static void cpsw_stats_collect(struct cpsw_softc *);
154 static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
155 
156 #ifdef CPSW_ETHERSWITCH
157 static etherswitch_info_t *cpsw_getinfo(device_t);
158 static int cpsw_getport(device_t, etherswitch_port_t *);
159 static int cpsw_setport(device_t, etherswitch_port_t *);
160 static int cpsw_getconf(device_t, etherswitch_conf_t *);
161 static int cpsw_getvgroup(device_t, etherswitch_vlangroup_t *);
162 static int cpsw_setvgroup(device_t, etherswitch_vlangroup_t *);
163 static int cpsw_readreg(device_t, int);
164 static int cpsw_writereg(device_t, int, int);
165 static int cpsw_readphy(device_t, int, int);
166 static int cpsw_writephy(device_t, int, int, int);
167 #endif
168 
169 /*
170  * Arbitrary limit on number of segments in an mbuf to be transmitted.
171  * Packets with more segments than this will be defragmented before
172  * they are queued.
173  */
174 #define	CPSW_TXFRAGS		16
175 
176 /* Shared resources. */
177 static device_method_t cpsw_methods[] = {
178 	/* Device interface */
179 	DEVMETHOD(device_probe,		cpsw_probe),
180 	DEVMETHOD(device_attach,	cpsw_attach),
181 	DEVMETHOD(device_detach,	cpsw_detach),
182 	DEVMETHOD(device_shutdown,	cpsw_shutdown),
183 	DEVMETHOD(device_suspend,	cpsw_suspend),
184 	DEVMETHOD(device_resume,	cpsw_resume),
185 	/* Bus interface */
186 	DEVMETHOD(bus_add_child,	device_add_child_ordered),
187 	/* OFW methods */
188 	DEVMETHOD(ofw_bus_get_node,	cpsw_get_node),
189 #ifdef CPSW_ETHERSWITCH
190 	/* etherswitch interface */
191 	DEVMETHOD(etherswitch_getinfo,	cpsw_getinfo),
192 	DEVMETHOD(etherswitch_readreg,	cpsw_readreg),
193 	DEVMETHOD(etherswitch_writereg,	cpsw_writereg),
194 	DEVMETHOD(etherswitch_readphyreg,	cpsw_readphy),
195 	DEVMETHOD(etherswitch_writephyreg,	cpsw_writephy),
196 	DEVMETHOD(etherswitch_getport,	cpsw_getport),
197 	DEVMETHOD(etherswitch_setport,	cpsw_setport),
198 	DEVMETHOD(etherswitch_getvgroup,	cpsw_getvgroup),
199 	DEVMETHOD(etherswitch_setvgroup,	cpsw_setvgroup),
200 	DEVMETHOD(etherswitch_getconf,	cpsw_getconf),
201 #endif
202 	DEVMETHOD_END
203 };
204 
205 static driver_t cpsw_driver = {
206 	"cpswss",
207 	cpsw_methods,
208 	sizeof(struct cpsw_softc),
209 };
210 
211 static devclass_t cpsw_devclass;
212 
213 DRIVER_MODULE(cpswss, simplebus, cpsw_driver, cpsw_devclass, 0, 0);
214 
215 /* Port/Slave resources. */
216 static device_method_t cpswp_methods[] = {
217 	/* Device interface */
218 	DEVMETHOD(device_probe,		cpswp_probe),
219 	DEVMETHOD(device_attach,	cpswp_attach),
220 	DEVMETHOD(device_detach,	cpswp_detach),
221 	/* MII interface */
222 	DEVMETHOD(miibus_readreg,	cpswp_miibus_readreg),
223 	DEVMETHOD(miibus_writereg,	cpswp_miibus_writereg),
224 	DEVMETHOD(miibus_statchg,	cpswp_miibus_statchg),
225 	DEVMETHOD_END
226 };
227 
228 static driver_t cpswp_driver = {
229 	"cpsw",
230 	cpswp_methods,
231 	sizeof(struct cpswp_softc),
232 };
233 
234 static devclass_t cpswp_devclass;
235 
236 #ifdef CPSW_ETHERSWITCH
237 DRIVER_MODULE(etherswitch, cpswss, etherswitch_driver, etherswitch_devclass, 0, 0);
238 MODULE_DEPEND(cpswss, etherswitch, 1, 1, 1);
239 #endif
240 
241 DRIVER_MODULE(cpsw, cpswss, cpswp_driver, cpswp_devclass, 0, 0);
242 DRIVER_MODULE(miibus, cpsw, miibus_driver, miibus_devclass, 0, 0);
243 MODULE_DEPEND(cpsw, ether, 1, 1, 1);
244 MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
245 
246 #ifdef CPSW_ETHERSWITCH
247 static struct cpsw_vlangroups cpsw_vgroups[CPSW_VLANS];
248 #endif
249 
250 static uint32_t slave_mdio_addr[] = { 0x4a100200, 0x4a100300 };
251 
252 static struct resource_spec irq_res_spec[] = {
253 	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
254 	{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
255 	{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
256 	{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
257 	{ -1, 0 }
258 };
259 
260 static struct {
261 	void (*cb)(void *);
262 } cpsw_intr_cb[] = {
263 	{ cpsw_intr_rx_thresh },
264 	{ cpsw_intr_rx },
265 	{ cpsw_intr_tx },
266 	{ cpsw_intr_misc },
267 };
268 
269 /* Number of entries here must match size of stats
270  * array in struct cpswp_softc. */
271 static struct cpsw_stat {
272 	int	reg;
273 	char *oid;
274 } cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
275 	{0x00, "GoodRxFrames"},
276 	{0x04, "BroadcastRxFrames"},
277 	{0x08, "MulticastRxFrames"},
278 	{0x0C, "PauseRxFrames"},
279 	{0x10, "RxCrcErrors"},
280 	{0x14, "RxAlignErrors"},
281 	{0x18, "OversizeRxFrames"},
282 	{0x1c, "RxJabbers"},
283 	{0x20, "ShortRxFrames"},
284 	{0x24, "RxFragments"},
285 	{0x30, "RxOctets"},
286 	{0x34, "GoodTxFrames"},
287 	{0x38, "BroadcastTxFrames"},
288 	{0x3c, "MulticastTxFrames"},
289 	{0x40, "PauseTxFrames"},
290 	{0x44, "DeferredTxFrames"},
291 	{0x48, "CollisionsTxFrames"},
292 	{0x4c, "SingleCollisionTxFrames"},
293 	{0x50, "MultipleCollisionTxFrames"},
294 	{0x54, "ExcessiveCollisions"},
295 	{0x58, "LateCollisions"},
296 	{0x5c, "TxUnderrun"},
297 	{0x60, "CarrierSenseErrors"},
298 	{0x64, "TxOctets"},
299 	{0x68, "RxTx64OctetFrames"},
300 	{0x6c, "RxTx65to127OctetFrames"},
301 	{0x70, "RxTx128to255OctetFrames"},
302 	{0x74, "RxTx256to511OctetFrames"},
303 	{0x78, "RxTx512to1024OctetFrames"},
304 	{0x7c, "RxTx1024upOctetFrames"},
305 	{0x80, "NetOctets"},
306 	{0x84, "RxStartOfFrameOverruns"},
307 	{0x88, "RxMiddleOfFrameOverruns"},
308 	{0x8c, "RxDmaOverruns"}
309 };
310 
311 /*
312  * Basic debug support.
313  */
314 
315 static void
316 cpsw_debugf_head(const char *funcname)
317 {
318 	int t = (int)(time_second % (24 * 60 * 60));
319 
320 	printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
321 }
322 
323 static void
324 cpsw_debugf(const char *fmt, ...)
325 {
326 	va_list ap;
327 
328 	va_start(ap, fmt);
329 	vprintf(fmt, ap);
330 	va_end(ap);
331 	printf("\n");
332 
333 }
334 
335 #define	CPSW_DEBUGF(_sc, a) do {					\
336 	if ((_sc)->debug) {						\
337 		cpsw_debugf_head(__func__);				\
338 		cpsw_debugf a;						\
339 	}								\
340 } while (0)
341 
342 /*
343  * Locking macros
344  */
345 #define	CPSW_TX_LOCK(sc) do {						\
346 		mtx_assert(&(sc)->rx.lock, MA_NOTOWNED);		\
347 		mtx_lock(&(sc)->tx.lock);				\
348 } while (0)
349 
350 #define	CPSW_TX_UNLOCK(sc)	mtx_unlock(&(sc)->tx.lock)
351 #define	CPSW_TX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->tx.lock, MA_OWNED)
352 
353 #define	CPSW_RX_LOCK(sc) do {						\
354 		mtx_assert(&(sc)->tx.lock, MA_NOTOWNED);		\
355 		mtx_lock(&(sc)->rx.lock);				\
356 } while (0)
357 
358 #define	CPSW_RX_UNLOCK(sc)		mtx_unlock(&(sc)->rx.lock)
359 #define	CPSW_RX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->rx.lock, MA_OWNED)
360 
361 #define CPSW_PORT_LOCK(_sc) do {					\
362 		mtx_assert(&(_sc)->lock, MA_NOTOWNED);			\
363 		mtx_lock(&(_sc)->lock);					\
364 } while (0)
365 
366 #define	CPSW_PORT_UNLOCK(_sc)	mtx_unlock(&(_sc)->lock)
367 #define	CPSW_PORT_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->lock, MA_OWNED)
368 
369 /*
370  * Read/Write macros
371  */
372 #define	cpsw_read_4(_sc, _reg)		bus_read_4((_sc)->mem_res, (_reg))
373 #define	cpsw_write_4(_sc, _reg, _val)					\
374 	bus_write_4((_sc)->mem_res, (_reg), (_val))
375 
376 #define	cpsw_cpdma_bd_offset(i)	(CPSW_CPPI_RAM_OFFSET + ((i)*16))
377 
378 #define	cpsw_cpdma_bd_paddr(sc, slot)					\
379 	BUS_SPACE_PHYSADDR(sc->mem_res, slot->bd_offset)
380 #define	cpsw_cpdma_read_bd(sc, slot, val)				\
381 	bus_read_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
382 #define	cpsw_cpdma_write_bd(sc, slot, val)				\
383 	bus_write_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
384 #define	cpsw_cpdma_write_bd_next(sc, slot, next_slot)			\
385 	cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
386 #define	cpsw_cpdma_write_bd_flags(sc, slot, val)			\
387 	bus_write_2(sc->mem_res, slot->bd_offset + 14, val)
388 #define	cpsw_cpdma_read_bd_flags(sc, slot)				\
389 	bus_read_2(sc->mem_res, slot->bd_offset + 14)
390 #define	cpsw_write_hdp_slot(sc, queue, slot)				\
391 	cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
392 #define	CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
393 #define	cpsw_read_cp(sc, queue)						\
394 	cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
395 #define	cpsw_write_cp(sc, queue, val)					\
396 	cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
397 #define	cpsw_write_cp_slot(sc, queue, slot)				\
398 	cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
399 
400 #if 0
401 /* XXX temporary function versions for debugging. */
402 static void
403 cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
404 {
405 	uint32_t reg = queue->hdp_offset;
406 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
407 	CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
408 	cpsw_write_4(sc, reg, v);
409 }
410 
411 static void
412 cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
413 {
414 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
415 	CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
416 	cpsw_write_cp(sc, queue, v);
417 }
418 #endif
419 
420 /*
421  * Expanded dump routines for verbose debugging.
422  */
423 static void
424 cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
425 {
426 	static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
427 	    "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
428 	    "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
429 	    "Port0"};
430 	struct cpsw_cpdma_bd bd;
431 	const char *sep;
432 	int i;
433 
434 	cpsw_cpdma_read_bd(sc, slot, &bd);
435 	printf("BD Addr : 0x%08x   Next  : 0x%08x\n",
436 	    cpsw_cpdma_bd_paddr(sc, slot), bd.next);
437 	printf("  BufPtr: 0x%08x   BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
438 	printf("  BufOff: 0x%08x   PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
439 	printf("  Flags: ");
440 	sep = "";
441 	for (i = 0; i < 16; ++i) {
442 		if (bd.flags & (1 << (15 - i))) {
443 			printf("%s%s", sep, flags[i]);
444 			sep = ",";
445 		}
446 	}
447 	printf("\n");
448 	if (slot->mbuf) {
449 		printf("  Ether:  %14D\n",
450 		    (char *)(slot->mbuf->m_data), " ");
451 		printf("  Packet: %16D\n",
452 		    (char *)(slot->mbuf->m_data) + 14, " ");
453 	}
454 }
455 
456 #define	CPSW_DUMP_SLOT(cs, slot) do {				\
457 	IF_DEBUG(sc) {						\
458 		cpsw_dump_slot(sc, slot);			\
459 	}							\
460 } while (0)
461 
462 static void
463 cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
464 {
465 	struct cpsw_slot *slot;
466 	int i = 0;
467 	int others = 0;
468 
469 	STAILQ_FOREACH(slot, q, next) {
470 		if (i > CPSW_TXFRAGS)
471 			++others;
472 		else
473 			cpsw_dump_slot(sc, slot);
474 		++i;
475 	}
476 	if (others)
477 		printf(" ... and %d more.\n", others);
478 	printf("\n");
479 }
480 
481 #define CPSW_DUMP_QUEUE(sc, q) do {				\
482 	IF_DEBUG(sc) {						\
483 		cpsw_dump_queue(sc, q);				\
484 	}							\
485 } while (0)
486 
487 static void
488 cpsw_init_slots(struct cpsw_softc *sc)
489 {
490 	struct cpsw_slot *slot;
491 	int i;
492 
493 	STAILQ_INIT(&sc->avail);
494 
495 	/* Put the slot descriptors onto the global avail list. */
496 	for (i = 0; i < nitems(sc->_slots); i++) {
497 		slot = &sc->_slots[i];
498 		slot->bd_offset = cpsw_cpdma_bd_offset(i);
499 		STAILQ_INSERT_TAIL(&sc->avail, slot, next);
500 	}
501 }
502 
503 static int
504 cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
505 {
506 	const int max_slots = nitems(sc->_slots);
507 	struct cpsw_slot *slot;
508 	int i;
509 
510 	if (requested < 0)
511 		requested = max_slots;
512 
513 	for (i = 0; i < requested; ++i) {
514 		slot = STAILQ_FIRST(&sc->avail);
515 		if (slot == NULL)
516 			return (0);
517 		if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
518 			device_printf(sc->dev, "failed to create dmamap\n");
519 			return (ENOMEM);
520 		}
521 		STAILQ_REMOVE_HEAD(&sc->avail, next);
522 		STAILQ_INSERT_TAIL(&queue->avail, slot, next);
523 		++queue->avail_queue_len;
524 		++queue->queue_slots;
525 	}
526 	return (0);
527 }
528 
529 static void
530 cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
531 {
532 	int error;
533 
534 	if (slot->dmamap) {
535 		if (slot->mbuf)
536 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
537 		error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
538 		KASSERT(error == 0, ("Mapping still active"));
539 		slot->dmamap = NULL;
540 	}
541 	if (slot->mbuf) {
542 		m_freem(slot->mbuf);
543 		slot->mbuf = NULL;
544 	}
545 }
546 
547 static void
548 cpsw_reset(struct cpsw_softc *sc)
549 {
550 	int i;
551 
552 	callout_stop(&sc->watchdog.callout);
553 
554 	/* Reset RMII/RGMII wrapper. */
555 	cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
556 	while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
557 		;
558 
559 	/* Disable TX and RX interrupts for all cores. */
560 	for (i = 0; i < 3; ++i) {
561 		cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
562 		cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
563 		cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
564 		cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
565 	}
566 
567 	/* Reset CPSW subsystem. */
568 	cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
569 	while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
570 		;
571 
572 	/* Reset Sliver port 1 and 2 */
573 	for (i = 0; i < 2; i++) {
574 		/* Reset */
575 		cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
576 		while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
577 			;
578 	}
579 
580 	/* Reset DMA controller. */
581 	cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
582 	while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
583 		;
584 
585 	/* Disable TX & RX DMA */
586 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
587 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
588 
589 	/* Clear all queues. */
590 	for (i = 0; i < 8; i++) {
591 		cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
592 		cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
593 		cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
594 		cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
595 	}
596 
597 	/* Clear all interrupt Masks */
598 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
599 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
600 }
601 
602 static void
603 cpsw_init(struct cpsw_softc *sc)
604 {
605 	struct cpsw_slot *slot;
606 	uint32_t reg;
607 
608 	/* Disable the interrupt pacing. */
609 	reg = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
610 	reg &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
611 	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, reg);
612 
613 	/* Clear ALE */
614 	cpsw_write_4(sc, CPSW_ALE_CONTROL, CPSW_ALE_CTL_CLEAR_TBL);
615 
616 	/* Enable ALE */
617 	reg = CPSW_ALE_CTL_ENABLE;
618 	if (sc->dualemac)
619 		reg |= CPSW_ALE_CTL_VLAN_AWARE;
620 	cpsw_write_4(sc, CPSW_ALE_CONTROL, reg);
621 
622 	/* Set Host Port Mapping. */
623 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
624 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
625 
626 	/* Initialize ALE: set host port to forwarding(3). */
627 	cpsw_write_4(sc, CPSW_ALE_PORTCTL(0),
628 	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
629 
630 	cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
631 
632 	/* Enable statistics for ports 0, 1 and 2 */
633 	cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
634 
635 	/* Turn off flow control. */
636 	cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
637 
638 	/* Make IP hdr aligned with 4 */
639 	cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
640 
641 	/* Initialize RX Buffer Descriptors */
642 	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), 0);
643 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
644 
645 	/* Enable TX & RX DMA */
646 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
647 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
648 
649 	/* Enable Interrupts for core 0 */
650 	cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
651 	cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
652 	cpsw_write_4(sc, CPSW_WR_C_TX_EN(0), 0xFF);
653 	cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x1F);
654 
655 	/* Enable host Error Interrupt */
656 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
657 
658 	/* Enable interrupts for RX and TX on Channel 0 */
659 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET,
660 	    CPSW_CPDMA_RX_INT(0) | CPSW_CPDMA_RX_INT_THRESH(0));
661 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_SET, 1);
662 
663 	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
664 	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
665 	cpsw_write_4(sc, MDIOCONTROL, MDIOCTL_ENABLE | MDIOCTL_FAULTENB | 0xff);
666 
667 	/* Select MII in GMII_SEL, Internal Delay mode */
668 	//ti_scm_reg_write_4(0x650, 0);
669 
670 	/* Initialize active queues. */
671 	slot = STAILQ_FIRST(&sc->tx.active);
672 	if (slot != NULL)
673 		cpsw_write_hdp_slot(sc, &sc->tx, slot);
674 	slot = STAILQ_FIRST(&sc->rx.active);
675 	if (slot != NULL)
676 		cpsw_write_hdp_slot(sc, &sc->rx, slot);
677 	cpsw_rx_enqueue(sc);
678 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), sc->rx.active_queue_len);
679 	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), CPSW_TXFRAGS);
680 
681 	/* Activate network interface. */
682 	sc->rx.running = 1;
683 	sc->tx.running = 1;
684 	sc->watchdog.timer = 0;
685 	callout_init(&sc->watchdog.callout, 0);
686 	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
687 }
688 
689 /*
690  *
691  * Device Probe, Attach, Detach.
692  *
693  */
694 
695 static int
696 cpsw_probe(device_t dev)
697 {
698 
699 	if (!ofw_bus_status_okay(dev))
700 		return (ENXIO);
701 
702 	if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
703 		return (ENXIO);
704 
705 	device_set_desc(dev, "3-port Switch Ethernet Subsystem");
706 	return (BUS_PROBE_DEFAULT);
707 }
708 
709 static int
710 cpsw_intr_attach(struct cpsw_softc *sc)
711 {
712 	int i;
713 
714 	for (i = 0; i < CPSW_INTR_COUNT; i++) {
715 		if (bus_setup_intr(sc->dev, sc->irq_res[i],
716 		    INTR_TYPE_NET | INTR_MPSAFE, NULL,
717 		    cpsw_intr_cb[i].cb, sc, &sc->ih_cookie[i]) != 0) {
718 			return (-1);
719 		}
720 	}
721 
722 	return (0);
723 }
724 
725 static void
726 cpsw_intr_detach(struct cpsw_softc *sc)
727 {
728 	int i;
729 
730 	for (i = 0; i < CPSW_INTR_COUNT; i++) {
731 		if (sc->ih_cookie[i]) {
732 			bus_teardown_intr(sc->dev, sc->irq_res[i],
733 			    sc->ih_cookie[i]);
734 		}
735 	}
736 }
737 
738 static int
739 cpsw_get_fdt_data(struct cpsw_softc *sc, int port)
740 {
741 	char *name;
742 	int len, phy, vlan;
743 	pcell_t phy_id[3], vlan_id;
744 	phandle_t child;
745 	unsigned long mdio_child_addr;
746 
747 	/* Find any slave with phy-handle/phy_id */
748 	phy = -1;
749 	vlan = -1;
750 	for (child = OF_child(sc->node); child != 0; child = OF_peer(child)) {
751 		if (OF_getprop_alloc(child, "name", (void **)&name) < 0)
752 			continue;
753 		if (sscanf(name, "slave@%lx", &mdio_child_addr) != 1) {
754 			OF_prop_free(name);
755 			continue;
756 		}
757 		OF_prop_free(name);
758 		if (mdio_child_addr != slave_mdio_addr[port])
759 			continue;
760 
761 		if (fdt_get_phyaddr(child, NULL, &phy, NULL) != 0){
762 			/* Users with old DTB will have phy_id instead */
763 			phy = -1;
764 			len = OF_getproplen(child, "phy_id");
765 			if (len / sizeof(pcell_t) == 2) {
766 				/* Get phy address from fdt */
767 				if (OF_getencprop(child, "phy_id", phy_id, len) > 0)
768 					phy = phy_id[1];
769 			}
770 		}
771 
772 		len = OF_getproplen(child, "dual_emac_res_vlan");
773 		if (len / sizeof(pcell_t) == 1) {
774 			/* Get phy address from fdt */
775 			if (OF_getencprop(child, "dual_emac_res_vlan",
776 			    &vlan_id, len) > 0) {
777 				vlan = vlan_id;
778 			}
779 		}
780 
781 		break;
782 	}
783 	if (phy == -1)
784 		return (ENXIO);
785 	sc->port[port].phy = phy;
786 	sc->port[port].vlan = vlan;
787 
788 	return (0);
789 }
790 
791 static int
792 cpsw_attach(device_t dev)
793 {
794 	int error, i;
795 	struct cpsw_softc *sc;
796 	uint32_t reg;
797 
798 	sc = device_get_softc(dev);
799 	sc->dev = dev;
800 	sc->node = ofw_bus_get_node(dev);
801 	getbinuptime(&sc->attach_uptime);
802 
803 	if (OF_getencprop(sc->node, "active_slave", &sc->active_slave,
804 	    sizeof(sc->active_slave)) <= 0) {
805 		sc->active_slave = 0;
806 	}
807 	if (sc->active_slave > 1)
808 		sc->active_slave = 1;
809 
810 	if (OF_hasprop(sc->node, "dual_emac"))
811 		sc->dualemac = 1;
812 
813 	for (i = 0; i < CPSW_PORTS; i++) {
814 		if (!sc->dualemac && i != sc->active_slave)
815 			continue;
816 		if (cpsw_get_fdt_data(sc, i) != 0) {
817 			device_printf(dev,
818 			    "failed to get PHY address from FDT\n");
819 			return (ENXIO);
820 		}
821 	}
822 
823 	/* Initialize mutexes */
824 	mtx_init(&sc->tx.lock, device_get_nameunit(dev),
825 	    "cpsw TX lock", MTX_DEF);
826 	mtx_init(&sc->rx.lock, device_get_nameunit(dev),
827 	    "cpsw RX lock", MTX_DEF);
828 
829 	/* Allocate IRQ resources */
830 	error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
831 	if (error) {
832 		device_printf(dev, "could not allocate IRQ resources\n");
833 		cpsw_detach(dev);
834 		return (ENXIO);
835 	}
836 
837 	sc->mem_rid = 0;
838 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
839 	    &sc->mem_rid, RF_ACTIVE);
840 	if (sc->mem_res == NULL) {
841 		device_printf(sc->dev, "failed to allocate memory resource\n");
842 		cpsw_detach(dev);
843 		return (ENXIO);
844 	}
845 
846 	reg = cpsw_read_4(sc, CPSW_SS_IDVER);
847 	device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
848 		reg & 0xFF, (reg >> 11) & 0x1F);
849 
850 	cpsw_add_sysctls(sc);
851 
852 	/* Allocate a busdma tag and DMA safe memory for mbufs. */
853 	error = bus_dma_tag_create(
854 		bus_get_dma_tag(sc->dev),	/* parent */
855 		1, 0,				/* alignment, boundary */
856 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
857 		BUS_SPACE_MAXADDR,		/* highaddr */
858 		NULL, NULL,			/* filtfunc, filtfuncarg */
859 		MCLBYTES, CPSW_TXFRAGS,		/* maxsize, nsegments */
860 		MCLBYTES, 0,			/* maxsegsz, flags */
861 		NULL, NULL,			/* lockfunc, lockfuncarg */
862 		&sc->mbuf_dtag);		/* dmatag */
863 	if (error) {
864 		device_printf(dev, "bus_dma_tag_create failed\n");
865 		cpsw_detach(dev);
866 		return (error);
867 	}
868 
869 	/* Allocate a NULL buffer for padding. */
870 	sc->nullpad = malloc(ETHER_MIN_LEN, M_DEVBUF, M_WAITOK | M_ZERO);
871 
872 	cpsw_init_slots(sc);
873 
874 	/* Allocate slots to TX and RX queues. */
875 	STAILQ_INIT(&sc->rx.avail);
876 	STAILQ_INIT(&sc->rx.active);
877 	STAILQ_INIT(&sc->tx.avail);
878 	STAILQ_INIT(&sc->tx.active);
879 	// For now:  128 slots to TX, rest to RX.
880 	// XXX TODO: start with 32/64 and grow dynamically based on demand.
881 	if (cpsw_add_slots(sc, &sc->tx, 128) ||
882 	    cpsw_add_slots(sc, &sc->rx, -1)) {
883 		device_printf(dev, "failed to allocate dmamaps\n");
884 		cpsw_detach(dev);
885 		return (ENOMEM);
886 	}
887 	device_printf(dev, "Initial queue size TX=%d RX=%d\n",
888 	    sc->tx.queue_slots, sc->rx.queue_slots);
889 
890 	sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
891 	sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
892 
893 	if (cpsw_intr_attach(sc) == -1) {
894 		device_printf(dev, "failed to setup interrupts\n");
895 		cpsw_detach(dev);
896 		return (ENXIO);
897 	}
898 
899 #ifdef CPSW_ETHERSWITCH
900 	for (i = 0; i < CPSW_VLANS; i++)
901 		cpsw_vgroups[i].vid = -1;
902 #endif
903 
904 	/* Reset the controller. */
905 	cpsw_reset(sc);
906 	cpsw_init(sc);
907 
908 	for (i = 0; i < CPSW_PORTS; i++) {
909 		if (!sc->dualemac && i != sc->active_slave)
910 			continue;
911 		sc->port[i].dev = device_add_child(dev, "cpsw", i);
912 		if (sc->port[i].dev == NULL) {
913 			cpsw_detach(dev);
914 			return (ENXIO);
915 		}
916 	}
917 	bus_generic_probe(dev);
918 	bus_generic_attach(dev);
919 
920 	return (0);
921 }
922 
923 static int
924 cpsw_detach(device_t dev)
925 {
926 	struct cpsw_softc *sc;
927 	int error, i;
928 
929 	bus_generic_detach(dev);
930  	sc = device_get_softc(dev);
931 
932 	for (i = 0; i < CPSW_PORTS; i++) {
933 		if (sc->port[i].dev)
934 			device_delete_child(dev, sc->port[i].dev);
935 	}
936 
937 	if (device_is_attached(dev)) {
938 		callout_stop(&sc->watchdog.callout);
939 		callout_drain(&sc->watchdog.callout);
940 	}
941 
942 	/* Stop and release all interrupts */
943 	cpsw_intr_detach(sc);
944 
945 	/* Free dmamaps and mbufs */
946 	for (i = 0; i < nitems(sc->_slots); ++i)
947 		cpsw_free_slot(sc, &sc->_slots[i]);
948 
949 	/* Free null padding buffer. */
950 	if (sc->nullpad)
951 		free(sc->nullpad, M_DEVBUF);
952 
953 	/* Free DMA tag */
954 	if (sc->mbuf_dtag) {
955 		error = bus_dma_tag_destroy(sc->mbuf_dtag);
956 		KASSERT(error == 0, ("Unable to destroy DMA tag"));
957 	}
958 
959 	/* Free IO memory handler */
960 	if (sc->mem_res != NULL)
961 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res);
962 	bus_release_resources(dev, irq_res_spec, sc->irq_res);
963 
964 	/* Destroy mutexes */
965 	mtx_destroy(&sc->rx.lock);
966 	mtx_destroy(&sc->tx.lock);
967 
968 	/* Detach the switch device, if present. */
969 	error = bus_generic_detach(dev);
970 	if (error != 0)
971 		return (error);
972 
973 	return (device_delete_children(dev));
974 }
975 
976 static phandle_t
977 cpsw_get_node(device_t bus, device_t dev)
978 {
979 
980 	/* Share controller node with port device. */
981 	return (ofw_bus_get_node(bus));
982 }
983 
984 static int
985 cpswp_probe(device_t dev)
986 {
987 
988 	if (device_get_unit(dev) > 1) {
989 		device_printf(dev, "Only two ports are supported.\n");
990 		return (ENXIO);
991 	}
992 	device_set_desc(dev, "Ethernet Switch Port");
993 
994 	return (BUS_PROBE_DEFAULT);
995 }
996 
997 static int
998 cpswp_attach(device_t dev)
999 {
1000 	int error;
1001 	struct ifnet *ifp;
1002 	struct cpswp_softc *sc;
1003 	uint32_t reg;
1004 	uint8_t mac_addr[ETHER_ADDR_LEN];
1005 
1006 	sc = device_get_softc(dev);
1007 	sc->dev = dev;
1008 	sc->pdev = device_get_parent(dev);
1009 	sc->swsc = device_get_softc(sc->pdev);
1010 	sc->unit = device_get_unit(dev);
1011 	sc->phy = sc->swsc->port[sc->unit].phy;
1012 	sc->vlan = sc->swsc->port[sc->unit].vlan;
1013 	if (sc->swsc->dualemac && sc->vlan == -1)
1014 		sc->vlan = sc->unit + 1;
1015 
1016 	if (sc->unit == 0) {
1017 		sc->physel = MDIOUSERPHYSEL0;
1018 		sc->phyaccess = MDIOUSERACCESS0;
1019 	} else {
1020 		sc->physel = MDIOUSERPHYSEL1;
1021 		sc->phyaccess = MDIOUSERACCESS1;
1022 	}
1023 
1024 	mtx_init(&sc->lock, device_get_nameunit(dev), "cpsw port lock",
1025 	    MTX_DEF);
1026 
1027 	/* Allocate network interface */
1028 	ifp = sc->ifp = if_alloc(IFT_ETHER);
1029 	if (ifp == NULL) {
1030 		cpswp_detach(dev);
1031 		return (ENXIO);
1032 	}
1033 
1034 	if_initname(ifp, device_get_name(sc->dev), sc->unit);
1035 	ifp->if_softc = sc;
1036 	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
1037 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_HWCSUM; //FIXME VLAN?
1038 	ifp->if_capenable = ifp->if_capabilities;
1039 
1040 	ifp->if_init = cpswp_init;
1041 	ifp->if_start = cpswp_start;
1042 	ifp->if_ioctl = cpswp_ioctl;
1043 
1044 	ifp->if_snd.ifq_drv_maxlen = sc->swsc->tx.queue_slots;
1045 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1046 	IFQ_SET_READY(&ifp->if_snd);
1047 
1048 	/* Get high part of MAC address from control module (mac_id[0|1]_hi) */
1049 	ti_scm_reg_read_4(SCM_MAC_ID0_HI + sc->unit * 8, &reg);
1050 	mac_addr[0] = reg & 0xFF;
1051 	mac_addr[1] = (reg >>  8) & 0xFF;
1052 	mac_addr[2] = (reg >> 16) & 0xFF;
1053 	mac_addr[3] = (reg >> 24) & 0xFF;
1054 
1055 	/* Get low part of MAC address from control module (mac_id[0|1]_lo) */
1056 	ti_scm_reg_read_4(SCM_MAC_ID0_LO + sc->unit * 8, &reg);
1057 	mac_addr[4] = reg & 0xFF;
1058 	mac_addr[5] = (reg >>  8) & 0xFF;
1059 
1060 	error = mii_attach(dev, &sc->miibus, ifp, cpswp_ifmedia_upd,
1061 	    cpswp_ifmedia_sts, BMSR_DEFCAPMASK, sc->phy, MII_OFFSET_ANY, 0);
1062 	if (error) {
1063 		device_printf(dev, "attaching PHYs failed\n");
1064 		cpswp_detach(dev);
1065 		return (error);
1066 	}
1067 	sc->mii = device_get_softc(sc->miibus);
1068 
1069 	/* Select PHY and enable interrupts */
1070 	cpsw_write_4(sc->swsc, sc->physel,
1071 	    MDIO_PHYSEL_LINKINTENB | (sc->phy & 0x1F));
1072 
1073 	ether_ifattach(sc->ifp, mac_addr);
1074 	callout_init(&sc->mii_callout, 0);
1075 
1076 	return (0);
1077 }
1078 
1079 static int
1080 cpswp_detach(device_t dev)
1081 {
1082 	struct cpswp_softc *sc;
1083 
1084 	sc = device_get_softc(dev);
1085 	CPSW_DEBUGF(sc->swsc, (""));
1086 	if (device_is_attached(dev)) {
1087 		ether_ifdetach(sc->ifp);
1088 		CPSW_PORT_LOCK(sc);
1089 		cpswp_stop_locked(sc);
1090 		CPSW_PORT_UNLOCK(sc);
1091 		callout_drain(&sc->mii_callout);
1092 	}
1093 
1094 	bus_generic_detach(dev);
1095 
1096 	if_free(sc->ifp);
1097 	mtx_destroy(&sc->lock);
1098 
1099 	return (0);
1100 }
1101 
1102 /*
1103  *
1104  * Init/Shutdown.
1105  *
1106  */
1107 
1108 static int
1109 cpsw_ports_down(struct cpsw_softc *sc)
1110 {
1111 	struct cpswp_softc *psc;
1112 	struct ifnet *ifp1, *ifp2;
1113 
1114 	if (!sc->dualemac)
1115 		return (1);
1116 	psc = device_get_softc(sc->port[0].dev);
1117 	ifp1 = psc->ifp;
1118 	psc = device_get_softc(sc->port[1].dev);
1119 	ifp2 = psc->ifp;
1120 	if ((ifp1->if_flags & IFF_UP) == 0 && (ifp2->if_flags & IFF_UP) == 0)
1121 		return (1);
1122 
1123 	return (0);
1124 }
1125 
1126 static void
1127 cpswp_init(void *arg)
1128 {
1129 	struct cpswp_softc *sc = arg;
1130 
1131 	CPSW_DEBUGF(sc->swsc, (""));
1132 	CPSW_PORT_LOCK(sc);
1133 	cpswp_init_locked(arg);
1134 	CPSW_PORT_UNLOCK(sc);
1135 }
1136 
1137 static void
1138 cpswp_init_locked(void *arg)
1139 {
1140 #ifdef CPSW_ETHERSWITCH
1141 	int i;
1142 #endif
1143 	struct cpswp_softc *sc = arg;
1144 	struct ifnet *ifp;
1145 	uint32_t reg;
1146 
1147 	CPSW_DEBUGF(sc->swsc, (""));
1148 	CPSW_PORT_LOCK_ASSERT(sc);
1149 	ifp = sc->ifp;
1150 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1151 		return;
1152 
1153 	getbinuptime(&sc->init_uptime);
1154 
1155 	if (!sc->swsc->rx.running && !sc->swsc->tx.running) {
1156 		/* Reset the controller. */
1157 		cpsw_reset(sc->swsc);
1158 		cpsw_init(sc->swsc);
1159 	}
1160 
1161 	/* Set Slave Mapping. */
1162 	cpsw_write_4(sc->swsc, CPSW_SL_RX_PRI_MAP(sc->unit), 0x76543210);
1163 	cpsw_write_4(sc->swsc, CPSW_PORT_P_TX_PRI_MAP(sc->unit + 1),
1164 	    0x33221100);
1165 	cpsw_write_4(sc->swsc, CPSW_SL_RX_MAXLEN(sc->unit), 0x5f2);
1166 	/* Enable MAC RX/TX modules. */
1167 	/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
1168 	/* Huh?  Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
1169 	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1170 	reg |= CPSW_SL_MACTL_GMII_ENABLE;
1171 	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1172 
1173 	/* Initialize ALE: set port to forwarding, initialize addrs */
1174 	cpsw_write_4(sc->swsc, CPSW_ALE_PORTCTL(sc->unit + 1),
1175 	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
1176 	cpswp_ale_update_addresses(sc, 1);
1177 
1178 	if (sc->swsc->dualemac) {
1179 		/* Set Port VID. */
1180 		cpsw_write_4(sc->swsc, CPSW_PORT_P_VLAN(sc->unit + 1),
1181 		    sc->vlan & 0xfff);
1182 		cpsw_ale_update_vlan_table(sc->swsc, sc->vlan,
1183 		    (1 << (sc->unit + 1)) | (1 << 0), /* Member list */
1184 		    (1 << (sc->unit + 1)) | (1 << 0), /* Untagged egress */
1185 		    (1 << (sc->unit + 1)) | (1 << 0), 0); /* mcast reg flood */
1186 #ifdef CPSW_ETHERSWITCH
1187 		for (i = 0; i < CPSW_VLANS; i++) {
1188 			if (cpsw_vgroups[i].vid != -1)
1189 				continue;
1190 			cpsw_vgroups[i].vid = sc->vlan;
1191 			break;
1192 		}
1193 #endif
1194 	}
1195 
1196 	mii_mediachg(sc->mii);
1197 	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
1198 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1199 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1200 }
1201 
1202 static int
1203 cpsw_shutdown(device_t dev)
1204 {
1205 	struct cpsw_softc *sc;
1206 	struct cpswp_softc *psc;
1207 	int i;
1208 
1209  	sc = device_get_softc(dev);
1210 	CPSW_DEBUGF(sc, (""));
1211 	for (i = 0; i < CPSW_PORTS; i++) {
1212 		if (!sc->dualemac && i != sc->active_slave)
1213 			continue;
1214 		psc = device_get_softc(sc->port[i].dev);
1215 		CPSW_PORT_LOCK(psc);
1216 		cpswp_stop_locked(psc);
1217 		CPSW_PORT_UNLOCK(psc);
1218 	}
1219 
1220 	return (0);
1221 }
1222 
1223 static void
1224 cpsw_rx_teardown(struct cpsw_softc *sc)
1225 {
1226 	int i = 0;
1227 
1228 	CPSW_RX_LOCK(sc);
1229 	CPSW_DEBUGF(sc, ("starting RX teardown"));
1230 	sc->rx.teardown = 1;
1231 	cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
1232 	CPSW_RX_UNLOCK(sc);
1233 	while (sc->rx.running) {
1234 		if (++i > 10) {
1235 			device_printf(sc->dev,
1236 			    "Unable to cleanly shutdown receiver\n");
1237 			return;
1238 		}
1239 		DELAY(200);
1240 	}
1241 	if (!sc->rx.running)
1242 		CPSW_DEBUGF(sc, ("finished RX teardown (%d retries)", i));
1243 }
1244 
1245 static void
1246 cpsw_tx_teardown(struct cpsw_softc *sc)
1247 {
1248 	int i = 0;
1249 
1250 	CPSW_TX_LOCK(sc);
1251 	CPSW_DEBUGF(sc, ("starting TX teardown"));
1252 	/* Start the TX queue teardown if queue is not empty. */
1253 	if (STAILQ_FIRST(&sc->tx.active) != NULL)
1254 		cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
1255 	else
1256 		sc->tx.teardown = 1;
1257 	cpsw_tx_dequeue(sc);
1258 	while (sc->tx.running && ++i < 10) {
1259 		DELAY(200);
1260 		cpsw_tx_dequeue(sc);
1261 	}
1262 	if (sc->tx.running) {
1263 		device_printf(sc->dev,
1264 		    "Unable to cleanly shutdown transmitter\n");
1265 	}
1266 	CPSW_DEBUGF(sc,
1267 	    ("finished TX teardown (%d retries, %d idle buffers)", i,
1268 	     sc->tx.active_queue_len));
1269 	CPSW_TX_UNLOCK(sc);
1270 }
1271 
1272 static void
1273 cpswp_stop_locked(struct cpswp_softc *sc)
1274 {
1275 	struct ifnet *ifp;
1276 	uint32_t reg;
1277 
1278 	ifp = sc->ifp;
1279 	CPSW_DEBUGF(sc->swsc, (""));
1280 	CPSW_PORT_LOCK_ASSERT(sc);
1281 
1282 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1283 		return;
1284 
1285 	/* Disable interface */
1286 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1287 	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1288 
1289 	/* Stop ticker */
1290 	callout_stop(&sc->mii_callout);
1291 
1292 	/* Tear down the RX/TX queues. */
1293 	if (cpsw_ports_down(sc->swsc)) {
1294 		cpsw_rx_teardown(sc->swsc);
1295 		cpsw_tx_teardown(sc->swsc);
1296 	}
1297 
1298 	/* Stop MAC RX/TX modules. */
1299 	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1300 	reg &= ~CPSW_SL_MACTL_GMII_ENABLE;
1301 	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1302 
1303 	if (cpsw_ports_down(sc->swsc)) {
1304 		/* Capture stats before we reset controller. */
1305 		cpsw_stats_collect(sc->swsc);
1306 
1307 		cpsw_reset(sc->swsc);
1308 		cpsw_init(sc->swsc);
1309 	}
1310 }
1311 
1312 /*
1313  *  Suspend/Resume.
1314  */
1315 
1316 static int
1317 cpsw_suspend(device_t dev)
1318 {
1319 	struct cpsw_softc *sc;
1320 	struct cpswp_softc *psc;
1321 	int i;
1322 
1323 	sc = device_get_softc(dev);
1324 	CPSW_DEBUGF(sc, (""));
1325 	for (i = 0; i < CPSW_PORTS; i++) {
1326 		if (!sc->dualemac && i != sc->active_slave)
1327 			continue;
1328 		psc = device_get_softc(sc->port[i].dev);
1329 		CPSW_PORT_LOCK(psc);
1330 		cpswp_stop_locked(psc);
1331 		CPSW_PORT_UNLOCK(psc);
1332 	}
1333 
1334 	return (0);
1335 }
1336 
1337 static int
1338 cpsw_resume(device_t dev)
1339 {
1340 	struct cpsw_softc *sc;
1341 
1342 	sc  = device_get_softc(dev);
1343 	CPSW_DEBUGF(sc, ("UNIMPLEMENTED"));
1344 
1345 	return (0);
1346 }
1347 
1348 /*
1349  *
1350  *  IOCTL
1351  *
1352  */
1353 
1354 static void
1355 cpsw_set_promisc(struct cpswp_softc *sc, int set)
1356 {
1357 	uint32_t reg;
1358 
1359 	/*
1360 	 * Enabling promiscuous mode requires ALE_BYPASS to be enabled.
1361 	 * That disables the ALE forwarding logic and causes every
1362 	 * packet to be sent only to the host port.  In bypass mode,
1363 	 * the ALE processes host port transmit packets the same as in
1364 	 * normal mode.
1365 	 */
1366 	reg = cpsw_read_4(sc->swsc, CPSW_ALE_CONTROL);
1367 	reg &= ~CPSW_ALE_CTL_BYPASS;
1368 	if (set)
1369 		reg |= CPSW_ALE_CTL_BYPASS;
1370 	cpsw_write_4(sc->swsc, CPSW_ALE_CONTROL, reg);
1371 }
1372 
1373 static void
1374 cpsw_set_allmulti(struct cpswp_softc *sc, int set)
1375 {
1376 	if (set) {
1377 		printf("All-multicast mode unimplemented\n");
1378 	}
1379 }
1380 
1381 static int
1382 cpswp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1383 {
1384 	struct cpswp_softc *sc;
1385 	struct ifreq *ifr;
1386 	int error;
1387 	uint32_t changed;
1388 
1389 	error = 0;
1390 	sc = ifp->if_softc;
1391 	ifr = (struct ifreq *)data;
1392 
1393 	switch (command) {
1394 	case SIOCSIFCAP:
1395 		changed = ifp->if_capenable ^ ifr->ifr_reqcap;
1396 		if (changed & IFCAP_HWCSUM) {
1397 			if ((ifr->ifr_reqcap & changed) & IFCAP_HWCSUM)
1398 				ifp->if_capenable |= IFCAP_HWCSUM;
1399 			else
1400 				ifp->if_capenable &= ~IFCAP_HWCSUM;
1401 		}
1402 		error = 0;
1403 		break;
1404 	case SIOCSIFFLAGS:
1405 		CPSW_PORT_LOCK(sc);
1406 		if (ifp->if_flags & IFF_UP) {
1407 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1408 				changed = ifp->if_flags ^ sc->if_flags;
1409 				CPSW_DEBUGF(sc->swsc,
1410 				    ("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)",
1411 				    changed));
1412 				if (changed & IFF_PROMISC)
1413 					cpsw_set_promisc(sc,
1414 					    ifp->if_flags & IFF_PROMISC);
1415 				if (changed & IFF_ALLMULTI)
1416 					cpsw_set_allmulti(sc,
1417 					    ifp->if_flags & IFF_ALLMULTI);
1418 			} else {
1419 				CPSW_DEBUGF(sc->swsc,
1420 				    ("SIOCSIFFLAGS: starting up"));
1421 				cpswp_init_locked(sc);
1422 			}
1423 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1424 			CPSW_DEBUGF(sc->swsc, ("SIOCSIFFLAGS: shutting down"));
1425 			cpswp_stop_locked(sc);
1426 		}
1427 
1428 		sc->if_flags = ifp->if_flags;
1429 		CPSW_PORT_UNLOCK(sc);
1430 		break;
1431 	case SIOCADDMULTI:
1432 		cpswp_ale_update_addresses(sc, 0);
1433 		break;
1434 	case SIOCDELMULTI:
1435 		/* Ugh.  DELMULTI doesn't provide the specific address
1436 		   being removed, so the best we can do is remove
1437 		   everything and rebuild it all. */
1438 		cpswp_ale_update_addresses(sc, 1);
1439 		break;
1440 	case SIOCGIFMEDIA:
1441 	case SIOCSIFMEDIA:
1442 		error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
1443 		break;
1444 	default:
1445 		error = ether_ioctl(ifp, command, data);
1446 	}
1447 	return (error);
1448 }
1449 
1450 /*
1451  *
1452  * MIIBUS
1453  *
1454  */
1455 static int
1456 cpswp_miibus_ready(struct cpsw_softc *sc, uint32_t reg)
1457 {
1458 	uint32_t r, retries = CPSW_MIIBUS_RETRIES;
1459 
1460 	while (--retries) {
1461 		r = cpsw_read_4(sc, reg);
1462 		if ((r & MDIO_PHYACCESS_GO) == 0)
1463 			return (1);
1464 		DELAY(CPSW_MIIBUS_DELAY);
1465 	}
1466 
1467 	return (0);
1468 }
1469 
1470 static int
1471 cpswp_miibus_readreg(device_t dev, int phy, int reg)
1472 {
1473 	struct cpswp_softc *sc;
1474 	uint32_t cmd, r;
1475 
1476 	sc = device_get_softc(dev);
1477 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1478 		device_printf(dev, "MDIO not ready to read\n");
1479 		return (0);
1480 	}
1481 
1482 	/* Set GO, reg, phy */
1483 	cmd = MDIO_PHYACCESS_GO | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
1484 	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1485 
1486 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1487 		device_printf(dev, "MDIO timed out during read\n");
1488 		return (0);
1489 	}
1490 
1491 	r = cpsw_read_4(sc->swsc, sc->phyaccess);
1492 	if ((r & MDIO_PHYACCESS_ACK) == 0) {
1493 		device_printf(dev, "Failed to read from PHY.\n");
1494 		r = 0;
1495 	}
1496 	return (r & 0xFFFF);
1497 }
1498 
1499 static int
1500 cpswp_miibus_writereg(device_t dev, int phy, int reg, int value)
1501 {
1502 	struct cpswp_softc *sc;
1503 	uint32_t cmd;
1504 
1505 	sc = device_get_softc(dev);
1506 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1507 		device_printf(dev, "MDIO not ready to write\n");
1508 		return (0);
1509 	}
1510 
1511 	/* Set GO, WRITE, reg, phy, and value */
1512 	cmd = MDIO_PHYACCESS_GO | MDIO_PHYACCESS_WRITE |
1513 	    (reg & 0x1F) << 21 | (phy & 0x1F) << 16 | (value & 0xFFFF);
1514 	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1515 
1516 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1517 		device_printf(dev, "MDIO timed out during write\n");
1518 		return (0);
1519 	}
1520 
1521 	return (0);
1522 }
1523 
1524 static void
1525 cpswp_miibus_statchg(device_t dev)
1526 {
1527 	struct cpswp_softc *sc;
1528 	uint32_t mac_control, reg;
1529 
1530 	sc = device_get_softc(dev);
1531 	CPSW_DEBUGF(sc->swsc, (""));
1532 
1533 	reg = CPSW_SL_MACCONTROL(sc->unit);
1534 	mac_control = cpsw_read_4(sc->swsc, reg);
1535 	mac_control &= ~(CPSW_SL_MACTL_GIG | CPSW_SL_MACTL_IFCTL_A |
1536 	    CPSW_SL_MACTL_IFCTL_B | CPSW_SL_MACTL_FULLDUPLEX);
1537 
1538 	switch(IFM_SUBTYPE(sc->mii->mii_media_active)) {
1539 	case IFM_1000_SX:
1540 	case IFM_1000_LX:
1541 	case IFM_1000_CX:
1542 	case IFM_1000_T:
1543 		mac_control |= CPSW_SL_MACTL_GIG;
1544 		break;
1545 
1546 	case IFM_100_TX:
1547 		mac_control |= CPSW_SL_MACTL_IFCTL_A;
1548 		break;
1549 	}
1550 	if (sc->mii->mii_media_active & IFM_FDX)
1551 		mac_control |= CPSW_SL_MACTL_FULLDUPLEX;
1552 
1553 	cpsw_write_4(sc->swsc, reg, mac_control);
1554 }
1555 
1556 /*
1557  *
1558  * Transmit/Receive Packets.
1559  *
1560  */
1561 static void
1562 cpsw_intr_rx(void *arg)
1563 {
1564 	struct cpsw_softc *sc;
1565 	struct ifnet *ifp;
1566 	struct mbuf *received, *next;
1567 
1568 	sc = (struct cpsw_softc *)arg;
1569 	CPSW_RX_LOCK(sc);
1570 	if (sc->rx.teardown) {
1571 		sc->rx.running = 0;
1572 		sc->rx.teardown = 0;
1573 		cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
1574 	}
1575 	received = cpsw_rx_dequeue(sc);
1576 	cpsw_rx_enqueue(sc);
1577 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
1578 	CPSW_RX_UNLOCK(sc);
1579 
1580 	while (received != NULL) {
1581 		next = received->m_nextpkt;
1582 		received->m_nextpkt = NULL;
1583 		ifp = received->m_pkthdr.rcvif;
1584 		(*ifp->if_input)(ifp, received);
1585 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1586 		received = next;
1587 	}
1588 }
1589 
1590 static struct mbuf *
1591 cpsw_rx_dequeue(struct cpsw_softc *sc)
1592 {
1593 	int nsegs, port, removed;
1594 	struct cpsw_cpdma_bd bd;
1595 	struct cpsw_slot *last, *slot;
1596 	struct cpswp_softc *psc;
1597 	struct mbuf *m, *m0, *mb_head, *mb_tail;
1598 	uint16_t m0_flags;
1599 
1600 	nsegs = 0;
1601 	m0 = NULL;
1602 	last = NULL;
1603 	mb_head = NULL;
1604 	mb_tail = NULL;
1605 	removed = 0;
1606 
1607 	/* Pull completed packets off hardware RX queue. */
1608 	while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
1609 		cpsw_cpdma_read_bd(sc, slot, &bd);
1610 
1611 		/*
1612 		 * Stop on packets still in use by hardware, but do not stop
1613 		 * on packets with the teardown complete flag, they will be
1614 		 * discarded later.
1615 		 */
1616 		if ((bd.flags & (CPDMA_BD_OWNER | CPDMA_BD_TDOWNCMPLT)) ==
1617 		    CPDMA_BD_OWNER)
1618 			break;
1619 
1620 		last = slot;
1621 		++removed;
1622 		STAILQ_REMOVE_HEAD(&sc->rx.active, next);
1623 		STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
1624 
1625 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
1626 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1627 
1628 		m = slot->mbuf;
1629 		slot->mbuf = NULL;
1630 
1631 		if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
1632 			CPSW_DEBUGF(sc, ("RX teardown is complete"));
1633 			m_freem(m);
1634 			sc->rx.running = 0;
1635 			sc->rx.teardown = 0;
1636 			break;
1637 		}
1638 
1639 		port = (bd.flags & CPDMA_BD_PORT_MASK) - 1;
1640 		KASSERT(port >= 0 && port <= 1,
1641 		    ("patcket received with invalid port: %d", port));
1642 		psc = device_get_softc(sc->port[port].dev);
1643 
1644 		/* Set up mbuf */
1645 		m->m_data += bd.bufoff;
1646 		m->m_len = bd.buflen;
1647 		if (bd.flags & CPDMA_BD_SOP) {
1648 			m->m_pkthdr.len = bd.pktlen;
1649 			m->m_pkthdr.rcvif = psc->ifp;
1650 			m->m_flags |= M_PKTHDR;
1651 			m0_flags = bd.flags;
1652 			m0 = m;
1653 		}
1654 		nsegs++;
1655 		m->m_next = NULL;
1656 		m->m_nextpkt = NULL;
1657 		if (bd.flags & CPDMA_BD_EOP && m0 != NULL) {
1658 			if (m0_flags & CPDMA_BD_PASS_CRC)
1659 				m_adj(m0, -ETHER_CRC_LEN);
1660 			m0_flags = 0;
1661 			m0 = NULL;
1662 			if (nsegs > sc->rx.longest_chain)
1663 				sc->rx.longest_chain = nsegs;
1664 			nsegs = 0;
1665 		}
1666 
1667 		if ((psc->ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1668 			/* check for valid CRC by looking into pkt_err[5:4] */
1669 			if ((bd.flags &
1670 			    (CPDMA_BD_SOP | CPDMA_BD_PKT_ERR_MASK)) ==
1671 			    CPDMA_BD_SOP) {
1672 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1673 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1674 				m->m_pkthdr.csum_data = 0xffff;
1675 			}
1676 		}
1677 
1678 		if (STAILQ_FIRST(&sc->rx.active) != NULL &&
1679 		    (bd.flags & (CPDMA_BD_EOP | CPDMA_BD_EOQ)) ==
1680 		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
1681 			cpsw_write_hdp_slot(sc, &sc->rx,
1682 			    STAILQ_FIRST(&sc->rx.active));
1683 			sc->rx.queue_restart++;
1684 		}
1685 
1686 		/* Add mbuf to packet list to be returned. */
1687 		if (mb_tail != NULL && (bd.flags & CPDMA_BD_SOP)) {
1688 			mb_tail->m_nextpkt = m;
1689 		} else if (mb_tail != NULL) {
1690 			mb_tail->m_next = m;
1691 		} else if (mb_tail == NULL && (bd.flags & CPDMA_BD_SOP) == 0) {
1692 			if (bootverbose)
1693 				printf(
1694 				    "%s: %s: discanding fragment packet w/o header\n",
1695 				    __func__, psc->ifp->if_xname);
1696 			m_freem(m);
1697 			continue;
1698 		} else {
1699 			mb_head = m;
1700 		}
1701 		mb_tail = m;
1702 	}
1703 
1704 	if (removed != 0) {
1705 		cpsw_write_cp_slot(sc, &sc->rx, last);
1706 		sc->rx.queue_removes += removed;
1707 		sc->rx.avail_queue_len += removed;
1708 		sc->rx.active_queue_len -= removed;
1709 		if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
1710 			sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
1711 		CPSW_DEBUGF(sc, ("Removed %d received packet(s) from RX queue", removed));
1712 	}
1713 
1714 	return (mb_head);
1715 }
1716 
1717 static void
1718 cpsw_rx_enqueue(struct cpsw_softc *sc)
1719 {
1720 	bus_dma_segment_t seg[1];
1721 	struct cpsw_cpdma_bd bd;
1722 	struct cpsw_slot *first_new_slot, *last_old_slot, *next, *slot;
1723 	int error, nsegs, added = 0;
1724 
1725 	/* Register new mbufs with hardware. */
1726 	first_new_slot = NULL;
1727 	last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
1728 	while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
1729 		if (first_new_slot == NULL)
1730 			first_new_slot = slot;
1731 		if (slot->mbuf == NULL) {
1732 			slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1733 			if (slot->mbuf == NULL) {
1734 				device_printf(sc->dev,
1735 				    "Unable to fill RX queue\n");
1736 				break;
1737 			}
1738 			slot->mbuf->m_len =
1739 			    slot->mbuf->m_pkthdr.len =
1740 			    slot->mbuf->m_ext.ext_size;
1741 		}
1742 
1743 		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1744 		    slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
1745 
1746 		KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
1747 		KASSERT(error == 0, ("DMA error (error=%d)", error));
1748 		if (error != 0 || nsegs != 1) {
1749 			device_printf(sc->dev,
1750 			    "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
1751 			    __func__, nsegs, error);
1752 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1753 			m_freem(slot->mbuf);
1754 			slot->mbuf = NULL;
1755 			break;
1756 		}
1757 
1758 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
1759 
1760 		/* Create and submit new rx descriptor. */
1761 		if ((next = STAILQ_NEXT(slot, next)) != NULL)
1762 			bd.next = cpsw_cpdma_bd_paddr(sc, next);
1763 		else
1764 			bd.next = 0;
1765 		bd.bufptr = seg->ds_addr;
1766 		bd.bufoff = 0;
1767 		bd.buflen = MCLBYTES - 1;
1768 		bd.pktlen = bd.buflen;
1769 		bd.flags = CPDMA_BD_OWNER;
1770 		cpsw_cpdma_write_bd(sc, slot, &bd);
1771 		++added;
1772 
1773 		STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
1774 		STAILQ_INSERT_TAIL(&sc->rx.active, slot, next);
1775 	}
1776 
1777 	if (added == 0 || first_new_slot == NULL)
1778 		return;
1779 
1780 	CPSW_DEBUGF(sc, ("Adding %d buffers to RX queue", added));
1781 
1782 	/* Link new entries to hardware RX queue. */
1783 	if (last_old_slot == NULL) {
1784 		/* Start a fresh queue. */
1785 		cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1786 	} else {
1787 		/* Add buffers to end of current queue. */
1788 		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1789 	}
1790 	sc->rx.queue_adds += added;
1791 	sc->rx.avail_queue_len -= added;
1792 	sc->rx.active_queue_len += added;
1793 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), added);
1794 	if (sc->rx.active_queue_len > sc->rx.max_active_queue_len)
1795 		sc->rx.max_active_queue_len = sc->rx.active_queue_len;
1796 }
1797 
1798 static void
1799 cpswp_start(struct ifnet *ifp)
1800 {
1801 	struct cpswp_softc *sc;
1802 
1803 	sc = ifp->if_softc;
1804 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1805 	    sc->swsc->tx.running == 0) {
1806 		return;
1807 	}
1808 	CPSW_TX_LOCK(sc->swsc);
1809 	cpswp_tx_enqueue(sc);
1810 	cpsw_tx_dequeue(sc->swsc);
1811 	CPSW_TX_UNLOCK(sc->swsc);
1812 }
1813 
1814 static void
1815 cpsw_intr_tx(void *arg)
1816 {
1817 	struct cpsw_softc *sc;
1818 
1819 	sc = (struct cpsw_softc *)arg;
1820 	CPSW_TX_LOCK(sc);
1821 	if (cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)) == 0xfffffffc)
1822 		cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1823 	cpsw_tx_dequeue(sc);
1824 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 2);
1825 	CPSW_TX_UNLOCK(sc);
1826 }
1827 
1828 static void
1829 cpswp_tx_enqueue(struct cpswp_softc *sc)
1830 {
1831 	bus_dma_segment_t segs[CPSW_TXFRAGS];
1832 	struct cpsw_cpdma_bd bd;
1833 	struct cpsw_slot *first_new_slot, *last, *last_old_slot, *next, *slot;
1834 	struct mbuf *m0;
1835 	int error, nsegs, seg, added = 0, padlen;
1836 
1837 	/* Pull pending packets from IF queue and prep them for DMA. */
1838 	last = NULL;
1839 	first_new_slot = NULL;
1840 	last_old_slot = STAILQ_LAST(&sc->swsc->tx.active, cpsw_slot, next);
1841 	while ((slot = STAILQ_FIRST(&sc->swsc->tx.avail)) != NULL) {
1842 		IF_DEQUEUE(&sc->ifp->if_snd, m0);
1843 		if (m0 == NULL)
1844 			break;
1845 
1846 		slot->mbuf = m0;
1847 		padlen = ETHER_MIN_LEN - ETHER_CRC_LEN - m0->m_pkthdr.len;
1848 		if (padlen < 0)
1849 			padlen = 0;
1850 		else if (padlen > 0)
1851 			m_append(slot->mbuf, padlen, sc->swsc->nullpad);
1852 
1853 		/* Create mapping in DMA memory */
1854 		error = bus_dmamap_load_mbuf_sg(sc->swsc->mbuf_dtag,
1855 		    slot->dmamap, slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1856 		/* If the packet is too fragmented, try to simplify. */
1857 		if (error == EFBIG ||
1858 		    (error == 0 && nsegs > sc->swsc->tx.avail_queue_len)) {
1859 			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1860 			m0 = m_defrag(slot->mbuf, M_NOWAIT);
1861 			if (m0 == NULL) {
1862 				device_printf(sc->dev,
1863 				    "Can't defragment packet; dropping\n");
1864 				m_freem(slot->mbuf);
1865 			} else {
1866 				CPSW_DEBUGF(sc->swsc,
1867 				    ("Requeueing defragmented packet"));
1868 				IF_PREPEND(&sc->ifp->if_snd, m0);
1869 			}
1870 			slot->mbuf = NULL;
1871 			continue;
1872 		}
1873 		if (error != 0) {
1874 			device_printf(sc->dev,
1875 			    "%s: Can't setup DMA (error=%d), dropping packet\n",
1876 			    __func__, error);
1877 			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1878 			m_freem(slot->mbuf);
1879 			slot->mbuf = NULL;
1880 			break;
1881 		}
1882 
1883 		bus_dmamap_sync(sc->swsc->mbuf_dtag, slot->dmamap,
1884 				BUS_DMASYNC_PREWRITE);
1885 
1886 		CPSW_DEBUGF(sc->swsc,
1887 		    ("Queueing TX packet: %d segments + %d pad bytes",
1888 		    nsegs, padlen));
1889 
1890 		if (first_new_slot == NULL)
1891 			first_new_slot = slot;
1892 
1893 		/* Link from the previous descriptor. */
1894 		if (last != NULL)
1895 			cpsw_cpdma_write_bd_next(sc->swsc, last, slot);
1896 
1897 		slot->ifp = sc->ifp;
1898 
1899 		/* If there is only one segment, the for() loop
1900 		 * gets skipped and the single buffer gets set up
1901 		 * as both SOP and EOP. */
1902 		if (nsegs > 1) {
1903 			next = STAILQ_NEXT(slot, next);
1904 			bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1905 		} else
1906 			bd.next = 0;
1907 		/* Start by setting up the first buffer. */
1908 		bd.bufptr = segs[0].ds_addr;
1909 		bd.bufoff = 0;
1910 		bd.buflen = segs[0].ds_len;
1911 		bd.pktlen = m_length(slot->mbuf, NULL);
1912 		bd.flags =  CPDMA_BD_SOP | CPDMA_BD_OWNER;
1913 		if (sc->swsc->dualemac) {
1914 			bd.flags |= CPDMA_BD_TO_PORT;
1915 			bd.flags |= ((sc->unit + 1) & CPDMA_BD_PORT_MASK);
1916 		}
1917 		for (seg = 1; seg < nsegs; ++seg) {
1918 			/* Save the previous buffer (which isn't EOP) */
1919 			cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1920 			STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1921 			STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1922 			slot = STAILQ_FIRST(&sc->swsc->tx.avail);
1923 
1924 			/* Setup next buffer (which isn't SOP) */
1925 			if (nsegs > seg + 1) {
1926 				next = STAILQ_NEXT(slot, next);
1927 				bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1928 			} else
1929 				bd.next = 0;
1930 			bd.bufptr = segs[seg].ds_addr;
1931 			bd.bufoff = 0;
1932 			bd.buflen = segs[seg].ds_len;
1933 			bd.pktlen = 0;
1934 			bd.flags = CPDMA_BD_OWNER;
1935 		}
1936 
1937 		/* Save the final buffer. */
1938 		bd.flags |= CPDMA_BD_EOP;
1939 		cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1940 		STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1941 		STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1942 
1943 		last = slot;
1944 		added += nsegs;
1945 		if (nsegs > sc->swsc->tx.longest_chain)
1946 			sc->swsc->tx.longest_chain = nsegs;
1947 
1948 		BPF_MTAP(sc->ifp, m0);
1949 	}
1950 
1951 	if (first_new_slot == NULL)
1952 		return;
1953 
1954 	/* Attach the list of new buffers to the hardware TX queue. */
1955 	if (last_old_slot != NULL &&
1956 	    (cpsw_cpdma_read_bd_flags(sc->swsc, last_old_slot) &
1957 	     CPDMA_BD_EOQ) == 0) {
1958 		/* Add buffers to end of current queue. */
1959 		cpsw_cpdma_write_bd_next(sc->swsc, last_old_slot,
1960 		    first_new_slot);
1961 	} else {
1962 		/* Start a fresh queue. */
1963 		cpsw_write_hdp_slot(sc->swsc, &sc->swsc->tx, first_new_slot);
1964 	}
1965 	sc->swsc->tx.queue_adds += added;
1966 	sc->swsc->tx.avail_queue_len -= added;
1967 	sc->swsc->tx.active_queue_len += added;
1968 	if (sc->swsc->tx.active_queue_len > sc->swsc->tx.max_active_queue_len) {
1969 		sc->swsc->tx.max_active_queue_len = sc->swsc->tx.active_queue_len;
1970 	}
1971 	CPSW_DEBUGF(sc->swsc, ("Queued %d TX packet(s)", added));
1972 }
1973 
1974 static int
1975 cpsw_tx_dequeue(struct cpsw_softc *sc)
1976 {
1977 	struct cpsw_slot *slot, *last_removed_slot = NULL;
1978 	struct cpsw_cpdma_bd bd;
1979 	uint32_t flags, removed = 0;
1980 
1981 	/* Pull completed buffers off the hardware TX queue. */
1982 	slot = STAILQ_FIRST(&sc->tx.active);
1983 	while (slot != NULL) {
1984 		flags = cpsw_cpdma_read_bd_flags(sc, slot);
1985 
1986 		/* TearDown complete is only marked on the SOP for the packet. */
1987 		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) ==
1988 		    (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) {
1989 			sc->tx.teardown = 1;
1990 		}
1991 
1992 		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_OWNER)) ==
1993 		    (CPDMA_BD_SOP | CPDMA_BD_OWNER) && sc->tx.teardown == 0)
1994 			break; /* Hardware is still using this packet. */
1995 
1996 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
1997 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1998 		m_freem(slot->mbuf);
1999 		slot->mbuf = NULL;
2000 
2001 		if (slot->ifp) {
2002 			if (sc->tx.teardown == 0)
2003 				if_inc_counter(slot->ifp, IFCOUNTER_OPACKETS, 1);
2004 			else
2005 				if_inc_counter(slot->ifp, IFCOUNTER_OQDROPS, 1);
2006 		}
2007 
2008 		/* Dequeue any additional buffers used by this packet. */
2009 		while (slot != NULL && slot->mbuf == NULL) {
2010 			STAILQ_REMOVE_HEAD(&sc->tx.active, next);
2011 			STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
2012 			++removed;
2013 			last_removed_slot = slot;
2014 			slot = STAILQ_FIRST(&sc->tx.active);
2015 		}
2016 
2017 		cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
2018 
2019 		/* Restart the TX queue if necessary. */
2020 		cpsw_cpdma_read_bd(sc, last_removed_slot, &bd);
2021 		if (slot != NULL && bd.next != 0 && (bd.flags &
2022 		    (CPDMA_BD_EOP | CPDMA_BD_OWNER | CPDMA_BD_EOQ)) ==
2023 		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
2024 			cpsw_write_hdp_slot(sc, &sc->tx, slot);
2025 			sc->tx.queue_restart++;
2026 			break;
2027 		}
2028 	}
2029 
2030 	if (removed != 0) {
2031 		sc->tx.queue_removes += removed;
2032 		sc->tx.active_queue_len -= removed;
2033 		sc->tx.avail_queue_len += removed;
2034 		if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
2035 			sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
2036 		CPSW_DEBUGF(sc, ("TX removed %d completed packet(s)", removed));
2037 	}
2038 
2039 	if (sc->tx.teardown && STAILQ_EMPTY(&sc->tx.active)) {
2040 		CPSW_DEBUGF(sc, ("TX teardown is complete"));
2041 		sc->tx.teardown = 0;
2042 		sc->tx.running = 0;
2043 	}
2044 
2045 	return (removed);
2046 }
2047 
2048 /*
2049  *
2050  * Miscellaneous interrupts.
2051  *
2052  */
2053 
2054 static void
2055 cpsw_intr_rx_thresh(void *arg)
2056 {
2057 	struct cpsw_softc *sc;
2058 	struct ifnet *ifp;
2059 	struct mbuf *received, *next;
2060 
2061 	sc = (struct cpsw_softc *)arg;
2062 	CPSW_RX_LOCK(sc);
2063 	received = cpsw_rx_dequeue(sc);
2064 	cpsw_rx_enqueue(sc);
2065 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
2066 	CPSW_RX_UNLOCK(sc);
2067 
2068 	while (received != NULL) {
2069 		next = received->m_nextpkt;
2070 		received->m_nextpkt = NULL;
2071 		ifp = received->m_pkthdr.rcvif;
2072 		(*ifp->if_input)(ifp, received);
2073 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2074 		received = next;
2075 	}
2076 }
2077 
2078 static void
2079 cpsw_intr_misc_host_error(struct cpsw_softc *sc)
2080 {
2081 	uint32_t intstat;
2082 	uint32_t dmastat;
2083 	int txerr, rxerr, txchan, rxchan;
2084 
2085 	printf("\n\n");
2086 	device_printf(sc->dev,
2087 	    "HOST ERROR:  PROGRAMMING ERROR DETECTED BY HARDWARE\n");
2088 	printf("\n\n");
2089 	intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
2090 	device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
2091 	dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
2092 	device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
2093 
2094 	txerr = (dmastat >> 20) & 15;
2095 	txchan = (dmastat >> 16) & 7;
2096 	rxerr = (dmastat >> 12) & 15;
2097 	rxchan = (dmastat >> 8) & 7;
2098 
2099 	switch (txerr) {
2100 	case 0: break;
2101 	case 1:	printf("SOP error on TX channel %d\n", txchan);
2102 		break;
2103 	case 2:	printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
2104 		break;
2105 	case 3:	printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
2106 		break;
2107 	case 4:	printf("Zero Buffer Pointer on TX channel %d\n", txchan);
2108 		break;
2109 	case 5:	printf("Zero Buffer Length on TX channel %d\n", txchan);
2110 		break;
2111 	case 6:	printf("Packet length error on TX channel %d\n", txchan);
2112 		break;
2113 	default: printf("Unknown error on TX channel %d\n", txchan);
2114 		break;
2115 	}
2116 
2117 	if (txerr != 0) {
2118 		printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
2119 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
2120 		printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
2121 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
2122 		cpsw_dump_queue(sc, &sc->tx.active);
2123 	}
2124 
2125 	switch (rxerr) {
2126 	case 0: break;
2127 	case 2:	printf("Ownership bit not set on RX channel %d\n", rxchan);
2128 		break;
2129 	case 4:	printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
2130 		break;
2131 	case 5:	printf("Zero Buffer Length on RX channel %d\n", rxchan);
2132 		break;
2133 	case 6:	printf("Buffer offset too big on RX channel %d\n", rxchan);
2134 		break;
2135 	default: printf("Unknown RX error on RX channel %d\n", rxchan);
2136 		break;
2137 	}
2138 
2139 	if (rxerr != 0) {
2140 		printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
2141 		    rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
2142 		printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
2143 		    rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
2144 		cpsw_dump_queue(sc, &sc->rx.active);
2145 	}
2146 
2147 	printf("\nALE Table\n");
2148 	cpsw_ale_dump_table(sc);
2149 
2150 	// XXX do something useful here??
2151 	panic("CPSW HOST ERROR INTERRUPT");
2152 
2153 	// Suppress this interrupt in the future.
2154 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
2155 	printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
2156 	// The watchdog will probably reset the controller
2157 	// in a little while.  It will probably fail again.
2158 }
2159 
2160 static void
2161 cpsw_intr_misc(void *arg)
2162 {
2163 	struct cpsw_softc *sc = arg;
2164 	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
2165 
2166 	if (stat & CPSW_WR_C_MISC_EVNT_PEND)
2167 		CPSW_DEBUGF(sc, ("Time sync event interrupt unimplemented"));
2168 	if (stat & CPSW_WR_C_MISC_STAT_PEND)
2169 		cpsw_stats_collect(sc);
2170 	if (stat & CPSW_WR_C_MISC_HOST_PEND)
2171 		cpsw_intr_misc_host_error(sc);
2172 	if (stat & CPSW_WR_C_MISC_MDIOLINK) {
2173 		cpsw_write_4(sc, MDIOLINKINTMASKED,
2174 		    cpsw_read_4(sc, MDIOLINKINTMASKED));
2175 	}
2176 	if (stat & CPSW_WR_C_MISC_MDIOUSER) {
2177 		CPSW_DEBUGF(sc,
2178 		    ("MDIO operation completed interrupt unimplemented"));
2179 	}
2180 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
2181 }
2182 
2183 /*
2184  *
2185  * Periodic Checks and Watchdog.
2186  *
2187  */
2188 
2189 static void
2190 cpswp_tick(void *msc)
2191 {
2192 	struct cpswp_softc *sc = msc;
2193 
2194 	/* Check for media type change */
2195 	mii_tick(sc->mii);
2196 	if (sc->media_status != sc->mii->mii_media.ifm_media) {
2197 		printf("%s: media type changed (ifm_media=%x)\n", __func__,
2198 			sc->mii->mii_media.ifm_media);
2199 		cpswp_ifmedia_upd(sc->ifp);
2200 	}
2201 
2202 	/* Schedule another timeout one second from now */
2203 	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
2204 }
2205 
2206 static void
2207 cpswp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2208 {
2209 	struct cpswp_softc *sc;
2210 	struct mii_data *mii;
2211 
2212 	sc = ifp->if_softc;
2213 	CPSW_DEBUGF(sc->swsc, (""));
2214 	CPSW_PORT_LOCK(sc);
2215 
2216 	mii = sc->mii;
2217 	mii_pollstat(mii);
2218 
2219 	ifmr->ifm_active = mii->mii_media_active;
2220 	ifmr->ifm_status = mii->mii_media_status;
2221 	CPSW_PORT_UNLOCK(sc);
2222 }
2223 
2224 static int
2225 cpswp_ifmedia_upd(struct ifnet *ifp)
2226 {
2227 	struct cpswp_softc *sc;
2228 
2229 	sc = ifp->if_softc;
2230 	CPSW_DEBUGF(sc->swsc, (""));
2231 	CPSW_PORT_LOCK(sc);
2232 	mii_mediachg(sc->mii);
2233 	sc->media_status = sc->mii->mii_media.ifm_media;
2234 	CPSW_PORT_UNLOCK(sc);
2235 
2236 	return (0);
2237 }
2238 
2239 static void
2240 cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
2241 {
2242 	struct cpswp_softc *psc;
2243 	int i;
2244 
2245 	cpsw_debugf_head("CPSW watchdog");
2246 	device_printf(sc->dev, "watchdog timeout\n");
2247 	printf("CPSW_CPDMA_TX%d_HDP=0x%x\n", 0,
2248 	    cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(0)));
2249 	printf("CPSW_CPDMA_TX%d_CP=0x%x\n", 0,
2250 	    cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)));
2251 	cpsw_dump_queue(sc, &sc->tx.active);
2252 	for (i = 0; i < CPSW_PORTS; i++) {
2253 		if (!sc->dualemac && i != sc->active_slave)
2254 			continue;
2255 		psc = device_get_softc(sc->port[i].dev);
2256 		CPSW_PORT_LOCK(psc);
2257 		cpswp_stop_locked(psc);
2258 		CPSW_PORT_UNLOCK(psc);
2259 	}
2260 }
2261 
2262 static void
2263 cpsw_tx_watchdog(void *msc)
2264 {
2265 	struct cpsw_softc *sc;
2266 
2267 	sc = msc;
2268 	CPSW_TX_LOCK(sc);
2269 	if (sc->tx.active_queue_len == 0 || !sc->tx.running) {
2270 		sc->watchdog.timer = 0; /* Nothing to do. */
2271 	} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
2272 		sc->watchdog.timer = 0;  /* Stuff done while we weren't looking. */
2273 	} else if (cpsw_tx_dequeue(sc) > 0) {
2274 		sc->watchdog.timer = 0;  /* We just did something. */
2275 	} else {
2276 		/* There was something to do but it didn't get done. */
2277 		++sc->watchdog.timer;
2278 		if (sc->watchdog.timer > 5) {
2279 			sc->watchdog.timer = 0;
2280 			++sc->watchdog.resets;
2281 			cpsw_tx_watchdog_full_reset(sc);
2282 		}
2283 	}
2284 	sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
2285 	CPSW_TX_UNLOCK(sc);
2286 
2287 	/* Schedule another timeout one second from now */
2288 	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
2289 }
2290 
2291 /*
2292  *
2293  * ALE support routines.
2294  *
2295  */
2296 
2297 static void
2298 cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2299 {
2300 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
2301 	ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
2302 	ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
2303 	ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
2304 }
2305 
2306 static void
2307 cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2308 {
2309 	cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
2310 	cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
2311 	cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
2312 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
2313 }
2314 
2315 static void
2316 cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
2317 {
2318 	int i;
2319 	uint32_t ale_entry[3];
2320 
2321 	/* First four entries are link address and broadcast. */
2322 	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2323 		cpsw_ale_read_entry(sc, i, ale_entry);
2324 		if ((ALE_TYPE(ale_entry) == ALE_TYPE_ADDR ||
2325 		    ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR) &&
2326 		    ALE_MCAST(ale_entry)  == 1) { /* MCast link addr */
2327 			ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2328 			cpsw_ale_write_entry(sc, i, ale_entry);
2329 		}
2330 	}
2331 }
2332 
2333 static int
2334 cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, int vlan,
2335 	uint8_t *mac)
2336 {
2337 	int free_index = -1, matching_index = -1, i;
2338 	uint32_t ale_entry[3], ale_type;
2339 
2340 	/* Find a matching entry or a free entry. */
2341 	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2342 		cpsw_ale_read_entry(sc, i, ale_entry);
2343 
2344 		/* Entry Type[61:60] is 0 for free entry */
2345 		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2346 			free_index = i;
2347 
2348 		if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
2349 		    (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
2350 		    (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
2351 		    (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
2352 		    (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
2353 		    (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
2354 			matching_index = i;
2355 			break;
2356 		}
2357 	}
2358 
2359 	if (matching_index < 0) {
2360 		if (free_index < 0)
2361 			return (ENOMEM);
2362 		i = free_index;
2363 	}
2364 
2365 	if (vlan != -1)
2366 		ale_type = ALE_TYPE_VLAN_ADDR << 28 | vlan << 16;
2367 	else
2368 		ale_type = ALE_TYPE_ADDR << 28;
2369 
2370 	/* Set MAC address */
2371 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2372 	ale_entry[1] = mac[0] << 8 | mac[1];
2373 
2374 	/* Entry type[61:60] and Mcast fwd state[63:62] is fw(3). */
2375 	ale_entry[1] |= ALE_MCAST_FWD | ale_type;
2376 
2377 	/* Set portmask [68:66] */
2378 	ale_entry[2] = (portmap & 7) << 2;
2379 
2380 	cpsw_ale_write_entry(sc, i, ale_entry);
2381 
2382 	return 0;
2383 }
2384 
2385 static void
2386 cpsw_ale_dump_table(struct cpsw_softc *sc) {
2387 	int i;
2388 	uint32_t ale_entry[3];
2389 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2390 		cpsw_ale_read_entry(sc, i, ale_entry);
2391 		switch (ALE_TYPE(ale_entry)) {
2392 		case ALE_TYPE_VLAN:
2393 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2394 				ale_entry[1], ale_entry[0]);
2395 			printf("type: %u ", ALE_TYPE(ale_entry));
2396 			printf("vlan: %u ", ALE_VLAN(ale_entry));
2397 			printf("untag: %u ", ALE_VLAN_UNTAG(ale_entry));
2398 			printf("reg flood: %u ", ALE_VLAN_REGFLOOD(ale_entry));
2399 			printf("unreg flood: %u ", ALE_VLAN_UNREGFLOOD(ale_entry));
2400 			printf("members: %u ", ALE_VLAN_MEMBERS(ale_entry));
2401 			printf("\n");
2402 			break;
2403 		case ALE_TYPE_ADDR:
2404 		case ALE_TYPE_VLAN_ADDR:
2405 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2406 				ale_entry[1], ale_entry[0]);
2407 			printf("type: %u ", ALE_TYPE(ale_entry));
2408 			printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
2409 				(ale_entry[1] >> 8) & 0xFF,
2410 				(ale_entry[1] >> 0) & 0xFF,
2411 				(ale_entry[0] >>24) & 0xFF,
2412 				(ale_entry[0] >>16) & 0xFF,
2413 				(ale_entry[0] >> 8) & 0xFF,
2414 				(ale_entry[0] >> 0) & 0xFF);
2415 			printf(ALE_MCAST(ale_entry) ? "mcast " : "ucast ");
2416 			if (ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR)
2417 				printf("vlan: %u ", ALE_VLAN(ale_entry));
2418 			printf("port: %u ", ALE_PORTS(ale_entry));
2419 			printf("\n");
2420 			break;
2421 		}
2422 	}
2423 	printf("\n");
2424 }
2425 
2426 static int
2427 cpswp_ale_update_addresses(struct cpswp_softc *sc, int purge)
2428 {
2429 	uint8_t *mac;
2430 	uint32_t ale_entry[3], ale_type, portmask;
2431 	struct ifmultiaddr *ifma;
2432 
2433 	if (sc->swsc->dualemac) {
2434 		ale_type = ALE_TYPE_VLAN_ADDR << 28 | sc->vlan << 16;
2435 		portmask = 1 << (sc->unit + 1) | 1 << 0;
2436 	} else {
2437 		ale_type = ALE_TYPE_ADDR << 28;
2438 		portmask = 7;
2439 	}
2440 
2441 	/*
2442 	 * Route incoming packets for our MAC address to Port 0 (host).
2443 	 * For simplicity, keep this entry at table index 0 for port 1 and
2444 	 * at index 2 for port 2 in the ALE.
2445 	 */
2446         if_addr_rlock(sc->ifp);
2447 	mac = LLADDR((struct sockaddr_dl *)sc->ifp->if_addr->ifa_addr);
2448 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2449 	ale_entry[1] = ale_type | mac[0] << 8 | mac[1]; /* addr entry + mac */
2450 	ale_entry[2] = 0; /* port = 0 */
2451 	cpsw_ale_write_entry(sc->swsc, 0 + 2 * sc->unit, ale_entry);
2452 
2453 	/* Set outgoing MAC Address for slave port. */
2454 	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_HI(sc->unit + 1),
2455 	    mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
2456 	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_LO(sc->unit + 1),
2457 	    mac[5] << 8 | mac[4]);
2458         if_addr_runlock(sc->ifp);
2459 
2460 	/* Keep the broadcast address at table entry 1 (or 3). */
2461 	ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
2462 	/* ALE_MCAST_FWD, Addr type, upper 16 bits of Mac */
2463 	ale_entry[1] = ALE_MCAST_FWD | ale_type | 0xffff;
2464 	ale_entry[2] = portmask << 2;
2465 	cpsw_ale_write_entry(sc->swsc, 1 + 2 * sc->unit, ale_entry);
2466 
2467 	/* SIOCDELMULTI doesn't specify the particular address
2468 	   being removed, so we have to remove all and rebuild. */
2469 	if (purge)
2470 		cpsw_ale_remove_all_mc_entries(sc->swsc);
2471 
2472         /* Set other multicast addrs desired. */
2473         if_maddr_rlock(sc->ifp);
2474         CK_STAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
2475                 if (ifma->ifma_addr->sa_family != AF_LINK)
2476                         continue;
2477 		cpsw_ale_mc_entry_set(sc->swsc, portmask, sc->vlan,
2478 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
2479         }
2480         if_maddr_runlock(sc->ifp);
2481 
2482 	return (0);
2483 }
2484 
2485 static int
2486 cpsw_ale_update_vlan_table(struct cpsw_softc *sc, int vlan, int ports,
2487 	int untag, int mcregflood, int mcunregflood)
2488 {
2489 	int free_index, i, matching_index;
2490 	uint32_t ale_entry[3];
2491 
2492 	free_index = matching_index = -1;
2493 	/* Find a matching entry or a free entry. */
2494 	for (i = 5; i < CPSW_MAX_ALE_ENTRIES; i++) {
2495 		cpsw_ale_read_entry(sc, i, ale_entry);
2496 
2497 		/* Entry Type[61:60] is 0 for free entry */
2498 		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2499 			free_index = i;
2500 
2501 		if (ALE_VLAN(ale_entry) == vlan) {
2502 			matching_index = i;
2503 			break;
2504 		}
2505 	}
2506 
2507 	if (matching_index < 0) {
2508 		if (free_index < 0)
2509 			return (-1);
2510 		i = free_index;
2511 	}
2512 
2513 	ale_entry[0] = (untag & 7) << 24 | (mcregflood & 7) << 16 |
2514 	    (mcunregflood & 7) << 8 | (ports & 7);
2515 	ale_entry[1] = ALE_TYPE_VLAN << 28 | vlan << 16;
2516 	ale_entry[2] = 0;
2517 	cpsw_ale_write_entry(sc, i, ale_entry);
2518 
2519 	return (0);
2520 }
2521 
2522 /*
2523  *
2524  * Statistics and Sysctls.
2525  *
2526  */
2527 
2528 #if 0
2529 static void
2530 cpsw_stats_dump(struct cpsw_softc *sc)
2531 {
2532 	int i;
2533 	uint32_t r;
2534 
2535 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2536 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2537 		    cpsw_stat_sysctls[i].reg);
2538 		CPSW_DEBUGF(sc, ("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
2539 		    (intmax_t)sc->shadow_stats[i], r,
2540 		    (intmax_t)sc->shadow_stats[i] + r));
2541 	}
2542 }
2543 #endif
2544 
2545 static void
2546 cpsw_stats_collect(struct cpsw_softc *sc)
2547 {
2548 	int i;
2549 	uint32_t r;
2550 
2551 	CPSW_DEBUGF(sc, ("Controller shadow statistics updated."));
2552 
2553 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2554 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2555 		    cpsw_stat_sysctls[i].reg);
2556 		sc->shadow_stats[i] += r;
2557 		cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg,
2558 		    r);
2559 	}
2560 }
2561 
2562 static int
2563 cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
2564 {
2565 	struct cpsw_softc *sc;
2566 	struct cpsw_stat *stat;
2567 	uint64_t result;
2568 
2569 	sc = (struct cpsw_softc *)arg1;
2570 	stat = &cpsw_stat_sysctls[oidp->oid_number];
2571 	result = sc->shadow_stats[oidp->oid_number];
2572 	result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
2573 	return (sysctl_handle_64(oidp, &result, 0, req));
2574 }
2575 
2576 static int
2577 cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
2578 {
2579 	struct cpsw_softc *sc;
2580 	struct bintime t;
2581 	unsigned result;
2582 
2583 	sc = (struct cpsw_softc *)arg1;
2584 	getbinuptime(&t);
2585 	bintime_sub(&t, &sc->attach_uptime);
2586 	result = t.sec;
2587 	return (sysctl_handle_int(oidp, &result, 0, req));
2588 }
2589 
2590 static int
2591 cpsw_intr_coalesce(SYSCTL_HANDLER_ARGS)
2592 {
2593 	int error;
2594 	struct cpsw_softc *sc;
2595 	uint32_t ctrl, intr_per_ms;
2596 
2597 	sc = (struct cpsw_softc *)arg1;
2598 	error = sysctl_handle_int(oidp, &sc->coal_us, 0, req);
2599 	if (error != 0 || req->newptr == NULL)
2600 		return (error);
2601 
2602 	ctrl = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
2603 	ctrl &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
2604 	if (sc->coal_us == 0) {
2605 		/* Disable the interrupt pace hardware. */
2606 		cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2607 		cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), 0);
2608 		cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), 0);
2609 		return (0);
2610 	}
2611 
2612 	if (sc->coal_us > CPSW_WR_C_IMAX_US_MAX)
2613 		sc->coal_us = CPSW_WR_C_IMAX_US_MAX;
2614 	if (sc->coal_us < CPSW_WR_C_IMAX_US_MIN)
2615 		sc->coal_us = CPSW_WR_C_IMAX_US_MIN;
2616 	intr_per_ms = 1000 / sc->coal_us;
2617 	/* Just to make sure... */
2618 	if (intr_per_ms > CPSW_WR_C_IMAX_MAX)
2619 		intr_per_ms = CPSW_WR_C_IMAX_MAX;
2620 	if (intr_per_ms < CPSW_WR_C_IMAX_MIN)
2621 		intr_per_ms = CPSW_WR_C_IMAX_MIN;
2622 
2623 	/* Set the prescale to produce 4us pulses from the 125 Mhz clock. */
2624 	ctrl |= (125 * 4) & CPSW_WR_INT_PRESCALE_MASK;
2625 
2626 	/* Enable the interrupt pace hardware. */
2627 	cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), intr_per_ms);
2628 	cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), intr_per_ms);
2629 	ctrl |= CPSW_WR_INT_C0_RX_PULSE | CPSW_WR_INT_C0_TX_PULSE;
2630 	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2631 
2632 	return (0);
2633 }
2634 
2635 static int
2636 cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
2637 {
2638 	struct cpsw_softc *swsc;
2639 	struct cpswp_softc *sc;
2640 	struct bintime t;
2641 	unsigned result;
2642 
2643 	swsc = arg1;
2644 	sc = device_get_softc(swsc->port[arg2].dev);
2645 	if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
2646 		getbinuptime(&t);
2647 		bintime_sub(&t, &sc->init_uptime);
2648 		result = t.sec;
2649 	} else
2650 		result = 0;
2651 	return (sysctl_handle_int(oidp, &result, 0, req));
2652 }
2653 
2654 static void
2655 cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2656 	struct cpsw_queue *queue)
2657 {
2658 	struct sysctl_oid_list *parent;
2659 
2660 	parent = SYSCTL_CHILDREN(node);
2661 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
2662 	    CTLFLAG_RD, &queue->queue_slots, 0,
2663 	    "Total buffers currently assigned to this queue");
2664 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
2665 	    CTLFLAG_RD, &queue->active_queue_len, 0,
2666 	    "Buffers currently registered with hardware controller");
2667 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
2668 	    CTLFLAG_RD, &queue->max_active_queue_len, 0,
2669 	    "Max value of activeBuffers since last driver reset");
2670 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
2671 	    CTLFLAG_RD, &queue->avail_queue_len, 0,
2672 	    "Buffers allocated to this queue but not currently "
2673 	    "registered with hardware controller");
2674 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
2675 	    CTLFLAG_RD, &queue->max_avail_queue_len, 0,
2676 	    "Max value of availBuffers since last driver reset");
2677 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
2678 	    CTLFLAG_RD, &queue->queue_adds, 0,
2679 	    "Total buffers added to queue");
2680 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
2681 	    CTLFLAG_RD, &queue->queue_removes, 0,
2682 	    "Total buffers removed from queue");
2683 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "queueRestart",
2684 	    CTLFLAG_RD, &queue->queue_restart, 0,
2685 	    "Total times the queue has been restarted");
2686 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
2687 	    CTLFLAG_RD, &queue->longest_chain, 0,
2688 	    "Max buffers used for a single packet");
2689 }
2690 
2691 static void
2692 cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2693 	struct cpsw_softc *sc)
2694 {
2695 	struct sysctl_oid_list *parent;
2696 
2697 	parent = SYSCTL_CHILDREN(node);
2698 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
2699 	    CTLFLAG_RD, &sc->watchdog.resets, 0,
2700 	    "Total number of watchdog resets");
2701 }
2702 
2703 static void
2704 cpsw_add_sysctls(struct cpsw_softc *sc)
2705 {
2706 	struct sysctl_ctx_list *ctx;
2707 	struct sysctl_oid *stats_node, *queue_node, *node;
2708 	struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
2709 	struct sysctl_oid_list *ports_parent, *port_parent;
2710 	char port[16];
2711 	int i;
2712 
2713 	ctx = device_get_sysctl_ctx(sc->dev);
2714 	parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
2715 
2716 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "debug",
2717 	    CTLFLAG_RW, &sc->debug, 0, "Enable switch debug messages");
2718 
2719 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
2720 	    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_attached, "IU",
2721 	    "Time since driver attach");
2722 
2723 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "intr_coalesce_us",
2724 	    CTLTYPE_UINT | CTLFLAG_RW, sc, 0, cpsw_intr_coalesce, "IU",
2725 	    "minimum time between interrupts");
2726 
2727 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "ports",
2728 	    CTLFLAG_RD, NULL, "CPSW Ports Statistics");
2729 	ports_parent = SYSCTL_CHILDREN(node);
2730 	for (i = 0; i < CPSW_PORTS; i++) {
2731 		if (!sc->dualemac && i != sc->active_slave)
2732 			continue;
2733 		port[0] = '0' + i;
2734 		port[1] = '\0';
2735 		node = SYSCTL_ADD_NODE(ctx, ports_parent, OID_AUTO,
2736 		    port, CTLFLAG_RD, NULL, "CPSW Port Statistics");
2737 		port_parent = SYSCTL_CHILDREN(node);
2738 		SYSCTL_ADD_PROC(ctx, port_parent, OID_AUTO, "uptime",
2739 		    CTLTYPE_UINT | CTLFLAG_RD, sc, i,
2740 		    cpsw_stat_uptime, "IU", "Seconds since driver init");
2741 	}
2742 
2743 	stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
2744 				     CTLFLAG_RD, NULL, "CPSW Statistics");
2745 	stats_parent = SYSCTL_CHILDREN(stats_node);
2746 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2747 		SYSCTL_ADD_PROC(ctx, stats_parent, i,
2748 				cpsw_stat_sysctls[i].oid,
2749 				CTLTYPE_U64 | CTLFLAG_RD, sc, 0,
2750 				cpsw_stats_sysctl, "IU",
2751 				cpsw_stat_sysctls[i].oid);
2752 	}
2753 
2754 	queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
2755 	    CTLFLAG_RD, NULL, "CPSW Queue Statistics");
2756 	queue_parent = SYSCTL_CHILDREN(queue_node);
2757 
2758 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
2759 	    CTLFLAG_RD, NULL, "TX Queue Statistics");
2760 	cpsw_add_queue_sysctls(ctx, node, &sc->tx);
2761 
2762 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
2763 	    CTLFLAG_RD, NULL, "RX Queue Statistics");
2764 	cpsw_add_queue_sysctls(ctx, node, &sc->rx);
2765 
2766 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
2767 	    CTLFLAG_RD, NULL, "Watchdog Statistics");
2768 	cpsw_add_watchdog_sysctls(ctx, node, sc);
2769 }
2770 
2771 #ifdef CPSW_ETHERSWITCH
2772 static etherswitch_info_t etherswitch_info = {
2773 	.es_nports =		CPSW_PORTS + 1,
2774 	.es_nvlangroups =	CPSW_VLANS,
2775 	.es_name =		"TI Common Platform Ethernet Switch (CPSW)",
2776 	.es_vlan_caps =		ETHERSWITCH_VLAN_DOT1Q,
2777 };
2778 
2779 static etherswitch_info_t *
2780 cpsw_getinfo(device_t dev)
2781 {
2782 	return (&etherswitch_info);
2783 }
2784 
2785 static int
2786 cpsw_getport(device_t dev, etherswitch_port_t *p)
2787 {
2788 	int err;
2789 	struct cpsw_softc *sc;
2790 	struct cpswp_softc *psc;
2791 	struct ifmediareq *ifmr;
2792 	uint32_t reg;
2793 
2794 	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2795 		return (ENXIO);
2796 
2797 	err = 0;
2798 	sc = device_get_softc(dev);
2799 	if (p->es_port == CPSW_CPU_PORT) {
2800 		p->es_flags |= ETHERSWITCH_PORT_CPU;
2801  		ifmr = &p->es_ifmr;
2802 		ifmr->ifm_current = ifmr->ifm_active =
2803 		    IFM_ETHER | IFM_1000_T | IFM_FDX;
2804 		ifmr->ifm_mask = 0;
2805 		ifmr->ifm_status = IFM_ACTIVE | IFM_AVALID;
2806 		ifmr->ifm_count = 0;
2807 	} else {
2808 		psc = device_get_softc(sc->port[p->es_port - 1].dev);
2809 		err = ifmedia_ioctl(psc->ifp, &p->es_ifr,
2810 		    &psc->mii->mii_media, SIOCGIFMEDIA);
2811 	}
2812 	reg = cpsw_read_4(sc, CPSW_PORT_P_VLAN(p->es_port));
2813 	p->es_pvid = reg & ETHERSWITCH_VID_MASK;
2814 
2815 	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2816 	if (reg & ALE_PORTCTL_DROP_UNTAGGED)
2817 		p->es_flags |= ETHERSWITCH_PORT_DROPUNTAGGED;
2818 	if (reg & ALE_PORTCTL_INGRESS)
2819 		p->es_flags |= ETHERSWITCH_PORT_INGRESS;
2820 
2821 	return (err);
2822 }
2823 
2824 static int
2825 cpsw_setport(device_t dev, etherswitch_port_t *p)
2826 {
2827 	struct cpsw_softc *sc;
2828 	struct cpswp_softc *psc;
2829 	struct ifmedia *ifm;
2830 	uint32_t reg;
2831 
2832 	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2833 		return (ENXIO);
2834 
2835 	sc = device_get_softc(dev);
2836 	if (p->es_pvid != 0) {
2837 		cpsw_write_4(sc, CPSW_PORT_P_VLAN(p->es_port),
2838 		    p->es_pvid & ETHERSWITCH_VID_MASK);
2839 	}
2840 
2841 	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2842 	if (p->es_flags & ETHERSWITCH_PORT_DROPUNTAGGED)
2843 		reg |= ALE_PORTCTL_DROP_UNTAGGED;
2844 	else
2845 		reg &= ~ALE_PORTCTL_DROP_UNTAGGED;
2846 	if (p->es_flags & ETHERSWITCH_PORT_INGRESS)
2847 		reg |= ALE_PORTCTL_INGRESS;
2848 	else
2849 		reg &= ~ALE_PORTCTL_INGRESS;
2850 	cpsw_write_4(sc, CPSW_ALE_PORTCTL(p->es_port), reg);
2851 
2852 	/* CPU port does not allow media settings. */
2853 	if (p->es_port == CPSW_CPU_PORT)
2854 		return (0);
2855 
2856 	psc = device_get_softc(sc->port[p->es_port - 1].dev);
2857 	ifm = &psc->mii->mii_media;
2858 
2859 	return (ifmedia_ioctl(psc->ifp, &p->es_ifr, ifm, SIOCSIFMEDIA));
2860 }
2861 
2862 static int
2863 cpsw_getconf(device_t dev, etherswitch_conf_t *conf)
2864 {
2865 
2866 	/* Return the VLAN mode. */
2867 	conf->cmd = ETHERSWITCH_CONF_VLAN_MODE;
2868 	conf->vlan_mode = ETHERSWITCH_VLAN_DOT1Q;
2869 
2870 	return (0);
2871 }
2872 
2873 static int
2874 cpsw_getvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2875 {
2876 	int i, vid;
2877 	uint32_t ale_entry[3];
2878 	struct cpsw_softc *sc;
2879 
2880 	sc = device_get_softc(dev);
2881 
2882 	if (vg->es_vlangroup >= CPSW_VLANS)
2883 		return (EINVAL);
2884 
2885 	vg->es_vid = 0;
2886 	vid = cpsw_vgroups[vg->es_vlangroup].vid;
2887 	if (vid == -1)
2888 		return (0);
2889 
2890 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2891 		cpsw_ale_read_entry(sc, i, ale_entry);
2892 		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2893 			continue;
2894 		if (vid != ALE_VLAN(ale_entry))
2895 			continue;
2896 
2897 		vg->es_fid = 0;
2898 		vg->es_vid = ALE_VLAN(ale_entry) | ETHERSWITCH_VID_VALID;
2899 		vg->es_member_ports = ALE_VLAN_MEMBERS(ale_entry);
2900 		vg->es_untagged_ports = ALE_VLAN_UNTAG(ale_entry);
2901 	}
2902 
2903 	return (0);
2904 }
2905 
2906 static void
2907 cpsw_remove_vlan(struct cpsw_softc *sc, int vlan)
2908 {
2909 	int i;
2910 	uint32_t ale_entry[3];
2911 
2912 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2913 		cpsw_ale_read_entry(sc, i, ale_entry);
2914 		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2915 			continue;
2916 		if (vlan != ALE_VLAN(ale_entry))
2917 			continue;
2918 		ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2919 		cpsw_ale_write_entry(sc, i, ale_entry);
2920 		break;
2921 	}
2922 }
2923 
2924 static int
2925 cpsw_setvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2926 {
2927 	int i;
2928 	struct cpsw_softc *sc;
2929 
2930 	sc = device_get_softc(dev);
2931 
2932 	for (i = 0; i < CPSW_VLANS; i++) {
2933 		/* Is this Vlan ID in use by another vlangroup ? */
2934 		if (vg->es_vlangroup != i && cpsw_vgroups[i].vid == vg->es_vid)
2935 			return (EINVAL);
2936 	}
2937 
2938 	if (vg->es_vid == 0) {
2939 		if (cpsw_vgroups[vg->es_vlangroup].vid == -1)
2940 			return (0);
2941 		cpsw_remove_vlan(sc, cpsw_vgroups[vg->es_vlangroup].vid);
2942 		cpsw_vgroups[vg->es_vlangroup].vid = -1;
2943 		vg->es_untagged_ports = 0;
2944 		vg->es_member_ports = 0;
2945 		vg->es_vid = 0;
2946 		return (0);
2947 	}
2948 
2949 	vg->es_vid &= ETHERSWITCH_VID_MASK;
2950 	vg->es_member_ports &= CPSW_PORTS_MASK;
2951 	vg->es_untagged_ports &= CPSW_PORTS_MASK;
2952 
2953 	if (cpsw_vgroups[vg->es_vlangroup].vid != -1 &&
2954 	    cpsw_vgroups[vg->es_vlangroup].vid != vg->es_vid)
2955 		return (EINVAL);
2956 
2957 	cpsw_vgroups[vg->es_vlangroup].vid = vg->es_vid;
2958 	cpsw_ale_update_vlan_table(sc, vg->es_vid, vg->es_member_ports,
2959 	    vg->es_untagged_ports, vg->es_member_ports, 0);
2960 
2961 	return (0);
2962 }
2963 
2964 static int
2965 cpsw_readreg(device_t dev, int addr)
2966 {
2967 
2968 	/* Not supported. */
2969 	return (0);
2970 }
2971 
2972 static int
2973 cpsw_writereg(device_t dev, int addr, int value)
2974 {
2975 
2976 	/* Not supported. */
2977 	return (0);
2978 }
2979 
2980 static int
2981 cpsw_readphy(device_t dev, int phy, int reg)
2982 {
2983 
2984 	/* Not supported. */
2985 	return (0);
2986 }
2987 
2988 static int
2989 cpsw_writephy(device_t dev, int phy, int reg, int data)
2990 {
2991 
2992 	/* Not supported. */
2993 	return (0);
2994 }
2995 #endif
2996