xref: /freebsd/sys/arm/ti/cpsw/if_cpsw.c (revision 361e428888e630eb708c72cf31579a25ba5d4f03)
1 /*-
2  * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * TI Common Platform Ethernet Switch (CPSW) Driver
29  * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
30  *
31  * This controller is documented in the AM335x Technical Reference
32  * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
33  * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
34  *
35  * It is basically a single Ethernet port (port 0) wired internally to
36  * a 3-port store-and-forward switch connected to two independent
37  * "sliver" controllers (port 1 and port 2).  You can operate the
38  * controller in a variety of different ways by suitably configuring
39  * the slivers and the Address Lookup Engine (ALE) that routes packets
40  * between the ports.
41  *
42  * This code was developed and tested on a BeagleBone with
43  * an AM335x SoC.
44  */
45 
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/endian.h>
52 #include <sys/mbuf.h>
53 #include <sys/lock.h>
54 #include <sys/mutex.h>
55 #include <sys/kernel.h>
56 #include <sys/module.h>
57 #include <sys/socket.h>
58 #include <sys/sysctl.h>
59 
60 #include <net/ethernet.h>
61 #include <net/bpf.h>
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_types.h>
67 #include <net/if_var.h>
68 #include <net/if_vlan_var.h>
69 
70 #include <netinet/in_systm.h>
71 #include <netinet/in.h>
72 #include <netinet/ip.h>
73 
74 #include <sys/sockio.h>
75 #include <sys/bus.h>
76 #include <machine/bus.h>
77 #include <sys/rman.h>
78 #include <machine/resource.h>
79 
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82 
83 #include <dev/fdt/fdt_common.h>
84 #include <dev/ofw/ofw_bus.h>
85 #include <dev/ofw/ofw_bus_subr.h>
86 
87 #include "if_cpswreg.h"
88 #include "if_cpswvar.h"
89 
90 #include <arm/ti/ti_scm.h>
91 
92 #include "miibus_if.h"
93 
94 /* Device probe/attach/detach. */
95 static int cpsw_probe(device_t);
96 static void cpsw_init_slots(struct cpsw_softc *);
97 static int cpsw_attach(device_t);
98 static void cpsw_free_slot(struct cpsw_softc *, struct cpsw_slot *);
99 static int cpsw_detach(device_t);
100 
101 /* Device Init/shutdown. */
102 static void cpsw_init(void *);
103 static void cpsw_init_locked(void *);
104 static int cpsw_shutdown(device_t);
105 static void cpsw_shutdown_locked(struct cpsw_softc *);
106 
107 /* Device Suspend/Resume. */
108 static int cpsw_suspend(device_t);
109 static int cpsw_resume(device_t);
110 
111 /* Ioctl. */
112 static int cpsw_ioctl(struct ifnet *, u_long command, caddr_t data);
113 
114 static int cpsw_miibus_readreg(device_t, int phy, int reg);
115 static int cpsw_miibus_writereg(device_t, int phy, int reg, int value);
116 static void cpsw_miibus_statchg(device_t);
117 
118 /* Send/Receive packets. */
119 static void cpsw_intr_rx(void *arg);
120 static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
121 static void cpsw_rx_enqueue(struct cpsw_softc *);
122 static void cpsw_start(struct ifnet *);
123 static void cpsw_tx_enqueue(struct cpsw_softc *);
124 static int cpsw_tx_dequeue(struct cpsw_softc *);
125 
126 /* Misc interrupts and watchdog. */
127 static void cpsw_intr_rx_thresh(void *);
128 static void cpsw_intr_misc(void *);
129 static void cpsw_tick(void *);
130 static void cpsw_ifmedia_sts(struct ifnet *, struct ifmediareq *);
131 static int cpsw_ifmedia_upd(struct ifnet *);
132 static void cpsw_tx_watchdog(struct cpsw_softc *);
133 
134 /* ALE support */
135 static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t idx, uint32_t *ale_entry);
136 static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t idx, uint32_t *ale_entry);
137 static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t portmap, uint8_t *mac);
138 static int cpsw_ale_update_addresses(struct cpsw_softc *, int purge);
139 static void cpsw_ale_dump_table(struct cpsw_softc *);
140 
141 /* Statistics and sysctls. */
142 static void cpsw_add_sysctls(struct cpsw_softc *);
143 static void cpsw_stats_collect(struct cpsw_softc *);
144 static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
145 
146 /*
147  * Arbitrary limit on number of segments in an mbuf to be transmitted.
148  * Packets with more segments than this will be defragmented before
149  * they are queued.
150  */
151 #define CPSW_TXFRAGS 8
152 
153 
154 /*
155  * TODO: The CPSW subsystem (CPSW_SS) can drive two independent PHYs
156  * as separate Ethernet ports.  To properly support this, we should
157  * break this into two separate devices: a CPSW_SS device that owns
158  * the interrupts and actually talks to the CPSW hardware, and a
159  * separate CPSW Ethernet child device for each Ethernet port.  The RX
160  * interrupt, for example, would be part of CPSW_SS; it would receive
161  * a packet, note the input port, and then dispatch it to the child
162  * device's interface queue.  Similarly for transmit.
163  *
164  * It's not clear to me whether the device tree should be restructured
165  * with a cpsw_ss node and two child nodes.  That would allow specifying
166  * MAC addresses for each port, for example, but might be overkill.
167  *
168  * Unfortunately, I don't have hardware right now that supports two
169  * Ethernet ports via CPSW.
170  */
171 
172 static device_method_t cpsw_methods[] = {
173 	/* Device interface */
174 	DEVMETHOD(device_probe,		cpsw_probe),
175 	DEVMETHOD(device_attach,	cpsw_attach),
176 	DEVMETHOD(device_detach,	cpsw_detach),
177 	DEVMETHOD(device_shutdown,	cpsw_shutdown),
178 	DEVMETHOD(device_suspend,	cpsw_suspend),
179 	DEVMETHOD(device_resume,	cpsw_resume),
180 	/* MII interface */
181 	DEVMETHOD(miibus_readreg,	cpsw_miibus_readreg),
182 	DEVMETHOD(miibus_writereg,	cpsw_miibus_writereg),
183 	DEVMETHOD(miibus_statchg,	cpsw_miibus_statchg),
184 	{ 0, 0 }
185 };
186 
187 static driver_t cpsw_driver = {
188 	"cpsw",
189 	cpsw_methods,
190 	sizeof(struct cpsw_softc),
191 };
192 
193 static devclass_t cpsw_devclass;
194 
195 DRIVER_MODULE(cpsw, simplebus, cpsw_driver, cpsw_devclass, 0, 0);
196 DRIVER_MODULE(miibus, cpsw, miibus_driver, miibus_devclass, 0, 0);
197 MODULE_DEPEND(cpsw, ether, 1, 1, 1);
198 MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
199 
200 static struct resource_spec irq_res_spec[] = {
201 	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
202 	{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
203 	{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
204 	{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
205 	{ -1, 0 }
206 };
207 
208 /* Number of entries here must match size of stats
209  * array in struct cpsw_softc. */
210 static struct cpsw_stat {
211 	int	reg;
212 	char *oid;
213 } cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
214 	{0x00, "GoodRxFrames"},
215 	{0x04, "BroadcastRxFrames"},
216 	{0x08, "MulticastRxFrames"},
217 	{0x0C, "PauseRxFrames"},
218 	{0x10, "RxCrcErrors"},
219 	{0x14, "RxAlignErrors"},
220 	{0x18, "OversizeRxFrames"},
221 	{0x1c, "RxJabbers"},
222 	{0x20, "ShortRxFrames"},
223 	{0x24, "RxFragments"},
224 	{0x30, "RxOctets"},
225 	{0x34, "GoodTxFrames"},
226 	{0x38, "BroadcastTxFrames"},
227 	{0x3c, "MulticastTxFrames"},
228 	{0x40, "PauseTxFrames"},
229 	{0x44, "DeferredTxFrames"},
230 	{0x48, "CollisionsTxFrames"},
231 	{0x4c, "SingleCollisionTxFrames"},
232 	{0x50, "MultipleCollisionTxFrames"},
233 	{0x54, "ExcessiveCollisions"},
234 	{0x58, "LateCollisions"},
235 	{0x5c, "TxUnderrun"},
236 	{0x60, "CarrierSenseErrors"},
237 	{0x64, "TxOctets"},
238 	{0x68, "RxTx64OctetFrames"},
239 	{0x6c, "RxTx65to127OctetFrames"},
240 	{0x70, "RxTx128to255OctetFrames"},
241 	{0x74, "RxTx256to511OctetFrames"},
242 	{0x78, "RxTx512to1024OctetFrames"},
243 	{0x7c, "RxTx1024upOctetFrames"},
244 	{0x80, "NetOctets"},
245 	{0x84, "RxStartOfFrameOverruns"},
246 	{0x88, "RxMiddleOfFrameOverruns"},
247 	{0x8c, "RxDmaOverruns"}
248 };
249 
250 /*
251  * Basic debug support.
252  */
253 
254 #define IF_DEBUG(sc)  if (sc->cpsw_if_flags & IFF_DEBUG)
255 
256 static void
257 cpsw_debugf_head(const char *funcname)
258 {
259 	int t = (int)(time_second % (24 * 60 * 60));
260 
261 	printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
262 }
263 
264 #include <machine/stdarg.h>
265 static void
266 cpsw_debugf(const char *fmt, ...)
267 {
268 	va_list ap;
269 
270 	va_start(ap, fmt);
271 	vprintf(fmt, ap);
272 	va_end(ap);
273 	printf("\n");
274 
275 }
276 
277 #define CPSW_DEBUGF(a) do {					\
278 	IF_DEBUG(sc) {						\
279 		cpsw_debugf_head(__func__);			\
280 		cpsw_debugf a;					\
281 	}							\
282 } while (0)
283 
284 
285 /*
286  * Locking macros
287  */
288 #define CPSW_TX_LOCK(sc) do {					\
289 		mtx_assert(&(sc)->rx.lock, MA_NOTOWNED);		\
290 		mtx_lock(&(sc)->tx.lock);				\
291 } while (0)
292 
293 #define CPSW_TX_UNLOCK(sc)	mtx_unlock(&(sc)->tx.lock)
294 #define CPSW_TX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->tx.lock, MA_OWNED)
295 
296 #define CPSW_RX_LOCK(sc) do {					\
297 		mtx_assert(&(sc)->tx.lock, MA_NOTOWNED);		\
298 		mtx_lock(&(sc)->rx.lock);				\
299 } while (0)
300 
301 #define CPSW_RX_UNLOCK(sc)		mtx_unlock(&(sc)->rx.lock)
302 #define CPSW_RX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->rx.lock, MA_OWNED)
303 
304 #define CPSW_GLOBAL_LOCK(sc) do {					\
305 		if ((mtx_owned(&(sc)->tx.lock) ? 1 : 0) !=	\
306 		    (mtx_owned(&(sc)->rx.lock) ? 1 : 0)) {		\
307 			panic("cpsw deadlock possibility detection!");	\
308 		}							\
309 		mtx_lock(&(sc)->tx.lock);				\
310 		mtx_lock(&(sc)->rx.lock);				\
311 } while (0)
312 
313 #define CPSW_GLOBAL_UNLOCK(sc) do {					\
314 		CPSW_RX_UNLOCK(sc);				\
315 		CPSW_TX_UNLOCK(sc);				\
316 } while (0)
317 
318 #define CPSW_GLOBAL_LOCK_ASSERT(sc) do {				\
319 		CPSW_TX_LOCK_ASSERT(sc);				\
320 		CPSW_RX_LOCK_ASSERT(sc);				\
321 } while (0)
322 
323 /*
324  * Read/Write macros
325  */
326 #define	cpsw_read_4(sc, reg)		bus_read_4(sc->mem_res, reg)
327 #define	cpsw_write_4(sc, reg, val)	bus_write_4(sc->mem_res, reg, val)
328 
329 #define	cpsw_cpdma_bd_offset(i)	(CPSW_CPPI_RAM_OFFSET + ((i)*16))
330 
331 #define	cpsw_cpdma_bd_paddr(sc, slot)				\
332 	BUS_SPACE_PHYSADDR(sc->mem_res, slot->bd_offset)
333 #define	cpsw_cpdma_read_bd(sc, slot, val)				\
334 	bus_read_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
335 #define	cpsw_cpdma_write_bd(sc, slot, val)				\
336 	bus_write_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
337 #define	cpsw_cpdma_write_bd_next(sc, slot, next_slot)			\
338 	cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
339 #define	cpsw_cpdma_read_bd_flags(sc, slot)		\
340 	bus_read_2(sc->mem_res, slot->bd_offset + 14)
341 #define	cpsw_write_hdp_slot(sc, queue, slot)				\
342 	cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
343 #define	CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
344 #define	cpsw_read_cp(sc, queue)				\
345 	cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
346 #define	cpsw_write_cp(sc, queue, val)				\
347 	cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
348 #define	cpsw_write_cp_slot(sc, queue, slot)		\
349 	cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
350 
351 #if 0
352 /* XXX temporary function versions for debugging. */
353 static void
354 cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
355 {
356 	uint32_t reg = queue->hdp_offset;
357 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
358 	CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
359 	cpsw_write_4(sc, reg, v);
360 }
361 
362 static void
363 cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
364 {
365 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
366 	CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
367 	cpsw_write_cp(sc, queue, v);
368 }
369 #endif
370 
371 /*
372  * Expanded dump routines for verbose debugging.
373  */
374 static void
375 cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
376 {
377 	static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
378 	    "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
379 	    "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
380 	    "Port0"};
381 	struct cpsw_cpdma_bd bd;
382 	const char *sep;
383 	int i;
384 
385 	cpsw_cpdma_read_bd(sc, slot, &bd);
386 	printf("BD Addr: 0x%08x   Next: 0x%08x\n", cpsw_cpdma_bd_paddr(sc, slot), bd.next);
387 	printf("  BufPtr: 0x%08x   BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
388 	printf("  BufOff: 0x%08x   PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
389 	printf("  Flags: ");
390 	sep = "";
391 	for (i = 0; i < 16; ++i) {
392 		if (bd.flags & (1 << (15 - i))) {
393 			printf("%s%s", sep, flags[i]);
394 			sep = ",";
395 		}
396 	}
397 	printf("\n");
398 	if (slot->mbuf) {
399 		printf("  Ether:  %14D\n",
400 		    (char *)(slot->mbuf->m_data), " ");
401 		printf("  Packet: %16D\n",
402 		    (char *)(slot->mbuf->m_data) + 14, " ");
403 	}
404 }
405 
406 #define CPSW_DUMP_SLOT(cs, slot) do {				\
407 	IF_DEBUG(sc) {						\
408 		cpsw_dump_slot(sc, slot);			\
409 	}							\
410 } while (0)
411 
412 
413 static void
414 cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
415 {
416 	struct cpsw_slot *slot;
417 	int i = 0;
418 	int others = 0;
419 
420 	STAILQ_FOREACH(slot, q, next) {
421 		if (i > 4)
422 			++others;
423 		else
424 			cpsw_dump_slot(sc, slot);
425 		++i;
426 	}
427 	if (others)
428 		printf(" ... and %d more.\n", others);
429 	printf("\n");
430 }
431 
432 #define CPSW_DUMP_QUEUE(sc, q) do {				\
433 	IF_DEBUG(sc) {						\
434 		cpsw_dump_queue(sc, q);				\
435 	}							\
436 } while (0)
437 
438 
439 /*
440  *
441  * Device Probe, Attach, Detach.
442  *
443  */
444 
445 static int
446 cpsw_probe(device_t dev)
447 {
448 
449 	if (!ofw_bus_status_okay(dev))
450 		return (ENXIO);
451 
452 	if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
453 		return (ENXIO);
454 
455 	device_set_desc(dev, "3-port Switch Ethernet Subsystem");
456 	return (BUS_PROBE_DEFAULT);
457 }
458 
459 
460 static void
461 cpsw_init_slots(struct cpsw_softc *sc)
462 {
463 	struct cpsw_slot *slot;
464 	int i;
465 
466 	STAILQ_INIT(&sc->avail);
467 
468 	/* Put the slot descriptors onto the global avail list. */
469 	for (i = 0; i < sizeof(sc->_slots) / sizeof(sc->_slots[0]); i++) {
470 		slot = &sc->_slots[i];
471 		slot->bd_offset = cpsw_cpdma_bd_offset(i);
472 		STAILQ_INSERT_TAIL(&sc->avail, slot, next);
473 	}
474 }
475 
476 /*
477  * bind an interrupt, add the relevant info to sc->interrupts
478  */
479 static int
480 cpsw_attach_interrupt(struct cpsw_softc *sc, struct resource *res, driver_intr_t *handler, const char *description)
481 {
482 	void **pcookie;
483 	int error;
484 
485 	sc->interrupts[sc->interrupt_count].res = res;
486 	sc->interrupts[sc->interrupt_count].description = description;
487 	pcookie = &sc->interrupts[sc->interrupt_count].ih_cookie;
488 
489 	error = bus_setup_intr(sc->dev, res, INTR_TYPE_NET | INTR_MPSAFE,
490 	    NULL, *handler, sc, pcookie);
491 	if (error)
492 		device_printf(sc->dev,
493 		    "could not setup %s\n", description);
494 	else
495 		++sc->interrupt_count;
496 	return (error);
497 }
498 
499 /*
500  * teardown everything in sc->interrupts.
501  */
502 static void
503 cpsw_detach_interrupts(struct cpsw_softc *sc)
504 {
505 	int error;
506 	int i;
507 
508 	for (i = 0; i < sizeof(sc->interrupts) / sizeof(sc->interrupts[0]); ++i) {
509 		if (!sc->interrupts[i].ih_cookie)
510 			continue;
511 		error = bus_teardown_intr(sc->dev,
512 		    sc->interrupts[i].res, sc->interrupts[i].ih_cookie);
513 		if (error)
514 			device_printf(sc->dev, "could not release %s\n",
515 			    sc->interrupts[i].description);
516 		sc->interrupts[i].ih_cookie = NULL;
517 	}
518 }
519 
520 static int
521 cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
522 {
523 	const int max_slots = sizeof(sc->_slots) / sizeof(sc->_slots[0]);
524 	struct cpsw_slot *slot;
525 	int i;
526 
527 	if (requested < 0)
528 		requested = max_slots;
529 
530 	for (i = 0; i < requested; ++i) {
531 		slot = STAILQ_FIRST(&sc->avail);
532 		if (slot == NULL)
533 			return (0);
534 		if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
535 			if_printf(sc->ifp, "failed to create dmamap\n");
536 			return (ENOMEM);
537 		}
538 		STAILQ_REMOVE_HEAD(&sc->avail, next);
539 		STAILQ_INSERT_TAIL(&queue->avail, slot, next);
540 		++queue->avail_queue_len;
541 		++queue->queue_slots;
542 	}
543 	return (0);
544 }
545 
546 static int
547 cpsw_attach(device_t dev)
548 {
549 	bus_dma_segment_t segs[1];
550 	struct cpsw_softc *sc = device_get_softc(dev);
551 	struct mii_softc *miisc;
552 	struct ifnet *ifp;
553 	int phy, nsegs, error;
554 	uint32_t reg;
555 	pcell_t phy_id[3];
556 	u_long mem_base, mem_size;
557 	phandle_t child;
558 	int len;
559 
560 	CPSW_DEBUGF((""));
561 
562 	getbinuptime(&sc->attach_uptime);
563 	sc->dev = dev;
564 	sc->node = ofw_bus_get_node(dev);
565 
566 	/* TODO: handle multiple slaves */
567 	phy = -1;
568 
569 	/* Find any slave with phy_id */
570 	for (child = OF_child(sc->node); child != 0; child = OF_peer(child)) {
571 		len = OF_getproplen(child, "phy_id");
572 		if (len <= 0)
573 			continue;
574 
575 		/* Get phy address from fdt */
576 		if (OF_getencprop(child, "phy_id", phy_id, len) <= 0)
577 			continue;
578 
579 		phy = phy_id[1];
580 		/* TODO: get memory window for MDIO */
581 
582 		break;
583 	}
584 
585 	if (phy == -1) {
586 		device_printf(dev, "failed to get PHY address from FDT\n");
587 		return (ENXIO);
588 	}
589 
590 	mem_base = 0;
591 	mem_size = 0;
592 
593 	if (fdt_regsize(sc->node, &mem_base, &mem_size) != 0) {
594 		device_printf(sc->dev, "no regs property in cpsw node\n");
595 		return (ENXIO);
596 	}
597 
598 	/* Initialize mutexes */
599 	mtx_init(&sc->tx.lock, device_get_nameunit(dev),
600 	    "cpsw TX lock", MTX_DEF);
601 	mtx_init(&sc->rx.lock, device_get_nameunit(dev),
602 	    "cpsw RX lock", MTX_DEF);
603 
604 	/* Allocate IRQ resources */
605 	error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
606 	if (error) {
607 		device_printf(dev, "could not allocate IRQ resources\n");
608 		cpsw_detach(dev);
609 		return (ENXIO);
610 	}
611 
612 	sc->mem_rid = 0;
613 	sc->mem_res = bus_alloc_resource(dev, SYS_RES_MEMORY,
614 	    &sc->mem_rid, mem_base, mem_base + CPSW_MEMWINDOW_SIZE -1,
615 	    CPSW_MEMWINDOW_SIZE, RF_ACTIVE);
616 	if (sc->mem_res == NULL) {
617 		device_printf(sc->dev, "failed to allocate memory resource\n");
618 		cpsw_detach(dev);
619 		return (ENXIO);
620 	}
621 
622 	reg = cpsw_read_4(sc, CPSW_SS_IDVER);
623 	device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
624 		reg & 0xFF, (reg >> 11) & 0x1F);
625 
626 	cpsw_add_sysctls(sc);
627 
628 	/* Allocate a busdma tag and DMA safe memory for mbufs. */
629 	error = bus_dma_tag_create(
630 		bus_get_dma_tag(sc->dev),	/* parent */
631 		1, 0,				/* alignment, boundary */
632 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
633 		BUS_SPACE_MAXADDR,		/* highaddr */
634 		NULL, NULL,			/* filtfunc, filtfuncarg */
635 		MCLBYTES, CPSW_TXFRAGS,		/* maxsize, nsegments */
636 		MCLBYTES, 0,			/* maxsegsz, flags */
637 		NULL, NULL,			/* lockfunc, lockfuncarg */
638 		&sc->mbuf_dtag);		/* dmatag */
639 	if (error) {
640 		device_printf(dev, "bus_dma_tag_create failed\n");
641 		cpsw_detach(dev);
642 		return (error);
643 	}
644 
645 	/* Allocate network interface */
646 	ifp = sc->ifp = if_alloc(IFT_ETHER);
647 	if (ifp == NULL) {
648 		device_printf(dev, "if_alloc() failed\n");
649 		cpsw_detach(dev);
650 		return (ENOMEM);
651 	}
652 
653 	/* Allocate the null mbuf and pre-sync it. */
654 	sc->null_mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
655 	memset(sc->null_mbuf->m_data, 0, sc->null_mbuf->m_ext.ext_size);
656 	bus_dmamap_create(sc->mbuf_dtag, 0, &sc->null_mbuf_dmamap);
657 	bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, sc->null_mbuf_dmamap,
658 	    sc->null_mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
659 	bus_dmamap_sync(sc->mbuf_dtag, sc->null_mbuf_dmamap,
660 	    BUS_DMASYNC_PREWRITE);
661 	sc->null_mbuf_paddr = segs[0].ds_addr;
662 
663 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
664 	ifp->if_softc = sc;
665 	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
666 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_HWCSUM; //FIXME VLAN?
667 	ifp->if_capenable = ifp->if_capabilities;
668 
669 	ifp->if_init = cpsw_init;
670 	ifp->if_start = cpsw_start;
671 	ifp->if_ioctl = cpsw_ioctl;
672 
673 	cpsw_init_slots(sc);
674 
675 	/* Allocate slots to TX and RX queues. */
676 	STAILQ_INIT(&sc->rx.avail);
677 	STAILQ_INIT(&sc->rx.active);
678 	STAILQ_INIT(&sc->tx.avail);
679 	STAILQ_INIT(&sc->tx.active);
680 	// For now:  128 slots to TX, rest to RX.
681 	// XXX TODO: start with 32/64 and grow dynamically based on demand.
682 	if (cpsw_add_slots(sc, &sc->tx, 128) || cpsw_add_slots(sc, &sc->rx, -1)) {
683 		device_printf(dev, "failed to allocate dmamaps\n");
684 		cpsw_detach(dev);
685 		return (ENOMEM);
686 	}
687 	device_printf(dev, "Initial queue size TX=%d RX=%d\n",
688 	    sc->tx.queue_slots, sc->rx.queue_slots);
689 
690 	ifp->if_snd.ifq_drv_maxlen = sc->tx.queue_slots;
691 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
692 	IFQ_SET_READY(&ifp->if_snd);
693 
694 	sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
695 	sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
696 
697 	/* Get high part of MAC address from control module (mac_id0_hi) */
698 	/* TODO: Get MAC ID1 as well as MAC ID0. */
699 	ti_scm_reg_read_4(0x634, &reg);
700 	sc->mac_addr[0] = reg & 0xFF;
701 	sc->mac_addr[1] = (reg >>  8) & 0xFF;
702 	sc->mac_addr[2] = (reg >> 16) & 0xFF;
703 	sc->mac_addr[3] = (reg >> 24) & 0xFF;
704 
705 	/* Get low part of MAC address from control module (mac_id0_lo) */
706 	ti_scm_reg_read_4(0x630, &reg);
707 	sc->mac_addr[4] = reg & 0xFF;
708 	sc->mac_addr[5] = (reg >>  8) & 0xFF;
709 
710 	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
711 	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
712 	cpsw_write_4(sc, MDIOCONTROL, 1 << 30 | 1 << 18 | 0xFF);
713 
714 	/* Clear ALE */
715 	cpsw_write_4(sc, CPSW_ALE_CONTROL, 1 << 30);
716 
717 	/* Attach PHY(s) */
718 	error = mii_attach(dev, &sc->miibus, ifp, cpsw_ifmedia_upd,
719 	    cpsw_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
720 	if (error) {
721 		device_printf(dev, "attaching PHYs failed\n");
722 		cpsw_detach(dev);
723 		return (error);
724 	}
725 	sc->mii = device_get_softc(sc->miibus);
726 
727 	/* Tell the MAC where to find the PHY so autoneg works */
728 	miisc = LIST_FIRST(&sc->mii->mii_phys);
729 
730 	/* Select PHY and enable interrupts */
731 	cpsw_write_4(sc, MDIOUSERPHYSEL0, 1 << 6 | (miisc->mii_phy & 0x1F));
732 
733 	/* Note: We don't use sc->res[3] (TX interrupt) */
734 	if (cpsw_attach_interrupt(sc, sc->irq_res[0],
735 		cpsw_intr_rx_thresh, "CPSW RX threshold interrupt") ||
736 	    cpsw_attach_interrupt(sc, sc->irq_res[1],
737 		cpsw_intr_rx, "CPSW RX interrupt") ||
738 	    cpsw_attach_interrupt(sc, sc->irq_res[3],
739 		cpsw_intr_misc, "CPSW misc interrupt")) {
740 		cpsw_detach(dev);
741 		return (ENXIO);
742 	}
743 
744 	ether_ifattach(ifp, sc->mac_addr);
745 	callout_init(&sc->watchdog.callout, 0);
746 
747 	return (0);
748 }
749 
750 static void
751 cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
752 {
753 	int error;
754 
755 	if (slot->dmamap) {
756 		error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
757 		KASSERT(error == 0, ("Mapping still active"));
758 		slot->dmamap = NULL;
759 	}
760 	if (slot->mbuf) {
761 		m_freem(slot->mbuf);
762 		slot->mbuf = NULL;
763 	}
764 }
765 
766 static int
767 cpsw_detach(device_t dev)
768 {
769 	struct cpsw_softc *sc = device_get_softc(dev);
770 	int error, i;
771 
772 	CPSW_DEBUGF((""));
773 
774 	/* Stop controller and free TX queue */
775 	if (device_is_attached(dev)) {
776 		ether_ifdetach(sc->ifp);
777 		CPSW_GLOBAL_LOCK(sc);
778 		cpsw_shutdown_locked(sc);
779 		CPSW_GLOBAL_UNLOCK(sc);
780 		callout_drain(&sc->watchdog.callout);
781 	}
782 
783 	bus_generic_detach(dev);
784 	if (sc->miibus)
785 		device_delete_child(dev, sc->miibus);
786 
787 	/* Stop and release all interrupts */
788 	cpsw_detach_interrupts(sc);
789 
790 	/* Free dmamaps and mbufs */
791 	for (i = 0; i < sizeof(sc->_slots) / sizeof(sc->_slots[0]); ++i)
792 		cpsw_free_slot(sc, &sc->_slots[i]);
793 	if (sc->null_mbuf_dmamap) {
794 		error = bus_dmamap_destroy(sc->mbuf_dtag, sc->null_mbuf_dmamap);
795 		KASSERT(error == 0, ("Mapping still active"));
796 	}
797 	if (sc->null_mbuf)
798 		m_freem(sc->null_mbuf);
799 
800 	/* Free DMA tag */
801 	error = bus_dma_tag_destroy(sc->mbuf_dtag);
802 	KASSERT(error == 0, ("Unable to destroy DMA tag"));
803 
804 	/* Free IO memory handler */
805 	bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res);
806 	bus_release_resources(dev, irq_res_spec, sc->irq_res);
807 
808 	if (sc->ifp != NULL)
809 		if_free(sc->ifp);
810 
811 	/* Destroy mutexes */
812 	mtx_destroy(&sc->rx.lock);
813 	mtx_destroy(&sc->tx.lock);
814 
815 	return (0);
816 }
817 
818 /*
819  *
820  * Init/Shutdown.
821  *
822  */
823 
824 static void
825 cpsw_reset(struct cpsw_softc *sc)
826 {
827 	int i;
828 
829 	/* Reset RMII/RGMII wrapper. */
830 	cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
831 	while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
832 		;
833 
834 	/* Disable TX and RX interrupts for all cores. */
835 	for (i = 0; i < 3; ++i) {
836 		cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
837 		cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
838 		cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
839 		cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
840 	}
841 
842 	/* Reset CPSW subsystem. */
843 	cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
844 	while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
845 		;
846 
847 	/* Reset Sliver port 1 and 2 */
848 	for (i = 0; i < 2; i++) {
849 		/* Reset */
850 		cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
851 		while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
852 			;
853 	}
854 
855 	/* Reset DMA controller. */
856 	cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
857 	while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
858 		;
859 
860 	/* Disable TX & RX DMA */
861 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
862 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
863 
864 	/* Clear all queues. */
865 	for (i = 0; i < 8; i++) {
866 		cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
867 		cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
868 		cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
869 		cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
870 	}
871 
872 	/* Clear all interrupt Masks */
873 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
874 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
875 }
876 
877 static void
878 cpsw_init(void *arg)
879 {
880 	struct cpsw_softc *sc = arg;
881 
882 	CPSW_DEBUGF((""));
883 	CPSW_GLOBAL_LOCK(sc);
884 	cpsw_init_locked(arg);
885 	CPSW_GLOBAL_UNLOCK(sc);
886 }
887 
888 static void
889 cpsw_init_locked(void *arg)
890 {
891 	struct ifnet *ifp;
892 	struct cpsw_softc *sc = arg;
893 	struct cpsw_slot *slot;
894 	uint32_t i;
895 
896 	CPSW_DEBUGF((""));
897 	ifp = sc->ifp;
898 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
899 		return;
900 
901 	getbinuptime(&sc->init_uptime);
902 
903 	/* Reset the controller. */
904 	cpsw_reset(sc);
905 
906 	/* Enable ALE */
907 	cpsw_write_4(sc, CPSW_ALE_CONTROL, 1 << 31 | 1 << 4);
908 
909 	/* Init Sliver port 1 and 2 */
910 	for (i = 0; i < 2; i++) {
911 		/* Set Slave Mapping */
912 		cpsw_write_4(sc, CPSW_SL_RX_PRI_MAP(i), 0x76543210);
913 		cpsw_write_4(sc, CPSW_PORT_P_TX_PRI_MAP(i + 1), 0x33221100);
914 		cpsw_write_4(sc, CPSW_SL_RX_MAXLEN(i), 0x5f2);
915 		/* Set MACCONTROL for ports 0,1: IFCTL_B(16), IFCTL_A(15),
916 		   GMII_EN(5), FULLDUPLEX(1) */
917 		/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
918 		/* Huh?  Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
919 		cpsw_write_4(sc, CPSW_SL_MACCONTROL(i), 1 << 15 | 1 << 5 | 1);
920 	}
921 
922 	/* Set Host Port Mapping */
923 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
924 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
925 
926 	/* Initialize ALE: all ports set to forwarding(3), initialize addrs */
927 	for (i = 0; i < 3; i++)
928 		cpsw_write_4(sc, CPSW_ALE_PORTCTL(i), 3);
929 	cpsw_ale_update_addresses(sc, 1);
930 
931 	cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
932 
933 	/* Enable statistics for ports 0, 1 and 2 */
934 	cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
935 
936 	/* Experiment:  Turn off flow control */
937 	/* This seems to fix the watchdog resets that have plagued
938 	   earlier versions of this driver; I'm not yet sure if there
939 	   are negative effects yet. */
940 	cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
941 
942 	/* Make IP hdr aligned with 4 */
943 	cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
944 
945 	/* Initialize RX Buffer Descriptors */
946 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
947 
948 	/* Enable TX & RX DMA */
949 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
950 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
951 
952 	/* Enable Interrupts for core 0 */
953 	cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
954 	cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
955 	cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x3F);
956 
957 	/* Enable host Error Interrupt */
958 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
959 
960 	/* Enable interrupts for RX Channel 0 */
961 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET, 1);
962 
963 	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
964 	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
965 	cpsw_write_4(sc, MDIOCONTROL, 1 << 30 | 1 << 18 | 0xFF);
966 
967 	/* Select MII in GMII_SEL, Internal Delay mode */
968 	//ti_scm_reg_write_4(0x650, 0);
969 
970 	/* Initialize active queues. */
971 	slot = STAILQ_FIRST(&sc->tx.active);
972 	if (slot != NULL)
973 		cpsw_write_hdp_slot(sc, &sc->tx, slot);
974 	slot = STAILQ_FIRST(&sc->rx.active);
975 	if (slot != NULL)
976 		cpsw_write_hdp_slot(sc, &sc->rx, slot);
977 	cpsw_rx_enqueue(sc);
978 
979 	/* Activate network interface */
980 	sc->rx.running = 1;
981 	sc->tx.running = 1;
982 	sc->watchdog.timer = 0;
983 	callout_reset(&sc->watchdog.callout, hz, cpsw_tick, sc);
984 	sc->ifp->if_drv_flags |= IFF_DRV_RUNNING;
985 	sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
986 
987 }
988 
989 static int
990 cpsw_shutdown(device_t dev)
991 {
992 	struct cpsw_softc *sc = device_get_softc(dev);
993 
994 	CPSW_DEBUGF((""));
995 	CPSW_GLOBAL_LOCK(sc);
996 	cpsw_shutdown_locked(sc);
997 	CPSW_GLOBAL_UNLOCK(sc);
998 	return (0);
999 }
1000 
1001 static void
1002 cpsw_rx_teardown_locked(struct cpsw_softc *sc)
1003 {
1004 	struct mbuf *received, *next;
1005 	int i = 0;
1006 
1007 	CPSW_DEBUGF(("starting RX teardown"));
1008 	cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
1009 	for (;;) {
1010 		received = cpsw_rx_dequeue(sc);
1011 		CPSW_GLOBAL_UNLOCK(sc);
1012 		while (received != NULL) {
1013 			next = received->m_nextpkt;
1014 			received->m_nextpkt = NULL;
1015 			(*sc->ifp->if_input)(sc->ifp, received);
1016 			received = next;
1017 		}
1018 		CPSW_GLOBAL_LOCK(sc);
1019 		if (!sc->rx.running) {
1020 			CPSW_DEBUGF(("finished RX teardown (%d retries)", i));
1021 			return;
1022 		}
1023 		if (++i > 10) {
1024 			if_printf(sc->ifp, "Unable to cleanly shutdown receiver\n");
1025 			return;
1026 		}
1027 		DELAY(10);
1028 	}
1029 }
1030 
1031 static void
1032 cpsw_tx_teardown_locked(struct cpsw_softc *sc)
1033 {
1034 	int i = 0;
1035 
1036 	CPSW_DEBUGF(("starting TX teardown"));
1037 	cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
1038 	cpsw_tx_dequeue(sc);
1039 	while (sc->tx.running && ++i < 10) {
1040 		DELAY(10);
1041 		cpsw_tx_dequeue(sc);
1042 	}
1043 	if (sc->tx.running)
1044 		if_printf(sc->ifp, "Unable to cleanly shutdown transmitter\n");
1045 	CPSW_DEBUGF(("finished TX teardown (%d retries, %d idle buffers)",
1046 	    i, sc->tx.active_queue_len));
1047 }
1048 
1049 static void
1050 cpsw_shutdown_locked(struct cpsw_softc *sc)
1051 {
1052 	struct ifnet *ifp;
1053 
1054 	CPSW_DEBUGF((""));
1055 	CPSW_GLOBAL_LOCK_ASSERT(sc);
1056 	ifp = sc->ifp;
1057 
1058 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1059 		return;
1060 
1061 	/* Disable interface */
1062 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1063 	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1064 
1065 	/* Stop ticker */
1066 	callout_stop(&sc->watchdog.callout);
1067 
1068 	/* Tear down the RX/TX queues. */
1069 	cpsw_rx_teardown_locked(sc);
1070 	cpsw_tx_teardown_locked(sc);
1071 
1072 	/* Capture stats before we reset controller. */
1073 	cpsw_stats_collect(sc);
1074 
1075 	cpsw_reset(sc);
1076 }
1077 
1078 /*
1079  *  Suspend/Resume.
1080  */
1081 
1082 static int
1083 cpsw_suspend(device_t dev)
1084 {
1085 	struct cpsw_softc *sc = device_get_softc(dev);
1086 
1087 	CPSW_DEBUGF((""));
1088 	CPSW_GLOBAL_LOCK(sc);
1089 	cpsw_shutdown_locked(sc);
1090 	CPSW_GLOBAL_UNLOCK(sc);
1091 	return (0);
1092 }
1093 
1094 static int
1095 cpsw_resume(device_t dev)
1096 {
1097 	struct cpsw_softc *sc = device_get_softc(dev);
1098 
1099 	CPSW_DEBUGF(("UNIMPLEMENTED"));
1100 	return (0);
1101 }
1102 
1103 /*
1104  *
1105  *  IOCTL
1106  *
1107  */
1108 
1109 static void
1110 cpsw_set_promisc(struct cpsw_softc *sc, int set)
1111 {
1112 	/*
1113 	 * Enabling promiscuous mode requires two bits of work: First,
1114 	 * ALE_BYPASS needs to be enabled.  That disables the ALE
1115 	 * forwarding logic and causes every packet to be sent to the
1116 	 * host port.  That makes us promiscuous wrt received packets.
1117 	 *
1118 	 * With ALE forwarding disabled, the transmitter needs to set
1119 	 * an explicit output port on every packet to route it to the
1120 	 * correct egress.  This should be doable for systems such as
1121 	 * BeagleBone where only one egress port is actually wired to
1122 	 * a PHY.  If you have both egress ports wired up, life gets a
1123 	 * lot more interesting.
1124 	 *
1125 	 * Hmmm.... NetBSD driver uses ALE_BYPASS always and doesn't
1126 	 * seem to set explicit egress ports.  Does that mean they
1127 	 * are always promiscuous?
1128 	 */
1129 	if (set) {
1130 		printf("Promiscuous mode unimplemented\n");
1131 	}
1132 }
1133 
1134 static void
1135 cpsw_set_allmulti(struct cpsw_softc *sc, int set)
1136 {
1137 	if (set) {
1138 		printf("All-multicast mode unimplemented\n");
1139 	}
1140 }
1141 
1142 static int
1143 cpsw_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1144 {
1145 	struct cpsw_softc *sc = ifp->if_softc;
1146 	struct ifreq *ifr = (struct ifreq *)data;
1147 	int error;
1148 	uint32_t changed;
1149 
1150 	error = 0;
1151 
1152 	switch (command) {
1153 	case SIOCSIFFLAGS:
1154 		CPSW_GLOBAL_LOCK(sc);
1155 		if (ifp->if_flags & IFF_UP) {
1156 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1157 				changed = ifp->if_flags ^ sc->cpsw_if_flags;
1158 				CPSW_DEBUGF(("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)", changed));
1159 				if (changed & IFF_PROMISC)
1160 					cpsw_set_promisc(sc,
1161 					    ifp->if_flags & IFF_PROMISC);
1162 				if (changed & IFF_ALLMULTI)
1163 					cpsw_set_allmulti(sc,
1164 					    ifp->if_flags & IFF_ALLMULTI);
1165 			} else {
1166 				CPSW_DEBUGF(("SIOCSIFFLAGS: UP but not RUNNING; starting up"));
1167 				cpsw_init_locked(sc);
1168 			}
1169 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1170 			CPSW_DEBUGF(("SIOCSIFFLAGS: not UP but RUNNING; shutting down"));
1171 			cpsw_shutdown_locked(sc);
1172 		}
1173 
1174 		sc->cpsw_if_flags = ifp->if_flags;
1175 		CPSW_GLOBAL_UNLOCK(sc);
1176 		break;
1177 	case SIOCADDMULTI:
1178 		cpsw_ale_update_addresses(sc, 0);
1179 		break;
1180 	case SIOCDELMULTI:
1181 		/* Ugh.  DELMULTI doesn't provide the specific address
1182 		   being removed, so the best we can do is remove
1183 		   everything and rebuild it all. */
1184 		cpsw_ale_update_addresses(sc, 1);
1185 		break;
1186 	case SIOCGIFMEDIA:
1187 	case SIOCSIFMEDIA:
1188 		error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
1189 		break;
1190 	default:
1191 		error = ether_ioctl(ifp, command, data);
1192 	}
1193 	return (error);
1194 }
1195 
1196 /*
1197  *
1198  * MIIBUS
1199  *
1200  */
1201 static int
1202 cpsw_miibus_ready(struct cpsw_softc *sc)
1203 {
1204 	uint32_t r, retries = CPSW_MIIBUS_RETRIES;
1205 
1206 	while (--retries) {
1207 		r = cpsw_read_4(sc, MDIOUSERACCESS0);
1208 		if ((r & 1 << 31) == 0)
1209 			return 1;
1210 		DELAY(CPSW_MIIBUS_DELAY);
1211 	}
1212 	return 0;
1213 }
1214 
1215 static int
1216 cpsw_miibus_readreg(device_t dev, int phy, int reg)
1217 {
1218 	struct cpsw_softc *sc = device_get_softc(dev);
1219 	uint32_t cmd, r;
1220 
1221 	if (!cpsw_miibus_ready(sc)) {
1222 		device_printf(dev, "MDIO not ready to read\n");
1223 		return 0;
1224 	}
1225 
1226 	/* Set GO, reg, phy */
1227 	cmd = 1 << 31 | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
1228 	cpsw_write_4(sc, MDIOUSERACCESS0, cmd);
1229 
1230 	if (!cpsw_miibus_ready(sc)) {
1231 		device_printf(dev, "MDIO timed out during read\n");
1232 		return 0;
1233 	}
1234 
1235 	r = cpsw_read_4(sc, MDIOUSERACCESS0);
1236 	if((r & 1 << 29) == 0) {
1237 		device_printf(dev, "Failed to read from PHY.\n");
1238 		r = 0;
1239 	}
1240 	return (r & 0xFFFF);
1241 }
1242 
1243 static int
1244 cpsw_miibus_writereg(device_t dev, int phy, int reg, int value)
1245 {
1246 	struct cpsw_softc *sc = device_get_softc(dev);
1247 	uint32_t cmd;
1248 
1249 	if (!cpsw_miibus_ready(sc)) {
1250 		device_printf(dev, "MDIO not ready to write\n");
1251 		return 0;
1252 	}
1253 
1254 	/* Set GO, WRITE, reg, phy, and value */
1255 	cmd = 3 << 30 | (reg & 0x1F) << 21 | (phy & 0x1F) << 16
1256 	    | (value & 0xFFFF);
1257 	cpsw_write_4(sc, MDIOUSERACCESS0, cmd);
1258 
1259 	if (!cpsw_miibus_ready(sc)) {
1260 		device_printf(dev, "MDIO timed out during write\n");
1261 		return 0;
1262 	}
1263 
1264 	if((cpsw_read_4(sc, MDIOUSERACCESS0) & (1 << 29)) == 0)
1265 		device_printf(dev, "Failed to write to PHY.\n");
1266 
1267 	return 0;
1268 }
1269 
1270 static void
1271 cpsw_miibus_statchg(device_t dev)
1272 {
1273 	struct cpsw_softc *sc = device_get_softc(dev);
1274 	uint32_t mac_control;
1275 	int i;
1276 
1277 	CPSW_DEBUGF((""));
1278 
1279 	for (i = 0; i < 2; i++) {
1280 		mac_control = cpsw_read_4(sc, CPSW_SL_MACCONTROL(i));
1281 		mac_control &= ~(1 << 15 | 1 << 7);
1282 
1283 		switch(IFM_SUBTYPE(sc->mii->mii_media_active)) {
1284 		case IFM_1000_SX:
1285 		case IFM_1000_LX:
1286 		case IFM_1000_CX:
1287 		case IFM_1000_T:
1288 			mac_control |= 1 << 7;
1289 			break;
1290 
1291 		default:
1292 			mac_control |= 1 << 15;
1293 			break;
1294 		}
1295 
1296 		cpsw_write_4(sc, CPSW_SL_MACCONTROL(i), mac_control);
1297 	}
1298 }
1299 
1300 /*
1301  *
1302  * Transmit/Receive Packets.
1303  *
1304  */
1305 
1306 
1307 static void
1308 cpsw_intr_rx(void *arg)
1309 {
1310 	struct cpsw_softc *sc = arg;
1311 	struct mbuf *received, *next;
1312 
1313 	CPSW_RX_LOCK(sc);
1314 	received = cpsw_rx_dequeue(sc);
1315 	cpsw_rx_enqueue(sc);
1316 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
1317 	CPSW_RX_UNLOCK(sc);
1318 
1319 	while (received != NULL) {
1320 		next = received->m_nextpkt;
1321 		received->m_nextpkt = NULL;
1322 		(*sc->ifp->if_input)(sc->ifp, received);
1323 		received = next;
1324 	}
1325 }
1326 
1327 static struct mbuf *
1328 cpsw_rx_dequeue(struct cpsw_softc *sc)
1329 {
1330 	struct cpsw_cpdma_bd bd;
1331 	struct cpsw_slot *slot;
1332 	struct ifnet *ifp;
1333 	struct mbuf *mb_head, *mb_tail;
1334 	int removed = 0;
1335 
1336 	ifp = sc->ifp;
1337 	mb_head = mb_tail = NULL;
1338 
1339 	/* Pull completed packets off hardware RX queue. */
1340 	while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
1341 		cpsw_cpdma_read_bd(sc, slot, &bd);
1342 		if (bd.flags & CPDMA_BD_OWNER)
1343 			break; /* Still in use by hardware */
1344 
1345 		CPSW_DEBUGF(("Removing received packet from RX queue"));
1346 		++removed;
1347 		STAILQ_REMOVE_HEAD(&sc->rx.active, next);
1348 		STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
1349 
1350 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
1351 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1352 
1353 		if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
1354 			CPSW_DEBUGF(("RX teardown in progress"));
1355 			m_freem(slot->mbuf);
1356 			slot->mbuf = NULL;
1357 			cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
1358 			sc->rx.running = 0;
1359 			break;
1360 		}
1361 
1362 		cpsw_write_cp_slot(sc, &sc->rx, slot);
1363 
1364 		/* Set up mbuf */
1365 		/* TODO: track SOP/EOP bits to assemble a full mbuf
1366 		   out of received fragments. */
1367 		slot->mbuf->m_data += bd.bufoff;
1368 		slot->mbuf->m_len = bd.pktlen - 4;
1369 		slot->mbuf->m_pkthdr.len = bd.pktlen - 4;
1370 		slot->mbuf->m_flags |= M_PKTHDR;
1371 		slot->mbuf->m_pkthdr.rcvif = ifp;
1372 		slot->mbuf->m_nextpkt = NULL;
1373 
1374 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1375 			/* check for valid CRC by looking into pkt_err[5:4] */
1376 			if ((bd.flags & CPDMA_BD_PKT_ERR_MASK) == 0) {
1377 				slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1378 				slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1379 				slot->mbuf->m_pkthdr.csum_data = 0xffff;
1380 			}
1381 		}
1382 
1383 		/* Add mbuf to packet list to be returned. */
1384 		if (mb_tail) {
1385 			mb_tail->m_nextpkt = slot->mbuf;
1386 		} else {
1387 			mb_head = slot->mbuf;
1388 		}
1389 		mb_tail = slot->mbuf;
1390 		slot->mbuf = NULL;
1391 	}
1392 
1393 	if (removed != 0) {
1394 		sc->rx.queue_removes += removed;
1395 		sc->rx.active_queue_len -= removed;
1396 		sc->rx.avail_queue_len += removed;
1397 		if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
1398 			sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
1399 	}
1400 	return (mb_head);
1401 }
1402 
1403 static void
1404 cpsw_rx_enqueue(struct cpsw_softc *sc)
1405 {
1406 	bus_dma_segment_t seg[1];
1407 	struct cpsw_cpdma_bd bd;
1408 	struct ifnet *ifp = sc->ifp;
1409 	struct cpsw_slots tmpqueue = STAILQ_HEAD_INITIALIZER(tmpqueue);
1410 	struct cpsw_slot *slot, *prev_slot = NULL;
1411 	struct cpsw_slot *last_old_slot, *first_new_slot;
1412 	int error, nsegs, added = 0;
1413 
1414 	/* Register new mbufs with hardware. */
1415 	while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
1416 		if (slot->mbuf == NULL) {
1417 			slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1418 			if (slot->mbuf == NULL) {
1419 				if_printf(sc->ifp, "Unable to fill RX queue\n");
1420 				break;
1421 			}
1422 			slot->mbuf->m_len =
1423 			    slot->mbuf->m_pkthdr.len =
1424 			    slot->mbuf->m_ext.ext_size;
1425 		}
1426 
1427 		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1428 		    slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
1429 
1430 		KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
1431 		KASSERT(error == 0, ("DMA error (error=%d)", error));
1432 		if (error != 0 || nsegs != 1) {
1433 			if_printf(ifp,
1434 			    "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
1435 			    __func__, nsegs, error);
1436 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1437 			m_freem(slot->mbuf);
1438 			slot->mbuf = NULL;
1439 			break;
1440 		}
1441 
1442 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
1443 
1444 		/* Create and submit new rx descriptor*/
1445 		bd.next = 0;
1446 		bd.bufptr = seg->ds_addr;
1447 		bd.bufoff = 0;
1448 		bd.buflen = MCLBYTES - 1;
1449 		bd.pktlen = bd.buflen;
1450 		bd.flags = CPDMA_BD_OWNER;
1451 		cpsw_cpdma_write_bd(sc, slot, &bd);
1452 		++added;
1453 
1454 		if (prev_slot != NULL)
1455 			cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1456 		prev_slot = slot;
1457 		STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
1458 		sc->rx.avail_queue_len--;
1459 		STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1460 	}
1461 
1462 	if (added == 0)
1463 		return;
1464 
1465 	CPSW_DEBUGF(("Adding %d buffers to RX queue", added));
1466 
1467 	/* Link new entries to hardware RX queue. */
1468 	last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
1469 	first_new_slot = STAILQ_FIRST(&tmpqueue);
1470 	STAILQ_CONCAT(&sc->rx.active, &tmpqueue);
1471 	if (first_new_slot == NULL) {
1472 		return;
1473 	} else if (last_old_slot == NULL) {
1474 		/* Start a fresh queue. */
1475 		cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1476 	} else {
1477 		/* Add buffers to end of current queue. */
1478 		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1479 		/* If underrun, restart queue. */
1480 		if (cpsw_cpdma_read_bd_flags(sc, last_old_slot) & CPDMA_BD_EOQ) {
1481 			cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1482 		}
1483 	}
1484 	sc->rx.queue_adds += added;
1485 	sc->rx.active_queue_len += added;
1486 	if (sc->rx.active_queue_len > sc->rx.max_active_queue_len) {
1487 		sc->rx.max_active_queue_len = sc->rx.active_queue_len;
1488 	}
1489 }
1490 
1491 static void
1492 cpsw_start(struct ifnet *ifp)
1493 {
1494 	struct cpsw_softc *sc = ifp->if_softc;
1495 
1496 	CPSW_TX_LOCK(sc);
1497 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && sc->tx.running) {
1498 		cpsw_tx_enqueue(sc);
1499 		cpsw_tx_dequeue(sc);
1500 	}
1501 	CPSW_TX_UNLOCK(sc);
1502 }
1503 
1504 static void
1505 cpsw_tx_enqueue(struct cpsw_softc *sc)
1506 {
1507 	bus_dma_segment_t segs[CPSW_TXFRAGS];
1508 	struct cpsw_cpdma_bd bd;
1509 	struct cpsw_slots tmpqueue = STAILQ_HEAD_INITIALIZER(tmpqueue);
1510 	struct cpsw_slot *slot, *prev_slot = NULL;
1511 	struct cpsw_slot *last_old_slot, *first_new_slot;
1512 	struct mbuf *m0;
1513 	int error, nsegs, seg, added = 0, padlen;
1514 
1515 	/* Pull pending packets from IF queue and prep them for DMA. */
1516 	while ((slot = STAILQ_FIRST(&sc->tx.avail)) != NULL) {
1517 		IF_DEQUEUE(&sc->ifp->if_snd, m0);
1518 		if (m0 == NULL)
1519 			break;
1520 
1521 		slot->mbuf = m0;
1522 		padlen = ETHER_MIN_LEN - slot->mbuf->m_pkthdr.len;
1523 		if (padlen < 0)
1524 			padlen = 0;
1525 
1526 		/* Create mapping in DMA memory */
1527 		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1528 		    slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1529 		/* If the packet is too fragmented, try to simplify. */
1530 		if (error == EFBIG ||
1531 		    (error == 0 &&
1532 			nsegs + (padlen > 0 ? 1 : 0) > sc->tx.avail_queue_len)) {
1533 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1534 			if (padlen > 0) /* May as well add padding. */
1535 				m_append(slot->mbuf, padlen,
1536 				    sc->null_mbuf->m_data);
1537 			m0 = m_defrag(slot->mbuf, M_NOWAIT);
1538 			if (m0 == NULL) {
1539 				if_printf(sc->ifp,
1540 				    "Can't defragment packet; dropping\n");
1541 				m_freem(slot->mbuf);
1542 			} else {
1543 				CPSW_DEBUGF(("Requeueing defragmented packet"));
1544 				IF_PREPEND(&sc->ifp->if_snd, m0);
1545 			}
1546 			slot->mbuf = NULL;
1547 			continue;
1548 		}
1549 		if (error != 0) {
1550 			if_printf(sc->ifp,
1551 			    "%s: Can't setup DMA (error=%d), dropping packet\n",
1552 			    __func__, error);
1553 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1554 			m_freem(slot->mbuf);
1555 			slot->mbuf = NULL;
1556 			break;
1557 		}
1558 
1559 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap,
1560 				BUS_DMASYNC_PREWRITE);
1561 
1562 
1563 		CPSW_DEBUGF(("Queueing TX packet: %d segments + %d pad bytes",
1564 			nsegs, padlen));
1565 
1566 		/* If there is only one segment, the for() loop
1567 		 * gets skipped and the single buffer gets set up
1568 		 * as both SOP and EOP. */
1569 		/* Start by setting up the first buffer */
1570 		bd.next = 0;
1571 		bd.bufptr = segs[0].ds_addr;
1572 		bd.bufoff = 0;
1573 		bd.buflen = segs[0].ds_len;
1574 		bd.pktlen = m_length(slot->mbuf, NULL) + padlen;
1575 		bd.flags =  CPDMA_BD_SOP | CPDMA_BD_OWNER;
1576 		for (seg = 1; seg < nsegs; ++seg) {
1577 			/* Save the previous buffer (which isn't EOP) */
1578 			cpsw_cpdma_write_bd(sc, slot, &bd);
1579 			if (prev_slot != NULL)
1580 				cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1581 			prev_slot = slot;
1582 			STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
1583 			sc->tx.avail_queue_len--;
1584 			STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1585 			++added;
1586 			slot = STAILQ_FIRST(&sc->tx.avail);
1587 
1588 			/* Setup next buffer (which isn't SOP) */
1589 			bd.next = 0;
1590 			bd.bufptr = segs[seg].ds_addr;
1591 			bd.bufoff = 0;
1592 			bd.buflen = segs[seg].ds_len;
1593 			bd.pktlen = 0;
1594 			bd.flags = CPDMA_BD_OWNER;
1595 		}
1596 		/* Save the final buffer. */
1597 		if (padlen <= 0)
1598 			bd.flags |= CPDMA_BD_EOP;
1599 		cpsw_cpdma_write_bd(sc, slot, &bd);
1600 		if (prev_slot != NULL)
1601 			cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1602 		prev_slot = slot;
1603 		STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
1604 		sc->tx.avail_queue_len--;
1605 		STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1606 		++added;
1607 
1608 		if (padlen > 0) {
1609 			slot = STAILQ_FIRST(&sc->tx.avail);
1610 			STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
1611 			sc->tx.avail_queue_len--;
1612 			STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1613 			++added;
1614 
1615 			/* Setup buffer of null pad bytes (definitely EOP) */
1616 			cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1617 			prev_slot = slot;
1618 			bd.next = 0;
1619 			bd.bufptr = sc->null_mbuf_paddr;
1620 			bd.bufoff = 0;
1621 			bd.buflen = padlen;
1622 			bd.pktlen = 0;
1623 			bd.flags = CPDMA_BD_EOP | CPDMA_BD_OWNER;
1624 			cpsw_cpdma_write_bd(sc, slot, &bd);
1625 			++nsegs;
1626 		}
1627 
1628 		if (nsegs > sc->tx.longest_chain)
1629 			sc->tx.longest_chain = nsegs;
1630 
1631 		// TODO: Should we defer the BPF tap until
1632 		// after all packets are queued?
1633 		BPF_MTAP(sc->ifp, m0);
1634 	}
1635 
1636 	/* Attach the list of new buffers to the hardware TX queue. */
1637 	last_old_slot = STAILQ_LAST(&sc->tx.active, cpsw_slot, next);
1638 	first_new_slot = STAILQ_FIRST(&tmpqueue);
1639 	STAILQ_CONCAT(&sc->tx.active, &tmpqueue);
1640 	if (first_new_slot == NULL) {
1641 		return;
1642 	} else if (last_old_slot == NULL) {
1643 		/* Start a fresh queue. */
1644 		cpsw_write_hdp_slot(sc, &sc->tx, first_new_slot);
1645 	} else {
1646 		/* Add buffers to end of current queue. */
1647 		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1648 		/* If underrun, restart queue. */
1649 		if (cpsw_cpdma_read_bd_flags(sc, last_old_slot) & CPDMA_BD_EOQ) {
1650 			cpsw_write_hdp_slot(sc, &sc->tx, first_new_slot);
1651 		}
1652 	}
1653 	sc->tx.queue_adds += added;
1654 	sc->tx.active_queue_len += added;
1655 	if (sc->tx.active_queue_len > sc->tx.max_active_queue_len) {
1656 		sc->tx.max_active_queue_len = sc->tx.active_queue_len;
1657 	}
1658 }
1659 
1660 static int
1661 cpsw_tx_dequeue(struct cpsw_softc *sc)
1662 {
1663 	struct cpsw_slot *slot, *last_removed_slot = NULL;
1664 	uint32_t flags, removed = 0;
1665 
1666 	slot = STAILQ_FIRST(&sc->tx.active);
1667 	if (slot == NULL && cpsw_read_cp(sc, &sc->tx) == 0xfffffffc) {
1668 		CPSW_DEBUGF(("TX teardown of an empty queue"));
1669 		cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1670 		sc->tx.running = 0;
1671 		return (0);
1672 	}
1673 
1674 	/* Pull completed buffers off the hardware TX queue. */
1675 	while (slot != NULL) {
1676 		flags = cpsw_cpdma_read_bd_flags(sc, slot);
1677 		if (flags & CPDMA_BD_OWNER)
1678 			break; /* Hardware is still using this packet. */
1679 
1680 		CPSW_DEBUGF(("TX removing completed packet"));
1681 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
1682 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1683 		m_freem(slot->mbuf);
1684 		slot->mbuf = NULL;
1685 
1686 		/* Dequeue any additional buffers used by this packet. */
1687 		while (slot != NULL && slot->mbuf == NULL) {
1688 			STAILQ_REMOVE_HEAD(&sc->tx.active, next);
1689 			STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
1690 			++removed;
1691 			last_removed_slot = slot;
1692 			slot = STAILQ_FIRST(&sc->tx.active);
1693 		}
1694 
1695 		/* TearDown complete is only marked on the SOP for the packet. */
1696 		if (flags & CPDMA_BD_TDOWNCMPLT) {
1697 			CPSW_DEBUGF(("TX teardown in progress"));
1698 			cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1699 			// TODO: Increment a count of dropped TX packets
1700 			sc->tx.running = 0;
1701 			break;
1702 		}
1703 	}
1704 
1705 	if (removed != 0) {
1706 		cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
1707 		sc->tx.queue_removes += removed;
1708 		sc->tx.active_queue_len -= removed;
1709 		sc->tx.avail_queue_len += removed;
1710 		if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
1711 			sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
1712 	}
1713 	return (removed);
1714 }
1715 
1716 /*
1717  *
1718  * Miscellaneous interrupts.
1719  *
1720  */
1721 
1722 static void
1723 cpsw_intr_rx_thresh(void *arg)
1724 {
1725 	struct cpsw_softc *sc = arg;
1726 	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_RX_THRESH_STAT(0));
1727 
1728 	CPSW_DEBUGF(("stat=%x", stat));
1729 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
1730 }
1731 
1732 static void
1733 cpsw_intr_misc_host_error(struct cpsw_softc *sc)
1734 {
1735 	uint32_t intstat;
1736 	uint32_t dmastat;
1737 	int txerr, rxerr, txchan, rxchan;
1738 
1739 	printf("\n\n");
1740 	device_printf(sc->dev,
1741 	    "HOST ERROR:  PROGRAMMING ERROR DETECTED BY HARDWARE\n");
1742 	printf("\n\n");
1743 	intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
1744 	device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
1745 	dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
1746 	device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
1747 
1748 	txerr = (dmastat >> 20) & 15;
1749 	txchan = (dmastat >> 16) & 7;
1750 	rxerr = (dmastat >> 12) & 15;
1751 	rxchan = (dmastat >> 8) & 7;
1752 
1753 	switch (txerr) {
1754 	case 0: break;
1755 	case 1:	printf("SOP error on TX channel %d\n", txchan);
1756 		break;
1757 	case 2:	printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
1758 		break;
1759 	case 3:	printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
1760 		break;
1761 	case 4:	printf("Zero Buffer Pointer on TX channel %d\n", txchan);
1762 		break;
1763 	case 5:	printf("Zero Buffer Length on TX channel %d\n", txchan);
1764 		break;
1765 	case 6:	printf("Packet length error on TX channel %d\n", txchan);
1766 		break;
1767 	default: printf("Unknown error on TX channel %d\n", txchan);
1768 		break;
1769 	}
1770 
1771 	if (txerr != 0) {
1772 		printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
1773 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
1774 		printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
1775 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
1776 		cpsw_dump_queue(sc, &sc->tx.active);
1777 	}
1778 
1779 	switch (rxerr) {
1780 	case 0: break;
1781 	case 2:	printf("Ownership bit not set on RX channel %d\n", rxchan);
1782 		break;
1783 	case 4:	printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
1784 		break;
1785 	case 5:	printf("Zero Buffer Length on RX channel %d\n", rxchan);
1786 		break;
1787 	case 6:	printf("Buffer offset too big on RX channel %d\n", rxchan);
1788 		break;
1789 	default: printf("Unknown RX error on RX channel %d\n", rxchan);
1790 		break;
1791 	}
1792 
1793 	if (rxerr != 0) {
1794 		printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
1795 		    rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
1796 		printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
1797 		    rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
1798 		cpsw_dump_queue(sc, &sc->rx.active);
1799 	}
1800 
1801 	printf("\nALE Table\n");
1802 	cpsw_ale_dump_table(sc);
1803 
1804 	// XXX do something useful here??
1805 	panic("CPSW HOST ERROR INTERRUPT");
1806 
1807 	// Suppress this interrupt in the future.
1808 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
1809 	printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
1810 	// The watchdog will probably reset the controller
1811 	// in a little while.  It will probably fail again.
1812 }
1813 
1814 static void
1815 cpsw_intr_misc(void *arg)
1816 {
1817 	struct cpsw_softc *sc = arg;
1818 	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
1819 
1820 	if (stat & 16)
1821 		CPSW_DEBUGF(("Time sync event interrupt unimplemented"));
1822 	if (stat & 8)
1823 		cpsw_stats_collect(sc);
1824 	if (stat & 4)
1825 		cpsw_intr_misc_host_error(sc);
1826 	if (stat & 2)
1827 		CPSW_DEBUGF(("MDIO link change interrupt unimplemented"));
1828 	if (stat & 1)
1829 		CPSW_DEBUGF(("MDIO operation completed interrupt unimplemented"));
1830 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
1831 }
1832 
1833 /*
1834  *
1835  * Periodic Checks and Watchdog.
1836  *
1837  */
1838 
1839 static void
1840 cpsw_tick(void *msc)
1841 {
1842 	struct cpsw_softc *sc = msc;
1843 
1844 	/* Check for TX timeout */
1845 	cpsw_tx_watchdog(sc);
1846 
1847 	/* Check for media type change */
1848 	mii_tick(sc->mii);
1849 	if(sc->cpsw_media_status != sc->mii->mii_media.ifm_media) {
1850 		printf("%s: media type changed (ifm_media=%x)\n", __func__,
1851 			sc->mii->mii_media.ifm_media);
1852 		cpsw_ifmedia_upd(sc->ifp);
1853 	}
1854 
1855 	/* Schedule another timeout one second from now */
1856 	callout_reset(&sc->watchdog.callout, hz, cpsw_tick, sc);
1857 }
1858 
1859 static void
1860 cpsw_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1861 {
1862 	struct cpsw_softc *sc = ifp->if_softc;
1863 	struct mii_data *mii;
1864 
1865 	CPSW_DEBUGF((""));
1866 	CPSW_TX_LOCK(sc);
1867 
1868 	mii = sc->mii;
1869 	mii_pollstat(mii);
1870 
1871 	ifmr->ifm_active = mii->mii_media_active;
1872 	ifmr->ifm_status = mii->mii_media_status;
1873 
1874 	CPSW_TX_UNLOCK(sc);
1875 }
1876 
1877 static int
1878 cpsw_ifmedia_upd(struct ifnet *ifp)
1879 {
1880 	struct cpsw_softc *sc = ifp->if_softc;
1881 
1882 	CPSW_DEBUGF((""));
1883 	if (ifp->if_flags & IFF_UP) {
1884 		CPSW_GLOBAL_LOCK(sc);
1885 		sc->cpsw_media_status = sc->mii->mii_media.ifm_media;
1886 		mii_mediachg(sc->mii);
1887 		cpsw_init_locked(sc);
1888 		CPSW_GLOBAL_UNLOCK(sc);
1889 	}
1890 
1891 	return (0);
1892 }
1893 
1894 static void
1895 cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
1896 {
1897 	cpsw_debugf_head("CPSW watchdog");
1898 	if_printf(sc->ifp, "watchdog timeout\n");
1899 	cpsw_shutdown_locked(sc);
1900 	cpsw_init_locked(sc);
1901 }
1902 
1903 static void
1904 cpsw_tx_watchdog(struct cpsw_softc *sc)
1905 {
1906 	struct ifnet *ifp = sc->ifp;
1907 
1908 	CPSW_GLOBAL_LOCK(sc);
1909 	if (sc->tx.active_queue_len == 0 || (ifp->if_flags & IFF_UP) == 0 ||
1910 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || !sc->tx.running) {
1911 		sc->watchdog.timer = 0; /* Nothing to do. */
1912 	} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
1913 		sc->watchdog.timer = 0;  /* Stuff done while we weren't looking. */
1914 	} else if (cpsw_tx_dequeue(sc) > 0) {
1915 		sc->watchdog.timer = 0;  /* We just did something. */
1916 	} else {
1917 		/* There was something to do but it didn't get done. */
1918 		++sc->watchdog.timer;
1919 		if (sc->watchdog.timer > 2) {
1920 			sc->watchdog.timer = 0;
1921 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1922 			++sc->watchdog.resets;
1923 			cpsw_tx_watchdog_full_reset(sc);
1924 		}
1925 	}
1926 	sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
1927 	CPSW_GLOBAL_UNLOCK(sc);
1928 }
1929 
1930 /*
1931  *
1932  * ALE support routines.
1933  *
1934  */
1935 
1936 static void
1937 cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
1938 {
1939 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
1940 	ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
1941 	ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
1942 	ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
1943 }
1944 
1945 static void
1946 cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
1947 {
1948 	cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
1949 	cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
1950 	cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
1951 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
1952 }
1953 
1954 static int
1955 cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
1956 {
1957 	int i;
1958 	uint32_t ale_entry[3];
1959 
1960 	/* First two entries are link address and broadcast. */
1961 	for (i = 2; i < CPSW_MAX_ALE_ENTRIES; i++) {
1962 		cpsw_ale_read_entry(sc, i, ale_entry);
1963 		if (((ale_entry[1] >> 28) & 3) == 1 && /* Address entry */
1964 		    ((ale_entry[1] >> 8) & 1) == 1) { /* MCast link addr */
1965 			ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
1966 			cpsw_ale_write_entry(sc, i, ale_entry);
1967 		}
1968 	}
1969 	return CPSW_MAX_ALE_ENTRIES;
1970 }
1971 
1972 static int
1973 cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, uint8_t *mac)
1974 {
1975 	int free_index = -1, matching_index = -1, i;
1976 	uint32_t ale_entry[3];
1977 
1978 	/* Find a matching entry or a free entry. */
1979 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
1980 		cpsw_ale_read_entry(sc, i, ale_entry);
1981 
1982 		/* Entry Type[61:60] is 0 for free entry */
1983 		if (free_index < 0 && ((ale_entry[1] >> 28) & 3) == 0) {
1984 			free_index = i;
1985 		}
1986 
1987 		if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
1988 		    (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
1989 		    (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
1990 		    (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
1991 		    (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
1992 		    (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
1993 			matching_index = i;
1994 			break;
1995 		}
1996 	}
1997 
1998 	if (matching_index < 0) {
1999 		if (free_index < 0)
2000 			return (ENOMEM);
2001 		i = free_index;
2002 	}
2003 
2004 	/* Set MAC address */
2005 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2006 	ale_entry[1] = mac[0] << 8 | mac[1];
2007 
2008 	/* Entry type[61:60] is addr entry(1), Mcast fwd state[63:62] is fw(3)*/
2009 	ale_entry[1] |= 0xd0 << 24;
2010 
2011 	/* Set portmask [68:66] */
2012 	ale_entry[2] = (portmap & 7) << 2;
2013 
2014 	cpsw_ale_write_entry(sc, i, ale_entry);
2015 
2016 	return 0;
2017 }
2018 
2019 static void
2020 cpsw_ale_dump_table(struct cpsw_softc *sc) {
2021 	int i;
2022 	uint32_t ale_entry[3];
2023 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2024 		cpsw_ale_read_entry(sc, i, ale_entry);
2025 		if (ale_entry[0] || ale_entry[1] || ale_entry[2]) {
2026 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[0],
2027 				ale_entry[1], ale_entry[2]);
2028 			printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
2029 				(ale_entry[1] >> 8) & 0xFF,
2030 				(ale_entry[1] >> 0) & 0xFF,
2031 				(ale_entry[0] >>24) & 0xFF,
2032 				(ale_entry[0] >>16) & 0xFF,
2033 				(ale_entry[0] >> 8) & 0xFF,
2034 				(ale_entry[0] >> 0) & 0xFF);
2035 			printf(((ale_entry[1] >> 8) & 1) ? "mcast " : "ucast ");
2036 			printf("type: %u ", (ale_entry[1] >> 28) & 3);
2037 			printf("port: %u ", (ale_entry[2] >> 2) & 7);
2038 			printf("\n");
2039 		}
2040 	}
2041 	printf("\n");
2042 }
2043 
2044 static int
2045 cpsw_ale_update_addresses(struct cpsw_softc *sc, int purge)
2046 {
2047 	uint8_t *mac;
2048 	uint32_t ale_entry[3];
2049 	struct ifnet *ifp = sc->ifp;
2050 	struct ifmultiaddr *ifma;
2051 	int i;
2052 
2053 	/* Route incoming packets for our MAC address to Port 0 (host). */
2054 	/* For simplicity, keep this entry at table index 0 in the ALE. */
2055         if_addr_rlock(ifp);
2056 	mac = LLADDR((struct sockaddr_dl *)ifp->if_addr->ifa_addr);
2057 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2058 	ale_entry[1] = 0x10 << 24 | mac[0] << 8 | mac[1]; /* addr entry + mac */
2059 	ale_entry[2] = 0; /* port = 0 */
2060 	cpsw_ale_write_entry(sc, 0, ale_entry);
2061 
2062 	/* Set outgoing MAC Address for Ports 1 and 2. */
2063 	for (i = 1; i < 3; ++i) {
2064 		cpsw_write_4(sc, CPSW_PORT_P_SA_HI(i),
2065 		    mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
2066 		cpsw_write_4(sc, CPSW_PORT_P_SA_LO(i),
2067 		    mac[5] << 8 | mac[4]);
2068 	}
2069         if_addr_runlock(ifp);
2070 
2071 	/* Keep the broadcast address at table entry 1. */
2072 	ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
2073 	ale_entry[1] = 0xd000ffff; /* FW (3 << 30), Addr entry (1 << 24), upper 16 bits of Mac */
2074 	ale_entry[2] = 0x0000001c; /* Forward to all ports */
2075 	cpsw_ale_write_entry(sc, 1, ale_entry);
2076 
2077 	/* SIOCDELMULTI doesn't specify the particular address
2078 	   being removed, so we have to remove all and rebuild. */
2079 	if (purge)
2080 		cpsw_ale_remove_all_mc_entries(sc);
2081 
2082         /* Set other multicast addrs desired. */
2083         if_maddr_rlock(ifp);
2084         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2085                 if (ifma->ifma_addr->sa_family != AF_LINK)
2086                         continue;
2087 		cpsw_ale_mc_entry_set(sc, 7,
2088 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
2089         }
2090         if_maddr_runlock(ifp);
2091 
2092 	return (0);
2093 }
2094 
2095 /*
2096  *
2097  * Statistics and Sysctls.
2098  *
2099  */
2100 
2101 #if 0
2102 static void
2103 cpsw_stats_dump(struct cpsw_softc *sc)
2104 {
2105 	int i;
2106 	uint32_t r;
2107 
2108 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2109 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2110 		    cpsw_stat_sysctls[i].reg);
2111 		CPSW_DEBUGF(("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
2112 			     (intmax_t)sc->shadow_stats[i], r,
2113 			     (intmax_t)sc->shadow_stats[i] + r));
2114 	}
2115 }
2116 #endif
2117 
2118 static void
2119 cpsw_stats_collect(struct cpsw_softc *sc)
2120 {
2121 	int i;
2122 	uint32_t r;
2123 
2124 	CPSW_DEBUGF(("Controller shadow statistics updated."));
2125 
2126 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2127 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2128 		    cpsw_stat_sysctls[i].reg);
2129 		sc->shadow_stats[i] += r;
2130 		cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg, r);
2131 	}
2132 }
2133 
2134 static int
2135 cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
2136 {
2137 	struct cpsw_softc *sc;
2138 	struct cpsw_stat *stat;
2139 	uint64_t result;
2140 
2141 	sc = (struct cpsw_softc *)arg1;
2142 	stat = &cpsw_stat_sysctls[oidp->oid_number];
2143 	result = sc->shadow_stats[oidp->oid_number];
2144 	result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
2145 	return (sysctl_handle_64(oidp, &result, 0, req));
2146 }
2147 
2148 static int
2149 cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
2150 {
2151 	struct cpsw_softc *sc;
2152 	struct bintime t;
2153 	unsigned result;
2154 
2155 	sc = (struct cpsw_softc *)arg1;
2156 	getbinuptime(&t);
2157 	bintime_sub(&t, &sc->attach_uptime);
2158 	result = t.sec;
2159 	return (sysctl_handle_int(oidp, &result, 0, req));
2160 }
2161 
2162 static int
2163 cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
2164 {
2165 	struct cpsw_softc *sc;
2166 	struct bintime t;
2167 	unsigned result;
2168 
2169 	sc = (struct cpsw_softc *)arg1;
2170 	if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
2171 		getbinuptime(&t);
2172 		bintime_sub(&t, &sc->init_uptime);
2173 		result = t.sec;
2174 	} else
2175 		result = 0;
2176 	return (sysctl_handle_int(oidp, &result, 0, req));
2177 }
2178 
2179 static void
2180 cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node, struct cpsw_queue *queue)
2181 {
2182 	struct sysctl_oid_list *parent;
2183 
2184 	parent = SYSCTL_CHILDREN(node);
2185 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
2186 	    CTLFLAG_RD, &queue->queue_slots, 0,
2187 	    "Total buffers currently assigned to this queue");
2188 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
2189 	    CTLFLAG_RD, &queue->active_queue_len, 0,
2190 	    "Buffers currently registered with hardware controller");
2191 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
2192 	    CTLFLAG_RD, &queue->max_active_queue_len, 0,
2193 	    "Max value of activeBuffers since last driver reset");
2194 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
2195 	    CTLFLAG_RD, &queue->avail_queue_len, 0,
2196 	    "Buffers allocated to this queue but not currently "
2197 	    "registered with hardware controller");
2198 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
2199 	    CTLFLAG_RD, &queue->max_avail_queue_len, 0,
2200 	    "Max value of availBuffers since last driver reset");
2201 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
2202 	    CTLFLAG_RD, &queue->queue_adds, 0,
2203 	    "Total buffers added to queue");
2204 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
2205 	    CTLFLAG_RD, &queue->queue_removes, 0,
2206 	    "Total buffers removed from queue");
2207 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
2208 	    CTLFLAG_RD, &queue->longest_chain, 0,
2209 	    "Max buffers used for a single packet");
2210 }
2211 
2212 static void
2213 cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node, struct cpsw_softc *sc)
2214 {
2215 	struct sysctl_oid_list *parent;
2216 
2217 	parent = SYSCTL_CHILDREN(node);
2218 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
2219 	    CTLFLAG_RD, &sc->watchdog.resets, 0,
2220 	    "Total number of watchdog resets");
2221 }
2222 
2223 static void
2224 cpsw_add_sysctls(struct cpsw_softc *sc)
2225 {
2226 	struct sysctl_ctx_list *ctx;
2227 	struct sysctl_oid *stats_node, *queue_node, *node;
2228 	struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
2229 	int i;
2230 
2231 	ctx = device_get_sysctl_ctx(sc->dev);
2232 	parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
2233 
2234 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
2235 	    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_attached, "IU",
2236 	    "Time since driver attach");
2237 
2238 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "uptime",
2239 	    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_uptime, "IU",
2240 	    "Seconds since driver init");
2241 
2242 	stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
2243 				     CTLFLAG_RD, NULL, "CPSW Statistics");
2244 	stats_parent = SYSCTL_CHILDREN(stats_node);
2245 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2246 		SYSCTL_ADD_PROC(ctx, stats_parent, i,
2247 				cpsw_stat_sysctls[i].oid,
2248 				CTLTYPE_U64 | CTLFLAG_RD, sc, 0,
2249 				cpsw_stats_sysctl, "IU",
2250 				cpsw_stat_sysctls[i].oid);
2251 	}
2252 
2253 	queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
2254 	    CTLFLAG_RD, NULL, "CPSW Queue Statistics");
2255 	queue_parent = SYSCTL_CHILDREN(queue_node);
2256 
2257 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
2258 	    CTLFLAG_RD, NULL, "TX Queue Statistics");
2259 	cpsw_add_queue_sysctls(ctx, node, &sc->tx);
2260 
2261 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
2262 	    CTLFLAG_RD, NULL, "RX Queue Statistics");
2263 	cpsw_add_queue_sysctls(ctx, node, &sc->rx);
2264 
2265 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
2266 	    CTLFLAG_RD, NULL, "Watchdog Statistics");
2267 	cpsw_add_watchdog_sysctls(ctx, node, sc);
2268 }
2269 
2270