xref: /freebsd/sys/arm/ti/cpsw/if_cpsw.c (revision 22cf89c938886d14f5796fc49f9f020c23ea8eaf)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
5  * Copyright (c) 2016 Rubicon Communications, LLC (Netgate)
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * TI Common Platform Ethernet Switch (CPSW) Driver
32  * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
33  *
34  * This controller is documented in the AM335x Technical Reference
35  * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
36  * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
37  *
38  * It is basically a single Ethernet port (port 0) wired internally to
39  * a 3-port store-and-forward switch connected to two independent
40  * "sliver" controllers (port 1 and port 2).  You can operate the
41  * controller in a variety of different ways by suitably configuring
42  * the slivers and the Address Lookup Engine (ALE) that routes packets
43  * between the ports.
44  *
45  * This code was developed and tested on a BeagleBone with
46  * an AM335x SoC.
47  */
48 
49 #include <sys/cdefs.h>
50 #include "opt_cpsw.h"
51 
52 #include <sys/param.h>
53 #include <sys/bus.h>
54 #include <sys/kernel.h>
55 #include <sys/lock.h>
56 #include <sys/mbuf.h>
57 #include <sys/module.h>
58 #include <sys/mutex.h>
59 #include <sys/rman.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/sysctl.h>
63 
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66 #include <machine/stdarg.h>
67 
68 #include <net/ethernet.h>
69 #include <net/bpf.h>
70 #include <net/if.h>
71 #include <net/if_dl.h>
72 #include <net/if_media.h>
73 #include <net/if_types.h>
74 
75 #include <dev/extres/syscon/syscon.h>
76 #include "syscon_if.h"
77 #include <arm/ti/am335x/am335x_scm.h>
78 
79 #include <dev/mii/mii.h>
80 #include <dev/mii/miivar.h>
81 
82 #include <dev/ofw/ofw_bus.h>
83 #include <dev/ofw/ofw_bus_subr.h>
84 
85 #include <dev/fdt/fdt_common.h>
86 
87 #ifdef CPSW_ETHERSWITCH
88 #include <dev/etherswitch/etherswitch.h>
89 #include "etherswitch_if.h"
90 #endif
91 
92 #include "if_cpswreg.h"
93 #include "if_cpswvar.h"
94 
95 #include "miibus_if.h"
96 
97 /* Device probe/attach/detach. */
98 static int cpsw_probe(device_t);
99 static int cpsw_attach(device_t);
100 static int cpsw_detach(device_t);
101 static int cpswp_probe(device_t);
102 static int cpswp_attach(device_t);
103 static int cpswp_detach(device_t);
104 
105 static phandle_t cpsw_get_node(device_t, device_t);
106 
107 /* Device Init/shutdown. */
108 static int cpsw_shutdown(device_t);
109 static void cpswp_init(void *);
110 static void cpswp_init_locked(void *);
111 static void cpswp_stop_locked(struct cpswp_softc *);
112 
113 /* Device Suspend/Resume. */
114 static int cpsw_suspend(device_t);
115 static int cpsw_resume(device_t);
116 
117 /* Ioctl. */
118 static int cpswp_ioctl(if_t, u_long command, caddr_t data);
119 
120 static int cpswp_miibus_readreg(device_t, int phy, int reg);
121 static int cpswp_miibus_writereg(device_t, int phy, int reg, int value);
122 static void cpswp_miibus_statchg(device_t);
123 
124 /* Send/Receive packets. */
125 static void cpsw_intr_rx(void *arg);
126 static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
127 static void cpsw_rx_enqueue(struct cpsw_softc *);
128 static void cpswp_start(if_t);
129 static void cpsw_intr_tx(void *);
130 static void cpswp_tx_enqueue(struct cpswp_softc *);
131 static int cpsw_tx_dequeue(struct cpsw_softc *);
132 
133 /* Misc interrupts and watchdog. */
134 static void cpsw_intr_rx_thresh(void *);
135 static void cpsw_intr_misc(void *);
136 static void cpswp_tick(void *);
137 static void cpswp_ifmedia_sts(if_t, struct ifmediareq *);
138 static int cpswp_ifmedia_upd(if_t);
139 static void cpsw_tx_watchdog(void *);
140 
141 /* ALE support */
142 static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t, uint32_t *);
143 static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t, uint32_t *);
144 static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t, int, uint8_t *);
145 static void cpsw_ale_dump_table(struct cpsw_softc *);
146 static int cpsw_ale_update_vlan_table(struct cpsw_softc *, int, int, int, int,
147 	int);
148 static int cpswp_ale_update_addresses(struct cpswp_softc *, int);
149 
150 /* Statistics and sysctls. */
151 static void cpsw_add_sysctls(struct cpsw_softc *);
152 static void cpsw_stats_collect(struct cpsw_softc *);
153 static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
154 
155 #ifdef CPSW_ETHERSWITCH
156 static etherswitch_info_t *cpsw_getinfo(device_t);
157 static int cpsw_getport(device_t, etherswitch_port_t *);
158 static int cpsw_setport(device_t, etherswitch_port_t *);
159 static int cpsw_getconf(device_t, etherswitch_conf_t *);
160 static int cpsw_getvgroup(device_t, etherswitch_vlangroup_t *);
161 static int cpsw_setvgroup(device_t, etherswitch_vlangroup_t *);
162 static int cpsw_readreg(device_t, int);
163 static int cpsw_writereg(device_t, int, int);
164 static int cpsw_readphy(device_t, int, int);
165 static int cpsw_writephy(device_t, int, int, int);
166 #endif
167 
168 /*
169  * Arbitrary limit on number of segments in an mbuf to be transmitted.
170  * Packets with more segments than this will be defragmented before
171  * they are queued.
172  */
173 #define	CPSW_TXFRAGS		16
174 
175 /* Shared resources. */
176 static device_method_t cpsw_methods[] = {
177 	/* Device interface */
178 	DEVMETHOD(device_probe,		cpsw_probe),
179 	DEVMETHOD(device_attach,	cpsw_attach),
180 	DEVMETHOD(device_detach,	cpsw_detach),
181 	DEVMETHOD(device_shutdown,	cpsw_shutdown),
182 	DEVMETHOD(device_suspend,	cpsw_suspend),
183 	DEVMETHOD(device_resume,	cpsw_resume),
184 	/* Bus interface */
185 	DEVMETHOD(bus_add_child,	device_add_child_ordered),
186 	/* OFW methods */
187 	DEVMETHOD(ofw_bus_get_node,	cpsw_get_node),
188 #ifdef CPSW_ETHERSWITCH
189 	/* etherswitch interface */
190 	DEVMETHOD(etherswitch_getinfo,	cpsw_getinfo),
191 	DEVMETHOD(etherswitch_readreg,	cpsw_readreg),
192 	DEVMETHOD(etherswitch_writereg,	cpsw_writereg),
193 	DEVMETHOD(etherswitch_readphyreg,	cpsw_readphy),
194 	DEVMETHOD(etherswitch_writephyreg,	cpsw_writephy),
195 	DEVMETHOD(etherswitch_getport,	cpsw_getport),
196 	DEVMETHOD(etherswitch_setport,	cpsw_setport),
197 	DEVMETHOD(etherswitch_getvgroup,	cpsw_getvgroup),
198 	DEVMETHOD(etherswitch_setvgroup,	cpsw_setvgroup),
199 	DEVMETHOD(etherswitch_getconf,	cpsw_getconf),
200 #endif
201 	DEVMETHOD_END
202 };
203 
204 static driver_t cpsw_driver = {
205 	"cpswss",
206 	cpsw_methods,
207 	sizeof(struct cpsw_softc),
208 };
209 
210 DRIVER_MODULE(cpswss, simplebus, cpsw_driver, 0, 0);
211 
212 /* Port/Slave resources. */
213 static device_method_t cpswp_methods[] = {
214 	/* Device interface */
215 	DEVMETHOD(device_probe,		cpswp_probe),
216 	DEVMETHOD(device_attach,	cpswp_attach),
217 	DEVMETHOD(device_detach,	cpswp_detach),
218 	/* MII interface */
219 	DEVMETHOD(miibus_readreg,	cpswp_miibus_readreg),
220 	DEVMETHOD(miibus_writereg,	cpswp_miibus_writereg),
221 	DEVMETHOD(miibus_statchg,	cpswp_miibus_statchg),
222 	DEVMETHOD_END
223 };
224 
225 static driver_t cpswp_driver = {
226 	"cpsw",
227 	cpswp_methods,
228 	sizeof(struct cpswp_softc),
229 };
230 
231 #ifdef CPSW_ETHERSWITCH
232 DRIVER_MODULE(etherswitch, cpswss, etherswitch_driver, 0, 0);
233 MODULE_DEPEND(cpswss, etherswitch, 1, 1, 1);
234 #endif
235 
236 DRIVER_MODULE(cpsw, cpswss, cpswp_driver, 0, 0);
237 DRIVER_MODULE(miibus, cpsw, miibus_driver, 0, 0);
238 MODULE_DEPEND(cpsw, ether, 1, 1, 1);
239 MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
240 
241 #ifdef CPSW_ETHERSWITCH
242 static struct cpsw_vlangroups cpsw_vgroups[CPSW_VLANS];
243 #endif
244 
245 static uint32_t slave_mdio_addr[] = { 0x4a100200, 0x4a100300 };
246 
247 static struct resource_spec irq_res_spec[] = {
248 	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
249 	{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
250 	{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
251 	{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
252 	{ -1, 0 }
253 };
254 
255 static struct {
256 	void (*cb)(void *);
257 } cpsw_intr_cb[] = {
258 	{ cpsw_intr_rx_thresh },
259 	{ cpsw_intr_rx },
260 	{ cpsw_intr_tx },
261 	{ cpsw_intr_misc },
262 };
263 
264 /* Number of entries here must match size of stats
265  * array in struct cpswp_softc. */
266 static struct cpsw_stat {
267 	int	reg;
268 	char *oid;
269 } cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
270 	{0x00, "GoodRxFrames"},
271 	{0x04, "BroadcastRxFrames"},
272 	{0x08, "MulticastRxFrames"},
273 	{0x0C, "PauseRxFrames"},
274 	{0x10, "RxCrcErrors"},
275 	{0x14, "RxAlignErrors"},
276 	{0x18, "OversizeRxFrames"},
277 	{0x1c, "RxJabbers"},
278 	{0x20, "ShortRxFrames"},
279 	{0x24, "RxFragments"},
280 	{0x30, "RxOctets"},
281 	{0x34, "GoodTxFrames"},
282 	{0x38, "BroadcastTxFrames"},
283 	{0x3c, "MulticastTxFrames"},
284 	{0x40, "PauseTxFrames"},
285 	{0x44, "DeferredTxFrames"},
286 	{0x48, "CollisionsTxFrames"},
287 	{0x4c, "SingleCollisionTxFrames"},
288 	{0x50, "MultipleCollisionTxFrames"},
289 	{0x54, "ExcessiveCollisions"},
290 	{0x58, "LateCollisions"},
291 	{0x5c, "TxUnderrun"},
292 	{0x60, "CarrierSenseErrors"},
293 	{0x64, "TxOctets"},
294 	{0x68, "RxTx64OctetFrames"},
295 	{0x6c, "RxTx65to127OctetFrames"},
296 	{0x70, "RxTx128to255OctetFrames"},
297 	{0x74, "RxTx256to511OctetFrames"},
298 	{0x78, "RxTx512to1024OctetFrames"},
299 	{0x7c, "RxTx1024upOctetFrames"},
300 	{0x80, "NetOctets"},
301 	{0x84, "RxStartOfFrameOverruns"},
302 	{0x88, "RxMiddleOfFrameOverruns"},
303 	{0x8c, "RxDmaOverruns"}
304 };
305 
306 /*
307  * Basic debug support.
308  */
309 
310 static void
311 cpsw_debugf_head(const char *funcname)
312 {
313 	int t = (int)(time_second % (24 * 60 * 60));
314 
315 	printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
316 }
317 
318 static void
319 cpsw_debugf(const char *fmt, ...)
320 {
321 	va_list ap;
322 
323 	va_start(ap, fmt);
324 	vprintf(fmt, ap);
325 	va_end(ap);
326 	printf("\n");
327 
328 }
329 
330 #define	CPSW_DEBUGF(_sc, a) do {					\
331 	if ((_sc)->debug) {						\
332 		cpsw_debugf_head(__func__);				\
333 		cpsw_debugf a;						\
334 	}								\
335 } while (0)
336 
337 /*
338  * Locking macros
339  */
340 #define	CPSW_TX_LOCK(sc) do {						\
341 		mtx_assert(&(sc)->rx.lock, MA_NOTOWNED);		\
342 		mtx_lock(&(sc)->tx.lock);				\
343 } while (0)
344 
345 #define	CPSW_TX_UNLOCK(sc)	mtx_unlock(&(sc)->tx.lock)
346 #define	CPSW_TX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->tx.lock, MA_OWNED)
347 
348 #define	CPSW_RX_LOCK(sc) do {						\
349 		mtx_assert(&(sc)->tx.lock, MA_NOTOWNED);		\
350 		mtx_lock(&(sc)->rx.lock);				\
351 } while (0)
352 
353 #define	CPSW_RX_UNLOCK(sc)		mtx_unlock(&(sc)->rx.lock)
354 #define	CPSW_RX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->rx.lock, MA_OWNED)
355 
356 #define CPSW_PORT_LOCK(_sc) do {					\
357 		mtx_assert(&(_sc)->lock, MA_NOTOWNED);			\
358 		mtx_lock(&(_sc)->lock);					\
359 } while (0)
360 
361 #define	CPSW_PORT_UNLOCK(_sc)	mtx_unlock(&(_sc)->lock)
362 #define	CPSW_PORT_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->lock, MA_OWNED)
363 
364 /*
365  * Read/Write macros
366  */
367 #define	cpsw_read_4(_sc, _reg)		bus_read_4((_sc)->mem_res, (_reg))
368 #define	cpsw_write_4(_sc, _reg, _val)					\
369 	bus_write_4((_sc)->mem_res, (_reg), (_val))
370 
371 #define	cpsw_cpdma_bd_offset(i)	(CPSW_CPPI_RAM_OFFSET + ((i)*16))
372 
373 #define	cpsw_cpdma_bd_paddr(sc, slot)					\
374 	BUS_SPACE_PHYSADDR(sc->mem_res, slot->bd_offset)
375 #define	cpsw_cpdma_read_bd(sc, slot, val)				\
376 	bus_read_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
377 #define	cpsw_cpdma_write_bd(sc, slot, val)				\
378 	bus_write_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
379 #define	cpsw_cpdma_write_bd_next(sc, slot, next_slot)			\
380 	cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
381 #define	cpsw_cpdma_write_bd_flags(sc, slot, val)			\
382 	bus_write_2(sc->mem_res, slot->bd_offset + 14, val)
383 #define	cpsw_cpdma_read_bd_flags(sc, slot)				\
384 	bus_read_2(sc->mem_res, slot->bd_offset + 14)
385 #define	cpsw_write_hdp_slot(sc, queue, slot)				\
386 	cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
387 #define	CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
388 #define	cpsw_read_cp(sc, queue)						\
389 	cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
390 #define	cpsw_write_cp(sc, queue, val)					\
391 	cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
392 #define	cpsw_write_cp_slot(sc, queue, slot)				\
393 	cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
394 
395 #if 0
396 /* XXX temporary function versions for debugging. */
397 static void
398 cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
399 {
400 	uint32_t reg = queue->hdp_offset;
401 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
402 	CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
403 	cpsw_write_4(sc, reg, v);
404 }
405 
406 static void
407 cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
408 {
409 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
410 	CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
411 	cpsw_write_cp(sc, queue, v);
412 }
413 #endif
414 
415 /*
416  * Expanded dump routines for verbose debugging.
417  */
418 static void
419 cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
420 {
421 	static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
422 	    "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
423 	    "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
424 	    "Port0"};
425 	struct cpsw_cpdma_bd bd;
426 	const char *sep;
427 	int i;
428 
429 	cpsw_cpdma_read_bd(sc, slot, &bd);
430 	printf("BD Addr : 0x%08x   Next  : 0x%08x\n",
431 	    cpsw_cpdma_bd_paddr(sc, slot), bd.next);
432 	printf("  BufPtr: 0x%08x   BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
433 	printf("  BufOff: 0x%08x   PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
434 	printf("  Flags: ");
435 	sep = "";
436 	for (i = 0; i < 16; ++i) {
437 		if (bd.flags & (1 << (15 - i))) {
438 			printf("%s%s", sep, flags[i]);
439 			sep = ",";
440 		}
441 	}
442 	printf("\n");
443 	if (slot->mbuf) {
444 		printf("  Ether:  %14D\n",
445 		    (char *)(slot->mbuf->m_data), " ");
446 		printf("  Packet: %16D\n",
447 		    (char *)(slot->mbuf->m_data) + 14, " ");
448 	}
449 }
450 
451 #define	CPSW_DUMP_SLOT(cs, slot) do {				\
452 	IF_DEBUG(sc) {						\
453 		cpsw_dump_slot(sc, slot);			\
454 	}							\
455 } while (0)
456 
457 static void
458 cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
459 {
460 	struct cpsw_slot *slot;
461 	int i = 0;
462 	int others = 0;
463 
464 	STAILQ_FOREACH(slot, q, next) {
465 		if (i > CPSW_TXFRAGS)
466 			++others;
467 		else
468 			cpsw_dump_slot(sc, slot);
469 		++i;
470 	}
471 	if (others)
472 		printf(" ... and %d more.\n", others);
473 	printf("\n");
474 }
475 
476 #define CPSW_DUMP_QUEUE(sc, q) do {				\
477 	IF_DEBUG(sc) {						\
478 		cpsw_dump_queue(sc, q);				\
479 	}							\
480 } while (0)
481 
482 static void
483 cpsw_init_slots(struct cpsw_softc *sc)
484 {
485 	struct cpsw_slot *slot;
486 	int i;
487 
488 	STAILQ_INIT(&sc->avail);
489 
490 	/* Put the slot descriptors onto the global avail list. */
491 	for (i = 0; i < nitems(sc->_slots); i++) {
492 		slot = &sc->_slots[i];
493 		slot->bd_offset = cpsw_cpdma_bd_offset(i);
494 		STAILQ_INSERT_TAIL(&sc->avail, slot, next);
495 	}
496 }
497 
498 static int
499 cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
500 {
501 	const int max_slots = nitems(sc->_slots);
502 	struct cpsw_slot *slot;
503 	int i;
504 
505 	if (requested < 0)
506 		requested = max_slots;
507 
508 	for (i = 0; i < requested; ++i) {
509 		slot = STAILQ_FIRST(&sc->avail);
510 		if (slot == NULL)
511 			return (0);
512 		if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
513 			device_printf(sc->dev, "failed to create dmamap\n");
514 			return (ENOMEM);
515 		}
516 		STAILQ_REMOVE_HEAD(&sc->avail, next);
517 		STAILQ_INSERT_TAIL(&queue->avail, slot, next);
518 		++queue->avail_queue_len;
519 		++queue->queue_slots;
520 	}
521 	return (0);
522 }
523 
524 static void
525 cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
526 {
527 	int error __diagused;
528 
529 	if (slot->dmamap) {
530 		if (slot->mbuf)
531 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
532 		error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
533 		KASSERT(error == 0, ("Mapping still active"));
534 		slot->dmamap = NULL;
535 	}
536 	if (slot->mbuf) {
537 		m_freem(slot->mbuf);
538 		slot->mbuf = NULL;
539 	}
540 }
541 
542 static void
543 cpsw_reset(struct cpsw_softc *sc)
544 {
545 	int i;
546 
547 	callout_stop(&sc->watchdog.callout);
548 
549 	/* Reset RMII/RGMII wrapper. */
550 	cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
551 	while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
552 		;
553 
554 	/* Disable TX and RX interrupts for all cores. */
555 	for (i = 0; i < 3; ++i) {
556 		cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
557 		cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
558 		cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
559 		cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
560 	}
561 
562 	/* Reset CPSW subsystem. */
563 	cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
564 	while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
565 		;
566 
567 	/* Reset Sliver port 1 and 2 */
568 	for (i = 0; i < 2; i++) {
569 		/* Reset */
570 		cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
571 		while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
572 			;
573 	}
574 
575 	/* Reset DMA controller. */
576 	cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
577 	while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
578 		;
579 
580 	/* Disable TX & RX DMA */
581 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
582 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
583 
584 	/* Clear all queues. */
585 	for (i = 0; i < 8; i++) {
586 		cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
587 		cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
588 		cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
589 		cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
590 	}
591 
592 	/* Clear all interrupt Masks */
593 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
594 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
595 }
596 
597 static void
598 cpsw_init(struct cpsw_softc *sc)
599 {
600 	struct cpsw_slot *slot;
601 	uint32_t reg;
602 
603 	/* Disable the interrupt pacing. */
604 	reg = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
605 	reg &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
606 	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, reg);
607 
608 	/* Clear ALE */
609 	cpsw_write_4(sc, CPSW_ALE_CONTROL, CPSW_ALE_CTL_CLEAR_TBL);
610 
611 	/* Enable ALE */
612 	reg = CPSW_ALE_CTL_ENABLE;
613 	if (sc->dualemac)
614 		reg |= CPSW_ALE_CTL_VLAN_AWARE;
615 	cpsw_write_4(sc, CPSW_ALE_CONTROL, reg);
616 
617 	/* Set Host Port Mapping. */
618 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
619 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
620 
621 	/* Initialize ALE: set host port to forwarding(3). */
622 	cpsw_write_4(sc, CPSW_ALE_PORTCTL(0),
623 	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
624 
625 	cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
626 
627 	/* Enable statistics for ports 0, 1 and 2 */
628 	cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
629 
630 	/* Turn off flow control. */
631 	cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
632 
633 	/* Make IP hdr aligned with 4 */
634 	cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
635 
636 	/* Initialize RX Buffer Descriptors */
637 	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), 0);
638 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
639 
640 	/* Enable TX & RX DMA */
641 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
642 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
643 
644 	/* Enable Interrupts for core 0 */
645 	cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
646 	cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
647 	cpsw_write_4(sc, CPSW_WR_C_TX_EN(0), 0xFF);
648 	cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x1F);
649 
650 	/* Enable host Error Interrupt */
651 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
652 
653 	/* Enable interrupts for RX and TX on Channel 0 */
654 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET,
655 	    CPSW_CPDMA_RX_INT(0) | CPSW_CPDMA_RX_INT_THRESH(0));
656 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_SET, 1);
657 
658 	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
659 	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
660 	cpsw_write_4(sc, MDIOCONTROL, MDIOCTL_ENABLE | MDIOCTL_FAULTENB | 0xff);
661 
662 	/* Select MII in GMII_SEL, Internal Delay mode */
663 	//ti_scm_reg_write_4(0x650, 0);
664 
665 	/* Initialize active queues. */
666 	slot = STAILQ_FIRST(&sc->tx.active);
667 	if (slot != NULL)
668 		cpsw_write_hdp_slot(sc, &sc->tx, slot);
669 	slot = STAILQ_FIRST(&sc->rx.active);
670 	if (slot != NULL)
671 		cpsw_write_hdp_slot(sc, &sc->rx, slot);
672 	cpsw_rx_enqueue(sc);
673 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), sc->rx.active_queue_len);
674 	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), CPSW_TXFRAGS);
675 
676 	/* Activate network interface. */
677 	sc->rx.running = 1;
678 	sc->tx.running = 1;
679 	sc->watchdog.timer = 0;
680 	callout_init(&sc->watchdog.callout, 0);
681 	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
682 }
683 
684 /*
685  *
686  * Device Probe, Attach, Detach.
687  *
688  */
689 
690 static int
691 cpsw_probe(device_t dev)
692 {
693 
694 	if (!ofw_bus_status_okay(dev))
695 		return (ENXIO);
696 
697 	if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
698 		return (ENXIO);
699 
700 	device_set_desc(dev, "3-port Switch Ethernet Subsystem");
701 	return (BUS_PROBE_DEFAULT);
702 }
703 
704 static int
705 cpsw_intr_attach(struct cpsw_softc *sc)
706 {
707 	int i;
708 
709 	for (i = 0; i < CPSW_INTR_COUNT; i++) {
710 		if (bus_setup_intr(sc->dev, sc->irq_res[i],
711 		    INTR_TYPE_NET | INTR_MPSAFE, NULL,
712 		    cpsw_intr_cb[i].cb, sc, &sc->ih_cookie[i]) != 0) {
713 			return (-1);
714 		}
715 	}
716 
717 	return (0);
718 }
719 
720 static void
721 cpsw_intr_detach(struct cpsw_softc *sc)
722 {
723 	int i;
724 
725 	for (i = 0; i < CPSW_INTR_COUNT; i++) {
726 		if (sc->ih_cookie[i]) {
727 			bus_teardown_intr(sc->dev, sc->irq_res[i],
728 			    sc->ih_cookie[i]);
729 		}
730 	}
731 }
732 
733 static int
734 cpsw_get_fdt_data(struct cpsw_softc *sc, int port)
735 {
736 	char *name;
737 	int len, phy, vlan;
738 	pcell_t phy_id[3], vlan_id;
739 	phandle_t child;
740 	unsigned long mdio_child_addr;
741 
742 	/* Find any slave with phy-handle/phy_id */
743 	phy = -1;
744 	vlan = -1;
745 	for (child = OF_child(sc->node); child != 0; child = OF_peer(child)) {
746 		if (OF_getprop_alloc(child, "name", (void **)&name) < 0)
747 			continue;
748 		if (sscanf(name, "slave@%lx", &mdio_child_addr) != 1) {
749 			OF_prop_free(name);
750 			continue;
751 		}
752 		OF_prop_free(name);
753 
754 		if (mdio_child_addr != slave_mdio_addr[port] &&
755 		    mdio_child_addr != (slave_mdio_addr[port] & 0xFFF))
756 			continue;
757 
758 		if (fdt_get_phyaddr(child, NULL, &phy, NULL) != 0){
759 			/* Users with old DTB will have phy_id instead */
760 			phy = -1;
761 			len = OF_getproplen(child, "phy_id");
762 			if (len / sizeof(pcell_t) == 2) {
763 				/* Get phy address from fdt */
764 				if (OF_getencprop(child, "phy_id", phy_id, len) > 0)
765 					phy = phy_id[1];
766 			}
767 		}
768 
769 		len = OF_getproplen(child, "dual_emac_res_vlan");
770 		if (len / sizeof(pcell_t) == 1) {
771 			/* Get phy address from fdt */
772 			if (OF_getencprop(child, "dual_emac_res_vlan",
773 			    &vlan_id, len) > 0) {
774 				vlan = vlan_id;
775 			}
776 		}
777 
778 		break;
779 	}
780 	if (phy == -1)
781 		return (ENXIO);
782 	sc->port[port].phy = phy;
783 	sc->port[port].vlan = vlan;
784 
785 	return (0);
786 }
787 
788 static int
789 cpsw_attach(device_t dev)
790 {
791 	int error, i;
792 	struct cpsw_softc *sc;
793 	uint32_t reg;
794 
795 	sc = device_get_softc(dev);
796 	sc->dev = dev;
797 	sc->node = ofw_bus_get_node(dev);
798 	getbinuptime(&sc->attach_uptime);
799 
800 	if (OF_getencprop(sc->node, "active_slave", &sc->active_slave,
801 	    sizeof(sc->active_slave)) <= 0) {
802 		sc->active_slave = 0;
803 	}
804 	if (sc->active_slave > 1)
805 		sc->active_slave = 1;
806 
807 	if (OF_hasprop(sc->node, "dual_emac"))
808 		sc->dualemac = 1;
809 
810 	for (i = 0; i < CPSW_PORTS; i++) {
811 		if (!sc->dualemac && i != sc->active_slave)
812 			continue;
813 		if (cpsw_get_fdt_data(sc, i) != 0) {
814 			device_printf(dev,
815 			    "failed to get PHY address from FDT\n");
816 			return (ENXIO);
817 		}
818 	}
819 
820 	/* Initialize mutexes */
821 	mtx_init(&sc->tx.lock, device_get_nameunit(dev),
822 	    "cpsw TX lock", MTX_DEF);
823 	mtx_init(&sc->rx.lock, device_get_nameunit(dev),
824 	    "cpsw RX lock", MTX_DEF);
825 
826 	/* Allocate IRQ resources */
827 	error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
828 	if (error) {
829 		device_printf(dev, "could not allocate IRQ resources\n");
830 		cpsw_detach(dev);
831 		return (ENXIO);
832 	}
833 
834 	sc->mem_rid = 0;
835 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
836 	    &sc->mem_rid, RF_ACTIVE);
837 	if (sc->mem_res == NULL) {
838 		device_printf(sc->dev, "failed to allocate memory resource\n");
839 		cpsw_detach(dev);
840 		return (ENXIO);
841 	}
842 
843 	reg = cpsw_read_4(sc, CPSW_SS_IDVER);
844 	device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
845 		reg & 0xFF, (reg >> 11) & 0x1F);
846 
847 	cpsw_add_sysctls(sc);
848 
849 	/* Allocate a busdma tag and DMA safe memory for mbufs. */
850 	error = bus_dma_tag_create(
851 		bus_get_dma_tag(sc->dev),	/* parent */
852 		1, 0,				/* alignment, boundary */
853 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
854 		BUS_SPACE_MAXADDR,		/* highaddr */
855 		NULL, NULL,			/* filtfunc, filtfuncarg */
856 		MCLBYTES, CPSW_TXFRAGS,		/* maxsize, nsegments */
857 		MCLBYTES, 0,			/* maxsegsz, flags */
858 		NULL, NULL,			/* lockfunc, lockfuncarg */
859 		&sc->mbuf_dtag);		/* dmatag */
860 	if (error) {
861 		device_printf(dev, "bus_dma_tag_create failed\n");
862 		cpsw_detach(dev);
863 		return (error);
864 	}
865 
866 	/* Allocate a NULL buffer for padding. */
867 	sc->nullpad = malloc(ETHER_MIN_LEN, M_DEVBUF, M_WAITOK | M_ZERO);
868 
869 	cpsw_init_slots(sc);
870 
871 	/* Allocate slots to TX and RX queues. */
872 	STAILQ_INIT(&sc->rx.avail);
873 	STAILQ_INIT(&sc->rx.active);
874 	STAILQ_INIT(&sc->tx.avail);
875 	STAILQ_INIT(&sc->tx.active);
876 	// For now:  128 slots to TX, rest to RX.
877 	// XXX TODO: start with 32/64 and grow dynamically based on demand.
878 	if (cpsw_add_slots(sc, &sc->tx, 128) ||
879 	    cpsw_add_slots(sc, &sc->rx, -1)) {
880 		device_printf(dev, "failed to allocate dmamaps\n");
881 		cpsw_detach(dev);
882 		return (ENOMEM);
883 	}
884 	device_printf(dev, "Initial queue size TX=%d RX=%d\n",
885 	    sc->tx.queue_slots, sc->rx.queue_slots);
886 
887 	sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
888 	sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
889 
890 	if (cpsw_intr_attach(sc) == -1) {
891 		device_printf(dev, "failed to setup interrupts\n");
892 		cpsw_detach(dev);
893 		return (ENXIO);
894 	}
895 
896 #ifdef CPSW_ETHERSWITCH
897 	for (i = 0; i < CPSW_VLANS; i++)
898 		cpsw_vgroups[i].vid = -1;
899 #endif
900 
901 	/* Reset the controller. */
902 	cpsw_reset(sc);
903 	cpsw_init(sc);
904 
905 	for (i = 0; i < CPSW_PORTS; i++) {
906 		if (!sc->dualemac && i != sc->active_slave)
907 			continue;
908 		sc->port[i].dev = device_add_child(dev, "cpsw", i);
909 		if (sc->port[i].dev == NULL) {
910 			cpsw_detach(dev);
911 			return (ENXIO);
912 		}
913 	}
914 	bus_generic_probe(dev);
915 	bus_generic_attach(dev);
916 
917 	return (0);
918 }
919 
920 static int
921 cpsw_detach(device_t dev)
922 {
923 	struct cpsw_softc *sc;
924 	int error, i;
925 
926 	bus_generic_detach(dev);
927  	sc = device_get_softc(dev);
928 
929 	for (i = 0; i < CPSW_PORTS; i++) {
930 		if (sc->port[i].dev)
931 			device_delete_child(dev, sc->port[i].dev);
932 	}
933 
934 	if (device_is_attached(dev)) {
935 		callout_stop(&sc->watchdog.callout);
936 		callout_drain(&sc->watchdog.callout);
937 	}
938 
939 	/* Stop and release all interrupts */
940 	cpsw_intr_detach(sc);
941 
942 	/* Free dmamaps and mbufs */
943 	for (i = 0; i < nitems(sc->_slots); ++i)
944 		cpsw_free_slot(sc, &sc->_slots[i]);
945 
946 	/* Free null padding buffer. */
947 	if (sc->nullpad)
948 		free(sc->nullpad, M_DEVBUF);
949 
950 	/* Free DMA tag */
951 	if (sc->mbuf_dtag) {
952 		error = bus_dma_tag_destroy(sc->mbuf_dtag);
953 		KASSERT(error == 0, ("Unable to destroy DMA tag"));
954 	}
955 
956 	/* Free IO memory handler */
957 	if (sc->mem_res != NULL)
958 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res);
959 	bus_release_resources(dev, irq_res_spec, sc->irq_res);
960 
961 	/* Destroy mutexes */
962 	mtx_destroy(&sc->rx.lock);
963 	mtx_destroy(&sc->tx.lock);
964 
965 	/* Detach the switch device, if present. */
966 	error = bus_generic_detach(dev);
967 	if (error != 0)
968 		return (error);
969 
970 	return (device_delete_children(dev));
971 }
972 
973 static phandle_t
974 cpsw_get_node(device_t bus, device_t dev)
975 {
976 
977 	/* Share controller node with port device. */
978 	return (ofw_bus_get_node(bus));
979 }
980 
981 static int
982 cpswp_probe(device_t dev)
983 {
984 
985 	if (device_get_unit(dev) > 1) {
986 		device_printf(dev, "Only two ports are supported.\n");
987 		return (ENXIO);
988 	}
989 	device_set_desc(dev, "Ethernet Switch Port");
990 
991 	return (BUS_PROBE_DEFAULT);
992 }
993 
994 static int
995 cpswp_attach(device_t dev)
996 {
997 	int error;
998 	if_t ifp;
999 	struct cpswp_softc *sc;
1000 	uint32_t reg;
1001 	uint8_t mac_addr[ETHER_ADDR_LEN];
1002 	phandle_t opp_table;
1003 	struct syscon *syscon;
1004 
1005 	sc = device_get_softc(dev);
1006 	sc->dev = dev;
1007 	sc->pdev = device_get_parent(dev);
1008 	sc->swsc = device_get_softc(sc->pdev);
1009 	sc->unit = device_get_unit(dev);
1010 	sc->phy = sc->swsc->port[sc->unit].phy;
1011 	sc->vlan = sc->swsc->port[sc->unit].vlan;
1012 	if (sc->swsc->dualemac && sc->vlan == -1)
1013 		sc->vlan = sc->unit + 1;
1014 
1015 	if (sc->unit == 0) {
1016 		sc->physel = MDIOUSERPHYSEL0;
1017 		sc->phyaccess = MDIOUSERACCESS0;
1018 	} else {
1019 		sc->physel = MDIOUSERPHYSEL1;
1020 		sc->phyaccess = MDIOUSERACCESS1;
1021 	}
1022 
1023 	mtx_init(&sc->lock, device_get_nameunit(dev), "cpsw port lock",
1024 	    MTX_DEF);
1025 
1026 	/* Allocate network interface */
1027 	ifp = sc->ifp = if_alloc(IFT_ETHER);
1028 	if (ifp == NULL) {
1029 		cpswp_detach(dev);
1030 		return (ENXIO);
1031 	}
1032 
1033 	if_initname(ifp, device_get_name(sc->dev), sc->unit);
1034 	if_setsoftc(ifp, sc);
1035 	if_setflags(ifp, IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST);
1036 
1037 	if_setcapenable(ifp, if_getcapabilities(ifp));
1038 
1039 	if_setinitfn(ifp, cpswp_init);
1040 	if_setstartfn(ifp, cpswp_start);
1041 	if_setioctlfn(ifp, cpswp_ioctl);
1042 
1043 	if_setsendqlen(ifp, sc->swsc->tx.queue_slots);
1044 	if_setsendqready(ifp);
1045 
1046 	/* FIXME: For now; Go and kidnap syscon from opp-table */
1047 	/* ti,cpsw actually have an optional syscon reference but only for am33xx?? */
1048 	opp_table = OF_finddevice("/opp-table");
1049 	if (opp_table == -1) {
1050 		device_printf(dev, "Cant find /opp-table\n");
1051 		cpswp_detach(dev);
1052 		return (ENXIO);
1053 	}
1054 	if (!OF_hasprop(opp_table, "syscon")) {
1055 		device_printf(dev, "/opp-table doesnt have required syscon property\n");
1056 		cpswp_detach(dev);
1057 		return (ENXIO);
1058 	}
1059 	if (syscon_get_by_ofw_property(dev, opp_table, "syscon", &syscon) != 0) {
1060 		device_printf(dev, "Failed to get syscon\n");
1061 		cpswp_detach(dev);
1062 		return (ENXIO);
1063 	}
1064 
1065 	/* Get high part of MAC address from control module (mac_id[0|1]_hi) */
1066 	reg = SYSCON_READ_4(syscon, SCM_MAC_ID0_HI + sc->unit * 8);
1067 	mac_addr[0] = reg & 0xFF;
1068 	mac_addr[1] = (reg >>  8) & 0xFF;
1069 	mac_addr[2] = (reg >> 16) & 0xFF;
1070 	mac_addr[3] = (reg >> 24) & 0xFF;
1071 
1072 	/* Get low part of MAC address from control module (mac_id[0|1]_lo) */
1073 	reg = SYSCON_READ_4(syscon, SCM_MAC_ID0_LO + sc->unit * 8);
1074 	mac_addr[4] = reg & 0xFF;
1075 	mac_addr[5] = (reg >>  8) & 0xFF;
1076 
1077 	error = mii_attach(dev, &sc->miibus, ifp, cpswp_ifmedia_upd,
1078 	    cpswp_ifmedia_sts, BMSR_DEFCAPMASK, sc->phy, MII_OFFSET_ANY, 0);
1079 	if (error) {
1080 		device_printf(dev, "attaching PHYs failed\n");
1081 		cpswp_detach(dev);
1082 		return (error);
1083 	}
1084 	sc->mii = device_get_softc(sc->miibus);
1085 
1086 	/* Select PHY and enable interrupts */
1087 	cpsw_write_4(sc->swsc, sc->physel,
1088 	    MDIO_PHYSEL_LINKINTENB | (sc->phy & 0x1F));
1089 
1090 	ether_ifattach(sc->ifp, mac_addr);
1091 	callout_init(&sc->mii_callout, 0);
1092 
1093 	return (0);
1094 }
1095 
1096 static int
1097 cpswp_detach(device_t dev)
1098 {
1099 	struct cpswp_softc *sc;
1100 
1101 	sc = device_get_softc(dev);
1102 	CPSW_DEBUGF(sc->swsc, (""));
1103 	if (device_is_attached(dev)) {
1104 		ether_ifdetach(sc->ifp);
1105 		CPSW_PORT_LOCK(sc);
1106 		cpswp_stop_locked(sc);
1107 		CPSW_PORT_UNLOCK(sc);
1108 		callout_drain(&sc->mii_callout);
1109 	}
1110 
1111 	bus_generic_detach(dev);
1112 
1113 	if_free(sc->ifp);
1114 	mtx_destroy(&sc->lock);
1115 
1116 	return (0);
1117 }
1118 
1119 /*
1120  *
1121  * Init/Shutdown.
1122  *
1123  */
1124 
1125 static int
1126 cpsw_ports_down(struct cpsw_softc *sc)
1127 {
1128 	struct cpswp_softc *psc;
1129 	if_t ifp1, ifp2;
1130 
1131 	if (!sc->dualemac)
1132 		return (1);
1133 	psc = device_get_softc(sc->port[0].dev);
1134 	ifp1 = psc->ifp;
1135 	psc = device_get_softc(sc->port[1].dev);
1136 	ifp2 = psc->ifp;
1137 	if ((if_getflags(ifp1) & IFF_UP) == 0 && (if_getflags(ifp2) & IFF_UP) == 0)
1138 		return (1);
1139 
1140 	return (0);
1141 }
1142 
1143 static void
1144 cpswp_init(void *arg)
1145 {
1146 	struct cpswp_softc *sc = arg;
1147 
1148 	CPSW_DEBUGF(sc->swsc, (""));
1149 	CPSW_PORT_LOCK(sc);
1150 	cpswp_init_locked(arg);
1151 	CPSW_PORT_UNLOCK(sc);
1152 }
1153 
1154 static void
1155 cpswp_init_locked(void *arg)
1156 {
1157 #ifdef CPSW_ETHERSWITCH
1158 	int i;
1159 #endif
1160 	struct cpswp_softc *sc = arg;
1161 	if_t ifp;
1162 	uint32_t reg;
1163 
1164 	CPSW_DEBUGF(sc->swsc, (""));
1165 	CPSW_PORT_LOCK_ASSERT(sc);
1166 	ifp = sc->ifp;
1167 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1168 		return;
1169 
1170 	getbinuptime(&sc->init_uptime);
1171 
1172 	if (!sc->swsc->rx.running && !sc->swsc->tx.running) {
1173 		/* Reset the controller. */
1174 		cpsw_reset(sc->swsc);
1175 		cpsw_init(sc->swsc);
1176 	}
1177 
1178 	/* Set Slave Mapping. */
1179 	cpsw_write_4(sc->swsc, CPSW_SL_RX_PRI_MAP(sc->unit), 0x76543210);
1180 	cpsw_write_4(sc->swsc, CPSW_PORT_P_TX_PRI_MAP(sc->unit + 1),
1181 	    0x33221100);
1182 	cpsw_write_4(sc->swsc, CPSW_SL_RX_MAXLEN(sc->unit), 0x5f2);
1183 	/* Enable MAC RX/TX modules. */
1184 	/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
1185 	/* Huh?  Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
1186 	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1187 	reg |= CPSW_SL_MACTL_GMII_ENABLE;
1188 	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1189 
1190 	/* Initialize ALE: set port to forwarding, initialize addrs */
1191 	cpsw_write_4(sc->swsc, CPSW_ALE_PORTCTL(sc->unit + 1),
1192 	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
1193 	cpswp_ale_update_addresses(sc, 1);
1194 
1195 	if (sc->swsc->dualemac) {
1196 		/* Set Port VID. */
1197 		cpsw_write_4(sc->swsc, CPSW_PORT_P_VLAN(sc->unit + 1),
1198 		    sc->vlan & 0xfff);
1199 		cpsw_ale_update_vlan_table(sc->swsc, sc->vlan,
1200 		    (1 << (sc->unit + 1)) | (1 << 0), /* Member list */
1201 		    (1 << (sc->unit + 1)) | (1 << 0), /* Untagged egress */
1202 		    (1 << (sc->unit + 1)) | (1 << 0), 0); /* mcast reg flood */
1203 #ifdef CPSW_ETHERSWITCH
1204 		for (i = 0; i < CPSW_VLANS; i++) {
1205 			if (cpsw_vgroups[i].vid != -1)
1206 				continue;
1207 			cpsw_vgroups[i].vid = sc->vlan;
1208 			break;
1209 		}
1210 #endif
1211 	}
1212 
1213 	mii_mediachg(sc->mii);
1214 	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
1215 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
1216 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1217 }
1218 
1219 static int
1220 cpsw_shutdown(device_t dev)
1221 {
1222 	struct cpsw_softc *sc;
1223 	struct cpswp_softc *psc;
1224 	int i;
1225 
1226  	sc = device_get_softc(dev);
1227 	CPSW_DEBUGF(sc, (""));
1228 	for (i = 0; i < CPSW_PORTS; i++) {
1229 		if (!sc->dualemac && i != sc->active_slave)
1230 			continue;
1231 		psc = device_get_softc(sc->port[i].dev);
1232 		CPSW_PORT_LOCK(psc);
1233 		cpswp_stop_locked(psc);
1234 		CPSW_PORT_UNLOCK(psc);
1235 	}
1236 
1237 	return (0);
1238 }
1239 
1240 static void
1241 cpsw_rx_teardown(struct cpsw_softc *sc)
1242 {
1243 	int i = 0;
1244 
1245 	CPSW_RX_LOCK(sc);
1246 	CPSW_DEBUGF(sc, ("starting RX teardown"));
1247 	sc->rx.teardown = 1;
1248 	cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
1249 	CPSW_RX_UNLOCK(sc);
1250 	while (sc->rx.running) {
1251 		if (++i > 10) {
1252 			device_printf(sc->dev,
1253 			    "Unable to cleanly shutdown receiver\n");
1254 			return;
1255 		}
1256 		DELAY(200);
1257 	}
1258 	if (!sc->rx.running)
1259 		CPSW_DEBUGF(sc, ("finished RX teardown (%d retries)", i));
1260 }
1261 
1262 static void
1263 cpsw_tx_teardown(struct cpsw_softc *sc)
1264 {
1265 	int i = 0;
1266 
1267 	CPSW_TX_LOCK(sc);
1268 	CPSW_DEBUGF(sc, ("starting TX teardown"));
1269 	/* Start the TX queue teardown if queue is not empty. */
1270 	if (STAILQ_FIRST(&sc->tx.active) != NULL)
1271 		cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
1272 	else
1273 		sc->tx.teardown = 1;
1274 	cpsw_tx_dequeue(sc);
1275 	while (sc->tx.running && ++i < 10) {
1276 		DELAY(200);
1277 		cpsw_tx_dequeue(sc);
1278 	}
1279 	if (sc->tx.running) {
1280 		device_printf(sc->dev,
1281 		    "Unable to cleanly shutdown transmitter\n");
1282 	}
1283 	CPSW_DEBUGF(sc,
1284 	    ("finished TX teardown (%d retries, %d idle buffers)", i,
1285 	     sc->tx.active_queue_len));
1286 	CPSW_TX_UNLOCK(sc);
1287 }
1288 
1289 static void
1290 cpswp_stop_locked(struct cpswp_softc *sc)
1291 {
1292 	if_t ifp;
1293 	uint32_t reg;
1294 
1295 	ifp = sc->ifp;
1296 	CPSW_DEBUGF(sc->swsc, (""));
1297 	CPSW_PORT_LOCK_ASSERT(sc);
1298 
1299 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1300 		return;
1301 
1302 	/* Disable interface */
1303 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1304 	if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1305 
1306 	/* Stop ticker */
1307 	callout_stop(&sc->mii_callout);
1308 
1309 	/* Tear down the RX/TX queues. */
1310 	if (cpsw_ports_down(sc->swsc)) {
1311 		cpsw_rx_teardown(sc->swsc);
1312 		cpsw_tx_teardown(sc->swsc);
1313 	}
1314 
1315 	/* Stop MAC RX/TX modules. */
1316 	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1317 	reg &= ~CPSW_SL_MACTL_GMII_ENABLE;
1318 	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1319 
1320 	if (cpsw_ports_down(sc->swsc)) {
1321 		/* Capture stats before we reset controller. */
1322 		cpsw_stats_collect(sc->swsc);
1323 
1324 		cpsw_reset(sc->swsc);
1325 		cpsw_init(sc->swsc);
1326 	}
1327 }
1328 
1329 /*
1330  *  Suspend/Resume.
1331  */
1332 
1333 static int
1334 cpsw_suspend(device_t dev)
1335 {
1336 	struct cpsw_softc *sc;
1337 	struct cpswp_softc *psc;
1338 	int i;
1339 
1340 	sc = device_get_softc(dev);
1341 	CPSW_DEBUGF(sc, (""));
1342 	for (i = 0; i < CPSW_PORTS; i++) {
1343 		if (!sc->dualemac && i != sc->active_slave)
1344 			continue;
1345 		psc = device_get_softc(sc->port[i].dev);
1346 		CPSW_PORT_LOCK(psc);
1347 		cpswp_stop_locked(psc);
1348 		CPSW_PORT_UNLOCK(psc);
1349 	}
1350 
1351 	return (0);
1352 }
1353 
1354 static int
1355 cpsw_resume(device_t dev)
1356 {
1357 	struct cpsw_softc *sc;
1358 
1359 	sc  = device_get_softc(dev);
1360 	CPSW_DEBUGF(sc, ("UNIMPLEMENTED"));
1361 
1362 	return (0);
1363 }
1364 
1365 /*
1366  *
1367  *  IOCTL
1368  *
1369  */
1370 
1371 static void
1372 cpsw_set_promisc(struct cpswp_softc *sc, int set)
1373 {
1374 	uint32_t reg;
1375 
1376 	/*
1377 	 * Enabling promiscuous mode requires ALE_BYPASS to be enabled.
1378 	 * That disables the ALE forwarding logic and causes every
1379 	 * packet to be sent only to the host port.  In bypass mode,
1380 	 * the ALE processes host port transmit packets the same as in
1381 	 * normal mode.
1382 	 */
1383 	reg = cpsw_read_4(sc->swsc, CPSW_ALE_CONTROL);
1384 	reg &= ~CPSW_ALE_CTL_BYPASS;
1385 	if (set)
1386 		reg |= CPSW_ALE_CTL_BYPASS;
1387 	cpsw_write_4(sc->swsc, CPSW_ALE_CONTROL, reg);
1388 }
1389 
1390 static void
1391 cpsw_set_allmulti(struct cpswp_softc *sc, int set)
1392 {
1393 	if (set) {
1394 		printf("All-multicast mode unimplemented\n");
1395 	}
1396 }
1397 
1398 static int
1399 cpswp_ioctl(if_t ifp, u_long command, caddr_t data)
1400 {
1401 	struct cpswp_softc *sc;
1402 	struct ifreq *ifr;
1403 	int error;
1404 	uint32_t changed;
1405 
1406 	error = 0;
1407 	sc = if_getsoftc(ifp);
1408 	ifr = (struct ifreq *)data;
1409 
1410 	switch (command) {
1411 	case SIOCSIFCAP:
1412 		changed = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
1413 		if (changed & IFCAP_HWCSUM) {
1414 			if ((ifr->ifr_reqcap & changed) & IFCAP_HWCSUM)
1415 				if_setcapenablebit(ifp, IFCAP_HWCSUM, 0);
1416 			else
1417 				if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
1418 		}
1419 		error = 0;
1420 		break;
1421 	case SIOCSIFFLAGS:
1422 		CPSW_PORT_LOCK(sc);
1423 		if (if_getflags(ifp) & IFF_UP) {
1424 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1425 				changed = if_getflags(ifp) ^ sc->if_flags;
1426 				CPSW_DEBUGF(sc->swsc,
1427 				    ("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)",
1428 				    changed));
1429 				if (changed & IFF_PROMISC)
1430 					cpsw_set_promisc(sc,
1431 					    if_getflags(ifp) & IFF_PROMISC);
1432 				if (changed & IFF_ALLMULTI)
1433 					cpsw_set_allmulti(sc,
1434 					    if_getflags(ifp) & IFF_ALLMULTI);
1435 			} else {
1436 				CPSW_DEBUGF(sc->swsc,
1437 				    ("SIOCSIFFLAGS: starting up"));
1438 				cpswp_init_locked(sc);
1439 			}
1440 		} else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1441 			CPSW_DEBUGF(sc->swsc, ("SIOCSIFFLAGS: shutting down"));
1442 			cpswp_stop_locked(sc);
1443 		}
1444 
1445 		sc->if_flags = if_getflags(ifp);
1446 		CPSW_PORT_UNLOCK(sc);
1447 		break;
1448 	case SIOCADDMULTI:
1449 		cpswp_ale_update_addresses(sc, 0);
1450 		break;
1451 	case SIOCDELMULTI:
1452 		/* Ugh.  DELMULTI doesn't provide the specific address
1453 		   being removed, so the best we can do is remove
1454 		   everything and rebuild it all. */
1455 		cpswp_ale_update_addresses(sc, 1);
1456 		break;
1457 	case SIOCGIFMEDIA:
1458 	case SIOCSIFMEDIA:
1459 		error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
1460 		break;
1461 	default:
1462 		error = ether_ioctl(ifp, command, data);
1463 	}
1464 	return (error);
1465 }
1466 
1467 /*
1468  *
1469  * MIIBUS
1470  *
1471  */
1472 static int
1473 cpswp_miibus_ready(struct cpsw_softc *sc, uint32_t reg)
1474 {
1475 	uint32_t r, retries = CPSW_MIIBUS_RETRIES;
1476 
1477 	while (--retries) {
1478 		r = cpsw_read_4(sc, reg);
1479 		if ((r & MDIO_PHYACCESS_GO) == 0)
1480 			return (1);
1481 		DELAY(CPSW_MIIBUS_DELAY);
1482 	}
1483 
1484 	return (0);
1485 }
1486 
1487 static int
1488 cpswp_miibus_readreg(device_t dev, int phy, int reg)
1489 {
1490 	struct cpswp_softc *sc;
1491 	uint32_t cmd, r;
1492 
1493 	sc = device_get_softc(dev);
1494 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1495 		device_printf(dev, "MDIO not ready to read\n");
1496 		return (0);
1497 	}
1498 
1499 	/* Set GO, reg, phy */
1500 	cmd = MDIO_PHYACCESS_GO | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
1501 	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1502 
1503 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1504 		device_printf(dev, "MDIO timed out during read\n");
1505 		return (0);
1506 	}
1507 
1508 	r = cpsw_read_4(sc->swsc, sc->phyaccess);
1509 	if ((r & MDIO_PHYACCESS_ACK) == 0) {
1510 		device_printf(dev, "Failed to read from PHY.\n");
1511 		r = 0;
1512 	}
1513 	return (r & 0xFFFF);
1514 }
1515 
1516 static int
1517 cpswp_miibus_writereg(device_t dev, int phy, int reg, int value)
1518 {
1519 	struct cpswp_softc *sc;
1520 	uint32_t cmd;
1521 
1522 	sc = device_get_softc(dev);
1523 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1524 		device_printf(dev, "MDIO not ready to write\n");
1525 		return (0);
1526 	}
1527 
1528 	/* Set GO, WRITE, reg, phy, and value */
1529 	cmd = MDIO_PHYACCESS_GO | MDIO_PHYACCESS_WRITE |
1530 	    (reg & 0x1F) << 21 | (phy & 0x1F) << 16 | (value & 0xFFFF);
1531 	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1532 
1533 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1534 		device_printf(dev, "MDIO timed out during write\n");
1535 		return (0);
1536 	}
1537 
1538 	return (0);
1539 }
1540 
1541 static void
1542 cpswp_miibus_statchg(device_t dev)
1543 {
1544 	struct cpswp_softc *sc;
1545 	uint32_t mac_control, reg;
1546 
1547 	sc = device_get_softc(dev);
1548 	CPSW_DEBUGF(sc->swsc, (""));
1549 
1550 	reg = CPSW_SL_MACCONTROL(sc->unit);
1551 	mac_control = cpsw_read_4(sc->swsc, reg);
1552 	mac_control &= ~(CPSW_SL_MACTL_GIG | CPSW_SL_MACTL_IFCTL_A |
1553 	    CPSW_SL_MACTL_IFCTL_B | CPSW_SL_MACTL_FULLDUPLEX);
1554 
1555 	switch(IFM_SUBTYPE(sc->mii->mii_media_active)) {
1556 	case IFM_1000_SX:
1557 	case IFM_1000_LX:
1558 	case IFM_1000_CX:
1559 	case IFM_1000_T:
1560 		mac_control |= CPSW_SL_MACTL_GIG;
1561 		break;
1562 
1563 	case IFM_100_TX:
1564 		mac_control |= CPSW_SL_MACTL_IFCTL_A;
1565 		break;
1566 	}
1567 	if (sc->mii->mii_media_active & IFM_FDX)
1568 		mac_control |= CPSW_SL_MACTL_FULLDUPLEX;
1569 
1570 	cpsw_write_4(sc->swsc, reg, mac_control);
1571 }
1572 
1573 /*
1574  *
1575  * Transmit/Receive Packets.
1576  *
1577  */
1578 static void
1579 cpsw_intr_rx(void *arg)
1580 {
1581 	struct cpsw_softc *sc;
1582 	if_t ifp;
1583 	struct mbuf *received, *next;
1584 
1585 	sc = (struct cpsw_softc *)arg;
1586 	CPSW_RX_LOCK(sc);
1587 	if (sc->rx.teardown) {
1588 		sc->rx.running = 0;
1589 		sc->rx.teardown = 0;
1590 		cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
1591 	}
1592 	received = cpsw_rx_dequeue(sc);
1593 	cpsw_rx_enqueue(sc);
1594 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
1595 	CPSW_RX_UNLOCK(sc);
1596 
1597 	while (received != NULL) {
1598 		next = received->m_nextpkt;
1599 		received->m_nextpkt = NULL;
1600 		ifp = received->m_pkthdr.rcvif;
1601 		if_input(ifp, received);
1602 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1603 		received = next;
1604 	}
1605 }
1606 
1607 static struct mbuf *
1608 cpsw_rx_dequeue(struct cpsw_softc *sc)
1609 {
1610 	int nsegs, port, removed;
1611 	struct cpsw_cpdma_bd bd;
1612 	struct cpsw_slot *last, *slot;
1613 	struct cpswp_softc *psc;
1614 	struct mbuf *m, *m0, *mb_head, *mb_tail;
1615 	uint16_t m0_flags;
1616 
1617 	nsegs = 0;
1618 	m0 = NULL;
1619 	last = NULL;
1620 	mb_head = NULL;
1621 	mb_tail = NULL;
1622 	removed = 0;
1623 
1624 	/* Pull completed packets off hardware RX queue. */
1625 	while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
1626 		cpsw_cpdma_read_bd(sc, slot, &bd);
1627 
1628 		/*
1629 		 * Stop on packets still in use by hardware, but do not stop
1630 		 * on packets with the teardown complete flag, they will be
1631 		 * discarded later.
1632 		 */
1633 		if ((bd.flags & (CPDMA_BD_OWNER | CPDMA_BD_TDOWNCMPLT)) ==
1634 		    CPDMA_BD_OWNER)
1635 			break;
1636 
1637 		last = slot;
1638 		++removed;
1639 		STAILQ_REMOVE_HEAD(&sc->rx.active, next);
1640 		STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
1641 
1642 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
1643 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1644 
1645 		m = slot->mbuf;
1646 		slot->mbuf = NULL;
1647 
1648 		if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
1649 			CPSW_DEBUGF(sc, ("RX teardown is complete"));
1650 			m_freem(m);
1651 			sc->rx.running = 0;
1652 			sc->rx.teardown = 0;
1653 			break;
1654 		}
1655 
1656 		port = (bd.flags & CPDMA_BD_PORT_MASK) - 1;
1657 		KASSERT(port >= 0 && port <= 1,
1658 		    ("patcket received with invalid port: %d", port));
1659 		psc = device_get_softc(sc->port[port].dev);
1660 
1661 		/* Set up mbuf */
1662 		m->m_data += bd.bufoff;
1663 		m->m_len = bd.buflen;
1664 		if (bd.flags & CPDMA_BD_SOP) {
1665 			m->m_pkthdr.len = bd.pktlen;
1666 			m->m_pkthdr.rcvif = psc->ifp;
1667 			m->m_flags |= M_PKTHDR;
1668 			m0_flags = bd.flags;
1669 			m0 = m;
1670 		}
1671 		nsegs++;
1672 		m->m_next = NULL;
1673 		m->m_nextpkt = NULL;
1674 		if (bd.flags & CPDMA_BD_EOP && m0 != NULL) {
1675 			if (m0_flags & CPDMA_BD_PASS_CRC)
1676 				m_adj(m0, -ETHER_CRC_LEN);
1677 			m0_flags = 0;
1678 			m0 = NULL;
1679 			if (nsegs > sc->rx.longest_chain)
1680 				sc->rx.longest_chain = nsegs;
1681 			nsegs = 0;
1682 		}
1683 
1684 		if ((if_getcapenable(psc->ifp) & IFCAP_RXCSUM) != 0) {
1685 			/* check for valid CRC by looking into pkt_err[5:4] */
1686 			if ((bd.flags &
1687 			    (CPDMA_BD_SOP | CPDMA_BD_PKT_ERR_MASK)) ==
1688 			    CPDMA_BD_SOP) {
1689 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1690 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1691 				m->m_pkthdr.csum_data = 0xffff;
1692 			}
1693 		}
1694 
1695 		if (STAILQ_FIRST(&sc->rx.active) != NULL &&
1696 		    (bd.flags & (CPDMA_BD_EOP | CPDMA_BD_EOQ)) ==
1697 		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
1698 			cpsw_write_hdp_slot(sc, &sc->rx,
1699 			    STAILQ_FIRST(&sc->rx.active));
1700 			sc->rx.queue_restart++;
1701 		}
1702 
1703 		/* Add mbuf to packet list to be returned. */
1704 		if (mb_tail != NULL && (bd.flags & CPDMA_BD_SOP)) {
1705 			mb_tail->m_nextpkt = m;
1706 		} else if (mb_tail != NULL) {
1707 			mb_tail->m_next = m;
1708 		} else if (mb_tail == NULL && (bd.flags & CPDMA_BD_SOP) == 0) {
1709 			if (bootverbose)
1710 				printf(
1711 				    "%s: %s: discanding fragment packet w/o header\n",
1712 				    __func__, if_name(psc->ifp));
1713 			m_freem(m);
1714 			continue;
1715 		} else {
1716 			mb_head = m;
1717 		}
1718 		mb_tail = m;
1719 	}
1720 
1721 	if (removed != 0) {
1722 		cpsw_write_cp_slot(sc, &sc->rx, last);
1723 		sc->rx.queue_removes += removed;
1724 		sc->rx.avail_queue_len += removed;
1725 		sc->rx.active_queue_len -= removed;
1726 		if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
1727 			sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
1728 		CPSW_DEBUGF(sc, ("Removed %d received packet(s) from RX queue", removed));
1729 	}
1730 
1731 	return (mb_head);
1732 }
1733 
1734 static void
1735 cpsw_rx_enqueue(struct cpsw_softc *sc)
1736 {
1737 	bus_dma_segment_t seg[1];
1738 	struct cpsw_cpdma_bd bd;
1739 	struct cpsw_slot *first_new_slot, *last_old_slot, *next, *slot;
1740 	int error, nsegs, added = 0;
1741 
1742 	/* Register new mbufs with hardware. */
1743 	first_new_slot = NULL;
1744 	last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
1745 	while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
1746 		if (first_new_slot == NULL)
1747 			first_new_slot = slot;
1748 		if (slot->mbuf == NULL) {
1749 			slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1750 			if (slot->mbuf == NULL) {
1751 				device_printf(sc->dev,
1752 				    "Unable to fill RX queue\n");
1753 				break;
1754 			}
1755 			slot->mbuf->m_len =
1756 			    slot->mbuf->m_pkthdr.len =
1757 			    slot->mbuf->m_ext.ext_size;
1758 		}
1759 
1760 		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1761 		    slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
1762 
1763 		KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
1764 		KASSERT(error == 0, ("DMA error (error=%d)", error));
1765 		if (error != 0 || nsegs != 1) {
1766 			device_printf(sc->dev,
1767 			    "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
1768 			    __func__, nsegs, error);
1769 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1770 			m_freem(slot->mbuf);
1771 			slot->mbuf = NULL;
1772 			break;
1773 		}
1774 
1775 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
1776 
1777 		/* Create and submit new rx descriptor. */
1778 		if ((next = STAILQ_NEXT(slot, next)) != NULL)
1779 			bd.next = cpsw_cpdma_bd_paddr(sc, next);
1780 		else
1781 			bd.next = 0;
1782 		bd.bufptr = seg->ds_addr;
1783 		bd.bufoff = 0;
1784 		bd.buflen = MCLBYTES - 1;
1785 		bd.pktlen = bd.buflen;
1786 		bd.flags = CPDMA_BD_OWNER;
1787 		cpsw_cpdma_write_bd(sc, slot, &bd);
1788 		++added;
1789 
1790 		STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
1791 		STAILQ_INSERT_TAIL(&sc->rx.active, slot, next);
1792 	}
1793 
1794 	if (added == 0 || first_new_slot == NULL)
1795 		return;
1796 
1797 	CPSW_DEBUGF(sc, ("Adding %d buffers to RX queue", added));
1798 
1799 	/* Link new entries to hardware RX queue. */
1800 	if (last_old_slot == NULL) {
1801 		/* Start a fresh queue. */
1802 		cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1803 	} else {
1804 		/* Add buffers to end of current queue. */
1805 		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1806 	}
1807 	sc->rx.queue_adds += added;
1808 	sc->rx.avail_queue_len -= added;
1809 	sc->rx.active_queue_len += added;
1810 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), added);
1811 	if (sc->rx.active_queue_len > sc->rx.max_active_queue_len)
1812 		sc->rx.max_active_queue_len = sc->rx.active_queue_len;
1813 }
1814 
1815 static void
1816 cpswp_start(if_t ifp)
1817 {
1818 	struct cpswp_softc *sc;
1819 
1820 	sc = if_getsoftc(ifp);
1821 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
1822 	    sc->swsc->tx.running == 0) {
1823 		return;
1824 	}
1825 	CPSW_TX_LOCK(sc->swsc);
1826 	cpswp_tx_enqueue(sc);
1827 	cpsw_tx_dequeue(sc->swsc);
1828 	CPSW_TX_UNLOCK(sc->swsc);
1829 }
1830 
1831 static void
1832 cpsw_intr_tx(void *arg)
1833 {
1834 	struct cpsw_softc *sc;
1835 
1836 	sc = (struct cpsw_softc *)arg;
1837 	CPSW_TX_LOCK(sc);
1838 	if (cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)) == 0xfffffffc)
1839 		cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1840 	cpsw_tx_dequeue(sc);
1841 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 2);
1842 	CPSW_TX_UNLOCK(sc);
1843 }
1844 
1845 static void
1846 cpswp_tx_enqueue(struct cpswp_softc *sc)
1847 {
1848 	bus_dma_segment_t segs[CPSW_TXFRAGS];
1849 	struct cpsw_cpdma_bd bd;
1850 	struct cpsw_slot *first_new_slot, *last, *last_old_slot, *next, *slot;
1851 	struct mbuf *m0;
1852 	int error, nsegs, seg, added = 0, padlen;
1853 
1854 	/* Pull pending packets from IF queue and prep them for DMA. */
1855 	last = NULL;
1856 	first_new_slot = NULL;
1857 	last_old_slot = STAILQ_LAST(&sc->swsc->tx.active, cpsw_slot, next);
1858 	while ((slot = STAILQ_FIRST(&sc->swsc->tx.avail)) != NULL) {
1859 		m0 = if_dequeue(sc->ifp);
1860 		if (m0 == NULL)
1861 			break;
1862 
1863 		slot->mbuf = m0;
1864 		padlen = ETHER_MIN_LEN - ETHER_CRC_LEN - m0->m_pkthdr.len;
1865 		if (padlen < 0)
1866 			padlen = 0;
1867 		else if (padlen > 0)
1868 			m_append(slot->mbuf, padlen, sc->swsc->nullpad);
1869 
1870 		/* Create mapping in DMA memory */
1871 		error = bus_dmamap_load_mbuf_sg(sc->swsc->mbuf_dtag,
1872 		    slot->dmamap, slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1873 		/* If the packet is too fragmented, try to simplify. */
1874 		if (error == EFBIG ||
1875 		    (error == 0 && nsegs > sc->swsc->tx.avail_queue_len)) {
1876 			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1877 			m0 = m_defrag(slot->mbuf, M_NOWAIT);
1878 			if (m0 == NULL) {
1879 				device_printf(sc->dev,
1880 				    "Can't defragment packet; dropping\n");
1881 				m_freem(slot->mbuf);
1882 			} else {
1883 				CPSW_DEBUGF(sc->swsc,
1884 				    ("Requeueing defragmented packet"));
1885 				if_sendq_prepend(sc->ifp, m0);
1886 			}
1887 			slot->mbuf = NULL;
1888 			continue;
1889 		}
1890 		if (error != 0) {
1891 			device_printf(sc->dev,
1892 			    "%s: Can't setup DMA (error=%d), dropping packet\n",
1893 			    __func__, error);
1894 			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1895 			m_freem(slot->mbuf);
1896 			slot->mbuf = NULL;
1897 			break;
1898 		}
1899 
1900 		bus_dmamap_sync(sc->swsc->mbuf_dtag, slot->dmamap,
1901 				BUS_DMASYNC_PREWRITE);
1902 
1903 		CPSW_DEBUGF(sc->swsc,
1904 		    ("Queueing TX packet: %d segments + %d pad bytes",
1905 		    nsegs, padlen));
1906 
1907 		if (first_new_slot == NULL)
1908 			first_new_slot = slot;
1909 
1910 		/* Link from the previous descriptor. */
1911 		if (last != NULL)
1912 			cpsw_cpdma_write_bd_next(sc->swsc, last, slot);
1913 
1914 		slot->ifp = sc->ifp;
1915 
1916 		/* If there is only one segment, the for() loop
1917 		 * gets skipped and the single buffer gets set up
1918 		 * as both SOP and EOP. */
1919 		if (nsegs > 1) {
1920 			next = STAILQ_NEXT(slot, next);
1921 			bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1922 		} else
1923 			bd.next = 0;
1924 		/* Start by setting up the first buffer. */
1925 		bd.bufptr = segs[0].ds_addr;
1926 		bd.bufoff = 0;
1927 		bd.buflen = segs[0].ds_len;
1928 		bd.pktlen = m_length(slot->mbuf, NULL);
1929 		bd.flags =  CPDMA_BD_SOP | CPDMA_BD_OWNER;
1930 		if (sc->swsc->dualemac) {
1931 			bd.flags |= CPDMA_BD_TO_PORT;
1932 			bd.flags |= ((sc->unit + 1) & CPDMA_BD_PORT_MASK);
1933 		}
1934 		for (seg = 1; seg < nsegs; ++seg) {
1935 			/* Save the previous buffer (which isn't EOP) */
1936 			cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1937 			STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1938 			STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1939 			slot = STAILQ_FIRST(&sc->swsc->tx.avail);
1940 
1941 			/* Setup next buffer (which isn't SOP) */
1942 			if (nsegs > seg + 1) {
1943 				next = STAILQ_NEXT(slot, next);
1944 				bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1945 			} else
1946 				bd.next = 0;
1947 			bd.bufptr = segs[seg].ds_addr;
1948 			bd.bufoff = 0;
1949 			bd.buflen = segs[seg].ds_len;
1950 			bd.pktlen = 0;
1951 			bd.flags = CPDMA_BD_OWNER;
1952 		}
1953 
1954 		/* Save the final buffer. */
1955 		bd.flags |= CPDMA_BD_EOP;
1956 		cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1957 		STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1958 		STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1959 
1960 		last = slot;
1961 		added += nsegs;
1962 		if (nsegs > sc->swsc->tx.longest_chain)
1963 			sc->swsc->tx.longest_chain = nsegs;
1964 
1965 		BPF_MTAP(sc->ifp, m0);
1966 	}
1967 
1968 	if (first_new_slot == NULL)
1969 		return;
1970 
1971 	/* Attach the list of new buffers to the hardware TX queue. */
1972 	if (last_old_slot != NULL &&
1973 	    (cpsw_cpdma_read_bd_flags(sc->swsc, last_old_slot) &
1974 	     CPDMA_BD_EOQ) == 0) {
1975 		/* Add buffers to end of current queue. */
1976 		cpsw_cpdma_write_bd_next(sc->swsc, last_old_slot,
1977 		    first_new_slot);
1978 	} else {
1979 		/* Start a fresh queue. */
1980 		cpsw_write_hdp_slot(sc->swsc, &sc->swsc->tx, first_new_slot);
1981 	}
1982 	sc->swsc->tx.queue_adds += added;
1983 	sc->swsc->tx.avail_queue_len -= added;
1984 	sc->swsc->tx.active_queue_len += added;
1985 	if (sc->swsc->tx.active_queue_len > sc->swsc->tx.max_active_queue_len) {
1986 		sc->swsc->tx.max_active_queue_len = sc->swsc->tx.active_queue_len;
1987 	}
1988 	CPSW_DEBUGF(sc->swsc, ("Queued %d TX packet(s)", added));
1989 }
1990 
1991 static int
1992 cpsw_tx_dequeue(struct cpsw_softc *sc)
1993 {
1994 	struct cpsw_slot *slot, *last_removed_slot = NULL;
1995 	struct cpsw_cpdma_bd bd;
1996 	uint32_t flags, removed = 0;
1997 
1998 	/* Pull completed buffers off the hardware TX queue. */
1999 	slot = STAILQ_FIRST(&sc->tx.active);
2000 	while (slot != NULL) {
2001 		flags = cpsw_cpdma_read_bd_flags(sc, slot);
2002 
2003 		/* TearDown complete is only marked on the SOP for the packet. */
2004 		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) ==
2005 		    (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) {
2006 			sc->tx.teardown = 1;
2007 		}
2008 
2009 		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_OWNER)) ==
2010 		    (CPDMA_BD_SOP | CPDMA_BD_OWNER) && sc->tx.teardown == 0)
2011 			break; /* Hardware is still using this packet. */
2012 
2013 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
2014 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
2015 		m_freem(slot->mbuf);
2016 		slot->mbuf = NULL;
2017 
2018 		if (slot->ifp) {
2019 			if (sc->tx.teardown == 0)
2020 				if_inc_counter(slot->ifp, IFCOUNTER_OPACKETS, 1);
2021 			else
2022 				if_inc_counter(slot->ifp, IFCOUNTER_OQDROPS, 1);
2023 		}
2024 
2025 		/* Dequeue any additional buffers used by this packet. */
2026 		while (slot != NULL && slot->mbuf == NULL) {
2027 			STAILQ_REMOVE_HEAD(&sc->tx.active, next);
2028 			STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
2029 			++removed;
2030 			last_removed_slot = slot;
2031 			slot = STAILQ_FIRST(&sc->tx.active);
2032 		}
2033 
2034 		cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
2035 
2036 		/* Restart the TX queue if necessary. */
2037 		cpsw_cpdma_read_bd(sc, last_removed_slot, &bd);
2038 		if (slot != NULL && bd.next != 0 && (bd.flags &
2039 		    (CPDMA_BD_EOP | CPDMA_BD_OWNER | CPDMA_BD_EOQ)) ==
2040 		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
2041 			cpsw_write_hdp_slot(sc, &sc->tx, slot);
2042 			sc->tx.queue_restart++;
2043 			break;
2044 		}
2045 	}
2046 
2047 	if (removed != 0) {
2048 		sc->tx.queue_removes += removed;
2049 		sc->tx.active_queue_len -= removed;
2050 		sc->tx.avail_queue_len += removed;
2051 		if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
2052 			sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
2053 		CPSW_DEBUGF(sc, ("TX removed %d completed packet(s)", removed));
2054 	}
2055 
2056 	if (sc->tx.teardown && STAILQ_EMPTY(&sc->tx.active)) {
2057 		CPSW_DEBUGF(sc, ("TX teardown is complete"));
2058 		sc->tx.teardown = 0;
2059 		sc->tx.running = 0;
2060 	}
2061 
2062 	return (removed);
2063 }
2064 
2065 /*
2066  *
2067  * Miscellaneous interrupts.
2068  *
2069  */
2070 
2071 static void
2072 cpsw_intr_rx_thresh(void *arg)
2073 {
2074 	struct cpsw_softc *sc;
2075 	if_t ifp;
2076 	struct mbuf *received, *next;
2077 
2078 	sc = (struct cpsw_softc *)arg;
2079 	CPSW_RX_LOCK(sc);
2080 	received = cpsw_rx_dequeue(sc);
2081 	cpsw_rx_enqueue(sc);
2082 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
2083 	CPSW_RX_UNLOCK(sc);
2084 
2085 	while (received != NULL) {
2086 		next = received->m_nextpkt;
2087 		received->m_nextpkt = NULL;
2088 		ifp = received->m_pkthdr.rcvif;
2089 		if_input(ifp, received);
2090 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2091 		received = next;
2092 	}
2093 }
2094 
2095 static void
2096 cpsw_intr_misc_host_error(struct cpsw_softc *sc)
2097 {
2098 	uint32_t intstat;
2099 	uint32_t dmastat;
2100 	int txerr, rxerr, txchan, rxchan;
2101 
2102 	printf("\n\n");
2103 	device_printf(sc->dev,
2104 	    "HOST ERROR:  PROGRAMMING ERROR DETECTED BY HARDWARE\n");
2105 	printf("\n\n");
2106 	intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
2107 	device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
2108 	dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
2109 	device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
2110 
2111 	txerr = (dmastat >> 20) & 15;
2112 	txchan = (dmastat >> 16) & 7;
2113 	rxerr = (dmastat >> 12) & 15;
2114 	rxchan = (dmastat >> 8) & 7;
2115 
2116 	switch (txerr) {
2117 	case 0: break;
2118 	case 1:	printf("SOP error on TX channel %d\n", txchan);
2119 		break;
2120 	case 2:	printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
2121 		break;
2122 	case 3:	printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
2123 		break;
2124 	case 4:	printf("Zero Buffer Pointer on TX channel %d\n", txchan);
2125 		break;
2126 	case 5:	printf("Zero Buffer Length on TX channel %d\n", txchan);
2127 		break;
2128 	case 6:	printf("Packet length error on TX channel %d\n", txchan);
2129 		break;
2130 	default: printf("Unknown error on TX channel %d\n", txchan);
2131 		break;
2132 	}
2133 
2134 	if (txerr != 0) {
2135 		printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
2136 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
2137 		printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
2138 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
2139 		cpsw_dump_queue(sc, &sc->tx.active);
2140 	}
2141 
2142 	switch (rxerr) {
2143 	case 0: break;
2144 	case 2:	printf("Ownership bit not set on RX channel %d\n", rxchan);
2145 		break;
2146 	case 4:	printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
2147 		break;
2148 	case 5:	printf("Zero Buffer Length on RX channel %d\n", rxchan);
2149 		break;
2150 	case 6:	printf("Buffer offset too big on RX channel %d\n", rxchan);
2151 		break;
2152 	default: printf("Unknown RX error on RX channel %d\n", rxchan);
2153 		break;
2154 	}
2155 
2156 	if (rxerr != 0) {
2157 		printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
2158 		    rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
2159 		printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
2160 		    rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
2161 		cpsw_dump_queue(sc, &sc->rx.active);
2162 	}
2163 
2164 	printf("\nALE Table\n");
2165 	cpsw_ale_dump_table(sc);
2166 
2167 	// XXX do something useful here??
2168 	panic("CPSW HOST ERROR INTERRUPT");
2169 
2170 	// Suppress this interrupt in the future.
2171 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
2172 	printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
2173 	// The watchdog will probably reset the controller
2174 	// in a little while.  It will probably fail again.
2175 }
2176 
2177 static void
2178 cpsw_intr_misc(void *arg)
2179 {
2180 	struct cpsw_softc *sc = arg;
2181 	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
2182 
2183 	if (stat & CPSW_WR_C_MISC_EVNT_PEND)
2184 		CPSW_DEBUGF(sc, ("Time sync event interrupt unimplemented"));
2185 	if (stat & CPSW_WR_C_MISC_STAT_PEND)
2186 		cpsw_stats_collect(sc);
2187 	if (stat & CPSW_WR_C_MISC_HOST_PEND)
2188 		cpsw_intr_misc_host_error(sc);
2189 	if (stat & CPSW_WR_C_MISC_MDIOLINK) {
2190 		cpsw_write_4(sc, MDIOLINKINTMASKED,
2191 		    cpsw_read_4(sc, MDIOLINKINTMASKED));
2192 	}
2193 	if (stat & CPSW_WR_C_MISC_MDIOUSER) {
2194 		CPSW_DEBUGF(sc,
2195 		    ("MDIO operation completed interrupt unimplemented"));
2196 	}
2197 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
2198 }
2199 
2200 /*
2201  *
2202  * Periodic Checks and Watchdog.
2203  *
2204  */
2205 
2206 static void
2207 cpswp_tick(void *msc)
2208 {
2209 	struct cpswp_softc *sc = msc;
2210 
2211 	/* Check for media type change */
2212 	mii_tick(sc->mii);
2213 	if (sc->media_status != sc->mii->mii_media.ifm_media) {
2214 		printf("%s: media type changed (ifm_media=%x)\n", __func__,
2215 			sc->mii->mii_media.ifm_media);
2216 		cpswp_ifmedia_upd(sc->ifp);
2217 	}
2218 
2219 	/* Schedule another timeout one second from now */
2220 	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
2221 }
2222 
2223 static void
2224 cpswp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2225 {
2226 	struct cpswp_softc *sc;
2227 	struct mii_data *mii;
2228 
2229 	sc = if_getsoftc(ifp);
2230 	CPSW_DEBUGF(sc->swsc, (""));
2231 	CPSW_PORT_LOCK(sc);
2232 
2233 	mii = sc->mii;
2234 	mii_pollstat(mii);
2235 
2236 	ifmr->ifm_active = mii->mii_media_active;
2237 	ifmr->ifm_status = mii->mii_media_status;
2238 	CPSW_PORT_UNLOCK(sc);
2239 }
2240 
2241 static int
2242 cpswp_ifmedia_upd(if_t ifp)
2243 {
2244 	struct cpswp_softc *sc;
2245 
2246 	sc = if_getsoftc(ifp);
2247 	CPSW_DEBUGF(sc->swsc, (""));
2248 	CPSW_PORT_LOCK(sc);
2249 	mii_mediachg(sc->mii);
2250 	sc->media_status = sc->mii->mii_media.ifm_media;
2251 	CPSW_PORT_UNLOCK(sc);
2252 
2253 	return (0);
2254 }
2255 
2256 static void
2257 cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
2258 {
2259 	struct cpswp_softc *psc;
2260 	int i;
2261 
2262 	cpsw_debugf_head("CPSW watchdog");
2263 	device_printf(sc->dev, "watchdog timeout\n");
2264 	printf("CPSW_CPDMA_TX%d_HDP=0x%x\n", 0,
2265 	    cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(0)));
2266 	printf("CPSW_CPDMA_TX%d_CP=0x%x\n", 0,
2267 	    cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)));
2268 	cpsw_dump_queue(sc, &sc->tx.active);
2269 	for (i = 0; i < CPSW_PORTS; i++) {
2270 		if (!sc->dualemac && i != sc->active_slave)
2271 			continue;
2272 		psc = device_get_softc(sc->port[i].dev);
2273 		CPSW_PORT_LOCK(psc);
2274 		cpswp_stop_locked(psc);
2275 		CPSW_PORT_UNLOCK(psc);
2276 	}
2277 }
2278 
2279 static void
2280 cpsw_tx_watchdog(void *msc)
2281 {
2282 	struct cpsw_softc *sc;
2283 
2284 	sc = msc;
2285 	CPSW_TX_LOCK(sc);
2286 	if (sc->tx.active_queue_len == 0 || !sc->tx.running) {
2287 		sc->watchdog.timer = 0; /* Nothing to do. */
2288 	} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
2289 		sc->watchdog.timer = 0;  /* Stuff done while we weren't looking. */
2290 	} else if (cpsw_tx_dequeue(sc) > 0) {
2291 		sc->watchdog.timer = 0;  /* We just did something. */
2292 	} else {
2293 		/* There was something to do but it didn't get done. */
2294 		++sc->watchdog.timer;
2295 		if (sc->watchdog.timer > 5) {
2296 			sc->watchdog.timer = 0;
2297 			++sc->watchdog.resets;
2298 			cpsw_tx_watchdog_full_reset(sc);
2299 		}
2300 	}
2301 	sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
2302 	CPSW_TX_UNLOCK(sc);
2303 
2304 	/* Schedule another timeout one second from now */
2305 	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
2306 }
2307 
2308 /*
2309  *
2310  * ALE support routines.
2311  *
2312  */
2313 
2314 static void
2315 cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2316 {
2317 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
2318 	ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
2319 	ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
2320 	ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
2321 }
2322 
2323 static void
2324 cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2325 {
2326 	cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
2327 	cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
2328 	cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
2329 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
2330 }
2331 
2332 static void
2333 cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
2334 {
2335 	int i;
2336 	uint32_t ale_entry[3];
2337 
2338 	/* First four entries are link address and broadcast. */
2339 	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2340 		cpsw_ale_read_entry(sc, i, ale_entry);
2341 		if ((ALE_TYPE(ale_entry) == ALE_TYPE_ADDR ||
2342 		    ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR) &&
2343 		    ALE_MCAST(ale_entry)  == 1) { /* MCast link addr */
2344 			ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2345 			cpsw_ale_write_entry(sc, i, ale_entry);
2346 		}
2347 	}
2348 }
2349 
2350 static int
2351 cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, int vlan,
2352 	uint8_t *mac)
2353 {
2354 	int free_index = -1, matching_index = -1, i;
2355 	uint32_t ale_entry[3], ale_type;
2356 
2357 	/* Find a matching entry or a free entry. */
2358 	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2359 		cpsw_ale_read_entry(sc, i, ale_entry);
2360 
2361 		/* Entry Type[61:60] is 0 for free entry */
2362 		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2363 			free_index = i;
2364 
2365 		if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
2366 		    (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
2367 		    (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
2368 		    (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
2369 		    (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
2370 		    (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
2371 			matching_index = i;
2372 			break;
2373 		}
2374 	}
2375 
2376 	if (matching_index < 0) {
2377 		if (free_index < 0)
2378 			return (ENOMEM);
2379 		i = free_index;
2380 	}
2381 
2382 	if (vlan != -1)
2383 		ale_type = ALE_TYPE_VLAN_ADDR << 28 | vlan << 16;
2384 	else
2385 		ale_type = ALE_TYPE_ADDR << 28;
2386 
2387 	/* Set MAC address */
2388 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2389 	ale_entry[1] = mac[0] << 8 | mac[1];
2390 
2391 	/* Entry type[61:60] and Mcast fwd state[63:62] is fw(3). */
2392 	ale_entry[1] |= ALE_MCAST_FWD | ale_type;
2393 
2394 	/* Set portmask [68:66] */
2395 	ale_entry[2] = (portmap & 7) << 2;
2396 
2397 	cpsw_ale_write_entry(sc, i, ale_entry);
2398 
2399 	return 0;
2400 }
2401 
2402 static void
2403 cpsw_ale_dump_table(struct cpsw_softc *sc) {
2404 	int i;
2405 	uint32_t ale_entry[3];
2406 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2407 		cpsw_ale_read_entry(sc, i, ale_entry);
2408 		switch (ALE_TYPE(ale_entry)) {
2409 		case ALE_TYPE_VLAN:
2410 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2411 				ale_entry[1], ale_entry[0]);
2412 			printf("type: %u ", ALE_TYPE(ale_entry));
2413 			printf("vlan: %u ", ALE_VLAN(ale_entry));
2414 			printf("untag: %u ", ALE_VLAN_UNTAG(ale_entry));
2415 			printf("reg flood: %u ", ALE_VLAN_REGFLOOD(ale_entry));
2416 			printf("unreg flood: %u ", ALE_VLAN_UNREGFLOOD(ale_entry));
2417 			printf("members: %u ", ALE_VLAN_MEMBERS(ale_entry));
2418 			printf("\n");
2419 			break;
2420 		case ALE_TYPE_ADDR:
2421 		case ALE_TYPE_VLAN_ADDR:
2422 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2423 				ale_entry[1], ale_entry[0]);
2424 			printf("type: %u ", ALE_TYPE(ale_entry));
2425 			printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
2426 				(ale_entry[1] >> 8) & 0xFF,
2427 				(ale_entry[1] >> 0) & 0xFF,
2428 				(ale_entry[0] >>24) & 0xFF,
2429 				(ale_entry[0] >>16) & 0xFF,
2430 				(ale_entry[0] >> 8) & 0xFF,
2431 				(ale_entry[0] >> 0) & 0xFF);
2432 			printf(ALE_MCAST(ale_entry) ? "mcast " : "ucast ");
2433 			if (ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR)
2434 				printf("vlan: %u ", ALE_VLAN(ale_entry));
2435 			printf("port: %u ", ALE_PORTS(ale_entry));
2436 			printf("\n");
2437 			break;
2438 		}
2439 	}
2440 	printf("\n");
2441 }
2442 
2443 static u_int
2444 cpswp_set_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2445 {
2446 	struct cpswp_softc *sc = arg;
2447 	uint32_t portmask;
2448 
2449 	if (sc->swsc->dualemac)
2450 		portmask = 1 << (sc->unit + 1) | 1 << 0;
2451 	else
2452 		portmask = 7;
2453 
2454 	cpsw_ale_mc_entry_set(sc->swsc, portmask, sc->vlan, LLADDR(sdl));
2455 
2456 	return (1);
2457 }
2458 
2459 static int
2460 cpswp_ale_update_addresses(struct cpswp_softc *sc, int purge)
2461 {
2462 	uint8_t *mac;
2463 	uint32_t ale_entry[3], ale_type, portmask;
2464 
2465 	if (sc->swsc->dualemac) {
2466 		ale_type = ALE_TYPE_VLAN_ADDR << 28 | sc->vlan << 16;
2467 		portmask = 1 << (sc->unit + 1) | 1 << 0;
2468 	} else {
2469 		ale_type = ALE_TYPE_ADDR << 28;
2470 		portmask = 7;
2471 	}
2472 
2473 	/*
2474 	 * Route incoming packets for our MAC address to Port 0 (host).
2475 	 * For simplicity, keep this entry at table index 0 for port 1 and
2476 	 * at index 2 for port 2 in the ALE.
2477 	 */
2478 	mac = LLADDR((struct sockaddr_dl *)if_getifaddr(sc->ifp)->ifa_addr);
2479 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2480 	ale_entry[1] = ale_type | mac[0] << 8 | mac[1]; /* addr entry + mac */
2481 	ale_entry[2] = 0; /* port = 0 */
2482 	cpsw_ale_write_entry(sc->swsc, 0 + 2 * sc->unit, ale_entry);
2483 
2484 	/* Set outgoing MAC Address for slave port. */
2485 	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_HI(sc->unit + 1),
2486 	    mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
2487 	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_LO(sc->unit + 1),
2488 	    mac[5] << 8 | mac[4]);
2489 
2490 	/* Keep the broadcast address at table entry 1 (or 3). */
2491 	ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
2492 	/* ALE_MCAST_FWD, Addr type, upper 16 bits of Mac */
2493 	ale_entry[1] = ALE_MCAST_FWD | ale_type | 0xffff;
2494 	ale_entry[2] = portmask << 2;
2495 	cpsw_ale_write_entry(sc->swsc, 1 + 2 * sc->unit, ale_entry);
2496 
2497 	/* SIOCDELMULTI doesn't specify the particular address
2498 	   being removed, so we have to remove all and rebuild. */
2499 	if (purge)
2500 		cpsw_ale_remove_all_mc_entries(sc->swsc);
2501 
2502         /* Set other multicast addrs desired. */
2503 	if_foreach_llmaddr(sc->ifp, cpswp_set_maddr, sc);
2504 
2505 	return (0);
2506 }
2507 
2508 static int
2509 cpsw_ale_update_vlan_table(struct cpsw_softc *sc, int vlan, int ports,
2510 	int untag, int mcregflood, int mcunregflood)
2511 {
2512 	int free_index, i, matching_index;
2513 	uint32_t ale_entry[3];
2514 
2515 	free_index = matching_index = -1;
2516 	/* Find a matching entry or a free entry. */
2517 	for (i = 5; i < CPSW_MAX_ALE_ENTRIES; i++) {
2518 		cpsw_ale_read_entry(sc, i, ale_entry);
2519 
2520 		/* Entry Type[61:60] is 0 for free entry */
2521 		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2522 			free_index = i;
2523 
2524 		if (ALE_VLAN(ale_entry) == vlan) {
2525 			matching_index = i;
2526 			break;
2527 		}
2528 	}
2529 
2530 	if (matching_index < 0) {
2531 		if (free_index < 0)
2532 			return (-1);
2533 		i = free_index;
2534 	}
2535 
2536 	ale_entry[0] = (untag & 7) << 24 | (mcregflood & 7) << 16 |
2537 	    (mcunregflood & 7) << 8 | (ports & 7);
2538 	ale_entry[1] = ALE_TYPE_VLAN << 28 | vlan << 16;
2539 	ale_entry[2] = 0;
2540 	cpsw_ale_write_entry(sc, i, ale_entry);
2541 
2542 	return (0);
2543 }
2544 
2545 /*
2546  *
2547  * Statistics and Sysctls.
2548  *
2549  */
2550 
2551 #if 0
2552 static void
2553 cpsw_stats_dump(struct cpsw_softc *sc)
2554 {
2555 	int i;
2556 	uint32_t r;
2557 
2558 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2559 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2560 		    cpsw_stat_sysctls[i].reg);
2561 		CPSW_DEBUGF(sc, ("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
2562 		    (intmax_t)sc->shadow_stats[i], r,
2563 		    (intmax_t)sc->shadow_stats[i] + r));
2564 	}
2565 }
2566 #endif
2567 
2568 static void
2569 cpsw_stats_collect(struct cpsw_softc *sc)
2570 {
2571 	int i;
2572 	uint32_t r;
2573 
2574 	CPSW_DEBUGF(sc, ("Controller shadow statistics updated."));
2575 
2576 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2577 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2578 		    cpsw_stat_sysctls[i].reg);
2579 		sc->shadow_stats[i] += r;
2580 		cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg,
2581 		    r);
2582 	}
2583 }
2584 
2585 static int
2586 cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
2587 {
2588 	struct cpsw_softc *sc;
2589 	struct cpsw_stat *stat;
2590 	uint64_t result;
2591 
2592 	sc = (struct cpsw_softc *)arg1;
2593 	stat = &cpsw_stat_sysctls[oidp->oid_number];
2594 	result = sc->shadow_stats[oidp->oid_number];
2595 	result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
2596 	return (sysctl_handle_64(oidp, &result, 0, req));
2597 }
2598 
2599 static int
2600 cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
2601 {
2602 	struct cpsw_softc *sc;
2603 	struct bintime t;
2604 	unsigned result;
2605 
2606 	sc = (struct cpsw_softc *)arg1;
2607 	getbinuptime(&t);
2608 	bintime_sub(&t, &sc->attach_uptime);
2609 	result = t.sec;
2610 	return (sysctl_handle_int(oidp, &result, 0, req));
2611 }
2612 
2613 static int
2614 cpsw_intr_coalesce(SYSCTL_HANDLER_ARGS)
2615 {
2616 	int error;
2617 	struct cpsw_softc *sc;
2618 	uint32_t ctrl, intr_per_ms;
2619 
2620 	sc = (struct cpsw_softc *)arg1;
2621 	error = sysctl_handle_int(oidp, &sc->coal_us, 0, req);
2622 	if (error != 0 || req->newptr == NULL)
2623 		return (error);
2624 
2625 	ctrl = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
2626 	ctrl &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
2627 	if (sc->coal_us == 0) {
2628 		/* Disable the interrupt pace hardware. */
2629 		cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2630 		cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), 0);
2631 		cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), 0);
2632 		return (0);
2633 	}
2634 
2635 	if (sc->coal_us > CPSW_WR_C_IMAX_US_MAX)
2636 		sc->coal_us = CPSW_WR_C_IMAX_US_MAX;
2637 	if (sc->coal_us < CPSW_WR_C_IMAX_US_MIN)
2638 		sc->coal_us = CPSW_WR_C_IMAX_US_MIN;
2639 	intr_per_ms = 1000 / sc->coal_us;
2640 	/* Just to make sure... */
2641 	if (intr_per_ms > CPSW_WR_C_IMAX_MAX)
2642 		intr_per_ms = CPSW_WR_C_IMAX_MAX;
2643 	if (intr_per_ms < CPSW_WR_C_IMAX_MIN)
2644 		intr_per_ms = CPSW_WR_C_IMAX_MIN;
2645 
2646 	/* Set the prescale to produce 4us pulses from the 125 Mhz clock. */
2647 	ctrl |= (125 * 4) & CPSW_WR_INT_PRESCALE_MASK;
2648 
2649 	/* Enable the interrupt pace hardware. */
2650 	cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), intr_per_ms);
2651 	cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), intr_per_ms);
2652 	ctrl |= CPSW_WR_INT_C0_RX_PULSE | CPSW_WR_INT_C0_TX_PULSE;
2653 	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2654 
2655 	return (0);
2656 }
2657 
2658 static int
2659 cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
2660 {
2661 	struct cpsw_softc *swsc;
2662 	struct cpswp_softc *sc;
2663 	struct bintime t;
2664 	unsigned result;
2665 
2666 	swsc = arg1;
2667 	sc = device_get_softc(swsc->port[arg2].dev);
2668 	if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
2669 		getbinuptime(&t);
2670 		bintime_sub(&t, &sc->init_uptime);
2671 		result = t.sec;
2672 	} else
2673 		result = 0;
2674 	return (sysctl_handle_int(oidp, &result, 0, req));
2675 }
2676 
2677 static void
2678 cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2679 	struct cpsw_queue *queue)
2680 {
2681 	struct sysctl_oid_list *parent;
2682 
2683 	parent = SYSCTL_CHILDREN(node);
2684 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
2685 	    CTLFLAG_RD, &queue->queue_slots, 0,
2686 	    "Total buffers currently assigned to this queue");
2687 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
2688 	    CTLFLAG_RD, &queue->active_queue_len, 0,
2689 	    "Buffers currently registered with hardware controller");
2690 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
2691 	    CTLFLAG_RD, &queue->max_active_queue_len, 0,
2692 	    "Max value of activeBuffers since last driver reset");
2693 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
2694 	    CTLFLAG_RD, &queue->avail_queue_len, 0,
2695 	    "Buffers allocated to this queue but not currently "
2696 	    "registered with hardware controller");
2697 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
2698 	    CTLFLAG_RD, &queue->max_avail_queue_len, 0,
2699 	    "Max value of availBuffers since last driver reset");
2700 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
2701 	    CTLFLAG_RD, &queue->queue_adds, 0,
2702 	    "Total buffers added to queue");
2703 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
2704 	    CTLFLAG_RD, &queue->queue_removes, 0,
2705 	    "Total buffers removed from queue");
2706 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "queueRestart",
2707 	    CTLFLAG_RD, &queue->queue_restart, 0,
2708 	    "Total times the queue has been restarted");
2709 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
2710 	    CTLFLAG_RD, &queue->longest_chain, 0,
2711 	    "Max buffers used for a single packet");
2712 }
2713 
2714 static void
2715 cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2716 	struct cpsw_softc *sc)
2717 {
2718 	struct sysctl_oid_list *parent;
2719 
2720 	parent = SYSCTL_CHILDREN(node);
2721 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
2722 	    CTLFLAG_RD, &sc->watchdog.resets, 0,
2723 	    "Total number of watchdog resets");
2724 }
2725 
2726 static void
2727 cpsw_add_sysctls(struct cpsw_softc *sc)
2728 {
2729 	struct sysctl_ctx_list *ctx;
2730 	struct sysctl_oid *stats_node, *queue_node, *node;
2731 	struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
2732 	struct sysctl_oid_list *ports_parent, *port_parent;
2733 	char port[16];
2734 	int i;
2735 
2736 	ctx = device_get_sysctl_ctx(sc->dev);
2737 	parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
2738 
2739 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "debug",
2740 	    CTLFLAG_RW, &sc->debug, 0, "Enable switch debug messages");
2741 
2742 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
2743 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2744 	    sc, 0, cpsw_stat_attached, "IU",
2745 	    "Time since driver attach");
2746 
2747 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "intr_coalesce_us",
2748 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
2749 	    sc, 0, cpsw_intr_coalesce, "IU",
2750 	    "minimum time between interrupts");
2751 
2752 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "ports",
2753 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Ports Statistics");
2754 	ports_parent = SYSCTL_CHILDREN(node);
2755 	for (i = 0; i < CPSW_PORTS; i++) {
2756 		if (!sc->dualemac && i != sc->active_slave)
2757 			continue;
2758 		port[0] = '0' + i;
2759 		port[1] = '\0';
2760 		node = SYSCTL_ADD_NODE(ctx, ports_parent, OID_AUTO,
2761 		    port, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
2762 		    "CPSW Port Statistics");
2763 		port_parent = SYSCTL_CHILDREN(node);
2764 		SYSCTL_ADD_PROC(ctx, port_parent, OID_AUTO, "uptime",
2765 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, i,
2766 		    cpsw_stat_uptime, "IU", "Seconds since driver init");
2767 	}
2768 
2769 	stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
2770 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Statistics");
2771 	stats_parent = SYSCTL_CHILDREN(stats_node);
2772 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2773 		SYSCTL_ADD_PROC(ctx, stats_parent, i,
2774 				cpsw_stat_sysctls[i].oid,
2775 				CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2776 				sc, 0, cpsw_stats_sysctl, "IU",
2777 				cpsw_stat_sysctls[i].oid);
2778 	}
2779 
2780 	queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
2781 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Queue Statistics");
2782 	queue_parent = SYSCTL_CHILDREN(queue_node);
2783 
2784 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
2785 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Statistics");
2786 	cpsw_add_queue_sysctls(ctx, node, &sc->tx);
2787 
2788 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
2789 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Statistics");
2790 	cpsw_add_queue_sysctls(ctx, node, &sc->rx);
2791 
2792 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
2793 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Watchdog Statistics");
2794 	cpsw_add_watchdog_sysctls(ctx, node, sc);
2795 }
2796 
2797 #ifdef CPSW_ETHERSWITCH
2798 static etherswitch_info_t etherswitch_info = {
2799 	.es_nports =		CPSW_PORTS + 1,
2800 	.es_nvlangroups =	CPSW_VLANS,
2801 	.es_name =		"TI Common Platform Ethernet Switch (CPSW)",
2802 	.es_vlan_caps =		ETHERSWITCH_VLAN_DOT1Q,
2803 };
2804 
2805 static etherswitch_info_t *
2806 cpsw_getinfo(device_t dev)
2807 {
2808 	return (&etherswitch_info);
2809 }
2810 
2811 static int
2812 cpsw_getport(device_t dev, etherswitch_port_t *p)
2813 {
2814 	int err;
2815 	struct cpsw_softc *sc;
2816 	struct cpswp_softc *psc;
2817 	struct ifmediareq *ifmr;
2818 	uint32_t reg;
2819 
2820 	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2821 		return (ENXIO);
2822 
2823 	err = 0;
2824 	sc = device_get_softc(dev);
2825 	if (p->es_port == CPSW_CPU_PORT) {
2826 		p->es_flags |= ETHERSWITCH_PORT_CPU;
2827  		ifmr = &p->es_ifmr;
2828 		ifmr->ifm_current = ifmr->ifm_active =
2829 		    IFM_ETHER | IFM_1000_T | IFM_FDX;
2830 		ifmr->ifm_mask = 0;
2831 		ifmr->ifm_status = IFM_ACTIVE | IFM_AVALID;
2832 		ifmr->ifm_count = 0;
2833 	} else {
2834 		psc = device_get_softc(sc->port[p->es_port - 1].dev);
2835 		err = ifmedia_ioctl(psc->ifp, &p->es_ifr,
2836 		    &psc->mii->mii_media, SIOCGIFMEDIA);
2837 	}
2838 	reg = cpsw_read_4(sc, CPSW_PORT_P_VLAN(p->es_port));
2839 	p->es_pvid = reg & ETHERSWITCH_VID_MASK;
2840 
2841 	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2842 	if (reg & ALE_PORTCTL_DROP_UNTAGGED)
2843 		p->es_flags |= ETHERSWITCH_PORT_DROPUNTAGGED;
2844 	if (reg & ALE_PORTCTL_INGRESS)
2845 		p->es_flags |= ETHERSWITCH_PORT_INGRESS;
2846 
2847 	return (err);
2848 }
2849 
2850 static int
2851 cpsw_setport(device_t dev, etherswitch_port_t *p)
2852 {
2853 	struct cpsw_softc *sc;
2854 	struct cpswp_softc *psc;
2855 	struct ifmedia *ifm;
2856 	uint32_t reg;
2857 
2858 	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2859 		return (ENXIO);
2860 
2861 	sc = device_get_softc(dev);
2862 	if (p->es_pvid != 0) {
2863 		cpsw_write_4(sc, CPSW_PORT_P_VLAN(p->es_port),
2864 		    p->es_pvid & ETHERSWITCH_VID_MASK);
2865 	}
2866 
2867 	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2868 	if (p->es_flags & ETHERSWITCH_PORT_DROPUNTAGGED)
2869 		reg |= ALE_PORTCTL_DROP_UNTAGGED;
2870 	else
2871 		reg &= ~ALE_PORTCTL_DROP_UNTAGGED;
2872 	if (p->es_flags & ETHERSWITCH_PORT_INGRESS)
2873 		reg |= ALE_PORTCTL_INGRESS;
2874 	else
2875 		reg &= ~ALE_PORTCTL_INGRESS;
2876 	cpsw_write_4(sc, CPSW_ALE_PORTCTL(p->es_port), reg);
2877 
2878 	/* CPU port does not allow media settings. */
2879 	if (p->es_port == CPSW_CPU_PORT)
2880 		return (0);
2881 
2882 	psc = device_get_softc(sc->port[p->es_port - 1].dev);
2883 	ifm = &psc->mii->mii_media;
2884 
2885 	return (ifmedia_ioctl(psc->ifp, &p->es_ifr, ifm, SIOCSIFMEDIA));
2886 }
2887 
2888 static int
2889 cpsw_getconf(device_t dev, etherswitch_conf_t *conf)
2890 {
2891 
2892 	/* Return the VLAN mode. */
2893 	conf->cmd = ETHERSWITCH_CONF_VLAN_MODE;
2894 	conf->vlan_mode = ETHERSWITCH_VLAN_DOT1Q;
2895 
2896 	return (0);
2897 }
2898 
2899 static int
2900 cpsw_getvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2901 {
2902 	int i, vid;
2903 	uint32_t ale_entry[3];
2904 	struct cpsw_softc *sc;
2905 
2906 	sc = device_get_softc(dev);
2907 
2908 	if (vg->es_vlangroup >= CPSW_VLANS)
2909 		return (EINVAL);
2910 
2911 	vg->es_vid = 0;
2912 	vid = cpsw_vgroups[vg->es_vlangroup].vid;
2913 	if (vid == -1)
2914 		return (0);
2915 
2916 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2917 		cpsw_ale_read_entry(sc, i, ale_entry);
2918 		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2919 			continue;
2920 		if (vid != ALE_VLAN(ale_entry))
2921 			continue;
2922 
2923 		vg->es_fid = 0;
2924 		vg->es_vid = ALE_VLAN(ale_entry) | ETHERSWITCH_VID_VALID;
2925 		vg->es_member_ports = ALE_VLAN_MEMBERS(ale_entry);
2926 		vg->es_untagged_ports = ALE_VLAN_UNTAG(ale_entry);
2927 	}
2928 
2929 	return (0);
2930 }
2931 
2932 static void
2933 cpsw_remove_vlan(struct cpsw_softc *sc, int vlan)
2934 {
2935 	int i;
2936 	uint32_t ale_entry[3];
2937 
2938 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2939 		cpsw_ale_read_entry(sc, i, ale_entry);
2940 		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2941 			continue;
2942 		if (vlan != ALE_VLAN(ale_entry))
2943 			continue;
2944 		ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2945 		cpsw_ale_write_entry(sc, i, ale_entry);
2946 		break;
2947 	}
2948 }
2949 
2950 static int
2951 cpsw_setvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2952 {
2953 	int i;
2954 	struct cpsw_softc *sc;
2955 
2956 	sc = device_get_softc(dev);
2957 
2958 	for (i = 0; i < CPSW_VLANS; i++) {
2959 		/* Is this Vlan ID in use by another vlangroup ? */
2960 		if (vg->es_vlangroup != i && cpsw_vgroups[i].vid == vg->es_vid)
2961 			return (EINVAL);
2962 	}
2963 
2964 	if (vg->es_vid == 0) {
2965 		if (cpsw_vgroups[vg->es_vlangroup].vid == -1)
2966 			return (0);
2967 		cpsw_remove_vlan(sc, cpsw_vgroups[vg->es_vlangroup].vid);
2968 		cpsw_vgroups[vg->es_vlangroup].vid = -1;
2969 		vg->es_untagged_ports = 0;
2970 		vg->es_member_ports = 0;
2971 		vg->es_vid = 0;
2972 		return (0);
2973 	}
2974 
2975 	vg->es_vid &= ETHERSWITCH_VID_MASK;
2976 	vg->es_member_ports &= CPSW_PORTS_MASK;
2977 	vg->es_untagged_ports &= CPSW_PORTS_MASK;
2978 
2979 	if (cpsw_vgroups[vg->es_vlangroup].vid != -1 &&
2980 	    cpsw_vgroups[vg->es_vlangroup].vid != vg->es_vid)
2981 		return (EINVAL);
2982 
2983 	cpsw_vgroups[vg->es_vlangroup].vid = vg->es_vid;
2984 	cpsw_ale_update_vlan_table(sc, vg->es_vid, vg->es_member_ports,
2985 	    vg->es_untagged_ports, vg->es_member_ports, 0);
2986 
2987 	return (0);
2988 }
2989 
2990 static int
2991 cpsw_readreg(device_t dev, int addr)
2992 {
2993 
2994 	/* Not supported. */
2995 	return (0);
2996 }
2997 
2998 static int
2999 cpsw_writereg(device_t dev, int addr, int value)
3000 {
3001 
3002 	/* Not supported. */
3003 	return (0);
3004 }
3005 
3006 static int
3007 cpsw_readphy(device_t dev, int phy, int reg)
3008 {
3009 
3010 	/* Not supported. */
3011 	return (0);
3012 }
3013 
3014 static int
3015 cpsw_writephy(device_t dev, int phy, int reg, int data)
3016 {
3017 
3018 	/* Not supported. */
3019 	return (0);
3020 }
3021 #endif
3022