xref: /freebsd/sys/arm/ti/cpsw/if_cpsw.c (revision 0bf48626aaa33768078f5872b922b1487b3a9296)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
5  * Copyright (c) 2016 Rubicon Communications, LLC (Netgate)
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * TI Common Platform Ethernet Switch (CPSW) Driver
32  * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
33  *
34  * This controller is documented in the AM335x Technical Reference
35  * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
36  * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
37  *
38  * It is basically a single Ethernet port (port 0) wired internally to
39  * a 3-port store-and-forward switch connected to two independent
40  * "sliver" controllers (port 1 and port 2).  You can operate the
41  * controller in a variety of different ways by suitably configuring
42  * the slivers and the Address Lookup Engine (ALE) that routes packets
43  * between the ports.
44  *
45  * This code was developed and tested on a BeagleBone with
46  * an AM335x SoC.
47  */
48 
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51 
52 #include "opt_cpsw.h"
53 
54 #include <sys/param.h>
55 #include <sys/bus.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/mbuf.h>
59 #include <sys/module.h>
60 #include <sys/mutex.h>
61 #include <sys/rman.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/sysctl.h>
65 
66 #include <machine/bus.h>
67 #include <machine/resource.h>
68 #include <machine/stdarg.h>
69 
70 #include <net/ethernet.h>
71 #include <net/bpf.h>
72 #include <net/if.h>
73 #include <net/if_dl.h>
74 #include <net/if_media.h>
75 #include <net/if_types.h>
76 
77 #include <arm/ti/ti_scm.h>
78 #include <arm/ti/am335x/am335x_scm.h>
79 
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82 
83 #include <dev/ofw/ofw_bus.h>
84 #include <dev/ofw/ofw_bus_subr.h>
85 
86 #include <dev/fdt/fdt_common.h>
87 
88 #ifdef CPSW_ETHERSWITCH
89 #include <dev/etherswitch/etherswitch.h>
90 #include "etherswitch_if.h"
91 #endif
92 
93 #include "if_cpswreg.h"
94 #include "if_cpswvar.h"
95 
96 #include "miibus_if.h"
97 
98 /* Device probe/attach/detach. */
99 static int cpsw_probe(device_t);
100 static int cpsw_attach(device_t);
101 static int cpsw_detach(device_t);
102 static int cpswp_probe(device_t);
103 static int cpswp_attach(device_t);
104 static int cpswp_detach(device_t);
105 
106 static phandle_t cpsw_get_node(device_t, device_t);
107 
108 /* Device Init/shutdown. */
109 static int cpsw_shutdown(device_t);
110 static void cpswp_init(void *);
111 static void cpswp_init_locked(void *);
112 static void cpswp_stop_locked(struct cpswp_softc *);
113 
114 /* Device Suspend/Resume. */
115 static int cpsw_suspend(device_t);
116 static int cpsw_resume(device_t);
117 
118 /* Ioctl. */
119 static int cpswp_ioctl(struct ifnet *, u_long command, caddr_t data);
120 
121 static int cpswp_miibus_readreg(device_t, int phy, int reg);
122 static int cpswp_miibus_writereg(device_t, int phy, int reg, int value);
123 static void cpswp_miibus_statchg(device_t);
124 
125 /* Send/Receive packets. */
126 static void cpsw_intr_rx(void *arg);
127 static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
128 static void cpsw_rx_enqueue(struct cpsw_softc *);
129 static void cpswp_start(struct ifnet *);
130 static void cpsw_intr_tx(void *);
131 static void cpswp_tx_enqueue(struct cpswp_softc *);
132 static int cpsw_tx_dequeue(struct cpsw_softc *);
133 
134 /* Misc interrupts and watchdog. */
135 static void cpsw_intr_rx_thresh(void *);
136 static void cpsw_intr_misc(void *);
137 static void cpswp_tick(void *);
138 static void cpswp_ifmedia_sts(struct ifnet *, struct ifmediareq *);
139 static int cpswp_ifmedia_upd(struct ifnet *);
140 static void cpsw_tx_watchdog(void *);
141 
142 /* ALE support */
143 static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t, uint32_t *);
144 static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t, uint32_t *);
145 static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t, int, uint8_t *);
146 static void cpsw_ale_dump_table(struct cpsw_softc *);
147 static int cpsw_ale_update_vlan_table(struct cpsw_softc *, int, int, int, int,
148 	int);
149 static int cpswp_ale_update_addresses(struct cpswp_softc *, int);
150 
151 /* Statistics and sysctls. */
152 static void cpsw_add_sysctls(struct cpsw_softc *);
153 static void cpsw_stats_collect(struct cpsw_softc *);
154 static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
155 
156 #ifdef CPSW_ETHERSWITCH
157 static etherswitch_info_t *cpsw_getinfo(device_t);
158 static int cpsw_getport(device_t, etherswitch_port_t *);
159 static int cpsw_setport(device_t, etherswitch_port_t *);
160 static int cpsw_getconf(device_t, etherswitch_conf_t *);
161 static int cpsw_getvgroup(device_t, etherswitch_vlangroup_t *);
162 static int cpsw_setvgroup(device_t, etherswitch_vlangroup_t *);
163 static int cpsw_readreg(device_t, int);
164 static int cpsw_writereg(device_t, int, int);
165 static int cpsw_readphy(device_t, int, int);
166 static int cpsw_writephy(device_t, int, int, int);
167 #endif
168 
169 /*
170  * Arbitrary limit on number of segments in an mbuf to be transmitted.
171  * Packets with more segments than this will be defragmented before
172  * they are queued.
173  */
174 #define	CPSW_TXFRAGS		16
175 
176 /* Shared resources. */
177 static device_method_t cpsw_methods[] = {
178 	/* Device interface */
179 	DEVMETHOD(device_probe,		cpsw_probe),
180 	DEVMETHOD(device_attach,	cpsw_attach),
181 	DEVMETHOD(device_detach,	cpsw_detach),
182 	DEVMETHOD(device_shutdown,	cpsw_shutdown),
183 	DEVMETHOD(device_suspend,	cpsw_suspend),
184 	DEVMETHOD(device_resume,	cpsw_resume),
185 	/* Bus interface */
186 	DEVMETHOD(bus_add_child,	device_add_child_ordered),
187 	/* OFW methods */
188 	DEVMETHOD(ofw_bus_get_node,	cpsw_get_node),
189 #ifdef CPSW_ETHERSWITCH
190 	/* etherswitch interface */
191 	DEVMETHOD(etherswitch_getinfo,	cpsw_getinfo),
192 	DEVMETHOD(etherswitch_readreg,	cpsw_readreg),
193 	DEVMETHOD(etherswitch_writereg,	cpsw_writereg),
194 	DEVMETHOD(etherswitch_readphyreg,	cpsw_readphy),
195 	DEVMETHOD(etherswitch_writephyreg,	cpsw_writephy),
196 	DEVMETHOD(etherswitch_getport,	cpsw_getport),
197 	DEVMETHOD(etherswitch_setport,	cpsw_setport),
198 	DEVMETHOD(etherswitch_getvgroup,	cpsw_getvgroup),
199 	DEVMETHOD(etherswitch_setvgroup,	cpsw_setvgroup),
200 	DEVMETHOD(etherswitch_getconf,	cpsw_getconf),
201 #endif
202 	DEVMETHOD_END
203 };
204 
205 static driver_t cpsw_driver = {
206 	"cpswss",
207 	cpsw_methods,
208 	sizeof(struct cpsw_softc),
209 };
210 
211 static devclass_t cpsw_devclass;
212 
213 DRIVER_MODULE(cpswss, simplebus, cpsw_driver, cpsw_devclass, 0, 0);
214 
215 /* Port/Slave resources. */
216 static device_method_t cpswp_methods[] = {
217 	/* Device interface */
218 	DEVMETHOD(device_probe,		cpswp_probe),
219 	DEVMETHOD(device_attach,	cpswp_attach),
220 	DEVMETHOD(device_detach,	cpswp_detach),
221 	/* MII interface */
222 	DEVMETHOD(miibus_readreg,	cpswp_miibus_readreg),
223 	DEVMETHOD(miibus_writereg,	cpswp_miibus_writereg),
224 	DEVMETHOD(miibus_statchg,	cpswp_miibus_statchg),
225 	DEVMETHOD_END
226 };
227 
228 static driver_t cpswp_driver = {
229 	"cpsw",
230 	cpswp_methods,
231 	sizeof(struct cpswp_softc),
232 };
233 
234 static devclass_t cpswp_devclass;
235 
236 #ifdef CPSW_ETHERSWITCH
237 DRIVER_MODULE(etherswitch, cpswss, etherswitch_driver, etherswitch_devclass, 0, 0);
238 MODULE_DEPEND(cpswss, etherswitch, 1, 1, 1);
239 #endif
240 
241 DRIVER_MODULE(cpsw, cpswss, cpswp_driver, cpswp_devclass, 0, 0);
242 DRIVER_MODULE(miibus, cpsw, miibus_driver, miibus_devclass, 0, 0);
243 MODULE_DEPEND(cpsw, ether, 1, 1, 1);
244 MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
245 
246 #ifdef CPSW_ETHERSWITCH
247 static struct cpsw_vlangroups cpsw_vgroups[CPSW_VLANS];
248 #endif
249 
250 static uint32_t slave_mdio_addr[] = { 0x4a100200, 0x4a100300 };
251 
252 static struct resource_spec irq_res_spec[] = {
253 	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
254 	{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
255 	{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
256 	{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
257 	{ -1, 0 }
258 };
259 
260 static struct {
261 	void (*cb)(void *);
262 } cpsw_intr_cb[] = {
263 	{ cpsw_intr_rx_thresh },
264 	{ cpsw_intr_rx },
265 	{ cpsw_intr_tx },
266 	{ cpsw_intr_misc },
267 };
268 
269 /* Number of entries here must match size of stats
270  * array in struct cpswp_softc. */
271 static struct cpsw_stat {
272 	int	reg;
273 	char *oid;
274 } cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
275 	{0x00, "GoodRxFrames"},
276 	{0x04, "BroadcastRxFrames"},
277 	{0x08, "MulticastRxFrames"},
278 	{0x0C, "PauseRxFrames"},
279 	{0x10, "RxCrcErrors"},
280 	{0x14, "RxAlignErrors"},
281 	{0x18, "OversizeRxFrames"},
282 	{0x1c, "RxJabbers"},
283 	{0x20, "ShortRxFrames"},
284 	{0x24, "RxFragments"},
285 	{0x30, "RxOctets"},
286 	{0x34, "GoodTxFrames"},
287 	{0x38, "BroadcastTxFrames"},
288 	{0x3c, "MulticastTxFrames"},
289 	{0x40, "PauseTxFrames"},
290 	{0x44, "DeferredTxFrames"},
291 	{0x48, "CollisionsTxFrames"},
292 	{0x4c, "SingleCollisionTxFrames"},
293 	{0x50, "MultipleCollisionTxFrames"},
294 	{0x54, "ExcessiveCollisions"},
295 	{0x58, "LateCollisions"},
296 	{0x5c, "TxUnderrun"},
297 	{0x60, "CarrierSenseErrors"},
298 	{0x64, "TxOctets"},
299 	{0x68, "RxTx64OctetFrames"},
300 	{0x6c, "RxTx65to127OctetFrames"},
301 	{0x70, "RxTx128to255OctetFrames"},
302 	{0x74, "RxTx256to511OctetFrames"},
303 	{0x78, "RxTx512to1024OctetFrames"},
304 	{0x7c, "RxTx1024upOctetFrames"},
305 	{0x80, "NetOctets"},
306 	{0x84, "RxStartOfFrameOverruns"},
307 	{0x88, "RxMiddleOfFrameOverruns"},
308 	{0x8c, "RxDmaOverruns"}
309 };
310 
311 /*
312  * Basic debug support.
313  */
314 
315 static void
316 cpsw_debugf_head(const char *funcname)
317 {
318 	int t = (int)(time_second % (24 * 60 * 60));
319 
320 	printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
321 }
322 
323 static void
324 cpsw_debugf(const char *fmt, ...)
325 {
326 	va_list ap;
327 
328 	va_start(ap, fmt);
329 	vprintf(fmt, ap);
330 	va_end(ap);
331 	printf("\n");
332 
333 }
334 
335 #define	CPSW_DEBUGF(_sc, a) do {					\
336 	if ((_sc)->debug) {						\
337 		cpsw_debugf_head(__func__);				\
338 		cpsw_debugf a;						\
339 	}								\
340 } while (0)
341 
342 /*
343  * Locking macros
344  */
345 #define	CPSW_TX_LOCK(sc) do {						\
346 		mtx_assert(&(sc)->rx.lock, MA_NOTOWNED);		\
347 		mtx_lock(&(sc)->tx.lock);				\
348 } while (0)
349 
350 #define	CPSW_TX_UNLOCK(sc)	mtx_unlock(&(sc)->tx.lock)
351 #define	CPSW_TX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->tx.lock, MA_OWNED)
352 
353 #define	CPSW_RX_LOCK(sc) do {						\
354 		mtx_assert(&(sc)->tx.lock, MA_NOTOWNED);		\
355 		mtx_lock(&(sc)->rx.lock);				\
356 } while (0)
357 
358 #define	CPSW_RX_UNLOCK(sc)		mtx_unlock(&(sc)->rx.lock)
359 #define	CPSW_RX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->rx.lock, MA_OWNED)
360 
361 #define CPSW_PORT_LOCK(_sc) do {					\
362 		mtx_assert(&(_sc)->lock, MA_NOTOWNED);			\
363 		mtx_lock(&(_sc)->lock);					\
364 } while (0)
365 
366 #define	CPSW_PORT_UNLOCK(_sc)	mtx_unlock(&(_sc)->lock)
367 #define	CPSW_PORT_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->lock, MA_OWNED)
368 
369 /*
370  * Read/Write macros
371  */
372 #define	cpsw_read_4(_sc, _reg)		bus_read_4((_sc)->mem_res, (_reg))
373 #define	cpsw_write_4(_sc, _reg, _val)					\
374 	bus_write_4((_sc)->mem_res, (_reg), (_val))
375 
376 #define	cpsw_cpdma_bd_offset(i)	(CPSW_CPPI_RAM_OFFSET + ((i)*16))
377 
378 #define	cpsw_cpdma_bd_paddr(sc, slot)					\
379 	BUS_SPACE_PHYSADDR(sc->mem_res, slot->bd_offset)
380 #define	cpsw_cpdma_read_bd(sc, slot, val)				\
381 	bus_read_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
382 #define	cpsw_cpdma_write_bd(sc, slot, val)				\
383 	bus_write_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
384 #define	cpsw_cpdma_write_bd_next(sc, slot, next_slot)			\
385 	cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
386 #define	cpsw_cpdma_write_bd_flags(sc, slot, val)			\
387 	bus_write_2(sc->mem_res, slot->bd_offset + 14, val)
388 #define	cpsw_cpdma_read_bd_flags(sc, slot)				\
389 	bus_read_2(sc->mem_res, slot->bd_offset + 14)
390 #define	cpsw_write_hdp_slot(sc, queue, slot)				\
391 	cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
392 #define	CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
393 #define	cpsw_read_cp(sc, queue)						\
394 	cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
395 #define	cpsw_write_cp(sc, queue, val)					\
396 	cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
397 #define	cpsw_write_cp_slot(sc, queue, slot)				\
398 	cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
399 
400 #if 0
401 /* XXX temporary function versions for debugging. */
402 static void
403 cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
404 {
405 	uint32_t reg = queue->hdp_offset;
406 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
407 	CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
408 	cpsw_write_4(sc, reg, v);
409 }
410 
411 static void
412 cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
413 {
414 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
415 	CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
416 	cpsw_write_cp(sc, queue, v);
417 }
418 #endif
419 
420 /*
421  * Expanded dump routines for verbose debugging.
422  */
423 static void
424 cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
425 {
426 	static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
427 	    "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
428 	    "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
429 	    "Port0"};
430 	struct cpsw_cpdma_bd bd;
431 	const char *sep;
432 	int i;
433 
434 	cpsw_cpdma_read_bd(sc, slot, &bd);
435 	printf("BD Addr : 0x%08x   Next  : 0x%08x\n",
436 	    cpsw_cpdma_bd_paddr(sc, slot), bd.next);
437 	printf("  BufPtr: 0x%08x   BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
438 	printf("  BufOff: 0x%08x   PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
439 	printf("  Flags: ");
440 	sep = "";
441 	for (i = 0; i < 16; ++i) {
442 		if (bd.flags & (1 << (15 - i))) {
443 			printf("%s%s", sep, flags[i]);
444 			sep = ",";
445 		}
446 	}
447 	printf("\n");
448 	if (slot->mbuf) {
449 		printf("  Ether:  %14D\n",
450 		    (char *)(slot->mbuf->m_data), " ");
451 		printf("  Packet: %16D\n",
452 		    (char *)(slot->mbuf->m_data) + 14, " ");
453 	}
454 }
455 
456 #define	CPSW_DUMP_SLOT(cs, slot) do {				\
457 	IF_DEBUG(sc) {						\
458 		cpsw_dump_slot(sc, slot);			\
459 	}							\
460 } while (0)
461 
462 static void
463 cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
464 {
465 	struct cpsw_slot *slot;
466 	int i = 0;
467 	int others = 0;
468 
469 	STAILQ_FOREACH(slot, q, next) {
470 		if (i > CPSW_TXFRAGS)
471 			++others;
472 		else
473 			cpsw_dump_slot(sc, slot);
474 		++i;
475 	}
476 	if (others)
477 		printf(" ... and %d more.\n", others);
478 	printf("\n");
479 }
480 
481 #define CPSW_DUMP_QUEUE(sc, q) do {				\
482 	IF_DEBUG(sc) {						\
483 		cpsw_dump_queue(sc, q);				\
484 	}							\
485 } while (0)
486 
487 static void
488 cpsw_init_slots(struct cpsw_softc *sc)
489 {
490 	struct cpsw_slot *slot;
491 	int i;
492 
493 	STAILQ_INIT(&sc->avail);
494 
495 	/* Put the slot descriptors onto the global avail list. */
496 	for (i = 0; i < nitems(sc->_slots); i++) {
497 		slot = &sc->_slots[i];
498 		slot->bd_offset = cpsw_cpdma_bd_offset(i);
499 		STAILQ_INSERT_TAIL(&sc->avail, slot, next);
500 	}
501 }
502 
503 static int
504 cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
505 {
506 	const int max_slots = nitems(sc->_slots);
507 	struct cpsw_slot *slot;
508 	int i;
509 
510 	if (requested < 0)
511 		requested = max_slots;
512 
513 	for (i = 0; i < requested; ++i) {
514 		slot = STAILQ_FIRST(&sc->avail);
515 		if (slot == NULL)
516 			return (0);
517 		if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
518 			device_printf(sc->dev, "failed to create dmamap\n");
519 			return (ENOMEM);
520 		}
521 		STAILQ_REMOVE_HEAD(&sc->avail, next);
522 		STAILQ_INSERT_TAIL(&queue->avail, slot, next);
523 		++queue->avail_queue_len;
524 		++queue->queue_slots;
525 	}
526 	return (0);
527 }
528 
529 static void
530 cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
531 {
532 	int error;
533 
534 	if (slot->dmamap) {
535 		if (slot->mbuf)
536 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
537 		error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
538 		KASSERT(error == 0, ("Mapping still active"));
539 		slot->dmamap = NULL;
540 	}
541 	if (slot->mbuf) {
542 		m_freem(slot->mbuf);
543 		slot->mbuf = NULL;
544 	}
545 }
546 
547 static void
548 cpsw_reset(struct cpsw_softc *sc)
549 {
550 	int i;
551 
552 	callout_stop(&sc->watchdog.callout);
553 
554 	/* Reset RMII/RGMII wrapper. */
555 	cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
556 	while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
557 		;
558 
559 	/* Disable TX and RX interrupts for all cores. */
560 	for (i = 0; i < 3; ++i) {
561 		cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
562 		cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
563 		cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
564 		cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
565 	}
566 
567 	/* Reset CPSW subsystem. */
568 	cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
569 	while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
570 		;
571 
572 	/* Reset Sliver port 1 and 2 */
573 	for (i = 0; i < 2; i++) {
574 		/* Reset */
575 		cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
576 		while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
577 			;
578 	}
579 
580 	/* Reset DMA controller. */
581 	cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
582 	while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
583 		;
584 
585 	/* Disable TX & RX DMA */
586 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
587 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
588 
589 	/* Clear all queues. */
590 	for (i = 0; i < 8; i++) {
591 		cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
592 		cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
593 		cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
594 		cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
595 	}
596 
597 	/* Clear all interrupt Masks */
598 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
599 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
600 }
601 
602 static void
603 cpsw_init(struct cpsw_softc *sc)
604 {
605 	struct cpsw_slot *slot;
606 	uint32_t reg;
607 
608 	/* Disable the interrupt pacing. */
609 	reg = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
610 	reg &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
611 	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, reg);
612 
613 	/* Clear ALE */
614 	cpsw_write_4(sc, CPSW_ALE_CONTROL, CPSW_ALE_CTL_CLEAR_TBL);
615 
616 	/* Enable ALE */
617 	reg = CPSW_ALE_CTL_ENABLE;
618 	if (sc->dualemac)
619 		reg |= CPSW_ALE_CTL_VLAN_AWARE;
620 	cpsw_write_4(sc, CPSW_ALE_CONTROL, reg);
621 
622 	/* Set Host Port Mapping. */
623 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
624 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
625 
626 	/* Initialize ALE: set host port to forwarding(3). */
627 	cpsw_write_4(sc, CPSW_ALE_PORTCTL(0),
628 	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
629 
630 	cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
631 
632 	/* Enable statistics for ports 0, 1 and 2 */
633 	cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
634 
635 	/* Turn off flow control. */
636 	cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
637 
638 	/* Make IP hdr aligned with 4 */
639 	cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
640 
641 	/* Initialize RX Buffer Descriptors */
642 	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), 0);
643 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
644 
645 	/* Enable TX & RX DMA */
646 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
647 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
648 
649 	/* Enable Interrupts for core 0 */
650 	cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
651 	cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
652 	cpsw_write_4(sc, CPSW_WR_C_TX_EN(0), 0xFF);
653 	cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x1F);
654 
655 	/* Enable host Error Interrupt */
656 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
657 
658 	/* Enable interrupts for RX and TX on Channel 0 */
659 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET,
660 	    CPSW_CPDMA_RX_INT(0) | CPSW_CPDMA_RX_INT_THRESH(0));
661 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_SET, 1);
662 
663 	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
664 	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
665 	cpsw_write_4(sc, MDIOCONTROL, MDIOCTL_ENABLE | MDIOCTL_FAULTENB | 0xff);
666 
667 	/* Select MII in GMII_SEL, Internal Delay mode */
668 	//ti_scm_reg_write_4(0x650, 0);
669 
670 	/* Initialize active queues. */
671 	slot = STAILQ_FIRST(&sc->tx.active);
672 	if (slot != NULL)
673 		cpsw_write_hdp_slot(sc, &sc->tx, slot);
674 	slot = STAILQ_FIRST(&sc->rx.active);
675 	if (slot != NULL)
676 		cpsw_write_hdp_slot(sc, &sc->rx, slot);
677 	cpsw_rx_enqueue(sc);
678 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), sc->rx.active_queue_len);
679 	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), CPSW_TXFRAGS);
680 
681 	/* Activate network interface. */
682 	sc->rx.running = 1;
683 	sc->tx.running = 1;
684 	sc->watchdog.timer = 0;
685 	callout_init(&sc->watchdog.callout, 0);
686 	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
687 }
688 
689 /*
690  *
691  * Device Probe, Attach, Detach.
692  *
693  */
694 
695 static int
696 cpsw_probe(device_t dev)
697 {
698 
699 	if (!ofw_bus_status_okay(dev))
700 		return (ENXIO);
701 
702 	if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
703 		return (ENXIO);
704 
705 	device_set_desc(dev, "3-port Switch Ethernet Subsystem");
706 	return (BUS_PROBE_DEFAULT);
707 }
708 
709 static int
710 cpsw_intr_attach(struct cpsw_softc *sc)
711 {
712 	int i;
713 
714 	for (i = 0; i < CPSW_INTR_COUNT; i++) {
715 		if (bus_setup_intr(sc->dev, sc->irq_res[i],
716 		    INTR_TYPE_NET | INTR_MPSAFE, NULL,
717 		    cpsw_intr_cb[i].cb, sc, &sc->ih_cookie[i]) != 0) {
718 			return (-1);
719 		}
720 	}
721 
722 	return (0);
723 }
724 
725 static void
726 cpsw_intr_detach(struct cpsw_softc *sc)
727 {
728 	int i;
729 
730 	for (i = 0; i < CPSW_INTR_COUNT; i++) {
731 		if (sc->ih_cookie[i]) {
732 			bus_teardown_intr(sc->dev, sc->irq_res[i],
733 			    sc->ih_cookie[i]);
734 		}
735 	}
736 }
737 
738 static int
739 cpsw_get_fdt_data(struct cpsw_softc *sc, int port)
740 {
741 	char *name;
742 	int len, phy, vlan;
743 	pcell_t phy_id[3], vlan_id;
744 	phandle_t child;
745 	unsigned long mdio_child_addr;
746 
747 	/* Find any slave with phy-handle/phy_id */
748 	phy = -1;
749 	vlan = -1;
750 	for (child = OF_child(sc->node); child != 0; child = OF_peer(child)) {
751 		if (OF_getprop_alloc(child, "name", (void **)&name) < 0)
752 			continue;
753 		if (sscanf(name, "slave@%lx", &mdio_child_addr) != 1) {
754 			OF_prop_free(name);
755 			continue;
756 		}
757 		OF_prop_free(name);
758 
759 		if (mdio_child_addr != slave_mdio_addr[port] &&
760 		    mdio_child_addr != (slave_mdio_addr[port] & 0xFFF))
761 			continue;
762 
763 		if (fdt_get_phyaddr(child, NULL, &phy, NULL) != 0){
764 			/* Users with old DTB will have phy_id instead */
765 			phy = -1;
766 			len = OF_getproplen(child, "phy_id");
767 			if (len / sizeof(pcell_t) == 2) {
768 				/* Get phy address from fdt */
769 				if (OF_getencprop(child, "phy_id", phy_id, len) > 0)
770 					phy = phy_id[1];
771 			}
772 		}
773 
774 		len = OF_getproplen(child, "dual_emac_res_vlan");
775 		if (len / sizeof(pcell_t) == 1) {
776 			/* Get phy address from fdt */
777 			if (OF_getencprop(child, "dual_emac_res_vlan",
778 			    &vlan_id, len) > 0) {
779 				vlan = vlan_id;
780 			}
781 		}
782 
783 		break;
784 	}
785 	if (phy == -1)
786 		return (ENXIO);
787 	sc->port[port].phy = phy;
788 	sc->port[port].vlan = vlan;
789 
790 	return (0);
791 }
792 
793 static int
794 cpsw_attach(device_t dev)
795 {
796 	int error, i;
797 	struct cpsw_softc *sc;
798 	uint32_t reg;
799 
800 	sc = device_get_softc(dev);
801 	sc->dev = dev;
802 	sc->node = ofw_bus_get_node(dev);
803 	getbinuptime(&sc->attach_uptime);
804 
805 	if (OF_getencprop(sc->node, "active_slave", &sc->active_slave,
806 	    sizeof(sc->active_slave)) <= 0) {
807 		sc->active_slave = 0;
808 	}
809 	if (sc->active_slave > 1)
810 		sc->active_slave = 1;
811 
812 	if (OF_hasprop(sc->node, "dual_emac"))
813 		sc->dualemac = 1;
814 
815 	for (i = 0; i < CPSW_PORTS; i++) {
816 		if (!sc->dualemac && i != sc->active_slave)
817 			continue;
818 		if (cpsw_get_fdt_data(sc, i) != 0) {
819 			device_printf(dev,
820 			    "failed to get PHY address from FDT\n");
821 			return (ENXIO);
822 		}
823 	}
824 
825 	/* Initialize mutexes */
826 	mtx_init(&sc->tx.lock, device_get_nameunit(dev),
827 	    "cpsw TX lock", MTX_DEF);
828 	mtx_init(&sc->rx.lock, device_get_nameunit(dev),
829 	    "cpsw RX lock", MTX_DEF);
830 
831 	/* Allocate IRQ resources */
832 	error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
833 	if (error) {
834 		device_printf(dev, "could not allocate IRQ resources\n");
835 		cpsw_detach(dev);
836 		return (ENXIO);
837 	}
838 
839 	sc->mem_rid = 0;
840 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
841 	    &sc->mem_rid, RF_ACTIVE);
842 	if (sc->mem_res == NULL) {
843 		device_printf(sc->dev, "failed to allocate memory resource\n");
844 		cpsw_detach(dev);
845 		return (ENXIO);
846 	}
847 
848 	reg = cpsw_read_4(sc, CPSW_SS_IDVER);
849 	device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
850 		reg & 0xFF, (reg >> 11) & 0x1F);
851 
852 	cpsw_add_sysctls(sc);
853 
854 	/* Allocate a busdma tag and DMA safe memory for mbufs. */
855 	error = bus_dma_tag_create(
856 		bus_get_dma_tag(sc->dev),	/* parent */
857 		1, 0,				/* alignment, boundary */
858 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
859 		BUS_SPACE_MAXADDR,		/* highaddr */
860 		NULL, NULL,			/* filtfunc, filtfuncarg */
861 		MCLBYTES, CPSW_TXFRAGS,		/* maxsize, nsegments */
862 		MCLBYTES, 0,			/* maxsegsz, flags */
863 		NULL, NULL,			/* lockfunc, lockfuncarg */
864 		&sc->mbuf_dtag);		/* dmatag */
865 	if (error) {
866 		device_printf(dev, "bus_dma_tag_create failed\n");
867 		cpsw_detach(dev);
868 		return (error);
869 	}
870 
871 	/* Allocate a NULL buffer for padding. */
872 	sc->nullpad = malloc(ETHER_MIN_LEN, M_DEVBUF, M_WAITOK | M_ZERO);
873 
874 	cpsw_init_slots(sc);
875 
876 	/* Allocate slots to TX and RX queues. */
877 	STAILQ_INIT(&sc->rx.avail);
878 	STAILQ_INIT(&sc->rx.active);
879 	STAILQ_INIT(&sc->tx.avail);
880 	STAILQ_INIT(&sc->tx.active);
881 	// For now:  128 slots to TX, rest to RX.
882 	// XXX TODO: start with 32/64 and grow dynamically based on demand.
883 	if (cpsw_add_slots(sc, &sc->tx, 128) ||
884 	    cpsw_add_slots(sc, &sc->rx, -1)) {
885 		device_printf(dev, "failed to allocate dmamaps\n");
886 		cpsw_detach(dev);
887 		return (ENOMEM);
888 	}
889 	device_printf(dev, "Initial queue size TX=%d RX=%d\n",
890 	    sc->tx.queue_slots, sc->rx.queue_slots);
891 
892 	sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
893 	sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
894 
895 	if (cpsw_intr_attach(sc) == -1) {
896 		device_printf(dev, "failed to setup interrupts\n");
897 		cpsw_detach(dev);
898 		return (ENXIO);
899 	}
900 
901 #ifdef CPSW_ETHERSWITCH
902 	for (i = 0; i < CPSW_VLANS; i++)
903 		cpsw_vgroups[i].vid = -1;
904 #endif
905 
906 	/* Reset the controller. */
907 	cpsw_reset(sc);
908 	cpsw_init(sc);
909 
910 	for (i = 0; i < CPSW_PORTS; i++) {
911 		if (!sc->dualemac && i != sc->active_slave)
912 			continue;
913 		sc->port[i].dev = device_add_child(dev, "cpsw", i);
914 		if (sc->port[i].dev == NULL) {
915 			cpsw_detach(dev);
916 			return (ENXIO);
917 		}
918 	}
919 	bus_generic_probe(dev);
920 	bus_generic_attach(dev);
921 
922 	return (0);
923 }
924 
925 static int
926 cpsw_detach(device_t dev)
927 {
928 	struct cpsw_softc *sc;
929 	int error, i;
930 
931 	bus_generic_detach(dev);
932  	sc = device_get_softc(dev);
933 
934 	for (i = 0; i < CPSW_PORTS; i++) {
935 		if (sc->port[i].dev)
936 			device_delete_child(dev, sc->port[i].dev);
937 	}
938 
939 	if (device_is_attached(dev)) {
940 		callout_stop(&sc->watchdog.callout);
941 		callout_drain(&sc->watchdog.callout);
942 	}
943 
944 	/* Stop and release all interrupts */
945 	cpsw_intr_detach(sc);
946 
947 	/* Free dmamaps and mbufs */
948 	for (i = 0; i < nitems(sc->_slots); ++i)
949 		cpsw_free_slot(sc, &sc->_slots[i]);
950 
951 	/* Free null padding buffer. */
952 	if (sc->nullpad)
953 		free(sc->nullpad, M_DEVBUF);
954 
955 	/* Free DMA tag */
956 	if (sc->mbuf_dtag) {
957 		error = bus_dma_tag_destroy(sc->mbuf_dtag);
958 		KASSERT(error == 0, ("Unable to destroy DMA tag"));
959 	}
960 
961 	/* Free IO memory handler */
962 	if (sc->mem_res != NULL)
963 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res);
964 	bus_release_resources(dev, irq_res_spec, sc->irq_res);
965 
966 	/* Destroy mutexes */
967 	mtx_destroy(&sc->rx.lock);
968 	mtx_destroy(&sc->tx.lock);
969 
970 	/* Detach the switch device, if present. */
971 	error = bus_generic_detach(dev);
972 	if (error != 0)
973 		return (error);
974 
975 	return (device_delete_children(dev));
976 }
977 
978 static phandle_t
979 cpsw_get_node(device_t bus, device_t dev)
980 {
981 
982 	/* Share controller node with port device. */
983 	return (ofw_bus_get_node(bus));
984 }
985 
986 static int
987 cpswp_probe(device_t dev)
988 {
989 
990 	if (device_get_unit(dev) > 1) {
991 		device_printf(dev, "Only two ports are supported.\n");
992 		return (ENXIO);
993 	}
994 	device_set_desc(dev, "Ethernet Switch Port");
995 
996 	return (BUS_PROBE_DEFAULT);
997 }
998 
999 static int
1000 cpswp_attach(device_t dev)
1001 {
1002 	int error;
1003 	struct ifnet *ifp;
1004 	struct cpswp_softc *sc;
1005 	uint32_t reg;
1006 	uint8_t mac_addr[ETHER_ADDR_LEN];
1007 
1008 	sc = device_get_softc(dev);
1009 	sc->dev = dev;
1010 	sc->pdev = device_get_parent(dev);
1011 	sc->swsc = device_get_softc(sc->pdev);
1012 	sc->unit = device_get_unit(dev);
1013 	sc->phy = sc->swsc->port[sc->unit].phy;
1014 	sc->vlan = sc->swsc->port[sc->unit].vlan;
1015 	if (sc->swsc->dualemac && sc->vlan == -1)
1016 		sc->vlan = sc->unit + 1;
1017 
1018 	if (sc->unit == 0) {
1019 		sc->physel = MDIOUSERPHYSEL0;
1020 		sc->phyaccess = MDIOUSERACCESS0;
1021 	} else {
1022 		sc->physel = MDIOUSERPHYSEL1;
1023 		sc->phyaccess = MDIOUSERACCESS1;
1024 	}
1025 
1026 	mtx_init(&sc->lock, device_get_nameunit(dev), "cpsw port lock",
1027 	    MTX_DEF);
1028 
1029 	/* Allocate network interface */
1030 	ifp = sc->ifp = if_alloc(IFT_ETHER);
1031 	if (ifp == NULL) {
1032 		cpswp_detach(dev);
1033 		return (ENXIO);
1034 	}
1035 
1036 	if_initname(ifp, device_get_name(sc->dev), sc->unit);
1037 	ifp->if_softc = sc;
1038 	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
1039 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_HWCSUM; //FIXME VLAN?
1040 	ifp->if_capenable = ifp->if_capabilities;
1041 
1042 	ifp->if_init = cpswp_init;
1043 	ifp->if_start = cpswp_start;
1044 	ifp->if_ioctl = cpswp_ioctl;
1045 
1046 	ifp->if_snd.ifq_drv_maxlen = sc->swsc->tx.queue_slots;
1047 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1048 	IFQ_SET_READY(&ifp->if_snd);
1049 
1050 	/* Get high part of MAC address from control module (mac_id[0|1]_hi) */
1051 	ti_scm_reg_read_4(SCM_MAC_ID0_HI + sc->unit * 8, &reg);
1052 	mac_addr[0] = reg & 0xFF;
1053 	mac_addr[1] = (reg >>  8) & 0xFF;
1054 	mac_addr[2] = (reg >> 16) & 0xFF;
1055 	mac_addr[3] = (reg >> 24) & 0xFF;
1056 
1057 	/* Get low part of MAC address from control module (mac_id[0|1]_lo) */
1058 	ti_scm_reg_read_4(SCM_MAC_ID0_LO + sc->unit * 8, &reg);
1059 	mac_addr[4] = reg & 0xFF;
1060 	mac_addr[5] = (reg >>  8) & 0xFF;
1061 
1062 	error = mii_attach(dev, &sc->miibus, ifp, cpswp_ifmedia_upd,
1063 	    cpswp_ifmedia_sts, BMSR_DEFCAPMASK, sc->phy, MII_OFFSET_ANY, 0);
1064 	if (error) {
1065 		device_printf(dev, "attaching PHYs failed\n");
1066 		cpswp_detach(dev);
1067 		return (error);
1068 	}
1069 	sc->mii = device_get_softc(sc->miibus);
1070 
1071 	/* Select PHY and enable interrupts */
1072 	cpsw_write_4(sc->swsc, sc->physel,
1073 	    MDIO_PHYSEL_LINKINTENB | (sc->phy & 0x1F));
1074 
1075 	ether_ifattach(sc->ifp, mac_addr);
1076 	callout_init(&sc->mii_callout, 0);
1077 
1078 	return (0);
1079 }
1080 
1081 static int
1082 cpswp_detach(device_t dev)
1083 {
1084 	struct cpswp_softc *sc;
1085 
1086 	sc = device_get_softc(dev);
1087 	CPSW_DEBUGF(sc->swsc, (""));
1088 	if (device_is_attached(dev)) {
1089 		ether_ifdetach(sc->ifp);
1090 		CPSW_PORT_LOCK(sc);
1091 		cpswp_stop_locked(sc);
1092 		CPSW_PORT_UNLOCK(sc);
1093 		callout_drain(&sc->mii_callout);
1094 	}
1095 
1096 	bus_generic_detach(dev);
1097 
1098 	if_free(sc->ifp);
1099 	mtx_destroy(&sc->lock);
1100 
1101 	return (0);
1102 }
1103 
1104 /*
1105  *
1106  * Init/Shutdown.
1107  *
1108  */
1109 
1110 static int
1111 cpsw_ports_down(struct cpsw_softc *sc)
1112 {
1113 	struct cpswp_softc *psc;
1114 	struct ifnet *ifp1, *ifp2;
1115 
1116 	if (!sc->dualemac)
1117 		return (1);
1118 	psc = device_get_softc(sc->port[0].dev);
1119 	ifp1 = psc->ifp;
1120 	psc = device_get_softc(sc->port[1].dev);
1121 	ifp2 = psc->ifp;
1122 	if ((ifp1->if_flags & IFF_UP) == 0 && (ifp2->if_flags & IFF_UP) == 0)
1123 		return (1);
1124 
1125 	return (0);
1126 }
1127 
1128 static void
1129 cpswp_init(void *arg)
1130 {
1131 	struct cpswp_softc *sc = arg;
1132 
1133 	CPSW_DEBUGF(sc->swsc, (""));
1134 	CPSW_PORT_LOCK(sc);
1135 	cpswp_init_locked(arg);
1136 	CPSW_PORT_UNLOCK(sc);
1137 }
1138 
1139 static void
1140 cpswp_init_locked(void *arg)
1141 {
1142 #ifdef CPSW_ETHERSWITCH
1143 	int i;
1144 #endif
1145 	struct cpswp_softc *sc = arg;
1146 	struct ifnet *ifp;
1147 	uint32_t reg;
1148 
1149 	CPSW_DEBUGF(sc->swsc, (""));
1150 	CPSW_PORT_LOCK_ASSERT(sc);
1151 	ifp = sc->ifp;
1152 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1153 		return;
1154 
1155 	getbinuptime(&sc->init_uptime);
1156 
1157 	if (!sc->swsc->rx.running && !sc->swsc->tx.running) {
1158 		/* Reset the controller. */
1159 		cpsw_reset(sc->swsc);
1160 		cpsw_init(sc->swsc);
1161 	}
1162 
1163 	/* Set Slave Mapping. */
1164 	cpsw_write_4(sc->swsc, CPSW_SL_RX_PRI_MAP(sc->unit), 0x76543210);
1165 	cpsw_write_4(sc->swsc, CPSW_PORT_P_TX_PRI_MAP(sc->unit + 1),
1166 	    0x33221100);
1167 	cpsw_write_4(sc->swsc, CPSW_SL_RX_MAXLEN(sc->unit), 0x5f2);
1168 	/* Enable MAC RX/TX modules. */
1169 	/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
1170 	/* Huh?  Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
1171 	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1172 	reg |= CPSW_SL_MACTL_GMII_ENABLE;
1173 	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1174 
1175 	/* Initialize ALE: set port to forwarding, initialize addrs */
1176 	cpsw_write_4(sc->swsc, CPSW_ALE_PORTCTL(sc->unit + 1),
1177 	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
1178 	cpswp_ale_update_addresses(sc, 1);
1179 
1180 	if (sc->swsc->dualemac) {
1181 		/* Set Port VID. */
1182 		cpsw_write_4(sc->swsc, CPSW_PORT_P_VLAN(sc->unit + 1),
1183 		    sc->vlan & 0xfff);
1184 		cpsw_ale_update_vlan_table(sc->swsc, sc->vlan,
1185 		    (1 << (sc->unit + 1)) | (1 << 0), /* Member list */
1186 		    (1 << (sc->unit + 1)) | (1 << 0), /* Untagged egress */
1187 		    (1 << (sc->unit + 1)) | (1 << 0), 0); /* mcast reg flood */
1188 #ifdef CPSW_ETHERSWITCH
1189 		for (i = 0; i < CPSW_VLANS; i++) {
1190 			if (cpsw_vgroups[i].vid != -1)
1191 				continue;
1192 			cpsw_vgroups[i].vid = sc->vlan;
1193 			break;
1194 		}
1195 #endif
1196 	}
1197 
1198 	mii_mediachg(sc->mii);
1199 	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
1200 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1201 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1202 }
1203 
1204 static int
1205 cpsw_shutdown(device_t dev)
1206 {
1207 	struct cpsw_softc *sc;
1208 	struct cpswp_softc *psc;
1209 	int i;
1210 
1211  	sc = device_get_softc(dev);
1212 	CPSW_DEBUGF(sc, (""));
1213 	for (i = 0; i < CPSW_PORTS; i++) {
1214 		if (!sc->dualemac && i != sc->active_slave)
1215 			continue;
1216 		psc = device_get_softc(sc->port[i].dev);
1217 		CPSW_PORT_LOCK(psc);
1218 		cpswp_stop_locked(psc);
1219 		CPSW_PORT_UNLOCK(psc);
1220 	}
1221 
1222 	return (0);
1223 }
1224 
1225 static void
1226 cpsw_rx_teardown(struct cpsw_softc *sc)
1227 {
1228 	int i = 0;
1229 
1230 	CPSW_RX_LOCK(sc);
1231 	CPSW_DEBUGF(sc, ("starting RX teardown"));
1232 	sc->rx.teardown = 1;
1233 	cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
1234 	CPSW_RX_UNLOCK(sc);
1235 	while (sc->rx.running) {
1236 		if (++i > 10) {
1237 			device_printf(sc->dev,
1238 			    "Unable to cleanly shutdown receiver\n");
1239 			return;
1240 		}
1241 		DELAY(200);
1242 	}
1243 	if (!sc->rx.running)
1244 		CPSW_DEBUGF(sc, ("finished RX teardown (%d retries)", i));
1245 }
1246 
1247 static void
1248 cpsw_tx_teardown(struct cpsw_softc *sc)
1249 {
1250 	int i = 0;
1251 
1252 	CPSW_TX_LOCK(sc);
1253 	CPSW_DEBUGF(sc, ("starting TX teardown"));
1254 	/* Start the TX queue teardown if queue is not empty. */
1255 	if (STAILQ_FIRST(&sc->tx.active) != NULL)
1256 		cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
1257 	else
1258 		sc->tx.teardown = 1;
1259 	cpsw_tx_dequeue(sc);
1260 	while (sc->tx.running && ++i < 10) {
1261 		DELAY(200);
1262 		cpsw_tx_dequeue(sc);
1263 	}
1264 	if (sc->tx.running) {
1265 		device_printf(sc->dev,
1266 		    "Unable to cleanly shutdown transmitter\n");
1267 	}
1268 	CPSW_DEBUGF(sc,
1269 	    ("finished TX teardown (%d retries, %d idle buffers)", i,
1270 	     sc->tx.active_queue_len));
1271 	CPSW_TX_UNLOCK(sc);
1272 }
1273 
1274 static void
1275 cpswp_stop_locked(struct cpswp_softc *sc)
1276 {
1277 	struct ifnet *ifp;
1278 	uint32_t reg;
1279 
1280 	ifp = sc->ifp;
1281 	CPSW_DEBUGF(sc->swsc, (""));
1282 	CPSW_PORT_LOCK_ASSERT(sc);
1283 
1284 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1285 		return;
1286 
1287 	/* Disable interface */
1288 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1289 	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1290 
1291 	/* Stop ticker */
1292 	callout_stop(&sc->mii_callout);
1293 
1294 	/* Tear down the RX/TX queues. */
1295 	if (cpsw_ports_down(sc->swsc)) {
1296 		cpsw_rx_teardown(sc->swsc);
1297 		cpsw_tx_teardown(sc->swsc);
1298 	}
1299 
1300 	/* Stop MAC RX/TX modules. */
1301 	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1302 	reg &= ~CPSW_SL_MACTL_GMII_ENABLE;
1303 	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1304 
1305 	if (cpsw_ports_down(sc->swsc)) {
1306 		/* Capture stats before we reset controller. */
1307 		cpsw_stats_collect(sc->swsc);
1308 
1309 		cpsw_reset(sc->swsc);
1310 		cpsw_init(sc->swsc);
1311 	}
1312 }
1313 
1314 /*
1315  *  Suspend/Resume.
1316  */
1317 
1318 static int
1319 cpsw_suspend(device_t dev)
1320 {
1321 	struct cpsw_softc *sc;
1322 	struct cpswp_softc *psc;
1323 	int i;
1324 
1325 	sc = device_get_softc(dev);
1326 	CPSW_DEBUGF(sc, (""));
1327 	for (i = 0; i < CPSW_PORTS; i++) {
1328 		if (!sc->dualemac && i != sc->active_slave)
1329 			continue;
1330 		psc = device_get_softc(sc->port[i].dev);
1331 		CPSW_PORT_LOCK(psc);
1332 		cpswp_stop_locked(psc);
1333 		CPSW_PORT_UNLOCK(psc);
1334 	}
1335 
1336 	return (0);
1337 }
1338 
1339 static int
1340 cpsw_resume(device_t dev)
1341 {
1342 	struct cpsw_softc *sc;
1343 
1344 	sc  = device_get_softc(dev);
1345 	CPSW_DEBUGF(sc, ("UNIMPLEMENTED"));
1346 
1347 	return (0);
1348 }
1349 
1350 /*
1351  *
1352  *  IOCTL
1353  *
1354  */
1355 
1356 static void
1357 cpsw_set_promisc(struct cpswp_softc *sc, int set)
1358 {
1359 	uint32_t reg;
1360 
1361 	/*
1362 	 * Enabling promiscuous mode requires ALE_BYPASS to be enabled.
1363 	 * That disables the ALE forwarding logic and causes every
1364 	 * packet to be sent only to the host port.  In bypass mode,
1365 	 * the ALE processes host port transmit packets the same as in
1366 	 * normal mode.
1367 	 */
1368 	reg = cpsw_read_4(sc->swsc, CPSW_ALE_CONTROL);
1369 	reg &= ~CPSW_ALE_CTL_BYPASS;
1370 	if (set)
1371 		reg |= CPSW_ALE_CTL_BYPASS;
1372 	cpsw_write_4(sc->swsc, CPSW_ALE_CONTROL, reg);
1373 }
1374 
1375 static void
1376 cpsw_set_allmulti(struct cpswp_softc *sc, int set)
1377 {
1378 	if (set) {
1379 		printf("All-multicast mode unimplemented\n");
1380 	}
1381 }
1382 
1383 static int
1384 cpswp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1385 {
1386 	struct cpswp_softc *sc;
1387 	struct ifreq *ifr;
1388 	int error;
1389 	uint32_t changed;
1390 
1391 	error = 0;
1392 	sc = ifp->if_softc;
1393 	ifr = (struct ifreq *)data;
1394 
1395 	switch (command) {
1396 	case SIOCSIFCAP:
1397 		changed = ifp->if_capenable ^ ifr->ifr_reqcap;
1398 		if (changed & IFCAP_HWCSUM) {
1399 			if ((ifr->ifr_reqcap & changed) & IFCAP_HWCSUM)
1400 				ifp->if_capenable |= IFCAP_HWCSUM;
1401 			else
1402 				ifp->if_capenable &= ~IFCAP_HWCSUM;
1403 		}
1404 		error = 0;
1405 		break;
1406 	case SIOCSIFFLAGS:
1407 		CPSW_PORT_LOCK(sc);
1408 		if (ifp->if_flags & IFF_UP) {
1409 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1410 				changed = ifp->if_flags ^ sc->if_flags;
1411 				CPSW_DEBUGF(sc->swsc,
1412 				    ("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)",
1413 				    changed));
1414 				if (changed & IFF_PROMISC)
1415 					cpsw_set_promisc(sc,
1416 					    ifp->if_flags & IFF_PROMISC);
1417 				if (changed & IFF_ALLMULTI)
1418 					cpsw_set_allmulti(sc,
1419 					    ifp->if_flags & IFF_ALLMULTI);
1420 			} else {
1421 				CPSW_DEBUGF(sc->swsc,
1422 				    ("SIOCSIFFLAGS: starting up"));
1423 				cpswp_init_locked(sc);
1424 			}
1425 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1426 			CPSW_DEBUGF(sc->swsc, ("SIOCSIFFLAGS: shutting down"));
1427 			cpswp_stop_locked(sc);
1428 		}
1429 
1430 		sc->if_flags = ifp->if_flags;
1431 		CPSW_PORT_UNLOCK(sc);
1432 		break;
1433 	case SIOCADDMULTI:
1434 		cpswp_ale_update_addresses(sc, 0);
1435 		break;
1436 	case SIOCDELMULTI:
1437 		/* Ugh.  DELMULTI doesn't provide the specific address
1438 		   being removed, so the best we can do is remove
1439 		   everything and rebuild it all. */
1440 		cpswp_ale_update_addresses(sc, 1);
1441 		break;
1442 	case SIOCGIFMEDIA:
1443 	case SIOCSIFMEDIA:
1444 		error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
1445 		break;
1446 	default:
1447 		error = ether_ioctl(ifp, command, data);
1448 	}
1449 	return (error);
1450 }
1451 
1452 /*
1453  *
1454  * MIIBUS
1455  *
1456  */
1457 static int
1458 cpswp_miibus_ready(struct cpsw_softc *sc, uint32_t reg)
1459 {
1460 	uint32_t r, retries = CPSW_MIIBUS_RETRIES;
1461 
1462 	while (--retries) {
1463 		r = cpsw_read_4(sc, reg);
1464 		if ((r & MDIO_PHYACCESS_GO) == 0)
1465 			return (1);
1466 		DELAY(CPSW_MIIBUS_DELAY);
1467 	}
1468 
1469 	return (0);
1470 }
1471 
1472 static int
1473 cpswp_miibus_readreg(device_t dev, int phy, int reg)
1474 {
1475 	struct cpswp_softc *sc;
1476 	uint32_t cmd, r;
1477 
1478 	sc = device_get_softc(dev);
1479 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1480 		device_printf(dev, "MDIO not ready to read\n");
1481 		return (0);
1482 	}
1483 
1484 	/* Set GO, reg, phy */
1485 	cmd = MDIO_PHYACCESS_GO | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
1486 	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1487 
1488 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1489 		device_printf(dev, "MDIO timed out during read\n");
1490 		return (0);
1491 	}
1492 
1493 	r = cpsw_read_4(sc->swsc, sc->phyaccess);
1494 	if ((r & MDIO_PHYACCESS_ACK) == 0) {
1495 		device_printf(dev, "Failed to read from PHY.\n");
1496 		r = 0;
1497 	}
1498 	return (r & 0xFFFF);
1499 }
1500 
1501 static int
1502 cpswp_miibus_writereg(device_t dev, int phy, int reg, int value)
1503 {
1504 	struct cpswp_softc *sc;
1505 	uint32_t cmd;
1506 
1507 	sc = device_get_softc(dev);
1508 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1509 		device_printf(dev, "MDIO not ready to write\n");
1510 		return (0);
1511 	}
1512 
1513 	/* Set GO, WRITE, reg, phy, and value */
1514 	cmd = MDIO_PHYACCESS_GO | MDIO_PHYACCESS_WRITE |
1515 	    (reg & 0x1F) << 21 | (phy & 0x1F) << 16 | (value & 0xFFFF);
1516 	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1517 
1518 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1519 		device_printf(dev, "MDIO timed out during write\n");
1520 		return (0);
1521 	}
1522 
1523 	return (0);
1524 }
1525 
1526 static void
1527 cpswp_miibus_statchg(device_t dev)
1528 {
1529 	struct cpswp_softc *sc;
1530 	uint32_t mac_control, reg;
1531 
1532 	sc = device_get_softc(dev);
1533 	CPSW_DEBUGF(sc->swsc, (""));
1534 
1535 	reg = CPSW_SL_MACCONTROL(sc->unit);
1536 	mac_control = cpsw_read_4(sc->swsc, reg);
1537 	mac_control &= ~(CPSW_SL_MACTL_GIG | CPSW_SL_MACTL_IFCTL_A |
1538 	    CPSW_SL_MACTL_IFCTL_B | CPSW_SL_MACTL_FULLDUPLEX);
1539 
1540 	switch(IFM_SUBTYPE(sc->mii->mii_media_active)) {
1541 	case IFM_1000_SX:
1542 	case IFM_1000_LX:
1543 	case IFM_1000_CX:
1544 	case IFM_1000_T:
1545 		mac_control |= CPSW_SL_MACTL_GIG;
1546 		break;
1547 
1548 	case IFM_100_TX:
1549 		mac_control |= CPSW_SL_MACTL_IFCTL_A;
1550 		break;
1551 	}
1552 	if (sc->mii->mii_media_active & IFM_FDX)
1553 		mac_control |= CPSW_SL_MACTL_FULLDUPLEX;
1554 
1555 	cpsw_write_4(sc->swsc, reg, mac_control);
1556 }
1557 
1558 /*
1559  *
1560  * Transmit/Receive Packets.
1561  *
1562  */
1563 static void
1564 cpsw_intr_rx(void *arg)
1565 {
1566 	struct cpsw_softc *sc;
1567 	struct ifnet *ifp;
1568 	struct mbuf *received, *next;
1569 
1570 	sc = (struct cpsw_softc *)arg;
1571 	CPSW_RX_LOCK(sc);
1572 	if (sc->rx.teardown) {
1573 		sc->rx.running = 0;
1574 		sc->rx.teardown = 0;
1575 		cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
1576 	}
1577 	received = cpsw_rx_dequeue(sc);
1578 	cpsw_rx_enqueue(sc);
1579 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
1580 	CPSW_RX_UNLOCK(sc);
1581 
1582 	while (received != NULL) {
1583 		next = received->m_nextpkt;
1584 		received->m_nextpkt = NULL;
1585 		ifp = received->m_pkthdr.rcvif;
1586 		(*ifp->if_input)(ifp, received);
1587 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1588 		received = next;
1589 	}
1590 }
1591 
1592 static struct mbuf *
1593 cpsw_rx_dequeue(struct cpsw_softc *sc)
1594 {
1595 	int nsegs, port, removed;
1596 	struct cpsw_cpdma_bd bd;
1597 	struct cpsw_slot *last, *slot;
1598 	struct cpswp_softc *psc;
1599 	struct mbuf *m, *m0, *mb_head, *mb_tail;
1600 	uint16_t m0_flags;
1601 
1602 	nsegs = 0;
1603 	m0 = NULL;
1604 	last = NULL;
1605 	mb_head = NULL;
1606 	mb_tail = NULL;
1607 	removed = 0;
1608 
1609 	/* Pull completed packets off hardware RX queue. */
1610 	while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
1611 		cpsw_cpdma_read_bd(sc, slot, &bd);
1612 
1613 		/*
1614 		 * Stop on packets still in use by hardware, but do not stop
1615 		 * on packets with the teardown complete flag, they will be
1616 		 * discarded later.
1617 		 */
1618 		if ((bd.flags & (CPDMA_BD_OWNER | CPDMA_BD_TDOWNCMPLT)) ==
1619 		    CPDMA_BD_OWNER)
1620 			break;
1621 
1622 		last = slot;
1623 		++removed;
1624 		STAILQ_REMOVE_HEAD(&sc->rx.active, next);
1625 		STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
1626 
1627 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
1628 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1629 
1630 		m = slot->mbuf;
1631 		slot->mbuf = NULL;
1632 
1633 		if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
1634 			CPSW_DEBUGF(sc, ("RX teardown is complete"));
1635 			m_freem(m);
1636 			sc->rx.running = 0;
1637 			sc->rx.teardown = 0;
1638 			break;
1639 		}
1640 
1641 		port = (bd.flags & CPDMA_BD_PORT_MASK) - 1;
1642 		KASSERT(port >= 0 && port <= 1,
1643 		    ("patcket received with invalid port: %d", port));
1644 		psc = device_get_softc(sc->port[port].dev);
1645 
1646 		/* Set up mbuf */
1647 		m->m_data += bd.bufoff;
1648 		m->m_len = bd.buflen;
1649 		if (bd.flags & CPDMA_BD_SOP) {
1650 			m->m_pkthdr.len = bd.pktlen;
1651 			m->m_pkthdr.rcvif = psc->ifp;
1652 			m->m_flags |= M_PKTHDR;
1653 			m0_flags = bd.flags;
1654 			m0 = m;
1655 		}
1656 		nsegs++;
1657 		m->m_next = NULL;
1658 		m->m_nextpkt = NULL;
1659 		if (bd.flags & CPDMA_BD_EOP && m0 != NULL) {
1660 			if (m0_flags & CPDMA_BD_PASS_CRC)
1661 				m_adj(m0, -ETHER_CRC_LEN);
1662 			m0_flags = 0;
1663 			m0 = NULL;
1664 			if (nsegs > sc->rx.longest_chain)
1665 				sc->rx.longest_chain = nsegs;
1666 			nsegs = 0;
1667 		}
1668 
1669 		if ((psc->ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1670 			/* check for valid CRC by looking into pkt_err[5:4] */
1671 			if ((bd.flags &
1672 			    (CPDMA_BD_SOP | CPDMA_BD_PKT_ERR_MASK)) ==
1673 			    CPDMA_BD_SOP) {
1674 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1675 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1676 				m->m_pkthdr.csum_data = 0xffff;
1677 			}
1678 		}
1679 
1680 		if (STAILQ_FIRST(&sc->rx.active) != NULL &&
1681 		    (bd.flags & (CPDMA_BD_EOP | CPDMA_BD_EOQ)) ==
1682 		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
1683 			cpsw_write_hdp_slot(sc, &sc->rx,
1684 			    STAILQ_FIRST(&sc->rx.active));
1685 			sc->rx.queue_restart++;
1686 		}
1687 
1688 		/* Add mbuf to packet list to be returned. */
1689 		if (mb_tail != NULL && (bd.flags & CPDMA_BD_SOP)) {
1690 			mb_tail->m_nextpkt = m;
1691 		} else if (mb_tail != NULL) {
1692 			mb_tail->m_next = m;
1693 		} else if (mb_tail == NULL && (bd.flags & CPDMA_BD_SOP) == 0) {
1694 			if (bootverbose)
1695 				printf(
1696 				    "%s: %s: discanding fragment packet w/o header\n",
1697 				    __func__, psc->ifp->if_xname);
1698 			m_freem(m);
1699 			continue;
1700 		} else {
1701 			mb_head = m;
1702 		}
1703 		mb_tail = m;
1704 	}
1705 
1706 	if (removed != 0) {
1707 		cpsw_write_cp_slot(sc, &sc->rx, last);
1708 		sc->rx.queue_removes += removed;
1709 		sc->rx.avail_queue_len += removed;
1710 		sc->rx.active_queue_len -= removed;
1711 		if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
1712 			sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
1713 		CPSW_DEBUGF(sc, ("Removed %d received packet(s) from RX queue", removed));
1714 	}
1715 
1716 	return (mb_head);
1717 }
1718 
1719 static void
1720 cpsw_rx_enqueue(struct cpsw_softc *sc)
1721 {
1722 	bus_dma_segment_t seg[1];
1723 	struct cpsw_cpdma_bd bd;
1724 	struct cpsw_slot *first_new_slot, *last_old_slot, *next, *slot;
1725 	int error, nsegs, added = 0;
1726 
1727 	/* Register new mbufs with hardware. */
1728 	first_new_slot = NULL;
1729 	last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
1730 	while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
1731 		if (first_new_slot == NULL)
1732 			first_new_slot = slot;
1733 		if (slot->mbuf == NULL) {
1734 			slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1735 			if (slot->mbuf == NULL) {
1736 				device_printf(sc->dev,
1737 				    "Unable to fill RX queue\n");
1738 				break;
1739 			}
1740 			slot->mbuf->m_len =
1741 			    slot->mbuf->m_pkthdr.len =
1742 			    slot->mbuf->m_ext.ext_size;
1743 		}
1744 
1745 		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1746 		    slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
1747 
1748 		KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
1749 		KASSERT(error == 0, ("DMA error (error=%d)", error));
1750 		if (error != 0 || nsegs != 1) {
1751 			device_printf(sc->dev,
1752 			    "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
1753 			    __func__, nsegs, error);
1754 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1755 			m_freem(slot->mbuf);
1756 			slot->mbuf = NULL;
1757 			break;
1758 		}
1759 
1760 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
1761 
1762 		/* Create and submit new rx descriptor. */
1763 		if ((next = STAILQ_NEXT(slot, next)) != NULL)
1764 			bd.next = cpsw_cpdma_bd_paddr(sc, next);
1765 		else
1766 			bd.next = 0;
1767 		bd.bufptr = seg->ds_addr;
1768 		bd.bufoff = 0;
1769 		bd.buflen = MCLBYTES - 1;
1770 		bd.pktlen = bd.buflen;
1771 		bd.flags = CPDMA_BD_OWNER;
1772 		cpsw_cpdma_write_bd(sc, slot, &bd);
1773 		++added;
1774 
1775 		STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
1776 		STAILQ_INSERT_TAIL(&sc->rx.active, slot, next);
1777 	}
1778 
1779 	if (added == 0 || first_new_slot == NULL)
1780 		return;
1781 
1782 	CPSW_DEBUGF(sc, ("Adding %d buffers to RX queue", added));
1783 
1784 	/* Link new entries to hardware RX queue. */
1785 	if (last_old_slot == NULL) {
1786 		/* Start a fresh queue. */
1787 		cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1788 	} else {
1789 		/* Add buffers to end of current queue. */
1790 		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1791 	}
1792 	sc->rx.queue_adds += added;
1793 	sc->rx.avail_queue_len -= added;
1794 	sc->rx.active_queue_len += added;
1795 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), added);
1796 	if (sc->rx.active_queue_len > sc->rx.max_active_queue_len)
1797 		sc->rx.max_active_queue_len = sc->rx.active_queue_len;
1798 }
1799 
1800 static void
1801 cpswp_start(struct ifnet *ifp)
1802 {
1803 	struct cpswp_softc *sc;
1804 
1805 	sc = ifp->if_softc;
1806 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1807 	    sc->swsc->tx.running == 0) {
1808 		return;
1809 	}
1810 	CPSW_TX_LOCK(sc->swsc);
1811 	cpswp_tx_enqueue(sc);
1812 	cpsw_tx_dequeue(sc->swsc);
1813 	CPSW_TX_UNLOCK(sc->swsc);
1814 }
1815 
1816 static void
1817 cpsw_intr_tx(void *arg)
1818 {
1819 	struct cpsw_softc *sc;
1820 
1821 	sc = (struct cpsw_softc *)arg;
1822 	CPSW_TX_LOCK(sc);
1823 	if (cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)) == 0xfffffffc)
1824 		cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1825 	cpsw_tx_dequeue(sc);
1826 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 2);
1827 	CPSW_TX_UNLOCK(sc);
1828 }
1829 
1830 static void
1831 cpswp_tx_enqueue(struct cpswp_softc *sc)
1832 {
1833 	bus_dma_segment_t segs[CPSW_TXFRAGS];
1834 	struct cpsw_cpdma_bd bd;
1835 	struct cpsw_slot *first_new_slot, *last, *last_old_slot, *next, *slot;
1836 	struct mbuf *m0;
1837 	int error, nsegs, seg, added = 0, padlen;
1838 
1839 	/* Pull pending packets from IF queue and prep them for DMA. */
1840 	last = NULL;
1841 	first_new_slot = NULL;
1842 	last_old_slot = STAILQ_LAST(&sc->swsc->tx.active, cpsw_slot, next);
1843 	while ((slot = STAILQ_FIRST(&sc->swsc->tx.avail)) != NULL) {
1844 		IF_DEQUEUE(&sc->ifp->if_snd, m0);
1845 		if (m0 == NULL)
1846 			break;
1847 
1848 		slot->mbuf = m0;
1849 		padlen = ETHER_MIN_LEN - ETHER_CRC_LEN - m0->m_pkthdr.len;
1850 		if (padlen < 0)
1851 			padlen = 0;
1852 		else if (padlen > 0)
1853 			m_append(slot->mbuf, padlen, sc->swsc->nullpad);
1854 
1855 		/* Create mapping in DMA memory */
1856 		error = bus_dmamap_load_mbuf_sg(sc->swsc->mbuf_dtag,
1857 		    slot->dmamap, slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1858 		/* If the packet is too fragmented, try to simplify. */
1859 		if (error == EFBIG ||
1860 		    (error == 0 && nsegs > sc->swsc->tx.avail_queue_len)) {
1861 			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1862 			m0 = m_defrag(slot->mbuf, M_NOWAIT);
1863 			if (m0 == NULL) {
1864 				device_printf(sc->dev,
1865 				    "Can't defragment packet; dropping\n");
1866 				m_freem(slot->mbuf);
1867 			} else {
1868 				CPSW_DEBUGF(sc->swsc,
1869 				    ("Requeueing defragmented packet"));
1870 				IF_PREPEND(&sc->ifp->if_snd, m0);
1871 			}
1872 			slot->mbuf = NULL;
1873 			continue;
1874 		}
1875 		if (error != 0) {
1876 			device_printf(sc->dev,
1877 			    "%s: Can't setup DMA (error=%d), dropping packet\n",
1878 			    __func__, error);
1879 			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1880 			m_freem(slot->mbuf);
1881 			slot->mbuf = NULL;
1882 			break;
1883 		}
1884 
1885 		bus_dmamap_sync(sc->swsc->mbuf_dtag, slot->dmamap,
1886 				BUS_DMASYNC_PREWRITE);
1887 
1888 		CPSW_DEBUGF(sc->swsc,
1889 		    ("Queueing TX packet: %d segments + %d pad bytes",
1890 		    nsegs, padlen));
1891 
1892 		if (first_new_slot == NULL)
1893 			first_new_slot = slot;
1894 
1895 		/* Link from the previous descriptor. */
1896 		if (last != NULL)
1897 			cpsw_cpdma_write_bd_next(sc->swsc, last, slot);
1898 
1899 		slot->ifp = sc->ifp;
1900 
1901 		/* If there is only one segment, the for() loop
1902 		 * gets skipped and the single buffer gets set up
1903 		 * as both SOP and EOP. */
1904 		if (nsegs > 1) {
1905 			next = STAILQ_NEXT(slot, next);
1906 			bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1907 		} else
1908 			bd.next = 0;
1909 		/* Start by setting up the first buffer. */
1910 		bd.bufptr = segs[0].ds_addr;
1911 		bd.bufoff = 0;
1912 		bd.buflen = segs[0].ds_len;
1913 		bd.pktlen = m_length(slot->mbuf, NULL);
1914 		bd.flags =  CPDMA_BD_SOP | CPDMA_BD_OWNER;
1915 		if (sc->swsc->dualemac) {
1916 			bd.flags |= CPDMA_BD_TO_PORT;
1917 			bd.flags |= ((sc->unit + 1) & CPDMA_BD_PORT_MASK);
1918 		}
1919 		for (seg = 1; seg < nsegs; ++seg) {
1920 			/* Save the previous buffer (which isn't EOP) */
1921 			cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1922 			STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1923 			STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1924 			slot = STAILQ_FIRST(&sc->swsc->tx.avail);
1925 
1926 			/* Setup next buffer (which isn't SOP) */
1927 			if (nsegs > seg + 1) {
1928 				next = STAILQ_NEXT(slot, next);
1929 				bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1930 			} else
1931 				bd.next = 0;
1932 			bd.bufptr = segs[seg].ds_addr;
1933 			bd.bufoff = 0;
1934 			bd.buflen = segs[seg].ds_len;
1935 			bd.pktlen = 0;
1936 			bd.flags = CPDMA_BD_OWNER;
1937 		}
1938 
1939 		/* Save the final buffer. */
1940 		bd.flags |= CPDMA_BD_EOP;
1941 		cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1942 		STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1943 		STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1944 
1945 		last = slot;
1946 		added += nsegs;
1947 		if (nsegs > sc->swsc->tx.longest_chain)
1948 			sc->swsc->tx.longest_chain = nsegs;
1949 
1950 		BPF_MTAP(sc->ifp, m0);
1951 	}
1952 
1953 	if (first_new_slot == NULL)
1954 		return;
1955 
1956 	/* Attach the list of new buffers to the hardware TX queue. */
1957 	if (last_old_slot != NULL &&
1958 	    (cpsw_cpdma_read_bd_flags(sc->swsc, last_old_slot) &
1959 	     CPDMA_BD_EOQ) == 0) {
1960 		/* Add buffers to end of current queue. */
1961 		cpsw_cpdma_write_bd_next(sc->swsc, last_old_slot,
1962 		    first_new_slot);
1963 	} else {
1964 		/* Start a fresh queue. */
1965 		cpsw_write_hdp_slot(sc->swsc, &sc->swsc->tx, first_new_slot);
1966 	}
1967 	sc->swsc->tx.queue_adds += added;
1968 	sc->swsc->tx.avail_queue_len -= added;
1969 	sc->swsc->tx.active_queue_len += added;
1970 	if (sc->swsc->tx.active_queue_len > sc->swsc->tx.max_active_queue_len) {
1971 		sc->swsc->tx.max_active_queue_len = sc->swsc->tx.active_queue_len;
1972 	}
1973 	CPSW_DEBUGF(sc->swsc, ("Queued %d TX packet(s)", added));
1974 }
1975 
1976 static int
1977 cpsw_tx_dequeue(struct cpsw_softc *sc)
1978 {
1979 	struct cpsw_slot *slot, *last_removed_slot = NULL;
1980 	struct cpsw_cpdma_bd bd;
1981 	uint32_t flags, removed = 0;
1982 
1983 	/* Pull completed buffers off the hardware TX queue. */
1984 	slot = STAILQ_FIRST(&sc->tx.active);
1985 	while (slot != NULL) {
1986 		flags = cpsw_cpdma_read_bd_flags(sc, slot);
1987 
1988 		/* TearDown complete is only marked on the SOP for the packet. */
1989 		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) ==
1990 		    (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) {
1991 			sc->tx.teardown = 1;
1992 		}
1993 
1994 		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_OWNER)) ==
1995 		    (CPDMA_BD_SOP | CPDMA_BD_OWNER) && sc->tx.teardown == 0)
1996 			break; /* Hardware is still using this packet. */
1997 
1998 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
1999 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
2000 		m_freem(slot->mbuf);
2001 		slot->mbuf = NULL;
2002 
2003 		if (slot->ifp) {
2004 			if (sc->tx.teardown == 0)
2005 				if_inc_counter(slot->ifp, IFCOUNTER_OPACKETS, 1);
2006 			else
2007 				if_inc_counter(slot->ifp, IFCOUNTER_OQDROPS, 1);
2008 		}
2009 
2010 		/* Dequeue any additional buffers used by this packet. */
2011 		while (slot != NULL && slot->mbuf == NULL) {
2012 			STAILQ_REMOVE_HEAD(&sc->tx.active, next);
2013 			STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
2014 			++removed;
2015 			last_removed_slot = slot;
2016 			slot = STAILQ_FIRST(&sc->tx.active);
2017 		}
2018 
2019 		cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
2020 
2021 		/* Restart the TX queue if necessary. */
2022 		cpsw_cpdma_read_bd(sc, last_removed_slot, &bd);
2023 		if (slot != NULL && bd.next != 0 && (bd.flags &
2024 		    (CPDMA_BD_EOP | CPDMA_BD_OWNER | CPDMA_BD_EOQ)) ==
2025 		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
2026 			cpsw_write_hdp_slot(sc, &sc->tx, slot);
2027 			sc->tx.queue_restart++;
2028 			break;
2029 		}
2030 	}
2031 
2032 	if (removed != 0) {
2033 		sc->tx.queue_removes += removed;
2034 		sc->tx.active_queue_len -= removed;
2035 		sc->tx.avail_queue_len += removed;
2036 		if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
2037 			sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
2038 		CPSW_DEBUGF(sc, ("TX removed %d completed packet(s)", removed));
2039 	}
2040 
2041 	if (sc->tx.teardown && STAILQ_EMPTY(&sc->tx.active)) {
2042 		CPSW_DEBUGF(sc, ("TX teardown is complete"));
2043 		sc->tx.teardown = 0;
2044 		sc->tx.running = 0;
2045 	}
2046 
2047 	return (removed);
2048 }
2049 
2050 /*
2051  *
2052  * Miscellaneous interrupts.
2053  *
2054  */
2055 
2056 static void
2057 cpsw_intr_rx_thresh(void *arg)
2058 {
2059 	struct cpsw_softc *sc;
2060 	struct ifnet *ifp;
2061 	struct mbuf *received, *next;
2062 
2063 	sc = (struct cpsw_softc *)arg;
2064 	CPSW_RX_LOCK(sc);
2065 	received = cpsw_rx_dequeue(sc);
2066 	cpsw_rx_enqueue(sc);
2067 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
2068 	CPSW_RX_UNLOCK(sc);
2069 
2070 	while (received != NULL) {
2071 		next = received->m_nextpkt;
2072 		received->m_nextpkt = NULL;
2073 		ifp = received->m_pkthdr.rcvif;
2074 		(*ifp->if_input)(ifp, received);
2075 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2076 		received = next;
2077 	}
2078 }
2079 
2080 static void
2081 cpsw_intr_misc_host_error(struct cpsw_softc *sc)
2082 {
2083 	uint32_t intstat;
2084 	uint32_t dmastat;
2085 	int txerr, rxerr, txchan, rxchan;
2086 
2087 	printf("\n\n");
2088 	device_printf(sc->dev,
2089 	    "HOST ERROR:  PROGRAMMING ERROR DETECTED BY HARDWARE\n");
2090 	printf("\n\n");
2091 	intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
2092 	device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
2093 	dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
2094 	device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
2095 
2096 	txerr = (dmastat >> 20) & 15;
2097 	txchan = (dmastat >> 16) & 7;
2098 	rxerr = (dmastat >> 12) & 15;
2099 	rxchan = (dmastat >> 8) & 7;
2100 
2101 	switch (txerr) {
2102 	case 0: break;
2103 	case 1:	printf("SOP error on TX channel %d\n", txchan);
2104 		break;
2105 	case 2:	printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
2106 		break;
2107 	case 3:	printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
2108 		break;
2109 	case 4:	printf("Zero Buffer Pointer on TX channel %d\n", txchan);
2110 		break;
2111 	case 5:	printf("Zero Buffer Length on TX channel %d\n", txchan);
2112 		break;
2113 	case 6:	printf("Packet length error on TX channel %d\n", txchan);
2114 		break;
2115 	default: printf("Unknown error on TX channel %d\n", txchan);
2116 		break;
2117 	}
2118 
2119 	if (txerr != 0) {
2120 		printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
2121 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
2122 		printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
2123 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
2124 		cpsw_dump_queue(sc, &sc->tx.active);
2125 	}
2126 
2127 	switch (rxerr) {
2128 	case 0: break;
2129 	case 2:	printf("Ownership bit not set on RX channel %d\n", rxchan);
2130 		break;
2131 	case 4:	printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
2132 		break;
2133 	case 5:	printf("Zero Buffer Length on RX channel %d\n", rxchan);
2134 		break;
2135 	case 6:	printf("Buffer offset too big on RX channel %d\n", rxchan);
2136 		break;
2137 	default: printf("Unknown RX error on RX channel %d\n", rxchan);
2138 		break;
2139 	}
2140 
2141 	if (rxerr != 0) {
2142 		printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
2143 		    rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
2144 		printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
2145 		    rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
2146 		cpsw_dump_queue(sc, &sc->rx.active);
2147 	}
2148 
2149 	printf("\nALE Table\n");
2150 	cpsw_ale_dump_table(sc);
2151 
2152 	// XXX do something useful here??
2153 	panic("CPSW HOST ERROR INTERRUPT");
2154 
2155 	// Suppress this interrupt in the future.
2156 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
2157 	printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
2158 	// The watchdog will probably reset the controller
2159 	// in a little while.  It will probably fail again.
2160 }
2161 
2162 static void
2163 cpsw_intr_misc(void *arg)
2164 {
2165 	struct cpsw_softc *sc = arg;
2166 	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
2167 
2168 	if (stat & CPSW_WR_C_MISC_EVNT_PEND)
2169 		CPSW_DEBUGF(sc, ("Time sync event interrupt unimplemented"));
2170 	if (stat & CPSW_WR_C_MISC_STAT_PEND)
2171 		cpsw_stats_collect(sc);
2172 	if (stat & CPSW_WR_C_MISC_HOST_PEND)
2173 		cpsw_intr_misc_host_error(sc);
2174 	if (stat & CPSW_WR_C_MISC_MDIOLINK) {
2175 		cpsw_write_4(sc, MDIOLINKINTMASKED,
2176 		    cpsw_read_4(sc, MDIOLINKINTMASKED));
2177 	}
2178 	if (stat & CPSW_WR_C_MISC_MDIOUSER) {
2179 		CPSW_DEBUGF(sc,
2180 		    ("MDIO operation completed interrupt unimplemented"));
2181 	}
2182 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
2183 }
2184 
2185 /*
2186  *
2187  * Periodic Checks and Watchdog.
2188  *
2189  */
2190 
2191 static void
2192 cpswp_tick(void *msc)
2193 {
2194 	struct cpswp_softc *sc = msc;
2195 
2196 	/* Check for media type change */
2197 	mii_tick(sc->mii);
2198 	if (sc->media_status != sc->mii->mii_media.ifm_media) {
2199 		printf("%s: media type changed (ifm_media=%x)\n", __func__,
2200 			sc->mii->mii_media.ifm_media);
2201 		cpswp_ifmedia_upd(sc->ifp);
2202 	}
2203 
2204 	/* Schedule another timeout one second from now */
2205 	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
2206 }
2207 
2208 static void
2209 cpswp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2210 {
2211 	struct cpswp_softc *sc;
2212 	struct mii_data *mii;
2213 
2214 	sc = ifp->if_softc;
2215 	CPSW_DEBUGF(sc->swsc, (""));
2216 	CPSW_PORT_LOCK(sc);
2217 
2218 	mii = sc->mii;
2219 	mii_pollstat(mii);
2220 
2221 	ifmr->ifm_active = mii->mii_media_active;
2222 	ifmr->ifm_status = mii->mii_media_status;
2223 	CPSW_PORT_UNLOCK(sc);
2224 }
2225 
2226 static int
2227 cpswp_ifmedia_upd(struct ifnet *ifp)
2228 {
2229 	struct cpswp_softc *sc;
2230 
2231 	sc = ifp->if_softc;
2232 	CPSW_DEBUGF(sc->swsc, (""));
2233 	CPSW_PORT_LOCK(sc);
2234 	mii_mediachg(sc->mii);
2235 	sc->media_status = sc->mii->mii_media.ifm_media;
2236 	CPSW_PORT_UNLOCK(sc);
2237 
2238 	return (0);
2239 }
2240 
2241 static void
2242 cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
2243 {
2244 	struct cpswp_softc *psc;
2245 	int i;
2246 
2247 	cpsw_debugf_head("CPSW watchdog");
2248 	device_printf(sc->dev, "watchdog timeout\n");
2249 	printf("CPSW_CPDMA_TX%d_HDP=0x%x\n", 0,
2250 	    cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(0)));
2251 	printf("CPSW_CPDMA_TX%d_CP=0x%x\n", 0,
2252 	    cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)));
2253 	cpsw_dump_queue(sc, &sc->tx.active);
2254 	for (i = 0; i < CPSW_PORTS; i++) {
2255 		if (!sc->dualemac && i != sc->active_slave)
2256 			continue;
2257 		psc = device_get_softc(sc->port[i].dev);
2258 		CPSW_PORT_LOCK(psc);
2259 		cpswp_stop_locked(psc);
2260 		CPSW_PORT_UNLOCK(psc);
2261 	}
2262 }
2263 
2264 static void
2265 cpsw_tx_watchdog(void *msc)
2266 {
2267 	struct cpsw_softc *sc;
2268 
2269 	sc = msc;
2270 	CPSW_TX_LOCK(sc);
2271 	if (sc->tx.active_queue_len == 0 || !sc->tx.running) {
2272 		sc->watchdog.timer = 0; /* Nothing to do. */
2273 	} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
2274 		sc->watchdog.timer = 0;  /* Stuff done while we weren't looking. */
2275 	} else if (cpsw_tx_dequeue(sc) > 0) {
2276 		sc->watchdog.timer = 0;  /* We just did something. */
2277 	} else {
2278 		/* There was something to do but it didn't get done. */
2279 		++sc->watchdog.timer;
2280 		if (sc->watchdog.timer > 5) {
2281 			sc->watchdog.timer = 0;
2282 			++sc->watchdog.resets;
2283 			cpsw_tx_watchdog_full_reset(sc);
2284 		}
2285 	}
2286 	sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
2287 	CPSW_TX_UNLOCK(sc);
2288 
2289 	/* Schedule another timeout one second from now */
2290 	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
2291 }
2292 
2293 /*
2294  *
2295  * ALE support routines.
2296  *
2297  */
2298 
2299 static void
2300 cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2301 {
2302 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
2303 	ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
2304 	ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
2305 	ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
2306 }
2307 
2308 static void
2309 cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2310 {
2311 	cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
2312 	cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
2313 	cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
2314 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
2315 }
2316 
2317 static void
2318 cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
2319 {
2320 	int i;
2321 	uint32_t ale_entry[3];
2322 
2323 	/* First four entries are link address and broadcast. */
2324 	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2325 		cpsw_ale_read_entry(sc, i, ale_entry);
2326 		if ((ALE_TYPE(ale_entry) == ALE_TYPE_ADDR ||
2327 		    ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR) &&
2328 		    ALE_MCAST(ale_entry)  == 1) { /* MCast link addr */
2329 			ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2330 			cpsw_ale_write_entry(sc, i, ale_entry);
2331 		}
2332 	}
2333 }
2334 
2335 static int
2336 cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, int vlan,
2337 	uint8_t *mac)
2338 {
2339 	int free_index = -1, matching_index = -1, i;
2340 	uint32_t ale_entry[3], ale_type;
2341 
2342 	/* Find a matching entry or a free entry. */
2343 	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2344 		cpsw_ale_read_entry(sc, i, ale_entry);
2345 
2346 		/* Entry Type[61:60] is 0 for free entry */
2347 		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2348 			free_index = i;
2349 
2350 		if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
2351 		    (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
2352 		    (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
2353 		    (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
2354 		    (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
2355 		    (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
2356 			matching_index = i;
2357 			break;
2358 		}
2359 	}
2360 
2361 	if (matching_index < 0) {
2362 		if (free_index < 0)
2363 			return (ENOMEM);
2364 		i = free_index;
2365 	}
2366 
2367 	if (vlan != -1)
2368 		ale_type = ALE_TYPE_VLAN_ADDR << 28 | vlan << 16;
2369 	else
2370 		ale_type = ALE_TYPE_ADDR << 28;
2371 
2372 	/* Set MAC address */
2373 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2374 	ale_entry[1] = mac[0] << 8 | mac[1];
2375 
2376 	/* Entry type[61:60] and Mcast fwd state[63:62] is fw(3). */
2377 	ale_entry[1] |= ALE_MCAST_FWD | ale_type;
2378 
2379 	/* Set portmask [68:66] */
2380 	ale_entry[2] = (portmap & 7) << 2;
2381 
2382 	cpsw_ale_write_entry(sc, i, ale_entry);
2383 
2384 	return 0;
2385 }
2386 
2387 static void
2388 cpsw_ale_dump_table(struct cpsw_softc *sc) {
2389 	int i;
2390 	uint32_t ale_entry[3];
2391 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2392 		cpsw_ale_read_entry(sc, i, ale_entry);
2393 		switch (ALE_TYPE(ale_entry)) {
2394 		case ALE_TYPE_VLAN:
2395 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2396 				ale_entry[1], ale_entry[0]);
2397 			printf("type: %u ", ALE_TYPE(ale_entry));
2398 			printf("vlan: %u ", ALE_VLAN(ale_entry));
2399 			printf("untag: %u ", ALE_VLAN_UNTAG(ale_entry));
2400 			printf("reg flood: %u ", ALE_VLAN_REGFLOOD(ale_entry));
2401 			printf("unreg flood: %u ", ALE_VLAN_UNREGFLOOD(ale_entry));
2402 			printf("members: %u ", ALE_VLAN_MEMBERS(ale_entry));
2403 			printf("\n");
2404 			break;
2405 		case ALE_TYPE_ADDR:
2406 		case ALE_TYPE_VLAN_ADDR:
2407 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2408 				ale_entry[1], ale_entry[0]);
2409 			printf("type: %u ", ALE_TYPE(ale_entry));
2410 			printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
2411 				(ale_entry[1] >> 8) & 0xFF,
2412 				(ale_entry[1] >> 0) & 0xFF,
2413 				(ale_entry[0] >>24) & 0xFF,
2414 				(ale_entry[0] >>16) & 0xFF,
2415 				(ale_entry[0] >> 8) & 0xFF,
2416 				(ale_entry[0] >> 0) & 0xFF);
2417 			printf(ALE_MCAST(ale_entry) ? "mcast " : "ucast ");
2418 			if (ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR)
2419 				printf("vlan: %u ", ALE_VLAN(ale_entry));
2420 			printf("port: %u ", ALE_PORTS(ale_entry));
2421 			printf("\n");
2422 			break;
2423 		}
2424 	}
2425 	printf("\n");
2426 }
2427 
2428 static int
2429 cpswp_ale_update_addresses(struct cpswp_softc *sc, int purge)
2430 {
2431 	uint8_t *mac;
2432 	uint32_t ale_entry[3], ale_type, portmask;
2433 	struct ifmultiaddr *ifma;
2434 
2435 	if (sc->swsc->dualemac) {
2436 		ale_type = ALE_TYPE_VLAN_ADDR << 28 | sc->vlan << 16;
2437 		portmask = 1 << (sc->unit + 1) | 1 << 0;
2438 	} else {
2439 		ale_type = ALE_TYPE_ADDR << 28;
2440 		portmask = 7;
2441 	}
2442 
2443 	/*
2444 	 * Route incoming packets for our MAC address to Port 0 (host).
2445 	 * For simplicity, keep this entry at table index 0 for port 1 and
2446 	 * at index 2 for port 2 in the ALE.
2447 	 */
2448         if_addr_rlock(sc->ifp);
2449 	mac = LLADDR((struct sockaddr_dl *)sc->ifp->if_addr->ifa_addr);
2450 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2451 	ale_entry[1] = ale_type | mac[0] << 8 | mac[1]; /* addr entry + mac */
2452 	ale_entry[2] = 0; /* port = 0 */
2453 	cpsw_ale_write_entry(sc->swsc, 0 + 2 * sc->unit, ale_entry);
2454 
2455 	/* Set outgoing MAC Address for slave port. */
2456 	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_HI(sc->unit + 1),
2457 	    mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
2458 	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_LO(sc->unit + 1),
2459 	    mac[5] << 8 | mac[4]);
2460         if_addr_runlock(sc->ifp);
2461 
2462 	/* Keep the broadcast address at table entry 1 (or 3). */
2463 	ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
2464 	/* ALE_MCAST_FWD, Addr type, upper 16 bits of Mac */
2465 	ale_entry[1] = ALE_MCAST_FWD | ale_type | 0xffff;
2466 	ale_entry[2] = portmask << 2;
2467 	cpsw_ale_write_entry(sc->swsc, 1 + 2 * sc->unit, ale_entry);
2468 
2469 	/* SIOCDELMULTI doesn't specify the particular address
2470 	   being removed, so we have to remove all and rebuild. */
2471 	if (purge)
2472 		cpsw_ale_remove_all_mc_entries(sc->swsc);
2473 
2474         /* Set other multicast addrs desired. */
2475         if_maddr_rlock(sc->ifp);
2476         CK_STAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
2477                 if (ifma->ifma_addr->sa_family != AF_LINK)
2478                         continue;
2479 		cpsw_ale_mc_entry_set(sc->swsc, portmask, sc->vlan,
2480 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
2481         }
2482         if_maddr_runlock(sc->ifp);
2483 
2484 	return (0);
2485 }
2486 
2487 static int
2488 cpsw_ale_update_vlan_table(struct cpsw_softc *sc, int vlan, int ports,
2489 	int untag, int mcregflood, int mcunregflood)
2490 {
2491 	int free_index, i, matching_index;
2492 	uint32_t ale_entry[3];
2493 
2494 	free_index = matching_index = -1;
2495 	/* Find a matching entry or a free entry. */
2496 	for (i = 5; i < CPSW_MAX_ALE_ENTRIES; i++) {
2497 		cpsw_ale_read_entry(sc, i, ale_entry);
2498 
2499 		/* Entry Type[61:60] is 0 for free entry */
2500 		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2501 			free_index = i;
2502 
2503 		if (ALE_VLAN(ale_entry) == vlan) {
2504 			matching_index = i;
2505 			break;
2506 		}
2507 	}
2508 
2509 	if (matching_index < 0) {
2510 		if (free_index < 0)
2511 			return (-1);
2512 		i = free_index;
2513 	}
2514 
2515 	ale_entry[0] = (untag & 7) << 24 | (mcregflood & 7) << 16 |
2516 	    (mcunregflood & 7) << 8 | (ports & 7);
2517 	ale_entry[1] = ALE_TYPE_VLAN << 28 | vlan << 16;
2518 	ale_entry[2] = 0;
2519 	cpsw_ale_write_entry(sc, i, ale_entry);
2520 
2521 	return (0);
2522 }
2523 
2524 /*
2525  *
2526  * Statistics and Sysctls.
2527  *
2528  */
2529 
2530 #if 0
2531 static void
2532 cpsw_stats_dump(struct cpsw_softc *sc)
2533 {
2534 	int i;
2535 	uint32_t r;
2536 
2537 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2538 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2539 		    cpsw_stat_sysctls[i].reg);
2540 		CPSW_DEBUGF(sc, ("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
2541 		    (intmax_t)sc->shadow_stats[i], r,
2542 		    (intmax_t)sc->shadow_stats[i] + r));
2543 	}
2544 }
2545 #endif
2546 
2547 static void
2548 cpsw_stats_collect(struct cpsw_softc *sc)
2549 {
2550 	int i;
2551 	uint32_t r;
2552 
2553 	CPSW_DEBUGF(sc, ("Controller shadow statistics updated."));
2554 
2555 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2556 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2557 		    cpsw_stat_sysctls[i].reg);
2558 		sc->shadow_stats[i] += r;
2559 		cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg,
2560 		    r);
2561 	}
2562 }
2563 
2564 static int
2565 cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
2566 {
2567 	struct cpsw_softc *sc;
2568 	struct cpsw_stat *stat;
2569 	uint64_t result;
2570 
2571 	sc = (struct cpsw_softc *)arg1;
2572 	stat = &cpsw_stat_sysctls[oidp->oid_number];
2573 	result = sc->shadow_stats[oidp->oid_number];
2574 	result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
2575 	return (sysctl_handle_64(oidp, &result, 0, req));
2576 }
2577 
2578 static int
2579 cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
2580 {
2581 	struct cpsw_softc *sc;
2582 	struct bintime t;
2583 	unsigned result;
2584 
2585 	sc = (struct cpsw_softc *)arg1;
2586 	getbinuptime(&t);
2587 	bintime_sub(&t, &sc->attach_uptime);
2588 	result = t.sec;
2589 	return (sysctl_handle_int(oidp, &result, 0, req));
2590 }
2591 
2592 static int
2593 cpsw_intr_coalesce(SYSCTL_HANDLER_ARGS)
2594 {
2595 	int error;
2596 	struct cpsw_softc *sc;
2597 	uint32_t ctrl, intr_per_ms;
2598 
2599 	sc = (struct cpsw_softc *)arg1;
2600 	error = sysctl_handle_int(oidp, &sc->coal_us, 0, req);
2601 	if (error != 0 || req->newptr == NULL)
2602 		return (error);
2603 
2604 	ctrl = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
2605 	ctrl &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
2606 	if (sc->coal_us == 0) {
2607 		/* Disable the interrupt pace hardware. */
2608 		cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2609 		cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), 0);
2610 		cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), 0);
2611 		return (0);
2612 	}
2613 
2614 	if (sc->coal_us > CPSW_WR_C_IMAX_US_MAX)
2615 		sc->coal_us = CPSW_WR_C_IMAX_US_MAX;
2616 	if (sc->coal_us < CPSW_WR_C_IMAX_US_MIN)
2617 		sc->coal_us = CPSW_WR_C_IMAX_US_MIN;
2618 	intr_per_ms = 1000 / sc->coal_us;
2619 	/* Just to make sure... */
2620 	if (intr_per_ms > CPSW_WR_C_IMAX_MAX)
2621 		intr_per_ms = CPSW_WR_C_IMAX_MAX;
2622 	if (intr_per_ms < CPSW_WR_C_IMAX_MIN)
2623 		intr_per_ms = CPSW_WR_C_IMAX_MIN;
2624 
2625 	/* Set the prescale to produce 4us pulses from the 125 Mhz clock. */
2626 	ctrl |= (125 * 4) & CPSW_WR_INT_PRESCALE_MASK;
2627 
2628 	/* Enable the interrupt pace hardware. */
2629 	cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), intr_per_ms);
2630 	cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), intr_per_ms);
2631 	ctrl |= CPSW_WR_INT_C0_RX_PULSE | CPSW_WR_INT_C0_TX_PULSE;
2632 	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2633 
2634 	return (0);
2635 }
2636 
2637 static int
2638 cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
2639 {
2640 	struct cpsw_softc *swsc;
2641 	struct cpswp_softc *sc;
2642 	struct bintime t;
2643 	unsigned result;
2644 
2645 	swsc = arg1;
2646 	sc = device_get_softc(swsc->port[arg2].dev);
2647 	if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
2648 		getbinuptime(&t);
2649 		bintime_sub(&t, &sc->init_uptime);
2650 		result = t.sec;
2651 	} else
2652 		result = 0;
2653 	return (sysctl_handle_int(oidp, &result, 0, req));
2654 }
2655 
2656 static void
2657 cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2658 	struct cpsw_queue *queue)
2659 {
2660 	struct sysctl_oid_list *parent;
2661 
2662 	parent = SYSCTL_CHILDREN(node);
2663 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
2664 	    CTLFLAG_RD, &queue->queue_slots, 0,
2665 	    "Total buffers currently assigned to this queue");
2666 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
2667 	    CTLFLAG_RD, &queue->active_queue_len, 0,
2668 	    "Buffers currently registered with hardware controller");
2669 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
2670 	    CTLFLAG_RD, &queue->max_active_queue_len, 0,
2671 	    "Max value of activeBuffers since last driver reset");
2672 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
2673 	    CTLFLAG_RD, &queue->avail_queue_len, 0,
2674 	    "Buffers allocated to this queue but not currently "
2675 	    "registered with hardware controller");
2676 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
2677 	    CTLFLAG_RD, &queue->max_avail_queue_len, 0,
2678 	    "Max value of availBuffers since last driver reset");
2679 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
2680 	    CTLFLAG_RD, &queue->queue_adds, 0,
2681 	    "Total buffers added to queue");
2682 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
2683 	    CTLFLAG_RD, &queue->queue_removes, 0,
2684 	    "Total buffers removed from queue");
2685 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "queueRestart",
2686 	    CTLFLAG_RD, &queue->queue_restart, 0,
2687 	    "Total times the queue has been restarted");
2688 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
2689 	    CTLFLAG_RD, &queue->longest_chain, 0,
2690 	    "Max buffers used for a single packet");
2691 }
2692 
2693 static void
2694 cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2695 	struct cpsw_softc *sc)
2696 {
2697 	struct sysctl_oid_list *parent;
2698 
2699 	parent = SYSCTL_CHILDREN(node);
2700 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
2701 	    CTLFLAG_RD, &sc->watchdog.resets, 0,
2702 	    "Total number of watchdog resets");
2703 }
2704 
2705 static void
2706 cpsw_add_sysctls(struct cpsw_softc *sc)
2707 {
2708 	struct sysctl_ctx_list *ctx;
2709 	struct sysctl_oid *stats_node, *queue_node, *node;
2710 	struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
2711 	struct sysctl_oid_list *ports_parent, *port_parent;
2712 	char port[16];
2713 	int i;
2714 
2715 	ctx = device_get_sysctl_ctx(sc->dev);
2716 	parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
2717 
2718 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "debug",
2719 	    CTLFLAG_RW, &sc->debug, 0, "Enable switch debug messages");
2720 
2721 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
2722 	    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_attached, "IU",
2723 	    "Time since driver attach");
2724 
2725 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "intr_coalesce_us",
2726 	    CTLTYPE_UINT | CTLFLAG_RW, sc, 0, cpsw_intr_coalesce, "IU",
2727 	    "minimum time between interrupts");
2728 
2729 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "ports",
2730 	    CTLFLAG_RD, NULL, "CPSW Ports Statistics");
2731 	ports_parent = SYSCTL_CHILDREN(node);
2732 	for (i = 0; i < CPSW_PORTS; i++) {
2733 		if (!sc->dualemac && i != sc->active_slave)
2734 			continue;
2735 		port[0] = '0' + i;
2736 		port[1] = '\0';
2737 		node = SYSCTL_ADD_NODE(ctx, ports_parent, OID_AUTO,
2738 		    port, CTLFLAG_RD, NULL, "CPSW Port Statistics");
2739 		port_parent = SYSCTL_CHILDREN(node);
2740 		SYSCTL_ADD_PROC(ctx, port_parent, OID_AUTO, "uptime",
2741 		    CTLTYPE_UINT | CTLFLAG_RD, sc, i,
2742 		    cpsw_stat_uptime, "IU", "Seconds since driver init");
2743 	}
2744 
2745 	stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
2746 				     CTLFLAG_RD, NULL, "CPSW Statistics");
2747 	stats_parent = SYSCTL_CHILDREN(stats_node);
2748 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2749 		SYSCTL_ADD_PROC(ctx, stats_parent, i,
2750 				cpsw_stat_sysctls[i].oid,
2751 				CTLTYPE_U64 | CTLFLAG_RD, sc, 0,
2752 				cpsw_stats_sysctl, "IU",
2753 				cpsw_stat_sysctls[i].oid);
2754 	}
2755 
2756 	queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
2757 	    CTLFLAG_RD, NULL, "CPSW Queue Statistics");
2758 	queue_parent = SYSCTL_CHILDREN(queue_node);
2759 
2760 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
2761 	    CTLFLAG_RD, NULL, "TX Queue Statistics");
2762 	cpsw_add_queue_sysctls(ctx, node, &sc->tx);
2763 
2764 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
2765 	    CTLFLAG_RD, NULL, "RX Queue Statistics");
2766 	cpsw_add_queue_sysctls(ctx, node, &sc->rx);
2767 
2768 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
2769 	    CTLFLAG_RD, NULL, "Watchdog Statistics");
2770 	cpsw_add_watchdog_sysctls(ctx, node, sc);
2771 }
2772 
2773 #ifdef CPSW_ETHERSWITCH
2774 static etherswitch_info_t etherswitch_info = {
2775 	.es_nports =		CPSW_PORTS + 1,
2776 	.es_nvlangroups =	CPSW_VLANS,
2777 	.es_name =		"TI Common Platform Ethernet Switch (CPSW)",
2778 	.es_vlan_caps =		ETHERSWITCH_VLAN_DOT1Q,
2779 };
2780 
2781 static etherswitch_info_t *
2782 cpsw_getinfo(device_t dev)
2783 {
2784 	return (&etherswitch_info);
2785 }
2786 
2787 static int
2788 cpsw_getport(device_t dev, etherswitch_port_t *p)
2789 {
2790 	int err;
2791 	struct cpsw_softc *sc;
2792 	struct cpswp_softc *psc;
2793 	struct ifmediareq *ifmr;
2794 	uint32_t reg;
2795 
2796 	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2797 		return (ENXIO);
2798 
2799 	err = 0;
2800 	sc = device_get_softc(dev);
2801 	if (p->es_port == CPSW_CPU_PORT) {
2802 		p->es_flags |= ETHERSWITCH_PORT_CPU;
2803  		ifmr = &p->es_ifmr;
2804 		ifmr->ifm_current = ifmr->ifm_active =
2805 		    IFM_ETHER | IFM_1000_T | IFM_FDX;
2806 		ifmr->ifm_mask = 0;
2807 		ifmr->ifm_status = IFM_ACTIVE | IFM_AVALID;
2808 		ifmr->ifm_count = 0;
2809 	} else {
2810 		psc = device_get_softc(sc->port[p->es_port - 1].dev);
2811 		err = ifmedia_ioctl(psc->ifp, &p->es_ifr,
2812 		    &psc->mii->mii_media, SIOCGIFMEDIA);
2813 	}
2814 	reg = cpsw_read_4(sc, CPSW_PORT_P_VLAN(p->es_port));
2815 	p->es_pvid = reg & ETHERSWITCH_VID_MASK;
2816 
2817 	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2818 	if (reg & ALE_PORTCTL_DROP_UNTAGGED)
2819 		p->es_flags |= ETHERSWITCH_PORT_DROPUNTAGGED;
2820 	if (reg & ALE_PORTCTL_INGRESS)
2821 		p->es_flags |= ETHERSWITCH_PORT_INGRESS;
2822 
2823 	return (err);
2824 }
2825 
2826 static int
2827 cpsw_setport(device_t dev, etherswitch_port_t *p)
2828 {
2829 	struct cpsw_softc *sc;
2830 	struct cpswp_softc *psc;
2831 	struct ifmedia *ifm;
2832 	uint32_t reg;
2833 
2834 	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2835 		return (ENXIO);
2836 
2837 	sc = device_get_softc(dev);
2838 	if (p->es_pvid != 0) {
2839 		cpsw_write_4(sc, CPSW_PORT_P_VLAN(p->es_port),
2840 		    p->es_pvid & ETHERSWITCH_VID_MASK);
2841 	}
2842 
2843 	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2844 	if (p->es_flags & ETHERSWITCH_PORT_DROPUNTAGGED)
2845 		reg |= ALE_PORTCTL_DROP_UNTAGGED;
2846 	else
2847 		reg &= ~ALE_PORTCTL_DROP_UNTAGGED;
2848 	if (p->es_flags & ETHERSWITCH_PORT_INGRESS)
2849 		reg |= ALE_PORTCTL_INGRESS;
2850 	else
2851 		reg &= ~ALE_PORTCTL_INGRESS;
2852 	cpsw_write_4(sc, CPSW_ALE_PORTCTL(p->es_port), reg);
2853 
2854 	/* CPU port does not allow media settings. */
2855 	if (p->es_port == CPSW_CPU_PORT)
2856 		return (0);
2857 
2858 	psc = device_get_softc(sc->port[p->es_port - 1].dev);
2859 	ifm = &psc->mii->mii_media;
2860 
2861 	return (ifmedia_ioctl(psc->ifp, &p->es_ifr, ifm, SIOCSIFMEDIA));
2862 }
2863 
2864 static int
2865 cpsw_getconf(device_t dev, etherswitch_conf_t *conf)
2866 {
2867 
2868 	/* Return the VLAN mode. */
2869 	conf->cmd = ETHERSWITCH_CONF_VLAN_MODE;
2870 	conf->vlan_mode = ETHERSWITCH_VLAN_DOT1Q;
2871 
2872 	return (0);
2873 }
2874 
2875 static int
2876 cpsw_getvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2877 {
2878 	int i, vid;
2879 	uint32_t ale_entry[3];
2880 	struct cpsw_softc *sc;
2881 
2882 	sc = device_get_softc(dev);
2883 
2884 	if (vg->es_vlangroup >= CPSW_VLANS)
2885 		return (EINVAL);
2886 
2887 	vg->es_vid = 0;
2888 	vid = cpsw_vgroups[vg->es_vlangroup].vid;
2889 	if (vid == -1)
2890 		return (0);
2891 
2892 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2893 		cpsw_ale_read_entry(sc, i, ale_entry);
2894 		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2895 			continue;
2896 		if (vid != ALE_VLAN(ale_entry))
2897 			continue;
2898 
2899 		vg->es_fid = 0;
2900 		vg->es_vid = ALE_VLAN(ale_entry) | ETHERSWITCH_VID_VALID;
2901 		vg->es_member_ports = ALE_VLAN_MEMBERS(ale_entry);
2902 		vg->es_untagged_ports = ALE_VLAN_UNTAG(ale_entry);
2903 	}
2904 
2905 	return (0);
2906 }
2907 
2908 static void
2909 cpsw_remove_vlan(struct cpsw_softc *sc, int vlan)
2910 {
2911 	int i;
2912 	uint32_t ale_entry[3];
2913 
2914 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2915 		cpsw_ale_read_entry(sc, i, ale_entry);
2916 		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2917 			continue;
2918 		if (vlan != ALE_VLAN(ale_entry))
2919 			continue;
2920 		ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2921 		cpsw_ale_write_entry(sc, i, ale_entry);
2922 		break;
2923 	}
2924 }
2925 
2926 static int
2927 cpsw_setvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2928 {
2929 	int i;
2930 	struct cpsw_softc *sc;
2931 
2932 	sc = device_get_softc(dev);
2933 
2934 	for (i = 0; i < CPSW_VLANS; i++) {
2935 		/* Is this Vlan ID in use by another vlangroup ? */
2936 		if (vg->es_vlangroup != i && cpsw_vgroups[i].vid == vg->es_vid)
2937 			return (EINVAL);
2938 	}
2939 
2940 	if (vg->es_vid == 0) {
2941 		if (cpsw_vgroups[vg->es_vlangroup].vid == -1)
2942 			return (0);
2943 		cpsw_remove_vlan(sc, cpsw_vgroups[vg->es_vlangroup].vid);
2944 		cpsw_vgroups[vg->es_vlangroup].vid = -1;
2945 		vg->es_untagged_ports = 0;
2946 		vg->es_member_ports = 0;
2947 		vg->es_vid = 0;
2948 		return (0);
2949 	}
2950 
2951 	vg->es_vid &= ETHERSWITCH_VID_MASK;
2952 	vg->es_member_ports &= CPSW_PORTS_MASK;
2953 	vg->es_untagged_ports &= CPSW_PORTS_MASK;
2954 
2955 	if (cpsw_vgroups[vg->es_vlangroup].vid != -1 &&
2956 	    cpsw_vgroups[vg->es_vlangroup].vid != vg->es_vid)
2957 		return (EINVAL);
2958 
2959 	cpsw_vgroups[vg->es_vlangroup].vid = vg->es_vid;
2960 	cpsw_ale_update_vlan_table(sc, vg->es_vid, vg->es_member_ports,
2961 	    vg->es_untagged_ports, vg->es_member_ports, 0);
2962 
2963 	return (0);
2964 }
2965 
2966 static int
2967 cpsw_readreg(device_t dev, int addr)
2968 {
2969 
2970 	/* Not supported. */
2971 	return (0);
2972 }
2973 
2974 static int
2975 cpsw_writereg(device_t dev, int addr, int value)
2976 {
2977 
2978 	/* Not supported. */
2979 	return (0);
2980 }
2981 
2982 static int
2983 cpsw_readphy(device_t dev, int phy, int reg)
2984 {
2985 
2986 	/* Not supported. */
2987 	return (0);
2988 }
2989 
2990 static int
2991 cpsw_writephy(device_t dev, int phy, int reg, int data)
2992 {
2993 
2994 	/* Not supported. */
2995 	return (0);
2996 }
2997 #endif
2998