xref: /freebsd/sys/arm/ti/cpsw/if_cpsw.c (revision 09a53ad8f1318c5daae6cfb19d97f4f6459f0013)
1 /*-
2  * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
3  * Copyright (c) 2016 Rubicon Communications, LLC (Netgate)
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * TI Common Platform Ethernet Switch (CPSW) Driver
30  * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
31  *
32  * This controller is documented in the AM335x Technical Reference
33  * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
34  * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
35  *
36  * It is basically a single Ethernet port (port 0) wired internally to
37  * a 3-port store-and-forward switch connected to two independent
38  * "sliver" controllers (port 1 and port 2).  You can operate the
39  * controller in a variety of different ways by suitably configuring
40  * the slivers and the Address Lookup Engine (ALE) that routes packets
41  * between the ports.
42  *
43  * This code was developed and tested on a BeagleBone with
44  * an AM335x SoC.
45  */
46 
47 #include <sys/cdefs.h>
48 __FBSDID("$FreeBSD$");
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/endian.h>
53 #include <sys/mbuf.h>
54 #include <sys/lock.h>
55 #include <sys/mutex.h>
56 #include <sys/kernel.h>
57 #include <sys/module.h>
58 #include <sys/socket.h>
59 #include <sys/sysctl.h>
60 
61 #include <net/ethernet.h>
62 #include <net/bpf.h>
63 #include <net/if.h>
64 #include <net/if_arp.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_types.h>
68 #include <net/if_var.h>
69 #include <net/if_vlan_var.h>
70 
71 #include <netinet/in_systm.h>
72 #include <netinet/in.h>
73 #include <netinet/ip.h>
74 
75 #include <sys/sockio.h>
76 #include <sys/bus.h>
77 #include <machine/bus.h>
78 #include <sys/rman.h>
79 #include <machine/resource.h>
80 
81 #include <arm/ti/ti_scm.h>
82 #include <arm/ti/am335x/am335x_scm.h>
83 
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 
87 #include <dev/fdt/fdt_common.h>
88 #include <dev/ofw/ofw_bus.h>
89 #include <dev/ofw/ofw_bus_subr.h>
90 
91 #include "if_cpswreg.h"
92 #include "if_cpswvar.h"
93 
94 #include "miibus_if.h"
95 
96 /* Device probe/attach/detach. */
97 static int cpsw_probe(device_t);
98 static int cpsw_attach(device_t);
99 static int cpsw_detach(device_t);
100 static int cpswp_probe(device_t);
101 static int cpswp_attach(device_t);
102 static int cpswp_detach(device_t);
103 
104 static phandle_t cpsw_get_node(device_t, device_t);
105 
106 /* Device Init/shutdown. */
107 static int cpsw_shutdown(device_t);
108 static void cpswp_init(void *);
109 static void cpswp_init_locked(void *);
110 static void cpswp_stop_locked(struct cpswp_softc *);
111 
112 /* Device Suspend/Resume. */
113 static int cpsw_suspend(device_t);
114 static int cpsw_resume(device_t);
115 
116 /* Ioctl. */
117 static int cpswp_ioctl(struct ifnet *, u_long command, caddr_t data);
118 
119 static int cpswp_miibus_readreg(device_t, int phy, int reg);
120 static int cpswp_miibus_writereg(device_t, int phy, int reg, int value);
121 static void cpswp_miibus_statchg(device_t);
122 
123 /* Send/Receive packets. */
124 static void cpsw_intr_rx(void *arg);
125 static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
126 static void cpsw_rx_enqueue(struct cpsw_softc *);
127 static void cpswp_start(struct ifnet *);
128 static void cpswp_tx_enqueue(struct cpswp_softc *);
129 static int cpsw_tx_dequeue(struct cpsw_softc *);
130 
131 /* Misc interrupts and watchdog. */
132 static void cpsw_intr_rx_thresh(void *);
133 static void cpsw_intr_misc(void *);
134 static void cpswp_tick(void *);
135 static void cpswp_ifmedia_sts(struct ifnet *, struct ifmediareq *);
136 static int cpswp_ifmedia_upd(struct ifnet *);
137 static void cpsw_tx_watchdog(void *);
138 
139 /* ALE support */
140 static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t, uint32_t *);
141 static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t, uint32_t *);
142 static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t, int, uint8_t *);
143 static void cpsw_ale_dump_table(struct cpsw_softc *);
144 static int cpsw_ale_update_vlan_table(struct cpsw_softc *, int, int, int, int,
145 	int);
146 static int cpswp_ale_update_addresses(struct cpswp_softc *, int);
147 
148 /* Statistics and sysctls. */
149 static void cpsw_add_sysctls(struct cpsw_softc *);
150 static void cpsw_stats_collect(struct cpsw_softc *);
151 static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
152 
153 /*
154  * Arbitrary limit on number of segments in an mbuf to be transmitted.
155  * Packets with more segments than this will be defragmented before
156  * they are queued.
157  */
158 #define	CPSW_TXFRAGS		16
159 
160 /* Shared resources. */
161 static device_method_t cpsw_methods[] = {
162 	/* Device interface */
163 	DEVMETHOD(device_probe,		cpsw_probe),
164 	DEVMETHOD(device_attach,	cpsw_attach),
165 	DEVMETHOD(device_detach,	cpsw_detach),
166 	DEVMETHOD(device_shutdown,	cpsw_shutdown),
167 	DEVMETHOD(device_suspend,	cpsw_suspend),
168 	DEVMETHOD(device_resume,	cpsw_resume),
169 	/* OFW methods */
170 	DEVMETHOD(ofw_bus_get_node,	cpsw_get_node),
171 	DEVMETHOD_END
172 };
173 
174 static driver_t cpsw_driver = {
175 	"cpswss",
176 	cpsw_methods,
177 	sizeof(struct cpsw_softc),
178 };
179 
180 static devclass_t cpsw_devclass;
181 
182 DRIVER_MODULE(cpswss, simplebus, cpsw_driver, cpsw_devclass, 0, 0);
183 
184 /* Port/Slave resources. */
185 static device_method_t cpswp_methods[] = {
186 	/* Device interface */
187 	DEVMETHOD(device_probe,		cpswp_probe),
188 	DEVMETHOD(device_attach,	cpswp_attach),
189 	DEVMETHOD(device_detach,	cpswp_detach),
190 	/* MII interface */
191 	DEVMETHOD(miibus_readreg,	cpswp_miibus_readreg),
192 	DEVMETHOD(miibus_writereg,	cpswp_miibus_writereg),
193 	DEVMETHOD(miibus_statchg,	cpswp_miibus_statchg),
194 	DEVMETHOD_END
195 };
196 
197 static driver_t cpswp_driver = {
198 	"cpsw",
199 	cpswp_methods,
200 	sizeof(struct cpswp_softc),
201 };
202 
203 static devclass_t cpswp_devclass;
204 
205 DRIVER_MODULE(cpsw, cpswss, cpswp_driver, cpswp_devclass, 0, 0);
206 DRIVER_MODULE(miibus, cpsw, miibus_driver, miibus_devclass, 0, 0);
207 MODULE_DEPEND(cpsw, ether, 1, 1, 1);
208 MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
209 
210 static uint32_t slave_mdio_addr[] = { 0x4a100200, 0x4a100300 };
211 
212 static struct resource_spec irq_res_spec[] = {
213 	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
214 	{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
215 	{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
216 	{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
217 	{ -1, 0 }
218 };
219 
220 /* Number of entries here must match size of stats
221  * array in struct cpswp_softc. */
222 static struct cpsw_stat {
223 	int	reg;
224 	char *oid;
225 } cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
226 	{0x00, "GoodRxFrames"},
227 	{0x04, "BroadcastRxFrames"},
228 	{0x08, "MulticastRxFrames"},
229 	{0x0C, "PauseRxFrames"},
230 	{0x10, "RxCrcErrors"},
231 	{0x14, "RxAlignErrors"},
232 	{0x18, "OversizeRxFrames"},
233 	{0x1c, "RxJabbers"},
234 	{0x20, "ShortRxFrames"},
235 	{0x24, "RxFragments"},
236 	{0x30, "RxOctets"},
237 	{0x34, "GoodTxFrames"},
238 	{0x38, "BroadcastTxFrames"},
239 	{0x3c, "MulticastTxFrames"},
240 	{0x40, "PauseTxFrames"},
241 	{0x44, "DeferredTxFrames"},
242 	{0x48, "CollisionsTxFrames"},
243 	{0x4c, "SingleCollisionTxFrames"},
244 	{0x50, "MultipleCollisionTxFrames"},
245 	{0x54, "ExcessiveCollisions"},
246 	{0x58, "LateCollisions"},
247 	{0x5c, "TxUnderrun"},
248 	{0x60, "CarrierSenseErrors"},
249 	{0x64, "TxOctets"},
250 	{0x68, "RxTx64OctetFrames"},
251 	{0x6c, "RxTx65to127OctetFrames"},
252 	{0x70, "RxTx128to255OctetFrames"},
253 	{0x74, "RxTx256to511OctetFrames"},
254 	{0x78, "RxTx512to1024OctetFrames"},
255 	{0x7c, "RxTx1024upOctetFrames"},
256 	{0x80, "NetOctets"},
257 	{0x84, "RxStartOfFrameOverruns"},
258 	{0x88, "RxMiddleOfFrameOverruns"},
259 	{0x8c, "RxDmaOverruns"}
260 };
261 
262 /*
263  * Basic debug support.
264  */
265 
266 #define	IF_DEBUG(_sc)		if ((_sc)->if_flags & IFF_DEBUG)
267 
268 static void
269 cpsw_debugf_head(const char *funcname)
270 {
271 	int t = (int)(time_second % (24 * 60 * 60));
272 
273 	printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
274 }
275 
276 #include <machine/stdarg.h>
277 static void
278 cpsw_debugf(const char *fmt, ...)
279 {
280 	va_list ap;
281 
282 	va_start(ap, fmt);
283 	vprintf(fmt, ap);
284 	va_end(ap);
285 	printf("\n");
286 
287 }
288 
289 #define	CPSW_DEBUGF(_sc, a) do {					\
290 	if (sc->debug) {						\
291 		cpsw_debugf_head(__func__);				\
292 		cpsw_debugf a;						\
293 	}								\
294 } while (0)
295 
296 #define	CPSWP_DEBUGF(_sc, a) do {					\
297 	IF_DEBUG((_sc)) {						\
298 		cpsw_debugf_head(__func__);				\
299 		cpsw_debugf a;						\
300 	}								\
301 } while (0)
302 
303 
304 /*
305  * Locking macros
306  */
307 #define	CPSW_TX_LOCK(sc) do {						\
308 		mtx_assert(&(sc)->rx.lock, MA_NOTOWNED);		\
309 		mtx_lock(&(sc)->tx.lock);				\
310 } while (0)
311 
312 #define	CPSW_TX_UNLOCK(sc)	mtx_unlock(&(sc)->tx.lock)
313 #define	CPSW_TX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->tx.lock, MA_OWNED)
314 
315 #define	CPSW_RX_LOCK(sc) do {						\
316 		mtx_assert(&(sc)->tx.lock, MA_NOTOWNED);		\
317 		mtx_lock(&(sc)->rx.lock);				\
318 } while (0)
319 
320 #define	CPSW_RX_UNLOCK(sc)		mtx_unlock(&(sc)->rx.lock)
321 #define	CPSW_RX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->rx.lock, MA_OWNED)
322 
323 #define	CPSW_GLOBAL_LOCK(sc) do {					\
324 		if ((mtx_owned(&(sc)->tx.lock) ? 1 : 0) !=		\
325 		    (mtx_owned(&(sc)->rx.lock) ? 1 : 0)) {		\
326 			panic("cpsw deadlock possibility detection!");	\
327 		}							\
328 		mtx_lock(&(sc)->tx.lock);				\
329 		mtx_lock(&(sc)->rx.lock);				\
330 } while (0)
331 
332 #define	CPSW_GLOBAL_UNLOCK(sc) do {					\
333 		CPSW_RX_UNLOCK(sc);					\
334 		CPSW_TX_UNLOCK(sc);					\
335 } while (0)
336 
337 #define	CPSW_GLOBAL_LOCK_ASSERT(sc) do {				\
338 		CPSW_TX_LOCK_ASSERT(sc);				\
339 		CPSW_RX_LOCK_ASSERT(sc);				\
340 } while (0)
341 
342 #define CPSW_PORT_LOCK(_sc) do {					\
343 		mtx_assert(&(_sc)->lock, MA_NOTOWNED);			\
344 		mtx_lock(&(_sc)->lock);					\
345 } while (0)
346 
347 #define	CPSW_PORT_UNLOCK(_sc)	mtx_unlock(&(_sc)->lock)
348 #define	CPSW_PORT_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->lock, MA_OWNED)
349 
350 /*
351  * Read/Write macros
352  */
353 #define	cpsw_read_4(_sc, _reg)		bus_read_4((_sc)->mem_res, (_reg))
354 #define	cpsw_write_4(_sc, _reg, _val)					\
355 	bus_write_4((_sc)->mem_res, (_reg), (_val))
356 
357 #define	cpsw_cpdma_bd_offset(i)	(CPSW_CPPI_RAM_OFFSET + ((i)*16))
358 
359 #define	cpsw_cpdma_bd_paddr(sc, slot)					\
360 	BUS_SPACE_PHYSADDR(sc->mem_res, slot->bd_offset)
361 #define	cpsw_cpdma_read_bd(sc, slot, val)				\
362 	bus_read_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
363 #define	cpsw_cpdma_write_bd(sc, slot, val)				\
364 	bus_write_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
365 #define	cpsw_cpdma_write_bd_next(sc, slot, next_slot)			\
366 	cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
367 #define	cpsw_cpdma_read_bd_flags(sc, slot)				\
368 	bus_read_2(sc->mem_res, slot->bd_offset + 14)
369 #define	cpsw_write_hdp_slot(sc, queue, slot)				\
370 	cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
371 #define	CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
372 #define	cpsw_read_cp(sc, queue)						\
373 	cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
374 #define	cpsw_write_cp(sc, queue, val)					\
375 	cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
376 #define	cpsw_write_cp_slot(sc, queue, slot)				\
377 	cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
378 
379 #if 0
380 /* XXX temporary function versions for debugging. */
381 static void
382 cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
383 {
384 	uint32_t reg = queue->hdp_offset;
385 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
386 	CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
387 	cpsw_write_4(sc, reg, v);
388 }
389 
390 static void
391 cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
392 {
393 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
394 	CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
395 	cpsw_write_cp(sc, queue, v);
396 }
397 #endif
398 
399 /*
400  * Expanded dump routines for verbose debugging.
401  */
402 static void
403 cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
404 {
405 	static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
406 	    "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
407 	    "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
408 	    "Port0"};
409 	struct cpsw_cpdma_bd bd;
410 	const char *sep;
411 	int i;
412 
413 	cpsw_cpdma_read_bd(sc, slot, &bd);
414 	printf("BD Addr: 0x%08x   Next: 0x%08x\n", cpsw_cpdma_bd_paddr(sc, slot), bd.next);
415 	printf("  BufPtr: 0x%08x   BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
416 	printf("  BufOff: 0x%08x   PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
417 	printf("  Flags: ");
418 	sep = "";
419 	for (i = 0; i < 16; ++i) {
420 		if (bd.flags & (1 << (15 - i))) {
421 			printf("%s%s", sep, flags[i]);
422 			sep = ",";
423 		}
424 	}
425 	printf("\n");
426 	if (slot->mbuf) {
427 		printf("  Ether:  %14D\n",
428 		    (char *)(slot->mbuf->m_data), " ");
429 		printf("  Packet: %16D\n",
430 		    (char *)(slot->mbuf->m_data) + 14, " ");
431 	}
432 }
433 
434 #define	CPSW_DUMP_SLOT(cs, slot) do {				\
435 	IF_DEBUG(sc) {						\
436 		cpsw_dump_slot(sc, slot);			\
437 	}							\
438 } while (0)
439 
440 static void
441 cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
442 {
443 	struct cpsw_slot *slot;
444 	int i = 0;
445 	int others = 0;
446 
447 	STAILQ_FOREACH(slot, q, next) {
448 		if (i > 4)
449 			++others;
450 		else
451 			cpsw_dump_slot(sc, slot);
452 		++i;
453 	}
454 	if (others)
455 		printf(" ... and %d more.\n", others);
456 	printf("\n");
457 }
458 
459 #define CPSW_DUMP_QUEUE(sc, q) do {				\
460 	IF_DEBUG(sc) {						\
461 		cpsw_dump_queue(sc, q);				\
462 	}							\
463 } while (0)
464 
465 static void
466 cpsw_init_slots(struct cpsw_softc *sc)
467 {
468 	struct cpsw_slot *slot;
469 	int i;
470 
471 	STAILQ_INIT(&sc->avail);
472 
473 	/* Put the slot descriptors onto the global avail list. */
474 	for (i = 0; i < nitems(sc->_slots); i++) {
475 		slot = &sc->_slots[i];
476 		slot->bd_offset = cpsw_cpdma_bd_offset(i);
477 		STAILQ_INSERT_TAIL(&sc->avail, slot, next);
478 	}
479 }
480 
481 static int
482 cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
483 {
484 	const int max_slots = nitems(sc->_slots);
485 	struct cpsw_slot *slot;
486 	int i;
487 
488 	if (requested < 0)
489 		requested = max_slots;
490 
491 	for (i = 0; i < requested; ++i) {
492 		slot = STAILQ_FIRST(&sc->avail);
493 		if (slot == NULL)
494 			return (0);
495 		if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
496 			device_printf(sc->dev, "failed to create dmamap\n");
497 			return (ENOMEM);
498 		}
499 		STAILQ_REMOVE_HEAD(&sc->avail, next);
500 		STAILQ_INSERT_TAIL(&queue->avail, slot, next);
501 		++queue->avail_queue_len;
502 		++queue->queue_slots;
503 	}
504 	return (0);
505 }
506 
507 static void
508 cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
509 {
510 	int error;
511 
512 	if (slot->dmamap) {
513 		if (slot->mbuf)
514 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
515 		error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
516 		KASSERT(error == 0, ("Mapping still active"));
517 		slot->dmamap = NULL;
518 	}
519 	if (slot->mbuf) {
520 		m_freem(slot->mbuf);
521 		slot->mbuf = NULL;
522 	}
523 }
524 
525 static void
526 cpsw_reset(struct cpsw_softc *sc)
527 {
528 	int i;
529 
530 	callout_stop(&sc->watchdog.callout);
531 
532 	/* Reset RMII/RGMII wrapper. */
533 	cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
534 	while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
535 		;
536 
537 	/* Disable TX and RX interrupts for all cores. */
538 	for (i = 0; i < 3; ++i) {
539 		cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
540 		cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
541 		cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
542 		cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
543 	}
544 
545 	/* Reset CPSW subsystem. */
546 	cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
547 	while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
548 		;
549 
550 	/* Reset Sliver port 1 and 2 */
551 	for (i = 0; i < 2; i++) {
552 		/* Reset */
553 		cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
554 		while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
555 			;
556 	}
557 
558 	/* Reset DMA controller. */
559 	cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
560 	while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
561 		;
562 
563 	/* Disable TX & RX DMA */
564 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
565 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
566 
567 	/* Clear all queues. */
568 	for (i = 0; i < 8; i++) {
569 		cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
570 		cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
571 		cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
572 		cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
573 	}
574 
575 	/* Clear all interrupt Masks */
576 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
577 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
578 }
579 
580 static void
581 cpsw_init(struct cpsw_softc *sc)
582 {
583 	struct cpsw_slot *slot;
584 	uint32_t reg;
585 
586 	/* Clear ALE */
587 	cpsw_write_4(sc, CPSW_ALE_CONTROL, CPSW_ALE_CTL_CLEAR_TBL);
588 
589 	/* Enable ALE */
590 	reg = CPSW_ALE_CTL_ENABLE;
591 	if (sc->dualemac)
592 		reg |= CPSW_ALE_CTL_VLAN_AWARE;
593 	cpsw_write_4(sc, CPSW_ALE_CONTROL, reg);
594 
595 	/* Set Host Port Mapping. */
596 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
597 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
598 
599 	/* Initialize ALE: set host port to forwarding(3). */
600 	cpsw_write_4(sc, CPSW_ALE_PORTCTL(0), 3);
601 
602 	cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
603 
604 	/* Enable statistics for ports 0, 1 and 2 */
605 	cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
606 
607 	/* Experiment:  Turn off flow control */
608 	/* This seems to fix the watchdog resets that have plagued
609 	   earlier versions of this driver; I'm not yet sure if there
610 	   are negative effects yet. */
611 	cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
612 
613 	/* Make IP hdr aligned with 4 */
614 	cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
615 
616 	/* Initialize RX Buffer Descriptors */
617 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
618 
619 	/* Enable TX & RX DMA */
620 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
621 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
622 
623 	/* Enable Interrupts for core 0 */
624 	cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
625 	cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
626 	cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x1F);
627 
628 	/* Enable host Error Interrupt */
629 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
630 
631 	/* Enable interrupts for RX Channel 0 */
632 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET, 1);
633 
634 	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
635 	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
636 	cpsw_write_4(sc, MDIOCONTROL, MDIOCTL_ENABLE | MDIOCTL_FAULTENB | 0xff);
637 
638 	/* Select MII in GMII_SEL, Internal Delay mode */
639 	//ti_scm_reg_write_4(0x650, 0);
640 
641 	/* Initialize active queues. */
642 	slot = STAILQ_FIRST(&sc->tx.active);
643 	if (slot != NULL)
644 		cpsw_write_hdp_slot(sc, &sc->tx, slot);
645 	slot = STAILQ_FIRST(&sc->rx.active);
646 	if (slot != NULL)
647 		cpsw_write_hdp_slot(sc, &sc->rx, slot);
648 	cpsw_rx_enqueue(sc);
649 
650 	/* Activate network interface. */
651 	sc->rx.running = 1;
652 	sc->tx.running = 1;
653 	sc->watchdog.timer = 0;
654 	callout_init(&sc->watchdog.callout, 0);
655 	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
656 }
657 
658 /*
659  *
660  * Device Probe, Attach, Detach.
661  *
662  */
663 
664 static int
665 cpsw_probe(device_t dev)
666 {
667 
668 	if (!ofw_bus_status_okay(dev))
669 		return (ENXIO);
670 
671 	if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
672 		return (ENXIO);
673 
674 	device_set_desc(dev, "3-port Switch Ethernet Subsystem");
675 	return (BUS_PROBE_DEFAULT);
676 }
677 
678 static int
679 cpsw_intr_attach(struct cpsw_softc *sc)
680 {
681 
682 	/* Note: We don't use sc->irq_res[2] (TX interrupt) */
683 	if (bus_setup_intr(sc->dev, sc->irq_res[0],
684 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, cpsw_intr_rx_thresh,
685 	    sc, &sc->ih_cookie[0]) != 0) {
686 		return (-1);
687 	}
688 	if (bus_setup_intr(sc->dev, sc->irq_res[1],
689 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, cpsw_intr_rx,
690 	    sc, &sc->ih_cookie[1]) != 0) {
691 		return (-1);
692 	}
693 	if (bus_setup_intr(sc->dev, sc->irq_res[3],
694 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, cpsw_intr_misc,
695 	    sc, &sc->ih_cookie[3]) != 0) {
696 		return (-1);
697 	}
698 
699 	return (0);
700 }
701 
702 static void
703 cpsw_intr_detach(struct cpsw_softc *sc)
704 {
705 	int i;
706 
707 	for (i = 0; i < CPSW_INTR_COUNT; i++) {
708 		if (sc->ih_cookie[i]) {
709 			bus_teardown_intr(sc->dev, sc->irq_res[i],
710 			    sc->ih_cookie[i]);
711 		}
712 	}
713 }
714 
715 static int
716 cpsw_get_fdt_data(struct cpsw_softc *sc, int port)
717 {
718 	char *name;
719 	int len, phy, vlan;
720 	pcell_t phy_id[3], vlan_id;
721 	phandle_t child;
722 	unsigned long mdio_child_addr;
723 
724 	/* Find any slave with phy_id */
725 	phy = -1;
726 	vlan = -1;
727 	for (child = OF_child(sc->node); child != 0; child = OF_peer(child)) {
728 		if (OF_getprop_alloc(child, "name", 1, (void **)&name) < 0)
729 			continue;
730 		if (sscanf(name, "slave@%x", &mdio_child_addr) != 1) {
731 			OF_prop_free(name);
732 			continue;
733 		}
734 		OF_prop_free(name);
735 		if (mdio_child_addr != slave_mdio_addr[port])
736 			continue;
737 
738 		len = OF_getproplen(child, "phy_id");
739 		if (len / sizeof(pcell_t) == 2) {
740 			/* Get phy address from fdt */
741 			if (OF_getencprop(child, "phy_id", phy_id, len) > 0)
742 				phy = phy_id[1];
743 		}
744 
745 		len = OF_getproplen(child, "dual_emac_res_vlan");
746 		if (len / sizeof(pcell_t) == 1) {
747 			/* Get phy address from fdt */
748 			if (OF_getencprop(child, "dual_emac_res_vlan",
749 			    &vlan_id, len) > 0) {
750 				vlan = vlan_id;
751 			}
752 		}
753 
754 		break;
755 	}
756 	if (phy == -1)
757 		return (ENXIO);
758 	sc->port[port].phy = phy;
759 	sc->port[port].vlan = vlan;
760 
761 	return (0);
762 }
763 
764 static int
765 cpsw_attach(device_t dev)
766 {
767 	bus_dma_segment_t segs[1];
768 	int error, i, nsegs;
769 	struct cpsw_softc *sc;
770 	uint32_t reg;
771 
772 	sc = device_get_softc(dev);
773 	sc->dev = dev;
774 	sc->node = ofw_bus_get_node(dev);
775 	getbinuptime(&sc->attach_uptime);
776 
777 	if (OF_getencprop(sc->node, "active_slave", &sc->active_slave,
778 	    sizeof(sc->active_slave)) <= 0) {
779 		sc->active_slave = 0;
780 	}
781 	if (sc->active_slave > 1)
782 		sc->active_slave = 1;
783 
784 	if (OF_hasprop(sc->node, "dual_emac"))
785 		sc->dualemac = 1;
786 
787 	for (i = 0; i < CPSW_PORTS; i++) {
788 		if (!sc->dualemac && i != sc->active_slave)
789 			continue;
790 		if (cpsw_get_fdt_data(sc, i) != 0) {
791 			device_printf(dev,
792 			    "failed to get PHY address from FDT\n");
793 			return (ENXIO);
794 		}
795 	}
796 
797 	/* Initialize mutexes */
798 	mtx_init(&sc->tx.lock, device_get_nameunit(dev),
799 	    "cpsw TX lock", MTX_DEF);
800 	mtx_init(&sc->rx.lock, device_get_nameunit(dev),
801 	    "cpsw RX lock", MTX_DEF);
802 
803 	/* Allocate IRQ resources */
804 	error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
805 	if (error) {
806 		device_printf(dev, "could not allocate IRQ resources\n");
807 		cpsw_detach(dev);
808 		return (ENXIO);
809 	}
810 
811 	sc->mem_rid = 0;
812 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
813 	    &sc->mem_rid, RF_ACTIVE);
814 	if (sc->mem_res == NULL) {
815 		device_printf(sc->dev, "failed to allocate memory resource\n");
816 		cpsw_detach(dev);
817 		return (ENXIO);
818 	}
819 
820 	reg = cpsw_read_4(sc, CPSW_SS_IDVER);
821 	device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
822 		reg & 0xFF, (reg >> 11) & 0x1F);
823 
824 	cpsw_add_sysctls(sc);
825 
826 	/* Allocate a busdma tag and DMA safe memory for mbufs. */
827 	error = bus_dma_tag_create(
828 		bus_get_dma_tag(sc->dev),	/* parent */
829 		1, 0,				/* alignment, boundary */
830 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
831 		BUS_SPACE_MAXADDR,		/* highaddr */
832 		NULL, NULL,			/* filtfunc, filtfuncarg */
833 		MCLBYTES, CPSW_TXFRAGS,		/* maxsize, nsegments */
834 		MCLBYTES, 0,			/* maxsegsz, flags */
835 		NULL, NULL,			/* lockfunc, lockfuncarg */
836 		&sc->mbuf_dtag);		/* dmatag */
837 	if (error) {
838 		device_printf(dev, "bus_dma_tag_create failed\n");
839 		cpsw_detach(dev);
840 		return (error);
841 	}
842 
843 	/* Allocate the null mbuf and pre-sync it. */
844 	sc->null_mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
845 	memset(sc->null_mbuf->m_data, 0, sc->null_mbuf->m_ext.ext_size);
846 	bus_dmamap_create(sc->mbuf_dtag, 0, &sc->null_mbuf_dmamap);
847 	bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, sc->null_mbuf_dmamap,
848 	    sc->null_mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
849 	bus_dmamap_sync(sc->mbuf_dtag, sc->null_mbuf_dmamap,
850 	    BUS_DMASYNC_PREWRITE);
851 	sc->null_mbuf_paddr = segs[0].ds_addr;
852 
853 	cpsw_init_slots(sc);
854 
855 	/* Allocate slots to TX and RX queues. */
856 	STAILQ_INIT(&sc->rx.avail);
857 	STAILQ_INIT(&sc->rx.active);
858 	STAILQ_INIT(&sc->tx.avail);
859 	STAILQ_INIT(&sc->tx.active);
860 	// For now:  128 slots to TX, rest to RX.
861 	// XXX TODO: start with 32/64 and grow dynamically based on demand.
862 	if (cpsw_add_slots(sc, &sc->tx, 128) ||
863 	    cpsw_add_slots(sc, &sc->rx, -1)) {
864 		device_printf(dev, "failed to allocate dmamaps\n");
865 		cpsw_detach(dev);
866 		return (ENOMEM);
867 	}
868 	device_printf(dev, "Initial queue size TX=%d RX=%d\n",
869 	    sc->tx.queue_slots, sc->rx.queue_slots);
870 
871 	sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
872 	sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
873 
874 	if (cpsw_intr_attach(sc) == -1) {
875 		device_printf(dev, "failed to setup interrupts\n");
876 		cpsw_detach(dev);
877 		return (ENXIO);
878 	}
879 
880 	/* Reset the controller. */
881 	cpsw_reset(sc);
882 	cpsw_init(sc);
883 
884 	for (i = 0; i < CPSW_PORTS; i++) {
885 		if (!sc->dualemac && i != sc->active_slave)
886 			continue;
887 		sc->port[i].dev = device_add_child(dev, "cpsw", i);
888 		if (sc->port[i].dev == NULL) {
889 			cpsw_detach(dev);
890 			return (ENXIO);
891 		}
892 	}
893 	bus_generic_attach(dev);
894 
895 	return (0);
896 }
897 
898 static int
899 cpsw_detach(device_t dev)
900 {
901 	struct cpsw_softc *sc;
902 	int error, i;
903 
904 	bus_generic_detach(dev);
905  	sc = device_get_softc(dev);
906 
907 	for (i = 0; i < CPSW_PORTS; i++) {
908 		if (sc->port[i].dev)
909 			device_delete_child(dev, sc->port[i].dev);
910 	}
911 
912 	if (device_is_attached(dev)) {
913 		callout_stop(&sc->watchdog.callout);
914 		callout_drain(&sc->watchdog.callout);
915 	}
916 
917 	/* Stop and release all interrupts */
918 	cpsw_intr_detach(sc);
919 
920 	/* Free dmamaps and mbufs */
921 	for (i = 0; i < nitems(sc->_slots); ++i)
922 		cpsw_free_slot(sc, &sc->_slots[i]);
923 
924 	/* Free null mbuf. */
925 	if (sc->null_mbuf_dmamap) {
926 		bus_dmamap_unload(sc->mbuf_dtag, sc->null_mbuf_dmamap);
927 		error = bus_dmamap_destroy(sc->mbuf_dtag, sc->null_mbuf_dmamap);
928 		KASSERT(error == 0, ("Mapping still active"));
929 		m_freem(sc->null_mbuf);
930 	}
931 
932 	/* Free DMA tag */
933 	if (sc->mbuf_dtag) {
934 		error = bus_dma_tag_destroy(sc->mbuf_dtag);
935 		KASSERT(error == 0, ("Unable to destroy DMA tag"));
936 	}
937 
938 	/* Free IO memory handler */
939 	if (sc->mem_res != NULL)
940 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res);
941 	bus_release_resources(dev, irq_res_spec, sc->irq_res);
942 
943 	/* Destroy mutexes */
944 	mtx_destroy(&sc->rx.lock);
945 	mtx_destroy(&sc->tx.lock);
946 
947 	return (0);
948 }
949 
950 static phandle_t
951 cpsw_get_node(device_t bus, device_t dev)
952 {
953 
954 	/* Share controller node with port device. */
955 	return (ofw_bus_get_node(bus));
956 }
957 
958 static int
959 cpswp_probe(device_t dev)
960 {
961 
962 	if (device_get_unit(dev) > 1) {
963 		device_printf(dev, "Only two ports are supported.\n");
964 		return (ENXIO);
965 	}
966 	device_set_desc(dev, "Ethernet Switch Port");
967 
968 	return (BUS_PROBE_DEFAULT);
969 }
970 
971 static int
972 cpswp_attach(device_t dev)
973 {
974 	int error;
975 	struct ifnet *ifp;
976 	struct cpswp_softc *sc;
977 	uint32_t reg;
978 	uint8_t mac_addr[ETHER_ADDR_LEN];
979 
980 	sc = device_get_softc(dev);
981 	sc->dev = dev;
982 	sc->pdev = device_get_parent(dev);
983 	sc->swsc = device_get_softc(sc->pdev);
984 	sc->unit = device_get_unit(dev);
985 	sc->phy = sc->swsc->port[sc->unit].phy;
986 	sc->vlan = sc->swsc->port[sc->unit].vlan;
987 	if (sc->swsc->dualemac && sc->vlan == -1)
988 		sc->vlan = sc->unit + 1;
989 
990 	if (sc->unit == 0) {
991 		sc->physel = MDIOUSERPHYSEL0;
992 		sc->phyaccess = MDIOUSERACCESS0;
993 	} else {
994 		sc->physel = MDIOUSERPHYSEL1;
995 		sc->phyaccess = MDIOUSERACCESS1;
996 	}
997 
998 	mtx_init(&sc->lock, device_get_nameunit(dev), "cpsw port lock",
999 	    MTX_DEF);
1000 
1001 	/* Allocate network interface */
1002 	ifp = sc->ifp = if_alloc(IFT_ETHER);
1003 	if (ifp == NULL) {
1004 		cpswp_detach(dev);
1005 		return (ENXIO);
1006 	}
1007 
1008 	if_initname(ifp, device_get_name(sc->dev), sc->unit);
1009 	ifp->if_softc = sc;
1010 	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
1011 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_HWCSUM; //FIXME VLAN?
1012 	ifp->if_capenable = ifp->if_capabilities;
1013 
1014 	ifp->if_init = cpswp_init;
1015 	ifp->if_start = cpswp_start;
1016 	ifp->if_ioctl = cpswp_ioctl;
1017 
1018 	ifp->if_snd.ifq_drv_maxlen = sc->swsc->tx.queue_slots;
1019 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1020 	IFQ_SET_READY(&ifp->if_snd);
1021 
1022 	/* Get high part of MAC address from control module (mac_id[0|1]_hi) */
1023 	ti_scm_reg_read_4(SCM_MAC_ID0_HI + sc->unit * 8, &reg);
1024 	mac_addr[0] = reg & 0xFF;
1025 	mac_addr[1] = (reg >>  8) & 0xFF;
1026 	mac_addr[2] = (reg >> 16) & 0xFF;
1027 	mac_addr[3] = (reg >> 24) & 0xFF;
1028 
1029 	/* Get low part of MAC address from control module (mac_id[0|1]_lo) */
1030 	ti_scm_reg_read_4(SCM_MAC_ID0_LO + sc->unit * 8, &reg);
1031 	mac_addr[4] = reg & 0xFF;
1032 	mac_addr[5] = (reg >>  8) & 0xFF;
1033 
1034 	error = mii_attach(dev, &sc->miibus, ifp, cpswp_ifmedia_upd,
1035 	    cpswp_ifmedia_sts, BMSR_DEFCAPMASK, sc->phy, MII_OFFSET_ANY, 0);
1036 	if (error) {
1037 		device_printf(dev, "attaching PHYs failed\n");
1038 		cpswp_detach(dev);
1039 		return (error);
1040 	}
1041 	sc->mii = device_get_softc(sc->miibus);
1042 
1043 	/* Select PHY and enable interrupts */
1044 	cpsw_write_4(sc->swsc, sc->physel,
1045 	    MDIO_PHYSEL_LINKINTENB | (sc->phy & 0x1F));
1046 
1047 	ether_ifattach(sc->ifp, mac_addr);
1048 	callout_init(&sc->mii_callout, 0);
1049 
1050 	return (0);
1051 }
1052 
1053 static int
1054 cpswp_detach(device_t dev)
1055 {
1056 	struct cpswp_softc *sc;
1057 
1058 	sc = device_get_softc(dev);
1059 	CPSWP_DEBUGF(sc, (""));
1060 	if (device_is_attached(dev)) {
1061 		ether_ifdetach(sc->ifp);
1062 		CPSW_PORT_LOCK(sc);
1063 		cpswp_stop_locked(sc);
1064 		CPSW_PORT_UNLOCK(sc);
1065 		callout_drain(&sc->mii_callout);
1066 	}
1067 
1068 	bus_generic_detach(dev);
1069 
1070 	if_free(sc->ifp);
1071 	mtx_destroy(&sc->lock);
1072 
1073 	return (0);
1074 }
1075 
1076 /*
1077  *
1078  * Init/Shutdown.
1079  *
1080  */
1081 
1082 static int
1083 cpsw_ports_down(struct cpsw_softc *sc)
1084 {
1085 	struct cpswp_softc *psc;
1086 	struct ifnet *ifp1, *ifp2;
1087 
1088 	if (!sc->dualemac)
1089 		return (1);
1090 	psc = device_get_softc(sc->port[0].dev);
1091 	ifp1 = psc->ifp;
1092 	psc = device_get_softc(sc->port[1].dev);
1093 	ifp2 = psc->ifp;
1094 	if ((ifp1->if_flags & IFF_UP) == 0 && (ifp2->if_flags & IFF_UP) == 0)
1095 		return (1);
1096 
1097 	return (0);
1098 }
1099 
1100 static void
1101 cpswp_init(void *arg)
1102 {
1103 	struct cpswp_softc *sc = arg;
1104 
1105 	CPSWP_DEBUGF(sc, (""));
1106 	CPSW_PORT_LOCK(sc);
1107 	cpswp_init_locked(arg);
1108 	CPSW_PORT_UNLOCK(sc);
1109 }
1110 
1111 static void
1112 cpswp_init_locked(void *arg)
1113 {
1114 	struct cpswp_softc *sc = arg;
1115 	struct ifnet *ifp;
1116 	uint32_t reg;
1117 
1118 	CPSWP_DEBUGF(sc, (""));
1119 	CPSW_PORT_LOCK_ASSERT(sc);
1120 	ifp = sc->ifp;
1121 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1122 		return;
1123 
1124 	getbinuptime(&sc->init_uptime);
1125 
1126 	if (!sc->swsc->rx.running && !sc->swsc->tx.running) {
1127 		/* Reset the controller. */
1128 		cpsw_reset(sc->swsc);
1129 		cpsw_init(sc->swsc);
1130 	}
1131 
1132 	/* Set Slave Mapping. */
1133 	cpsw_write_4(sc->swsc, CPSW_SL_RX_PRI_MAP(sc->unit), 0x76543210);
1134 	cpsw_write_4(sc->swsc, CPSW_PORT_P_TX_PRI_MAP(sc->unit + 1),
1135 	    0x33221100);
1136 	cpsw_write_4(sc->swsc, CPSW_SL_RX_MAXLEN(sc->unit), 0x5f2);
1137 	/* Enable MAC RX/TX modules. */
1138 	/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
1139 	/* Huh?  Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
1140 	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1141 	reg |= CPSW_SL_MACTL_GMII_ENABLE;
1142 	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1143 
1144 	/* Initialize ALE: set port to forwarding(3), initialize addrs */
1145 	cpsw_write_4(sc->swsc, CPSW_ALE_PORTCTL(sc->unit + 1), 3);
1146 	cpswp_ale_update_addresses(sc, 1);
1147 
1148 	if (sc->swsc->dualemac) {
1149 		/* Set Port VID. */
1150 		cpsw_write_4(sc->swsc, CPSW_PORT_P_VLAN(sc->unit + 1),
1151 		    sc->vlan & 0xfff);
1152 		cpsw_ale_update_vlan_table(sc->swsc, sc->vlan,
1153 		    (1 << (sc->unit + 1)) | (1 << 0), /* Member list */
1154 		    (1 << (sc->unit + 1)) | (1 << 0), /* Untagged egress */
1155 		    (1 << (sc->unit + 1)) | (1 << 0), 0); /* mcast reg flood */
1156 	}
1157 
1158 	mii_mediachg(sc->mii);
1159 	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
1160 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1161 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1162 }
1163 
1164 static int
1165 cpsw_shutdown(device_t dev)
1166 {
1167 	struct cpsw_softc *sc;
1168 	struct cpswp_softc *psc;
1169 	int i;
1170 
1171  	sc = device_get_softc(dev);
1172 	CPSW_DEBUGF(sc, (""));
1173 	for (i = 0; i < CPSW_PORTS; i++) {
1174 		if (!sc->dualemac && i != sc->active_slave)
1175 			continue;
1176 		psc = device_get_softc(sc->port[i].dev);
1177 		CPSW_PORT_LOCK(psc);
1178 		cpswp_stop_locked(psc);
1179 		CPSW_PORT_UNLOCK(psc);
1180 	}
1181 
1182 	return (0);
1183 }
1184 
1185 static void
1186 cpsw_rx_teardown_locked(struct cpsw_softc *sc)
1187 {
1188 	struct ifnet *ifp;
1189 	struct mbuf *received, *next;
1190 	int i = 0;
1191 
1192 	CPSW_DEBUGF(sc, ("starting RX teardown"));
1193 	cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
1194 	for (;;) {
1195 		received = cpsw_rx_dequeue(sc);
1196 		CPSW_GLOBAL_UNLOCK(sc);
1197 		while (received != NULL) {
1198 			next = received->m_nextpkt;
1199 			received->m_nextpkt = NULL;
1200 			ifp = received->m_pkthdr.rcvif;
1201 			(*ifp->if_input)(ifp, received);
1202 			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1203 			received = next;
1204 		}
1205 		CPSW_GLOBAL_LOCK(sc);
1206 		if (!sc->rx.running) {
1207 			CPSW_DEBUGF(sc,
1208 			    ("finished RX teardown (%d retries)", i));
1209 			return;
1210 		}
1211 		if (++i > 10) {
1212 			device_printf(sc->dev,
1213 			    "Unable to cleanly shutdown receiver\n");
1214 			return;
1215 		}
1216 		DELAY(10);
1217 	}
1218 }
1219 
1220 static void
1221 cpsw_tx_teardown_locked(struct cpsw_softc *sc)
1222 {
1223 	int i = 0;
1224 
1225 	CPSW_DEBUGF(sc, ("starting TX teardown"));
1226 	cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
1227 	cpsw_tx_dequeue(sc);
1228 	while (sc->tx.running && ++i < 10) {
1229 		DELAY(10);
1230 		cpsw_tx_dequeue(sc);
1231 	}
1232 	if (sc->tx.running) {
1233 		device_printf(sc->dev,
1234 		    "Unable to cleanly shutdown transmitter\n");
1235 	}
1236 	CPSW_DEBUGF(sc, ("finished TX teardown (%d retries, %d idle buffers)",
1237 	    i, sc->tx.active_queue_len));
1238 }
1239 
1240 static void
1241 cpswp_stop_locked(struct cpswp_softc *sc)
1242 {
1243 	struct ifnet *ifp;
1244 	uint32_t reg;
1245 
1246 	ifp = sc->ifp;
1247 	CPSWP_DEBUGF(sc, (""));
1248 	CPSW_PORT_LOCK_ASSERT(sc);
1249 
1250 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1251 		return;
1252 
1253 	/* Disable interface */
1254 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1255 	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1256 
1257 	/* Stop ticker */
1258 	callout_stop(&sc->mii_callout);
1259 
1260 	/* Tear down the RX/TX queues. */
1261 	if (cpsw_ports_down(sc->swsc)) {
1262 		CPSW_GLOBAL_LOCK(sc->swsc);
1263 		cpsw_rx_teardown_locked(sc->swsc);
1264 		cpsw_tx_teardown_locked(sc->swsc);
1265 		CPSW_GLOBAL_UNLOCK(sc->swsc);
1266 	}
1267 
1268 	/* Stop MAC RX/TX modules. */
1269 	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1270 	reg &= ~CPSW_SL_MACTL_GMII_ENABLE;
1271 	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1272 
1273 	if (cpsw_ports_down(sc->swsc)) {
1274 		/* Capture stats before we reset controller. */
1275 		cpsw_stats_collect(sc->swsc);
1276 
1277 		cpsw_reset(sc->swsc);
1278 		cpsw_init(sc->swsc);
1279 	}
1280 }
1281 
1282 /*
1283  *  Suspend/Resume.
1284  */
1285 
1286 static int
1287 cpsw_suspend(device_t dev)
1288 {
1289 	struct cpsw_softc *sc;
1290 	struct cpswp_softc *psc;
1291 	int i;
1292 
1293 	sc = device_get_softc(dev);
1294 	CPSW_DEBUGF(sc, (""));
1295 	for (i = 0; i < CPSW_PORTS; i++) {
1296 		if (!sc->dualemac && i != sc->active_slave)
1297 			continue;
1298 		psc = device_get_softc(sc->port[i].dev);
1299 		CPSW_PORT_LOCK(psc);
1300 		cpswp_stop_locked(psc);
1301 		CPSW_PORT_UNLOCK(psc);
1302 	}
1303 
1304 	return (0);
1305 }
1306 
1307 static int
1308 cpsw_resume(device_t dev)
1309 {
1310 	struct cpsw_softc *sc;
1311 
1312 	sc  = device_get_softc(dev);
1313 	CPSW_DEBUGF(sc, ("UNIMPLEMENTED"));
1314 
1315 	return (0);
1316 }
1317 
1318 /*
1319  *
1320  *  IOCTL
1321  *
1322  */
1323 
1324 static void
1325 cpsw_set_promisc(struct cpswp_softc *sc, int set)
1326 {
1327 	uint32_t reg;
1328 
1329 	/*
1330 	 * Enabling promiscuous mode requires ALE_BYPASS to be enabled.
1331 	 * That disables the ALE forwarding logic and causes every
1332 	 * packet to be sent only to the host port.  In bypass mode,
1333 	 * the ALE processes host port transmit packets the same as in
1334 	 * normal mode.
1335 	 */
1336 	reg = cpsw_read_4(sc->swsc, CPSW_ALE_CONTROL);
1337 	reg &= ~CPSW_ALE_CTL_BYPASS;
1338 	if (set)
1339 		reg |= CPSW_ALE_CTL_BYPASS;
1340 	cpsw_write_4(sc->swsc, CPSW_ALE_CONTROL, reg);
1341 }
1342 
1343 static void
1344 cpsw_set_allmulti(struct cpswp_softc *sc, int set)
1345 {
1346 	if (set) {
1347 		printf("All-multicast mode unimplemented\n");
1348 	}
1349 }
1350 
1351 static int
1352 cpswp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1353 {
1354 	struct cpswp_softc *sc;
1355 	struct ifreq *ifr;
1356 	int error;
1357 	uint32_t changed;
1358 
1359 	error = 0;
1360 	sc = ifp->if_softc;
1361 	ifr = (struct ifreq *)data;
1362 
1363 	switch (command) {
1364 	case SIOCSIFFLAGS:
1365 		CPSW_PORT_LOCK(sc);
1366 		if (ifp->if_flags & IFF_UP) {
1367 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1368 				changed = ifp->if_flags ^ sc->if_flags;
1369 				CPSWP_DEBUGF(sc,
1370 				    ("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)",
1371 				    changed));
1372 				if (changed & IFF_PROMISC)
1373 					cpsw_set_promisc(sc,
1374 					    ifp->if_flags & IFF_PROMISC);
1375 				if (changed & IFF_ALLMULTI)
1376 					cpsw_set_allmulti(sc,
1377 					    ifp->if_flags & IFF_ALLMULTI);
1378 			} else {
1379 				CPSWP_DEBUGF(sc,
1380 				    ("SIOCSIFFLAGS: UP but not RUNNING; starting up"));
1381 				cpswp_init_locked(sc);
1382 			}
1383 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1384 			CPSWP_DEBUGF(sc,
1385 			    ("SIOCSIFFLAGS: not UP but RUNNING; shutting down"));
1386 			cpswp_stop_locked(sc);
1387 		}
1388 
1389 		sc->if_flags = ifp->if_flags;
1390 		CPSW_PORT_UNLOCK(sc);
1391 		break;
1392 	case SIOCADDMULTI:
1393 		cpswp_ale_update_addresses(sc, 0);
1394 		break;
1395 	case SIOCDELMULTI:
1396 		/* Ugh.  DELMULTI doesn't provide the specific address
1397 		   being removed, so the best we can do is remove
1398 		   everything and rebuild it all. */
1399 		cpswp_ale_update_addresses(sc, 1);
1400 		break;
1401 	case SIOCGIFMEDIA:
1402 	case SIOCSIFMEDIA:
1403 		error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
1404 		break;
1405 	default:
1406 		error = ether_ioctl(ifp, command, data);
1407 	}
1408 	return (error);
1409 }
1410 
1411 /*
1412  *
1413  * MIIBUS
1414  *
1415  */
1416 static int
1417 cpswp_miibus_ready(struct cpsw_softc *sc, uint32_t reg)
1418 {
1419 	uint32_t r, retries = CPSW_MIIBUS_RETRIES;
1420 
1421 	while (--retries) {
1422 		r = cpsw_read_4(sc, reg);
1423 		if ((r & MDIO_PHYACCESS_GO) == 0)
1424 			return (1);
1425 		DELAY(CPSW_MIIBUS_DELAY);
1426 	}
1427 
1428 	return (0);
1429 }
1430 
1431 static int
1432 cpswp_miibus_readreg(device_t dev, int phy, int reg)
1433 {
1434 	struct cpswp_softc *sc;
1435 	uint32_t cmd, r;
1436 
1437 	sc = device_get_softc(dev);
1438 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1439 		device_printf(dev, "MDIO not ready to read\n");
1440 		return (0);
1441 	}
1442 
1443 	/* Set GO, reg, phy */
1444 	cmd = MDIO_PHYACCESS_GO | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
1445 	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1446 
1447 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1448 		device_printf(dev, "MDIO timed out during read\n");
1449 		return (0);
1450 	}
1451 
1452 	r = cpsw_read_4(sc->swsc, sc->phyaccess);
1453 	if ((r & MDIO_PHYACCESS_ACK) == 0) {
1454 		device_printf(dev, "Failed to read from PHY.\n");
1455 		r = 0;
1456 	}
1457 	return (r & 0xFFFF);
1458 }
1459 
1460 static int
1461 cpswp_miibus_writereg(device_t dev, int phy, int reg, int value)
1462 {
1463 	struct cpswp_softc *sc;
1464 	uint32_t cmd;
1465 
1466 	sc = device_get_softc(dev);
1467 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1468 		device_printf(dev, "MDIO not ready to write\n");
1469 		return (0);
1470 	}
1471 
1472 	/* Set GO, WRITE, reg, phy, and value */
1473 	cmd = MDIO_PHYACCESS_GO | MDIO_PHYACCESS_WRITE |
1474 	    (reg & 0x1F) << 21 | (phy & 0x1F) << 16 | (value & 0xFFFF);
1475 	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1476 
1477 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1478 		device_printf(dev, "MDIO timed out during write\n");
1479 		return (0);
1480 	}
1481 
1482 	if ((cpsw_read_4(sc->swsc, sc->phyaccess) & MDIO_PHYACCESS_ACK) == 0)
1483 		device_printf(dev, "Failed to write to PHY.\n");
1484 
1485 	return (0);
1486 }
1487 
1488 static void
1489 cpswp_miibus_statchg(device_t dev)
1490 {
1491 	struct cpswp_softc *sc;
1492 	uint32_t mac_control, reg;
1493 
1494 	sc = device_get_softc(dev);
1495 	CPSWP_DEBUGF(sc, (""));
1496 
1497 	reg = CPSW_SL_MACCONTROL(sc->unit);
1498 	mac_control = cpsw_read_4(sc->swsc, reg);
1499 	mac_control &= ~(CPSW_SL_MACTL_GIG | CPSW_SL_MACTL_IFCTL_A |
1500 	    CPSW_SL_MACTL_IFCTL_B | CPSW_SL_MACTL_FULLDUPLEX);
1501 
1502 	switch(IFM_SUBTYPE(sc->mii->mii_media_active)) {
1503 	case IFM_1000_SX:
1504 	case IFM_1000_LX:
1505 	case IFM_1000_CX:
1506 	case IFM_1000_T:
1507 		mac_control |= CPSW_SL_MACTL_GIG;
1508 		break;
1509 
1510 	case IFM_100_TX:
1511 		mac_control |= CPSW_SL_MACTL_IFCTL_A;
1512 		break;
1513 	}
1514 	if (sc->mii->mii_media_active & IFM_FDX)
1515 		mac_control |= CPSW_SL_MACTL_FULLDUPLEX;
1516 
1517 	cpsw_write_4(sc->swsc, reg, mac_control);
1518 }
1519 
1520 /*
1521  *
1522  * Transmit/Receive Packets.
1523  *
1524  */
1525 static void
1526 cpsw_intr_rx(void *arg)
1527 {
1528 	struct cpsw_softc *sc = arg;
1529 	struct ifnet *ifp;
1530 	struct mbuf *received, *next;
1531 
1532 	CPSW_RX_LOCK(sc);
1533 	received = cpsw_rx_dequeue(sc);
1534 	cpsw_rx_enqueue(sc);
1535 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
1536 	CPSW_RX_UNLOCK(sc);
1537 
1538 	while (received != NULL) {
1539 		next = received->m_nextpkt;
1540 		received->m_nextpkt = NULL;
1541 		ifp = received->m_pkthdr.rcvif;
1542 		(*ifp->if_input)(ifp, received);
1543 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1544 		received = next;
1545 	}
1546 }
1547 
1548 static struct mbuf *
1549 cpsw_rx_dequeue(struct cpsw_softc *sc)
1550 {
1551 	struct cpsw_cpdma_bd bd;
1552 	struct cpsw_slot *slot;
1553 	struct cpswp_softc *psc;
1554 	struct mbuf *mb_head, *mb_tail;
1555 	int port, removed = 0;
1556 
1557 	mb_head = mb_tail = NULL;
1558 
1559 	/* Pull completed packets off hardware RX queue. */
1560 	while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
1561 		cpsw_cpdma_read_bd(sc, slot, &bd);
1562 		if (bd.flags & CPDMA_BD_OWNER)
1563 			break; /* Still in use by hardware */
1564 
1565 		CPSW_DEBUGF(sc, ("Removing received packet from RX queue"));
1566 		++removed;
1567 		STAILQ_REMOVE_HEAD(&sc->rx.active, next);
1568 		STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
1569 
1570 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
1571 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1572 
1573 		if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
1574 			CPSW_DEBUGF(sc, ("RX teardown in progress"));
1575 			m_freem(slot->mbuf);
1576 			slot->mbuf = NULL;
1577 			cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
1578 			sc->rx.running = 0;
1579 			break;
1580 		}
1581 
1582 		cpsw_write_cp_slot(sc, &sc->rx, slot);
1583 
1584 		port = (bd.flags & CPDMA_BD_PORT_MASK) - 1;
1585 		KASSERT(port >= 0 && port <= 1,
1586 		    ("patcket received with invalid port: %d", port));
1587 		psc = device_get_softc(sc->port[port].dev);
1588 
1589 		/* Set up mbuf */
1590 		/* TODO: track SOP/EOP bits to assemble a full mbuf
1591 		   out of received fragments. */
1592 		slot->mbuf->m_data += bd.bufoff;
1593 		slot->mbuf->m_len = bd.pktlen - 4;
1594 		slot->mbuf->m_pkthdr.len = bd.pktlen - 4;
1595 		slot->mbuf->m_flags |= M_PKTHDR;
1596 		slot->mbuf->m_pkthdr.rcvif = psc->ifp;
1597 		slot->mbuf->m_nextpkt = NULL;
1598 
1599 		if ((psc->ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1600 			/* check for valid CRC by looking into pkt_err[5:4] */
1601 			if ((bd.flags & CPDMA_BD_PKT_ERR_MASK) == 0) {
1602 				slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1603 				slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1604 				slot->mbuf->m_pkthdr.csum_data = 0xffff;
1605 			}
1606 		}
1607 
1608 		/* Add mbuf to packet list to be returned. */
1609 		if (mb_tail) {
1610 			mb_tail->m_nextpkt = slot->mbuf;
1611 		} else {
1612 			mb_head = slot->mbuf;
1613 		}
1614 		mb_tail = slot->mbuf;
1615 		slot->mbuf = NULL;
1616 	}
1617 
1618 	if (removed != 0) {
1619 		sc->rx.queue_removes += removed;
1620 		sc->rx.active_queue_len -= removed;
1621 		sc->rx.avail_queue_len += removed;
1622 		if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
1623 			sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
1624 	}
1625 	return (mb_head);
1626 }
1627 
1628 static void
1629 cpsw_rx_enqueue(struct cpsw_softc *sc)
1630 {
1631 	bus_dma_segment_t seg[1];
1632 	struct cpsw_cpdma_bd bd;
1633 	struct cpsw_slots tmpqueue = STAILQ_HEAD_INITIALIZER(tmpqueue);
1634 	struct cpsw_slot *slot, *prev_slot = NULL;
1635 	struct cpsw_slot *last_old_slot, *first_new_slot;
1636 	int error, nsegs, added = 0;
1637 
1638 	/* Register new mbufs with hardware. */
1639 	while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
1640 		if (slot->mbuf == NULL) {
1641 			slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1642 			if (slot->mbuf == NULL) {
1643 				device_printf(sc->dev,
1644 				    "Unable to fill RX queue\n");
1645 				break;
1646 			}
1647 			slot->mbuf->m_len =
1648 			    slot->mbuf->m_pkthdr.len =
1649 			    slot->mbuf->m_ext.ext_size;
1650 		}
1651 
1652 		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1653 		    slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
1654 
1655 		KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
1656 		KASSERT(error == 0, ("DMA error (error=%d)", error));
1657 		if (error != 0 || nsegs != 1) {
1658 			device_printf(sc->dev,
1659 			    "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
1660 			    __func__, nsegs, error);
1661 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1662 			m_freem(slot->mbuf);
1663 			slot->mbuf = NULL;
1664 			break;
1665 		}
1666 
1667 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
1668 
1669 		/* Create and submit new rx descriptor*/
1670 		bd.next = 0;
1671 		bd.bufptr = seg->ds_addr;
1672 		bd.bufoff = 0;
1673 		bd.buflen = MCLBYTES - 1;
1674 		bd.pktlen = bd.buflen;
1675 		bd.flags = CPDMA_BD_OWNER;
1676 		cpsw_cpdma_write_bd(sc, slot, &bd);
1677 		++added;
1678 
1679 		if (prev_slot != NULL)
1680 			cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1681 		prev_slot = slot;
1682 		STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
1683 		sc->rx.avail_queue_len--;
1684 		STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1685 	}
1686 
1687 	if (added == 0)
1688 		return;
1689 
1690 	CPSW_DEBUGF(sc, ("Adding %d buffers to RX queue", added));
1691 
1692 	/* Link new entries to hardware RX queue. */
1693 	last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
1694 	first_new_slot = STAILQ_FIRST(&tmpqueue);
1695 	STAILQ_CONCAT(&sc->rx.active, &tmpqueue);
1696 	if (first_new_slot == NULL) {
1697 		return;
1698 	} else if (last_old_slot == NULL) {
1699 		/* Start a fresh queue. */
1700 		cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1701 	} else {
1702 		/* Add buffers to end of current queue. */
1703 		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1704 		/* If underrun, restart queue. */
1705 		if (cpsw_cpdma_read_bd_flags(sc, last_old_slot) & CPDMA_BD_EOQ) {
1706 			cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1707 		}
1708 	}
1709 	sc->rx.queue_adds += added;
1710 	sc->rx.active_queue_len += added;
1711 	if (sc->rx.active_queue_len > sc->rx.max_active_queue_len) {
1712 		sc->rx.max_active_queue_len = sc->rx.active_queue_len;
1713 	}
1714 }
1715 
1716 static void
1717 cpswp_start(struct ifnet *ifp)
1718 {
1719 	struct cpswp_softc *sc = ifp->if_softc;
1720 
1721 	CPSW_TX_LOCK(sc->swsc);
1722 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && sc->swsc->tx.running) {
1723 		cpswp_tx_enqueue(sc);
1724 		cpsw_tx_dequeue(sc->swsc);
1725 	}
1726 	CPSW_TX_UNLOCK(sc->swsc);
1727 }
1728 
1729 static void
1730 cpswp_tx_enqueue(struct cpswp_softc *sc)
1731 {
1732 	bus_dma_segment_t segs[CPSW_TXFRAGS];
1733 	struct cpsw_cpdma_bd bd;
1734 	struct cpsw_slots tmpqueue = STAILQ_HEAD_INITIALIZER(tmpqueue);
1735 	struct cpsw_slot *slot, *prev_slot = NULL;
1736 	struct cpsw_slot *last_old_slot, *first_new_slot;
1737 	struct mbuf *m0;
1738 	int error, flags, nsegs, seg, added = 0, padlen;
1739 
1740 	flags = 0;
1741 	if (sc->swsc->dualemac) {
1742 		flags = CPDMA_BD_TO_PORT |
1743 		    ((sc->unit + 1) & CPDMA_BD_PORT_MASK);
1744 	}
1745 	/* Pull pending packets from IF queue and prep them for DMA. */
1746 	while ((slot = STAILQ_FIRST(&sc->swsc->tx.avail)) != NULL) {
1747 		IF_DEQUEUE(&sc->ifp->if_snd, m0);
1748 		if (m0 == NULL)
1749 			break;
1750 
1751 		slot->mbuf = m0;
1752 		padlen = ETHER_MIN_LEN - slot->mbuf->m_pkthdr.len;
1753 		if (padlen < 0)
1754 			padlen = 0;
1755 
1756 		/* Create mapping in DMA memory */
1757 		error = bus_dmamap_load_mbuf_sg(sc->swsc->mbuf_dtag,
1758 		    slot->dmamap, slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1759 		/* If the packet is too fragmented, try to simplify. */
1760 		if (error == EFBIG ||
1761 		    (error == 0 &&
1762 		    nsegs + (padlen > 0 ? 1 : 0) > sc->swsc->tx.avail_queue_len)) {
1763 			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1764 			if (padlen > 0) /* May as well add padding. */
1765 				m_append(slot->mbuf, padlen,
1766 				    sc->swsc->null_mbuf->m_data);
1767 			m0 = m_defrag(slot->mbuf, M_NOWAIT);
1768 			if (m0 == NULL) {
1769 				device_printf(sc->dev,
1770 				    "Can't defragment packet; dropping\n");
1771 				m_freem(slot->mbuf);
1772 			} else {
1773 				CPSWP_DEBUGF(sc,
1774 				    ("Requeueing defragmented packet"));
1775 				IF_PREPEND(&sc->ifp->if_snd, m0);
1776 			}
1777 			slot->mbuf = NULL;
1778 			continue;
1779 		}
1780 		if (error != 0) {
1781 			device_printf(sc->dev,
1782 			    "%s: Can't setup DMA (error=%d), dropping packet\n",
1783 			    __func__, error);
1784 			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1785 			m_freem(slot->mbuf);
1786 			slot->mbuf = NULL;
1787 			break;
1788 		}
1789 
1790 		bus_dmamap_sync(sc->swsc->mbuf_dtag, slot->dmamap,
1791 				BUS_DMASYNC_PREWRITE);
1792 
1793 		CPSWP_DEBUGF(sc,
1794 		    ("Queueing TX packet: %d segments + %d pad bytes",
1795 		    nsegs, padlen));
1796 
1797 		slot->ifp = sc->ifp;
1798 		/* If there is only one segment, the for() loop
1799 		 * gets skipped and the single buffer gets set up
1800 		 * as both SOP and EOP. */
1801 		/* Start by setting up the first buffer */
1802 		bd.next = 0;
1803 		bd.bufptr = segs[0].ds_addr;
1804 		bd.bufoff = 0;
1805 		bd.buflen = segs[0].ds_len;
1806 		bd.pktlen = m_length(slot->mbuf, NULL) + padlen;
1807 		bd.flags =  CPDMA_BD_SOP | CPDMA_BD_OWNER | flags;
1808 		for (seg = 1; seg < nsegs; ++seg) {
1809 			/* Save the previous buffer (which isn't EOP) */
1810 			cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1811 			if (prev_slot != NULL) {
1812 				cpsw_cpdma_write_bd_next(sc->swsc, prev_slot,
1813 				    slot);
1814 			}
1815 			prev_slot = slot;
1816 			STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1817 			sc->swsc->tx.avail_queue_len--;
1818 			STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1819 			++added;
1820 			slot = STAILQ_FIRST(&sc->swsc->tx.avail);
1821 
1822 			/* Setup next buffer (which isn't SOP) */
1823 			bd.next = 0;
1824 			bd.bufptr = segs[seg].ds_addr;
1825 			bd.bufoff = 0;
1826 			bd.buflen = segs[seg].ds_len;
1827 			bd.pktlen = 0;
1828 			bd.flags = CPDMA_BD_OWNER | flags;
1829 		}
1830 		/* Save the final buffer. */
1831 		if (padlen <= 0)
1832 			bd.flags |= CPDMA_BD_EOP;
1833 		cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1834 		if (prev_slot != NULL)
1835 			cpsw_cpdma_write_bd_next(sc->swsc, prev_slot, slot);
1836 		prev_slot = slot;
1837 		STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1838 		sc->swsc->tx.avail_queue_len--;
1839 		STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1840 		++added;
1841 
1842 		if (padlen > 0) {
1843 			slot = STAILQ_FIRST(&sc->swsc->tx.avail);
1844 			STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1845 			sc->swsc->tx.avail_queue_len--;
1846 			STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1847 			++added;
1848 
1849 			/* Setup buffer of null pad bytes (definitely EOP) */
1850 			cpsw_cpdma_write_bd_next(sc->swsc, prev_slot, slot);
1851 			prev_slot = slot;
1852 			bd.next = 0;
1853 			bd.bufptr = sc->swsc->null_mbuf_paddr;
1854 			bd.bufoff = 0;
1855 			bd.buflen = padlen;
1856 			bd.pktlen = 0;
1857 			bd.flags = CPDMA_BD_EOP | CPDMA_BD_OWNER | flags;
1858 			cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1859 			++nsegs;
1860 		}
1861 
1862 		if (nsegs > sc->swsc->tx.longest_chain)
1863 			sc->swsc->tx.longest_chain = nsegs;
1864 
1865 		// TODO: Should we defer the BPF tap until
1866 		// after all packets are queued?
1867 		BPF_MTAP(sc->ifp, m0);
1868 	}
1869 
1870 	/* Attach the list of new buffers to the hardware TX queue. */
1871 	last_old_slot = STAILQ_LAST(&sc->swsc->tx.active, cpsw_slot, next);
1872 	first_new_slot = STAILQ_FIRST(&tmpqueue);
1873 	STAILQ_CONCAT(&sc->swsc->tx.active, &tmpqueue);
1874 	if (first_new_slot == NULL) {
1875 		return;
1876 	} else if (last_old_slot == NULL) {
1877 		/* Start a fresh queue. */
1878 		sc->swsc->last_hdp = cpsw_cpdma_bd_paddr(sc->swsc, first_new_slot);
1879 		cpsw_write_hdp_slot(sc->swsc, &sc->swsc->tx, first_new_slot);
1880 	} else {
1881 		/* Add buffers to end of current queue. */
1882 		cpsw_cpdma_write_bd_next(sc->swsc, last_old_slot,
1883 		    first_new_slot);
1884 		/* If underrun, restart queue. */
1885 		if (cpsw_cpdma_read_bd_flags(sc->swsc, last_old_slot) &
1886 		    CPDMA_BD_EOQ) {
1887 			sc->swsc->last_hdp = cpsw_cpdma_bd_paddr(sc->swsc, first_new_slot);
1888 			cpsw_write_hdp_slot(sc->swsc, &sc->swsc->tx,
1889 			    first_new_slot);
1890 		}
1891 	}
1892 	sc->swsc->tx.queue_adds += added;
1893 	sc->swsc->tx.active_queue_len += added;
1894 	if (sc->swsc->tx.active_queue_len > sc->swsc->tx.max_active_queue_len) {
1895 		sc->swsc->tx.max_active_queue_len = sc->swsc->tx.active_queue_len;
1896 	}
1897 }
1898 
1899 static int
1900 cpsw_tx_dequeue(struct cpsw_softc *sc)
1901 {
1902 	struct cpsw_slot *slot, *last_removed_slot = NULL;
1903 	struct cpsw_cpdma_bd bd;
1904 	uint32_t flags, removed = 0;
1905 
1906 	slot = STAILQ_FIRST(&sc->tx.active);
1907 	if (slot == NULL && cpsw_read_cp(sc, &sc->tx) == 0xfffffffc) {
1908 		CPSW_DEBUGF(sc, ("TX teardown of an empty queue"));
1909 		cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1910 		sc->tx.running = 0;
1911 		return (0);
1912 	}
1913 
1914 	/* Pull completed buffers off the hardware TX queue. */
1915 	while (slot != NULL) {
1916 		flags = cpsw_cpdma_read_bd_flags(sc, slot);
1917 		if (flags & CPDMA_BD_OWNER)
1918 			break; /* Hardware is still using this packet. */
1919 
1920 		CPSW_DEBUGF(sc, ("TX removing completed packet"));
1921 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
1922 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1923 		m_freem(slot->mbuf);
1924 		slot->mbuf = NULL;
1925 		if (slot->ifp)
1926 			if_inc_counter(slot->ifp, IFCOUNTER_OPACKETS, 1);
1927 
1928 		/* Dequeue any additional buffers used by this packet. */
1929 		while (slot != NULL && slot->mbuf == NULL) {
1930 			STAILQ_REMOVE_HEAD(&sc->tx.active, next);
1931 			STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
1932 			++removed;
1933 			last_removed_slot = slot;
1934 			slot = STAILQ_FIRST(&sc->tx.active);
1935 		}
1936 
1937 		/* TearDown complete is only marked on the SOP for the packet. */
1938 		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) ==
1939 		    (CPDMA_BD_EOP | CPDMA_BD_TDOWNCMPLT)) {
1940 			CPSW_DEBUGF(sc, ("TX teardown in progress"));
1941 			cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1942 			// TODO: Increment a count of dropped TX packets
1943 			sc->tx.running = 0;
1944 			break;
1945 		}
1946 
1947 		if ((flags & CPDMA_BD_EOP) == 0)
1948 			flags = cpsw_cpdma_read_bd_flags(sc, last_removed_slot);
1949 		if ((flags & (CPDMA_BD_EOP | CPDMA_BD_EOQ)) ==
1950 		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
1951 			cpsw_cpdma_read_bd(sc, last_removed_slot, &bd);
1952 			if (bd.next != 0 && bd.next != sc->last_hdp) {
1953 				/* Restart the queue. */
1954 				sc->last_hdp = bd.next;
1955 				cpsw_write_4(sc, sc->tx.hdp_offset, bd.next);
1956 			}
1957 		}
1958 	}
1959 
1960 	if (removed != 0) {
1961 		cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
1962 		sc->tx.queue_removes += removed;
1963 		sc->tx.active_queue_len -= removed;
1964 		sc->tx.avail_queue_len += removed;
1965 		if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
1966 			sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
1967 	}
1968 	return (removed);
1969 }
1970 
1971 /*
1972  *
1973  * Miscellaneous interrupts.
1974  *
1975  */
1976 
1977 static void
1978 cpsw_intr_rx_thresh(void *arg)
1979 {
1980 	struct cpsw_softc *sc = arg;
1981 	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_RX_THRESH_STAT(0));
1982 
1983 	CPSW_DEBUGF(sc, ("stat=%x", stat));
1984 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
1985 }
1986 
1987 static void
1988 cpsw_intr_misc_host_error(struct cpsw_softc *sc)
1989 {
1990 	uint32_t intstat;
1991 	uint32_t dmastat;
1992 	int txerr, rxerr, txchan, rxchan;
1993 
1994 	printf("\n\n");
1995 	device_printf(sc->dev,
1996 	    "HOST ERROR:  PROGRAMMING ERROR DETECTED BY HARDWARE\n");
1997 	printf("\n\n");
1998 	intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
1999 	device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
2000 	dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
2001 	device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
2002 
2003 	txerr = (dmastat >> 20) & 15;
2004 	txchan = (dmastat >> 16) & 7;
2005 	rxerr = (dmastat >> 12) & 15;
2006 	rxchan = (dmastat >> 8) & 7;
2007 
2008 	switch (txerr) {
2009 	case 0: break;
2010 	case 1:	printf("SOP error on TX channel %d\n", txchan);
2011 		break;
2012 	case 2:	printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
2013 		break;
2014 	case 3:	printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
2015 		break;
2016 	case 4:	printf("Zero Buffer Pointer on TX channel %d\n", txchan);
2017 		break;
2018 	case 5:	printf("Zero Buffer Length on TX channel %d\n", txchan);
2019 		break;
2020 	case 6:	printf("Packet length error on TX channel %d\n", txchan);
2021 		break;
2022 	default: printf("Unknown error on TX channel %d\n", txchan);
2023 		break;
2024 	}
2025 
2026 	if (txerr != 0) {
2027 		printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
2028 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
2029 		printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
2030 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
2031 		cpsw_dump_queue(sc, &sc->tx.active);
2032 	}
2033 
2034 	switch (rxerr) {
2035 	case 0: break;
2036 	case 2:	printf("Ownership bit not set on RX channel %d\n", rxchan);
2037 		break;
2038 	case 4:	printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
2039 		break;
2040 	case 5:	printf("Zero Buffer Length on RX channel %d\n", rxchan);
2041 		break;
2042 	case 6:	printf("Buffer offset too big on RX channel %d\n", rxchan);
2043 		break;
2044 	default: printf("Unknown RX error on RX channel %d\n", rxchan);
2045 		break;
2046 	}
2047 
2048 	if (rxerr != 0) {
2049 		printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
2050 		    rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
2051 		printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
2052 		    rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
2053 		cpsw_dump_queue(sc, &sc->rx.active);
2054 	}
2055 
2056 	printf("\nALE Table\n");
2057 	cpsw_ale_dump_table(sc);
2058 
2059 	// XXX do something useful here??
2060 	panic("CPSW HOST ERROR INTERRUPT");
2061 
2062 	// Suppress this interrupt in the future.
2063 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
2064 	printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
2065 	// The watchdog will probably reset the controller
2066 	// in a little while.  It will probably fail again.
2067 }
2068 
2069 static void
2070 cpsw_intr_misc(void *arg)
2071 {
2072 	struct cpsw_softc *sc = arg;
2073 	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
2074 
2075 	if (stat & CPSW_WR_C_MISC_EVNT_PEND)
2076 		CPSW_DEBUGF(sc, ("Time sync event interrupt unimplemented"));
2077 	if (stat & CPSW_WR_C_MISC_STAT_PEND)
2078 		cpsw_stats_collect(sc);
2079 	if (stat & CPSW_WR_C_MISC_HOST_PEND)
2080 		cpsw_intr_misc_host_error(sc);
2081 	if (stat & CPSW_WR_C_MISC_MDIOLINK) {
2082 		cpsw_write_4(sc, MDIOLINKINTMASKED,
2083 		    cpsw_read_4(sc, MDIOLINKINTMASKED));
2084 	}
2085 	if (stat & CPSW_WR_C_MISC_MDIOUSER) {
2086 		CPSW_DEBUGF(sc,
2087 		    ("MDIO operation completed interrupt unimplemented"));
2088 	}
2089 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
2090 }
2091 
2092 /*
2093  *
2094  * Periodic Checks and Watchdog.
2095  *
2096  */
2097 
2098 static void
2099 cpswp_tick(void *msc)
2100 {
2101 	struct cpswp_softc *sc = msc;
2102 
2103 	/* Check for media type change */
2104 	mii_tick(sc->mii);
2105 	if (sc->media_status != sc->mii->mii_media.ifm_media) {
2106 		printf("%s: media type changed (ifm_media=%x)\n", __func__,
2107 			sc->mii->mii_media.ifm_media);
2108 		cpswp_ifmedia_upd(sc->ifp);
2109 	}
2110 
2111 	/* Schedule another timeout one second from now */
2112 	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
2113 }
2114 
2115 static void
2116 cpswp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2117 {
2118 	struct cpswp_softc *sc;
2119 	struct mii_data *mii;
2120 
2121 	sc = ifp->if_softc;
2122 	CPSWP_DEBUGF(sc, (""));
2123 	CPSW_PORT_LOCK(sc);
2124 
2125 	mii = sc->mii;
2126 	mii_pollstat(mii);
2127 
2128 	ifmr->ifm_active = mii->mii_media_active;
2129 	ifmr->ifm_status = mii->mii_media_status;
2130 	CPSW_PORT_UNLOCK(sc);
2131 }
2132 
2133 static int
2134 cpswp_ifmedia_upd(struct ifnet *ifp)
2135 {
2136 	struct cpswp_softc *sc;
2137 
2138 	sc = ifp->if_softc;
2139 	CPSWP_DEBUGF(sc, (""));
2140 	CPSW_PORT_LOCK(sc);
2141 	mii_mediachg(sc->mii);
2142 	sc->media_status = sc->mii->mii_media.ifm_media;
2143 	CPSW_PORT_UNLOCK(sc);
2144 
2145 	return (0);
2146 }
2147 
2148 static void
2149 cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
2150 {
2151 	struct cpswp_softc *psc;
2152 	int i;
2153 
2154 	cpsw_debugf_head("CPSW watchdog");
2155 	device_printf(sc->dev, "watchdog timeout\n");
2156 	for (i = 0; i < CPSW_PORTS; i++) {
2157 		if (!sc->dualemac && i != sc->active_slave)
2158 			continue;
2159 		psc = device_get_softc(sc->port[i].dev);
2160 		CPSW_PORT_LOCK(psc);
2161 		cpswp_stop_locked(psc);
2162 		CPSW_PORT_UNLOCK(psc);
2163 	}
2164 }
2165 
2166 static void
2167 cpsw_tx_watchdog(void *msc)
2168 {
2169 	struct cpsw_softc *sc;
2170 
2171 	sc = msc;
2172 	CPSW_GLOBAL_LOCK(sc);
2173 	if (sc->tx.active_queue_len == 0 || !sc->tx.running) {
2174 		sc->watchdog.timer = 0; /* Nothing to do. */
2175 	} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
2176 		sc->watchdog.timer = 0;  /* Stuff done while we weren't looking. */
2177 	} else if (cpsw_tx_dequeue(sc) > 0) {
2178 		sc->watchdog.timer = 0;  /* We just did something. */
2179 	} else {
2180 		/* There was something to do but it didn't get done. */
2181 		++sc->watchdog.timer;
2182 		if (sc->watchdog.timer > 5) {
2183 			sc->watchdog.timer = 0;
2184 			++sc->watchdog.resets;
2185 			cpsw_tx_watchdog_full_reset(sc);
2186 		}
2187 	}
2188 	sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
2189 	CPSW_GLOBAL_UNLOCK(sc);
2190 
2191 	/* Schedule another timeout one second from now */
2192 	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
2193 }
2194 
2195 /*
2196  *
2197  * ALE support routines.
2198  *
2199  */
2200 
2201 static void
2202 cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2203 {
2204 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
2205 	ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
2206 	ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
2207 	ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
2208 }
2209 
2210 static void
2211 cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2212 {
2213 	cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
2214 	cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
2215 	cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
2216 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
2217 }
2218 
2219 static void
2220 cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
2221 {
2222 	int i;
2223 	uint32_t ale_entry[3];
2224 
2225 	/* First four entries are link address and broadcast. */
2226 	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2227 		cpsw_ale_read_entry(sc, i, ale_entry);
2228 		if ((ALE_TYPE(ale_entry) == ALE_TYPE_ADDR ||
2229 		    ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR) &&
2230 		    ALE_MCAST(ale_entry)  == 1) { /* MCast link addr */
2231 			ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2232 			cpsw_ale_write_entry(sc, i, ale_entry);
2233 		}
2234 	}
2235 }
2236 
2237 static int
2238 cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, int vlan,
2239 	uint8_t *mac)
2240 {
2241 	int free_index = -1, matching_index = -1, i;
2242 	uint32_t ale_entry[3], ale_type;
2243 
2244 	/* Find a matching entry or a free entry. */
2245 	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2246 		cpsw_ale_read_entry(sc, i, ale_entry);
2247 
2248 		/* Entry Type[61:60] is 0 for free entry */
2249 		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2250 			free_index = i;
2251 
2252 		if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
2253 		    (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
2254 		    (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
2255 		    (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
2256 		    (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
2257 		    (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
2258 			matching_index = i;
2259 			break;
2260 		}
2261 	}
2262 
2263 	if (matching_index < 0) {
2264 		if (free_index < 0)
2265 			return (ENOMEM);
2266 		i = free_index;
2267 	}
2268 
2269 	if (vlan != -1)
2270 		ale_type = ALE_TYPE_VLAN_ADDR << 28 | vlan << 16;
2271 	else
2272 		ale_type = ALE_TYPE_ADDR << 28;
2273 
2274 	/* Set MAC address */
2275 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2276 	ale_entry[1] = mac[0] << 8 | mac[1];
2277 
2278 	/* Entry type[61:60] and Mcast fwd state[63:62] is fw(3). */
2279 	ale_entry[1] |= ALE_MCAST_FWD | ale_type;
2280 
2281 	/* Set portmask [68:66] */
2282 	ale_entry[2] = (portmap & 7) << 2;
2283 
2284 	cpsw_ale_write_entry(sc, i, ale_entry);
2285 
2286 	return 0;
2287 }
2288 
2289 static void
2290 cpsw_ale_dump_table(struct cpsw_softc *sc) {
2291 	int i;
2292 	uint32_t ale_entry[3];
2293 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2294 		cpsw_ale_read_entry(sc, i, ale_entry);
2295 		switch (ALE_TYPE(ale_entry)) {
2296 		case ALE_TYPE_VLAN:
2297 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2298 				ale_entry[1], ale_entry[0]);
2299 			printf("type: %u ", ALE_TYPE(ale_entry));
2300 			printf("vlan: %u ", ALE_VLAN(ale_entry));
2301 			printf("untag: %u ", ALE_VLAN_UNTAG(ale_entry));
2302 			printf("reg flood: %u ", ALE_VLAN_REGFLOOD(ale_entry));
2303 			printf("unreg flood: %u ", ALE_VLAN_UNREGFLOOD(ale_entry));
2304 			printf("members: %u ", ALE_VLAN_MEMBERS(ale_entry));
2305 			printf("\n");
2306 			break;
2307 		case ALE_TYPE_ADDR:
2308 		case ALE_TYPE_VLAN_ADDR:
2309 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2310 				ale_entry[1], ale_entry[0]);
2311 			printf("type: %u ", ALE_TYPE(ale_entry));
2312 			printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
2313 				(ale_entry[1] >> 8) & 0xFF,
2314 				(ale_entry[1] >> 0) & 0xFF,
2315 				(ale_entry[0] >>24) & 0xFF,
2316 				(ale_entry[0] >>16) & 0xFF,
2317 				(ale_entry[0] >> 8) & 0xFF,
2318 				(ale_entry[0] >> 0) & 0xFF);
2319 			printf(ALE_MCAST(ale_entry) ? "mcast " : "ucast ");
2320 			if (ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR)
2321 				printf("vlan: %u ", ALE_VLAN(ale_entry));
2322 			printf("port: %u ", ALE_PORTS(ale_entry));
2323 			printf("\n");
2324 			break;
2325 		}
2326 	}
2327 	printf("\n");
2328 }
2329 
2330 static int
2331 cpswp_ale_update_addresses(struct cpswp_softc *sc, int purge)
2332 {
2333 	uint8_t *mac;
2334 	uint32_t ale_entry[3], ale_type, portmask;
2335 	struct ifmultiaddr *ifma;
2336 
2337 	if (sc->swsc->dualemac) {
2338 		ale_type = ALE_TYPE_VLAN_ADDR << 28 | sc->vlan << 16;
2339 		portmask = 1 << (sc->unit + 1) | 1 << 0;
2340 	} else {
2341 		ale_type = ALE_TYPE_ADDR << 28;
2342 		portmask = 7;
2343 	}
2344 
2345 	/*
2346 	 * Route incoming packets for our MAC address to Port 0 (host).
2347 	 * For simplicity, keep this entry at table index 0 for port 1 and
2348 	 * at index 2 for port 2 in the ALE.
2349 	 */
2350         if_addr_rlock(sc->ifp);
2351 	mac = LLADDR((struct sockaddr_dl *)sc->ifp->if_addr->ifa_addr);
2352 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2353 	ale_entry[1] = ale_type | mac[0] << 8 | mac[1]; /* addr entry + mac */
2354 	ale_entry[2] = 0; /* port = 0 */
2355 	cpsw_ale_write_entry(sc->swsc, 0 + 2 * sc->unit, ale_entry);
2356 
2357 	/* Set outgoing MAC Address for slave port. */
2358 	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_HI(sc->unit + 1),
2359 	    mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
2360 	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_LO(sc->unit + 1),
2361 	    mac[5] << 8 | mac[4]);
2362         if_addr_runlock(sc->ifp);
2363 
2364 	/* Keep the broadcast address at table entry 1 (or 3). */
2365 	ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
2366 	/* ALE_MCAST_FWD, Addr type, upper 16 bits of Mac */
2367 	ale_entry[1] = ALE_MCAST_FWD | ale_type | 0xffff;
2368 	ale_entry[2] = portmask << 2;
2369 	cpsw_ale_write_entry(sc->swsc, 1 + 2 * sc->unit, ale_entry);
2370 
2371 	/* SIOCDELMULTI doesn't specify the particular address
2372 	   being removed, so we have to remove all and rebuild. */
2373 	if (purge)
2374 		cpsw_ale_remove_all_mc_entries(sc->swsc);
2375 
2376         /* Set other multicast addrs desired. */
2377         if_maddr_rlock(sc->ifp);
2378         TAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
2379                 if (ifma->ifma_addr->sa_family != AF_LINK)
2380                         continue;
2381 		cpsw_ale_mc_entry_set(sc->swsc, portmask, sc->vlan,
2382 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
2383         }
2384         if_maddr_runlock(sc->ifp);
2385 
2386 	return (0);
2387 }
2388 
2389 static int
2390 cpsw_ale_update_vlan_table(struct cpsw_softc *sc, int vlan, int ports,
2391 	int untag, int mcregflood, int mcunregflood)
2392 {
2393 	int free_index, i, matching_index;
2394 	uint32_t ale_entry[3];
2395 
2396 	free_index = matching_index = -1;
2397 	/* Find a matching entry or a free entry. */
2398 	for (i = 5; i < CPSW_MAX_ALE_ENTRIES; i++) {
2399 		cpsw_ale_read_entry(sc, i, ale_entry);
2400 
2401 		/* Entry Type[61:60] is 0 for free entry */
2402 		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2403 			free_index = i;
2404 
2405 		if (ALE_VLAN(ale_entry) == vlan) {
2406 			matching_index = i;
2407 			break;
2408 		}
2409 	}
2410 
2411 	if (matching_index < 0) {
2412 		if (free_index < 0)
2413 			return (-1);
2414 		i = free_index;
2415 	}
2416 
2417 	ale_entry[0] = (untag & 7) << 24 | (mcregflood & 7) << 16 |
2418 	    (mcunregflood & 7) << 8 | (ports & 7);
2419 	ale_entry[1] = ALE_TYPE_VLAN << 28 | vlan << 16;
2420 	ale_entry[2] = 0;
2421 	cpsw_ale_write_entry(sc, i, ale_entry);
2422 
2423 	return (0);
2424 }
2425 
2426 /*
2427  *
2428  * Statistics and Sysctls.
2429  *
2430  */
2431 
2432 #if 0
2433 static void
2434 cpsw_stats_dump(struct cpsw_softc *sc)
2435 {
2436 	int i;
2437 	uint32_t r;
2438 
2439 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2440 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2441 		    cpsw_stat_sysctls[i].reg);
2442 		CPSW_DEBUGF(sc, ("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
2443 		    (intmax_t)sc->shadow_stats[i], r,
2444 		    (intmax_t)sc->shadow_stats[i] + r));
2445 	}
2446 }
2447 #endif
2448 
2449 static void
2450 cpsw_stats_collect(struct cpsw_softc *sc)
2451 {
2452 	int i;
2453 	uint32_t r;
2454 
2455 	CPSW_DEBUGF(sc, ("Controller shadow statistics updated."));
2456 
2457 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2458 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2459 		    cpsw_stat_sysctls[i].reg);
2460 		sc->shadow_stats[i] += r;
2461 		cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg,
2462 		    r);
2463 	}
2464 }
2465 
2466 static int
2467 cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
2468 {
2469 	struct cpsw_softc *sc;
2470 	struct cpsw_stat *stat;
2471 	uint64_t result;
2472 
2473 	sc = (struct cpsw_softc *)arg1;
2474 	stat = &cpsw_stat_sysctls[oidp->oid_number];
2475 	result = sc->shadow_stats[oidp->oid_number];
2476 	result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
2477 	return (sysctl_handle_64(oidp, &result, 0, req));
2478 }
2479 
2480 static int
2481 cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
2482 {
2483 	struct cpsw_softc *sc;
2484 	struct bintime t;
2485 	unsigned result;
2486 
2487 	sc = (struct cpsw_softc *)arg1;
2488 	getbinuptime(&t);
2489 	bintime_sub(&t, &sc->attach_uptime);
2490 	result = t.sec;
2491 	return (sysctl_handle_int(oidp, &result, 0, req));
2492 }
2493 
2494 static int
2495 cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
2496 {
2497 	struct cpsw_softc *swsc;
2498 	struct cpswp_softc *sc;
2499 	struct bintime t;
2500 	unsigned result;
2501 
2502 	swsc = arg1;
2503 	sc = device_get_softc(swsc->port[arg2].dev);
2504 	if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
2505 		getbinuptime(&t);
2506 		bintime_sub(&t, &sc->init_uptime);
2507 		result = t.sec;
2508 	} else
2509 		result = 0;
2510 	return (sysctl_handle_int(oidp, &result, 0, req));
2511 }
2512 
2513 static void
2514 cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2515 	struct cpsw_queue *queue)
2516 {
2517 	struct sysctl_oid_list *parent;
2518 
2519 	parent = SYSCTL_CHILDREN(node);
2520 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
2521 	    CTLFLAG_RD, &queue->queue_slots, 0,
2522 	    "Total buffers currently assigned to this queue");
2523 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
2524 	    CTLFLAG_RD, &queue->active_queue_len, 0,
2525 	    "Buffers currently registered with hardware controller");
2526 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
2527 	    CTLFLAG_RD, &queue->max_active_queue_len, 0,
2528 	    "Max value of activeBuffers since last driver reset");
2529 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
2530 	    CTLFLAG_RD, &queue->avail_queue_len, 0,
2531 	    "Buffers allocated to this queue but not currently "
2532 	    "registered with hardware controller");
2533 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
2534 	    CTLFLAG_RD, &queue->max_avail_queue_len, 0,
2535 	    "Max value of availBuffers since last driver reset");
2536 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
2537 	    CTLFLAG_RD, &queue->queue_adds, 0,
2538 	    "Total buffers added to queue");
2539 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
2540 	    CTLFLAG_RD, &queue->queue_removes, 0,
2541 	    "Total buffers removed from queue");
2542 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
2543 	    CTLFLAG_RD, &queue->longest_chain, 0,
2544 	    "Max buffers used for a single packet");
2545 }
2546 
2547 static void
2548 cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2549 	struct cpsw_softc *sc)
2550 {
2551 	struct sysctl_oid_list *parent;
2552 
2553 	parent = SYSCTL_CHILDREN(node);
2554 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
2555 	    CTLFLAG_RD, &sc->watchdog.resets, 0,
2556 	    "Total number of watchdog resets");
2557 }
2558 
2559 static void
2560 cpsw_add_sysctls(struct cpsw_softc *sc)
2561 {
2562 	struct sysctl_ctx_list *ctx;
2563 	struct sysctl_oid *stats_node, *queue_node, *node;
2564 	struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
2565 	struct sysctl_oid_list *ports_parent, *port_parent;
2566 	char port[16];
2567 	int i;
2568 
2569 	ctx = device_get_sysctl_ctx(sc->dev);
2570 	parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
2571 
2572 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "debug",
2573 	    CTLFLAG_RW, &sc->debug, 0, "Enable switch debug messages");
2574 
2575 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
2576 	    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_attached, "IU",
2577 	    "Time since driver attach");
2578 
2579 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "ports",
2580 	    CTLFLAG_RD, NULL, "CPSW Ports Statistics");
2581 	ports_parent = SYSCTL_CHILDREN(node);
2582 	for (i = 0; i < CPSW_PORTS; i++) {
2583 		if (!sc->dualemac && i != sc->active_slave)
2584 			continue;
2585 		port[0] = '0' + i;
2586 		port[1] = '\0';
2587 		node = SYSCTL_ADD_NODE(ctx, ports_parent, OID_AUTO,
2588 		    port, CTLFLAG_RD, NULL, "CPSW Port Statistics");
2589 		port_parent = SYSCTL_CHILDREN(node);
2590 		SYSCTL_ADD_PROC(ctx, port_parent, OID_AUTO, "uptime",
2591 		    CTLTYPE_UINT | CTLFLAG_RD, sc, i,
2592 		    cpsw_stat_uptime, "IU", "Seconds since driver init");
2593 	}
2594 
2595 	stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
2596 				     CTLFLAG_RD, NULL, "CPSW Statistics");
2597 	stats_parent = SYSCTL_CHILDREN(stats_node);
2598 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2599 		SYSCTL_ADD_PROC(ctx, stats_parent, i,
2600 				cpsw_stat_sysctls[i].oid,
2601 				CTLTYPE_U64 | CTLFLAG_RD, sc, 0,
2602 				cpsw_stats_sysctl, "IU",
2603 				cpsw_stat_sysctls[i].oid);
2604 	}
2605 
2606 	queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
2607 	    CTLFLAG_RD, NULL, "CPSW Queue Statistics");
2608 	queue_parent = SYSCTL_CHILDREN(queue_node);
2609 
2610 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
2611 	    CTLFLAG_RD, NULL, "TX Queue Statistics");
2612 	cpsw_add_queue_sysctls(ctx, node, &sc->tx);
2613 
2614 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
2615 	    CTLFLAG_RD, NULL, "RX Queue Statistics");
2616 	cpsw_add_queue_sysctls(ctx, node, &sc->rx);
2617 
2618 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
2619 	    CTLFLAG_RD, NULL, "Watchdog Statistics");
2620 	cpsw_add_watchdog_sysctls(ctx, node, sc);
2621 }
2622