1 /*- 2 * Copyright (c) 2015 Ian lepore <ian@freebsd.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /* 28 * AM335x PPS driver using DMTimer capture. 29 * 30 * Note that this PPS driver does not use an interrupt. Instead it uses the 31 * hardware's ability to latch the timer's count register in response to a 32 * signal on an IO pin. Each of timers 4-7 have an associated pin, and this 33 * code allows any one of those to be used. 34 * 35 * The timecounter routines in kern_tc.c call the pps poll routine periodically 36 * to see if a new counter value has been latched. When a new value has been 37 * latched, the only processing done in the poll routine is to capture the 38 * current set of timecounter timehands (done with pps_capture()) and the 39 * latched value from the timer. The remaining work (done by pps_event() while 40 * holding a mutex) is scheduled to be done later in a non-interrupt context. 41 */ 42 43 #include <sys/cdefs.h> 44 #include "opt_platform.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/bus.h> 49 #include <sys/conf.h> 50 #include <sys/kernel.h> 51 #include <sys/lock.h> 52 #include <sys/module.h> 53 #include <sys/malloc.h> 54 #include <sys/mutex.h> 55 #include <sys/rman.h> 56 #include <sys/timepps.h> 57 #include <sys/timetc.h> 58 #include <machine/bus.h> 59 60 #include <dev/ofw/openfirm.h> 61 #include <dev/ofw/ofw_bus.h> 62 #include <dev/ofw/ofw_bus_subr.h> 63 #include <dev/extres/clk/clk.h> 64 65 #include <arm/ti/ti_sysc.h> 66 #include <arm/ti/ti_pinmux.h> 67 #include <arm/ti/am335x/am335x_scm_padconf.h> 68 69 #include "am335x_dmtreg.h" 70 71 #define PPS_CDEV_NAME "dmtpps" 72 73 struct dmtpps_softc { 74 device_t dev; 75 int mem_rid; 76 struct resource * mem_res; 77 int tmr_num; /* N from hwmod str "timerN" */ 78 char tmr_name[12]; /* "DMTimerN" */ 79 uint32_t tclr; /* Cached TCLR register. */ 80 struct timecounter tc; 81 int pps_curmode; /* Edge mode now set in hw. */ 82 struct cdev * pps_cdev; 83 struct pps_state pps_state; 84 struct mtx pps_mtx; 85 clk_t clk_fck; 86 uint64_t sysclk_freq; 87 }; 88 89 static int dmtpps_tmr_num; /* Set by probe() */ 90 91 /* List of compatible strings for FDT tree */ 92 static struct ofw_compat_data compat_data[] = { 93 {"ti,am335x-timer", 1}, 94 {"ti,am335x-timer-1ms", 1}, 95 {NULL, 0}, 96 }; 97 SIMPLEBUS_PNP_INFO(compat_data); 98 99 /* 100 * A table relating pad names to the hardware timer number they can be mux'd to. 101 */ 102 struct padinfo { 103 char * ballname; 104 int tmr_num; 105 }; 106 static struct padinfo dmtpps_padinfo[] = { 107 {"GPMC_ADVn_ALE", 4}, 108 {"I2C0_SDA", 4}, 109 {"MII1_TX_EN", 4}, 110 {"XDMA_EVENT_INTR0", 4}, 111 {"GPMC_BEn0_CLE", 5}, 112 {"MDC", 5}, 113 {"MMC0_DAT3", 5}, 114 {"UART1_RTSn", 5}, 115 {"GPMC_WEn", 6}, 116 {"MDIO", 6}, 117 {"MMC0_DAT2", 6}, 118 {"UART1_CTSn", 6}, 119 {"GPMC_OEn_REn", 7}, 120 {"I2C0_SCL", 7}, 121 {"UART0_CTSn", 7}, 122 {"XDMA_EVENT_INTR1", 7}, 123 {NULL, 0} 124 }; 125 126 /* 127 * This is either brilliantly user-friendly, or utterly lame... 128 * 129 * The am335x chip is used on the popular Beaglebone boards. Those boards have 130 * pins for all four capture-capable timers available on the P8 header. Allow 131 * users to configure the input pin by giving the name of the header pin. 132 */ 133 struct nicknames { 134 const char * nick; 135 const char * name; 136 }; 137 static struct nicknames dmtpps_pin_nicks[] = { 138 {"P8-7", "GPMC_ADVn_ALE"}, 139 {"P8-9", "GPMC_BEn0_CLE"}, 140 {"P8-10", "GPMC_WEn"}, 141 {"P8-8", "GPMC_OEn_REn",}, 142 {NULL, NULL} 143 }; 144 145 #define DMTIMER_READ4(sc, reg) bus_read_4((sc)->mem_res, (reg)) 146 #define DMTIMER_WRITE4(sc, reg, val) bus_write_4((sc)->mem_res, (reg), (val)) 147 148 /* 149 * Translate a short friendly case-insensitive name to its canonical name. 150 */ 151 static const char * 152 dmtpps_translate_nickname(const char *nick) 153 { 154 struct nicknames *nn; 155 156 for (nn = dmtpps_pin_nicks; nn->nick != NULL; nn++) 157 if (strcasecmp(nick, nn->nick) == 0) 158 return nn->name; 159 return (nick); 160 } 161 162 /* 163 * See if our tunable is set to the name of the input pin. If not, that's NOT 164 * an error, return 0. If so, try to configure that pin as a timer capture 165 * input pin, and if that works, then we have our timer unit number and if it 166 * fails that IS an error, return -1. 167 */ 168 static int 169 dmtpps_find_tmr_num_by_tunable(void) 170 { 171 struct padinfo *pi; 172 char iname[20]; 173 char muxmode[12]; 174 const char * ballname; 175 int err; 176 177 if (!TUNABLE_STR_FETCH("hw.am335x_dmtpps.input", iname, sizeof(iname))) 178 return (0); 179 ballname = dmtpps_translate_nickname(iname); 180 for (pi = dmtpps_padinfo; pi->ballname != NULL; pi++) { 181 if (strcmp(ballname, pi->ballname) != 0) 182 continue; 183 snprintf(muxmode, sizeof(muxmode), "timer%d", pi->tmr_num); 184 err = ti_pinmux_padconf_set(pi->ballname, muxmode, 185 PADCONF_INPUT); 186 if (err != 0) { 187 printf("am335x_dmtpps: unable to configure capture pin " 188 "for %s to input mode\n", muxmode); 189 return (-1); 190 } else if (bootverbose) { 191 printf("am335x_dmtpps: configured pin %s as input " 192 "for %s\n", iname, muxmode); 193 } 194 return (pi->tmr_num); 195 } 196 197 /* Invalid name in the tunable, that's an error. */ 198 printf("am335x_dmtpps: unknown pin name '%s'\n", iname); 199 return (-1); 200 } 201 202 /* 203 * Ask the pinmux driver whether any pin has been configured as a TIMER4..TIMER7 204 * input pin. If so, return the timer number, if not return 0. 205 */ 206 static int 207 dmtpps_find_tmr_num_by_padconf(void) 208 { 209 int err; 210 unsigned int padstate; 211 const char * padmux; 212 struct padinfo *pi; 213 char muxmode[12]; 214 215 for (pi = dmtpps_padinfo; pi->ballname != NULL; pi++) { 216 err = ti_pinmux_padconf_get(pi->ballname, &padmux, &padstate); 217 snprintf(muxmode, sizeof(muxmode), "timer%d", pi->tmr_num); 218 if (err == 0 && (padstate & RXACTIVE) != 0 && 219 strcmp(muxmode, padmux) == 0) 220 return (pi->tmr_num); 221 } 222 /* Nothing found, not an error. */ 223 return (0); 224 } 225 226 /* 227 * Figure out which hardware timer number to use based on input pin 228 * configuration. This is done just once, the first time probe() runs. 229 */ 230 static int 231 dmtpps_find_tmr_num(void) 232 { 233 int tmr_num; 234 235 if ((tmr_num = dmtpps_find_tmr_num_by_tunable()) == 0) 236 tmr_num = dmtpps_find_tmr_num_by_padconf(); 237 238 if (tmr_num <= 0) { 239 printf("am335x_dmtpps: PPS driver not enabled: unable to find " 240 "or configure a capture input pin\n"); 241 tmr_num = -1; /* Must return non-zero to prevent re-probing. */ 242 } 243 return (tmr_num); 244 } 245 246 static void 247 dmtpps_set_hw_capture(struct dmtpps_softc *sc, bool force_off) 248 { 249 int newmode; 250 251 if (force_off) 252 newmode = 0; 253 else 254 newmode = sc->pps_state.ppsparam.mode & PPS_CAPTUREASSERT; 255 256 if (newmode == sc->pps_curmode) 257 return; 258 sc->pps_curmode = newmode; 259 260 if (newmode == PPS_CAPTUREASSERT) 261 sc->tclr |= DMT_TCLR_CAPTRAN_LOHI; 262 else 263 sc->tclr &= ~DMT_TCLR_CAPTRAN_MASK; 264 DMTIMER_WRITE4(sc, DMT_TCLR, sc->tclr); 265 } 266 267 static unsigned 268 dmtpps_get_timecount(struct timecounter *tc) 269 { 270 struct dmtpps_softc *sc; 271 272 sc = tc->tc_priv; 273 274 return (DMTIMER_READ4(sc, DMT_TCRR)); 275 } 276 277 static void 278 dmtpps_poll(struct timecounter *tc) 279 { 280 struct dmtpps_softc *sc; 281 282 sc = tc->tc_priv; 283 284 /* 285 * If a new value has been latched we've got a PPS event. Capture the 286 * timecounter data, then override the capcount field (pps_capture() 287 * populates it from the current DMT_TCRR register) with the latched 288 * value from the TCAR1 register. 289 * 290 * Note that we don't have the TCAR interrupt enabled, but the hardware 291 * still provides the status bits in the "RAW" status register even when 292 * they're masked from generating an irq. However, when clearing the 293 * TCAR status to re-arm the capture for the next second, we have to 294 * write to the IRQ status register, not the RAW register. Quirky. 295 * 296 * We do not need to hold a lock while capturing the pps data, because 297 * it is captured into an area of the pps_state struct which is read 298 * only by pps_event(). We do need to hold a lock while calling 299 * pps_event(), because it manipulates data which is also accessed from 300 * the ioctl(2) context by userland processes. 301 */ 302 if (DMTIMER_READ4(sc, DMT_IRQSTATUS_RAW) & DMT_IRQ_TCAR) { 303 pps_capture(&sc->pps_state); 304 sc->pps_state.capcount = DMTIMER_READ4(sc, DMT_TCAR1); 305 DMTIMER_WRITE4(sc, DMT_IRQSTATUS, DMT_IRQ_TCAR); 306 307 mtx_lock_spin(&sc->pps_mtx); 308 pps_event(&sc->pps_state, PPS_CAPTUREASSERT); 309 mtx_unlock_spin(&sc->pps_mtx); 310 } 311 } 312 313 static int 314 dmtpps_open(struct cdev *dev, int flags, int fmt, 315 struct thread *td) 316 { 317 struct dmtpps_softc *sc; 318 319 sc = dev->si_drv1; 320 321 /* 322 * Begin polling for pps and enable capture in the hardware whenever the 323 * device is open. Doing this stuff again is harmless if this isn't the 324 * first open. 325 */ 326 sc->tc.tc_poll_pps = dmtpps_poll; 327 dmtpps_set_hw_capture(sc, false); 328 329 return 0; 330 } 331 332 static int 333 dmtpps_close(struct cdev *dev, int flags, int fmt, 334 struct thread *td) 335 { 336 struct dmtpps_softc *sc; 337 338 sc = dev->si_drv1; 339 340 /* 341 * Stop polling and disable capture on last close. Use the force-off 342 * flag to override the configured mode and turn off the hardware. 343 */ 344 sc->tc.tc_poll_pps = NULL; 345 dmtpps_set_hw_capture(sc, true); 346 347 return 0; 348 } 349 350 static int 351 dmtpps_ioctl(struct cdev *dev, u_long cmd, caddr_t data, 352 int flags, struct thread *td) 353 { 354 struct dmtpps_softc *sc; 355 int err; 356 357 sc = dev->si_drv1; 358 359 /* Let the kernel do the heavy lifting for ioctl. */ 360 mtx_lock_spin(&sc->pps_mtx); 361 err = pps_ioctl(cmd, data, &sc->pps_state); 362 mtx_unlock_spin(&sc->pps_mtx); 363 if (err != 0) 364 return (err); 365 366 /* 367 * The capture mode could have changed, set the hardware to whatever 368 * mode is now current. Effectively a no-op if nothing changed. 369 */ 370 dmtpps_set_hw_capture(sc, false); 371 372 return (err); 373 } 374 375 static struct cdevsw dmtpps_cdevsw = { 376 .d_version = D_VERSION, 377 .d_open = dmtpps_open, 378 .d_close = dmtpps_close, 379 .d_ioctl = dmtpps_ioctl, 380 .d_name = PPS_CDEV_NAME, 381 }; 382 383 static int 384 dmtpps_probe(device_t dev) 385 { 386 char strbuf[64]; 387 int tmr_num; 388 uint64_t rev_address; 389 390 if (!ofw_bus_status_okay(dev)) 391 return (ENXIO); 392 393 if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0) 394 return (ENXIO); 395 396 /* 397 * If we haven't chosen which hardware timer to use yet, go do that now. 398 * We need to know that to decide whether to return success for this 399 * hardware timer instance or not. 400 */ 401 if (dmtpps_tmr_num == 0) 402 dmtpps_tmr_num = dmtpps_find_tmr_num(); 403 404 /* 405 * Figure out which hardware timer is being probed and see if it matches 406 * the configured timer number determined earlier. 407 */ 408 rev_address = ti_sysc_get_rev_address(device_get_parent(dev)); 409 switch (rev_address) { 410 case DMTIMER1_1MS_REV: 411 tmr_num = 1; 412 break; 413 case DMTIMER2_REV: 414 tmr_num = 2; 415 break; 416 case DMTIMER3_REV: 417 tmr_num = 3; 418 break; 419 case DMTIMER4_REV: 420 tmr_num = 4; 421 break; 422 case DMTIMER5_REV: 423 tmr_num = 5; 424 break; 425 case DMTIMER6_REV: 426 tmr_num = 6; 427 break; 428 case DMTIMER7_REV: 429 tmr_num = 7; 430 break; 431 default: 432 return (ENXIO); 433 } 434 435 if (dmtpps_tmr_num != tmr_num) 436 return (ENXIO); 437 438 snprintf(strbuf, sizeof(strbuf), "AM335x PPS-Capture DMTimer%d", 439 tmr_num); 440 device_set_desc_copy(dev, strbuf); 441 442 return(BUS_PROBE_DEFAULT); 443 } 444 445 static int 446 dmtpps_attach(device_t dev) 447 { 448 struct dmtpps_softc *sc; 449 struct make_dev_args mda; 450 int err; 451 clk_t sys_clkin; 452 uint64_t rev_address; 453 454 sc = device_get_softc(dev); 455 sc->dev = dev; 456 457 /* Figure out which hardware timer this is and set the name string. */ 458 rev_address = ti_sysc_get_rev_address(device_get_parent(dev)); 459 switch (rev_address) { 460 case DMTIMER1_1MS_REV: 461 sc->tmr_num = 1; 462 break; 463 case DMTIMER2_REV: 464 sc->tmr_num = 2; 465 break; 466 case DMTIMER3_REV: 467 sc->tmr_num = 3; 468 break; 469 case DMTIMER4_REV: 470 sc->tmr_num = 4; 471 break; 472 case DMTIMER5_REV: 473 sc->tmr_num = 5; 474 break; 475 case DMTIMER6_REV: 476 sc->tmr_num = 6; 477 break; 478 case DMTIMER7_REV: 479 sc->tmr_num = 7; 480 break; 481 } 482 snprintf(sc->tmr_name, sizeof(sc->tmr_name), "DMTimer%d", sc->tmr_num); 483 484 /* expect one clock */ 485 err = clk_get_by_ofw_index(dev, 0, 0, &sc->clk_fck); 486 if (err != 0) { 487 device_printf(dev, "Cant find clock index 0. err: %d\n", err); 488 return (ENXIO); 489 } 490 491 err = clk_get_by_name(dev, "sys_clkin_ck@40", &sys_clkin); 492 if (err != 0) { 493 device_printf(dev, "Cant find sys_clkin_ck@40 err: %d\n", err); 494 return (ENXIO); 495 } 496 497 /* Select M_OSC as DPLL parent */ 498 err = clk_set_parent_by_clk(sc->clk_fck, sys_clkin); 499 if (err != 0) { 500 device_printf(dev, "Cant set mux to CLK_M_OSC\n"); 501 return (ENXIO); 502 } 503 504 /* Enable clocks and power on the device. */ 505 err = ti_sysc_clock_enable(device_get_parent(dev)); 506 if (err != 0) { 507 device_printf(dev, "Cant enable sysc clkctrl, err %d\n", err); 508 return (ENXIO); 509 } 510 511 /* Get the base clock frequency. */ 512 err = clk_get_freq(sc->clk_fck, &sc->sysclk_freq); 513 if (err != 0) { 514 device_printf(dev, "Cant get sysclk frequency, err %d\n", err); 515 return (ENXIO); 516 } 517 /* Request the memory resources. */ 518 sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 519 &sc->mem_rid, RF_ACTIVE); 520 if (sc->mem_res == NULL) { 521 return (ENXIO); 522 } 523 524 /* 525 * Configure the timer pulse/capture pin to input/capture mode. This is 526 * required in addition to configuring the pin as input with the pinmux 527 * controller (which was done via fdt data or tunable at probe time). 528 */ 529 sc->tclr = DMT_TCLR_GPO_CFG; 530 DMTIMER_WRITE4(sc, DMT_TCLR, sc->tclr); 531 532 /* Set up timecounter hardware, start it. */ 533 DMTIMER_WRITE4(sc, DMT_TSICR, DMT_TSICR_RESET); 534 while (DMTIMER_READ4(sc, DMT_TIOCP_CFG) & DMT_TIOCP_RESET) 535 continue; 536 537 sc->tclr |= DMT_TCLR_START | DMT_TCLR_AUTOLOAD; 538 DMTIMER_WRITE4(sc, DMT_TLDR, 0); 539 DMTIMER_WRITE4(sc, DMT_TCRR, 0); 540 DMTIMER_WRITE4(sc, DMT_TCLR, sc->tclr); 541 542 /* Register the timecounter. */ 543 sc->tc.tc_name = sc->tmr_name; 544 sc->tc.tc_get_timecount = dmtpps_get_timecount; 545 sc->tc.tc_counter_mask = ~0u; 546 sc->tc.tc_frequency = sc->sysclk_freq; 547 sc->tc.tc_quality = 1000; 548 sc->tc.tc_priv = sc; 549 550 tc_init(&sc->tc); 551 552 /* 553 * Indicate our PPS capabilities. Have the kernel init its part of the 554 * pps_state struct and add its capabilities. 555 * 556 * While the hardware has a mode to capture each edge, it's not clear we 557 * can use it that way, because there's only a single interrupt/status 558 * bit to say something was captured, but not which edge it was. For 559 * now, just say we can only capture assert events (the positive-going 560 * edge of the pulse). 561 */ 562 mtx_init(&sc->pps_mtx, "dmtpps", NULL, MTX_SPIN); 563 sc->pps_state.flags = PPSFLAG_MTX_SPIN; 564 sc->pps_state.ppscap = PPS_CAPTUREASSERT; 565 sc->pps_state.driver_abi = PPS_ABI_VERSION; 566 sc->pps_state.driver_mtx = &sc->pps_mtx; 567 pps_init_abi(&sc->pps_state); 568 569 /* Create the PPS cdev. */ 570 make_dev_args_init(&mda); 571 mda.mda_flags = MAKEDEV_WAITOK; 572 mda.mda_devsw = &dmtpps_cdevsw; 573 mda.mda_cr = NULL; 574 mda.mda_uid = UID_ROOT; 575 mda.mda_gid = GID_WHEEL; 576 mda.mda_mode = 0600; 577 mda.mda_unit = device_get_unit(dev); 578 mda.mda_si_drv1 = sc; 579 if ((err = make_dev_s(&mda, &sc->pps_cdev, PPS_CDEV_NAME)) != 0) { 580 device_printf(dev, "Failed to create cdev %s\n", PPS_CDEV_NAME); 581 return (err); 582 } 583 584 if (bootverbose) 585 device_printf(sc->dev, "Using %s for PPS device /dev/%s\n", 586 sc->tmr_name, PPS_CDEV_NAME); 587 588 return (0); 589 } 590 591 static int 592 dmtpps_detach(device_t dev) 593 { 594 595 /* 596 * There is no way to remove a timecounter once it has been registered, 597 * even if it's not in use, so we can never detach. If we were 598 * dynamically loaded as a module this will prevent unloading. 599 */ 600 return (EBUSY); 601 } 602 603 static device_method_t dmtpps_methods[] = { 604 DEVMETHOD(device_probe, dmtpps_probe), 605 DEVMETHOD(device_attach, dmtpps_attach), 606 DEVMETHOD(device_detach, dmtpps_detach), 607 { 0, 0 } 608 }; 609 610 static driver_t dmtpps_driver = { 611 "am335x_dmtpps", 612 dmtpps_methods, 613 sizeof(struct dmtpps_softc), 614 }; 615 616 DRIVER_MODULE(am335x_dmtpps, simplebus, dmtpps_driver, 0, 0); 617 MODULE_DEPEND(am335x_dmtpps, ti_sysc, 1, 1, 1); 618