xref: /freebsd/sys/arm/mv/mv_common.c (revision c1a3d7f20696ab5b72eee45863f3e04410d81fc8)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (C) 2008-2011 MARVELL INTERNATIONAL LTD.
5  * All rights reserved.
6  *
7  * Developed by Semihalf.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of MARVELL nor the names of contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/kdb.h>
43 #include <sys/reboot.h>
44 
45 #include <dev/fdt/fdt_common.h>
46 #include <dev/ofw/openfirm.h>
47 #include <dev/ofw/ofw_bus_subr.h>
48 
49 #include <machine/bus.h>
50 #include <machine/fdt.h>
51 #include <machine/vmparam.h>
52 #include <machine/intr.h>
53 
54 #include <arm/mv/mvreg.h>
55 #include <arm/mv/mvvar.h>
56 #include <arm/mv/mvwin.h>
57 
58 MALLOC_DEFINE(M_IDMA, "idma", "idma dma test memory");
59 
60 #define IDMA_DEBUG
61 #undef IDMA_DEBUG
62 
63 #define MAX_CPU_WIN	5
64 
65 #ifdef DEBUG
66 #define debugf(fmt, args...) do { printf("%s(): ", __func__);	\
67     printf(fmt,##args); } while (0)
68 #else
69 #define debugf(fmt, args...)
70 #endif
71 
72 #ifdef DEBUG
73 #define MV_DUMP_WIN	1
74 #else
75 #define MV_DUMP_WIN	0
76 #endif
77 
78 struct soc_node_spec;
79 
80 static enum soc_family soc_family;
81 
82 static int mv_win_cesa_attr_armv5(int eng_sel);
83 static int mv_win_cesa_attr_armada38x(int eng_sel);
84 static int mv_win_cesa_attr_armadaxp(int eng_sel);
85 
86 uint32_t read_cpu_ctrl_armv5(uint32_t reg);
87 uint32_t read_cpu_ctrl_armv7(uint32_t reg);
88 
89 void write_cpu_ctrl_armv5(uint32_t reg, uint32_t val);
90 void write_cpu_ctrl_armv7(uint32_t reg, uint32_t val);
91 
92 static int win_eth_can_remap(int i);
93 
94 static int decode_win_cesa_valid(void);
95 static int decode_win_usb_valid(void);
96 static int decode_win_usb3_valid(void);
97 static int decode_win_eth_valid(void);
98 static int decode_win_pcie_valid(void);
99 static int decode_win_sata_valid(void);
100 static int decode_win_sdhci_valid(void);
101 
102 static int decode_win_idma_valid(void);
103 static int decode_win_xor_valid(void);
104 
105 static void decode_win_cpu_setup(void);
106 static int decode_win_sdram_fixup(void);
107 static void decode_win_cesa_setup(u_long);
108 static void decode_win_a38x_cesa_setup(u_long);
109 static void decode_win_usb_setup(u_long);
110 static void decode_win_usb3_setup(u_long);
111 static void decode_win_eth_setup(u_long);
112 static void decode_win_neta_setup(u_long);
113 static void decode_win_sata_setup(u_long);
114 static void decode_win_ahci_setup(u_long);
115 static void decode_win_sdhci_setup(u_long);
116 
117 static void decode_win_idma_setup(u_long);
118 static void decode_win_xor_setup(u_long);
119 
120 static void decode_win_cesa_dump(u_long);
121 static void decode_win_a38x_cesa_dump(u_long);
122 static void decode_win_usb_dump(u_long);
123 static void decode_win_usb3_dump(u_long);
124 static void decode_win_eth_dump(u_long base);
125 static void decode_win_neta_dump(u_long base);
126 static void decode_win_idma_dump(u_long base);
127 static void decode_win_xor_dump(u_long base);
128 static void decode_win_ahci_dump(u_long base);
129 static void decode_win_sdhci_dump(u_long);
130 static void decode_win_pcie_dump(u_long);
131 
132 static uint32_t win_cpu_cr_read(int);
133 static uint32_t win_cpu_armv5_cr_read(int);
134 static uint32_t win_cpu_armv7_cr_read(int);
135 static uint32_t win_cpu_br_read(int);
136 static uint32_t win_cpu_armv5_br_read(int);
137 static uint32_t win_cpu_armv7_br_read(int);
138 static uint32_t win_cpu_remap_l_read(int);
139 static uint32_t win_cpu_armv5_remap_l_read(int);
140 static uint32_t win_cpu_armv7_remap_l_read(int);
141 static uint32_t win_cpu_remap_h_read(int);
142 static uint32_t win_cpu_armv5_remap_h_read(int);
143 static uint32_t win_cpu_armv7_remap_h_read(int);
144 
145 static void win_cpu_cr_write(int, uint32_t);
146 static void win_cpu_armv5_cr_write(int, uint32_t);
147 static void win_cpu_armv7_cr_write(int, uint32_t);
148 static void win_cpu_br_write(int, uint32_t);
149 static void win_cpu_armv5_br_write(int, uint32_t);
150 static void win_cpu_armv7_br_write(int, uint32_t);
151 static void win_cpu_remap_l_write(int, uint32_t);
152 static void win_cpu_armv5_remap_l_write(int, uint32_t);
153 static void win_cpu_armv7_remap_l_write(int, uint32_t);
154 static void win_cpu_remap_h_write(int, uint32_t);
155 static void win_cpu_armv5_remap_h_write(int, uint32_t);
156 static void win_cpu_armv7_remap_h_write(int, uint32_t);
157 
158 static uint32_t ddr_br_read(int);
159 static uint32_t ddr_sz_read(int);
160 static uint32_t ddr_armv5_br_read(int);
161 static uint32_t ddr_armv5_sz_read(int);
162 static uint32_t ddr_armv7_br_read(int);
163 static uint32_t ddr_armv7_sz_read(int);
164 static void ddr_br_write(int, uint32_t);
165 static void ddr_sz_write(int, uint32_t);
166 static void ddr_armv5_br_write(int, uint32_t);
167 static void ddr_armv5_sz_write(int, uint32_t);
168 static void ddr_armv7_br_write(int, uint32_t);
169 static void ddr_armv7_sz_write(int, uint32_t);
170 
171 static int fdt_get_ranges(const char *, void *, int, int *, int *);
172 int gic_decode_fdt(phandle_t iparent, pcell_t *intr, int *interrupt,
173     int *trig, int *pol);
174 
175 static int win_cpu_from_dt(void);
176 static int fdt_win_setup(void);
177 
178 static int fdt_win_process_child(phandle_t, struct soc_node_spec *, const char*);
179 
180 static void soc_identify(uint32_t, uint32_t);
181 
182 static uint32_t dev_mask = 0;
183 static int cpu_wins_no = 0;
184 static int eth_port = 0;
185 static int usb_port = 0;
186 static boolean_t platform_io_coherent = false;
187 
188 static struct decode_win cpu_win_tbl[MAX_CPU_WIN];
189 
190 const struct decode_win *cpu_wins = cpu_win_tbl;
191 
192 typedef void (*decode_win_setup_t)(u_long);
193 typedef void (*dump_win_t)(u_long);
194 typedef int (*valid_t)(void);
195 
196 /*
197  * The power status of device feature is only supported on
198  * Kirkwood and Discovery SoCs.
199  */
200 #if defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY)
201 #define	SOC_MV_POWER_STAT_SUPPORTED		1
202 #else
203 #define	SOC_MV_POWER_STAT_SUPPORTED		0
204 #endif
205 
206 struct soc_node_spec {
207 	const char		*compat;
208 	decode_win_setup_t	decode_handler;
209 	dump_win_t		dump_handler;
210 	valid_t			valid_handler;
211 };
212 
213 static struct soc_node_spec soc_nodes[] = {
214 	{ "mrvl,ge", &decode_win_eth_setup, &decode_win_eth_dump, &decode_win_eth_valid},
215 	{ "marvell,armada-370-neta", &decode_win_neta_setup,
216 	    &decode_win_neta_dump, NULL },
217 	{ "mrvl,usb-ehci", &decode_win_usb_setup, &decode_win_usb_dump, &decode_win_usb_valid},
218 	{ "marvell,orion-ehci", &decode_win_usb_setup, &decode_win_usb_dump, &decode_win_usb_valid },
219 	{ "marvell,armada-380-xhci", &decode_win_usb3_setup,
220 	    &decode_win_usb3_dump, &decode_win_usb3_valid },
221 	{ "marvell,armada-380-ahci", &decode_win_ahci_setup,
222 	    &decode_win_ahci_dump, NULL },
223 	{ "marvell,armada-380-sdhci", &decode_win_sdhci_setup,
224 	    &decode_win_sdhci_dump, &decode_win_sdhci_valid},
225 	{ "mrvl,sata", &decode_win_sata_setup, NULL, &decode_win_sata_valid},
226 	{ "mrvl,xor", &decode_win_xor_setup, &decode_win_xor_dump, &decode_win_xor_valid},
227 	{ "mrvl,idma", &decode_win_idma_setup, &decode_win_idma_dump, &decode_win_idma_valid},
228 	{ "mrvl,cesa", &decode_win_cesa_setup, &decode_win_cesa_dump, &decode_win_cesa_valid},
229 	{ "mrvl,pcie", &decode_win_pcie_setup, &decode_win_pcie_dump, &decode_win_pcie_valid},
230 	{ "marvell,armada-38x-crypto", &decode_win_a38x_cesa_setup,
231 	    &decode_win_a38x_cesa_dump, &decode_win_cesa_valid},
232 	{ NULL, NULL, NULL, NULL },
233 };
234 
235 #define	SOC_NODE_PCIE_ENTRY_IDX		11
236 
237 typedef uint32_t(*read_cpu_ctrl_t)(uint32_t);
238 typedef void(*write_cpu_ctrl_t)(uint32_t, uint32_t);
239 typedef uint32_t (*win_read_t)(int);
240 typedef void (*win_write_t)(int, uint32_t);
241 typedef int (*win_cesa_attr_t)(int);
242 typedef uint32_t (*get_t)(void);
243 
244 struct decode_win_spec {
245 	read_cpu_ctrl_t  read_cpu_ctrl;
246 	write_cpu_ctrl_t write_cpu_ctrl;
247 	win_read_t	cr_read;
248 	win_read_t	br_read;
249 	win_read_t	remap_l_read;
250 	win_read_t	remap_h_read;
251 	win_write_t	cr_write;
252 	win_write_t	br_write;
253 	win_write_t	remap_l_write;
254 	win_write_t	remap_h_write;
255 	uint32_t	mv_win_cpu_max;
256 	win_cesa_attr_t win_cesa_attr;
257 	int 		win_cesa_target;
258 	win_read_t	ddr_br_read;
259 	win_read_t	ddr_sz_read;
260 	win_write_t	ddr_br_write;
261 	win_write_t	ddr_sz_write;
262 	get_t		get_tclk;
263 	get_t		get_cpu_freq;
264 };
265 
266 struct decode_win_spec *soc_decode_win_spec;
267 
268 static struct decode_win_spec decode_win_specs[] =
269 {
270 	{
271 		&read_cpu_ctrl_armv7,
272 		&write_cpu_ctrl_armv7,
273 		&win_cpu_armv7_cr_read,
274 		&win_cpu_armv7_br_read,
275 		&win_cpu_armv7_remap_l_read,
276 		&win_cpu_armv7_remap_h_read,
277 		&win_cpu_armv7_cr_write,
278 		&win_cpu_armv7_br_write,
279 		&win_cpu_armv7_remap_l_write,
280 		&win_cpu_armv7_remap_h_write,
281 		MV_WIN_CPU_MAX_ARMV7,
282 		&mv_win_cesa_attr_armada38x,
283 		MV_WIN_CESA_TARGET_ARMADA38X,
284 		&ddr_armv7_br_read,
285 		&ddr_armv7_sz_read,
286 		&ddr_armv7_br_write,
287 		&ddr_armv7_sz_write,
288 		&get_tclk_armada38x,
289 		&get_cpu_freq_armada38x,
290 	},
291 	{
292 		&read_cpu_ctrl_armv7,
293 		&write_cpu_ctrl_armv7,
294 		&win_cpu_armv7_cr_read,
295 		&win_cpu_armv7_br_read,
296 		&win_cpu_armv7_remap_l_read,
297 		&win_cpu_armv7_remap_h_read,
298 		&win_cpu_armv7_cr_write,
299 		&win_cpu_armv7_br_write,
300 		&win_cpu_armv7_remap_l_write,
301 		&win_cpu_armv7_remap_h_write,
302 		MV_WIN_CPU_MAX_ARMV7,
303 		&mv_win_cesa_attr_armadaxp,
304 		MV_WIN_CESA_TARGET_ARMADAXP,
305 		&ddr_armv7_br_read,
306 		&ddr_armv7_sz_read,
307 		&ddr_armv7_br_write,
308 		&ddr_armv7_sz_write,
309 		&get_tclk_armadaxp,
310 		&get_cpu_freq_armadaxp,
311 	},
312 	{
313 		&read_cpu_ctrl_armv5,
314 		&write_cpu_ctrl_armv5,
315 		&win_cpu_armv5_cr_read,
316 		&win_cpu_armv5_br_read,
317 		&win_cpu_armv5_remap_l_read,
318 		&win_cpu_armv5_remap_h_read,
319 		&win_cpu_armv5_cr_write,
320 		&win_cpu_armv5_br_write,
321 		&win_cpu_armv5_remap_l_write,
322 		&win_cpu_armv5_remap_h_write,
323 		MV_WIN_CPU_MAX,
324 		&mv_win_cesa_attr_armv5,
325 		MV_WIN_CESA_TARGET,
326 		&ddr_armv5_br_read,
327 		&ddr_armv5_sz_read,
328 		&ddr_armv5_br_write,
329 		&ddr_armv5_sz_write,
330 		NULL,
331 		NULL,
332 	},
333 };
334 
335 struct fdt_pm_mask_entry {
336 	char		*compat;
337 	uint32_t	mask;
338 };
339 
340 static struct fdt_pm_mask_entry fdt_pm_mask_table[] = {
341 	{ "mrvl,ge",		CPU_PM_CTRL_GE(0) },
342 	{ "mrvl,ge",		CPU_PM_CTRL_GE(1) },
343 	{ "mrvl,usb-ehci",	CPU_PM_CTRL_USB(0) },
344 	{ "mrvl,usb-ehci",	CPU_PM_CTRL_USB(1) },
345 	{ "mrvl,usb-ehci",	CPU_PM_CTRL_USB(2) },
346 	{ "mrvl,xor",		CPU_PM_CTRL_XOR },
347 	{ "mrvl,sata",		CPU_PM_CTRL_SATA },
348 	{ NULL, 0 }
349 };
350 
351 static __inline int
352 pm_is_disabled(uint32_t mask)
353 {
354 #if SOC_MV_POWER_STAT_SUPPORTED
355 	return (soc_power_ctrl_get(mask) == mask ? 0 : 1);
356 #else
357 	return (0);
358 #endif
359 }
360 
361 /*
362  * Disable device using power management register.
363  * 1 - Device Power On
364  * 0 - Device Power Off
365  * Mask can be set in loader.
366  * EXAMPLE:
367  * loader> set hw.pm-disable-mask=0x2
368  *
369  * Common mask:
370  * |-------------------------------|
371  * | Device | Kirkwood | Discovery |
372  * |-------------------------------|
373  * | USB0   | 0x00008  | 0x020000  |
374  * |-------------------------------|
375  * | USB1   |     -    | 0x040000  |
376  * |-------------------------------|
377  * | USB2   |     -    | 0x080000  |
378  * |-------------------------------|
379  * | GE0    | 0x00001  | 0x000002  |
380  * |-------------------------------|
381  * | GE1    |     -    | 0x000004  |
382  * |-------------------------------|
383  * | IDMA   |     -    | 0x100000  |
384  * |-------------------------------|
385  * | XOR    | 0x10000  | 0x200000  |
386  * |-------------------------------|
387  * | CESA   | 0x20000  | 0x400000  |
388  * |-------------------------------|
389  * | SATA   | 0x04000  | 0x004000  |
390  * --------------------------------|
391  * This feature can be used only on Kirkwood and Discovery
392  * machines.
393  */
394 
395 static int mv_win_cesa_attr_armv5(int eng_sel)
396 {
397 
398 	return MV_WIN_CESA_ATTR(eng_sel);
399 }
400 
401 static int mv_win_cesa_attr_armada38x(int eng_sel)
402 {
403 
404 	return MV_WIN_CESA_ATTR_ARMADA38X(eng_sel);
405 }
406 
407 static int mv_win_cesa_attr_armadaxp(int eng_sel)
408 {
409 
410 	return MV_WIN_CESA_ATTR_ARMADAXP(eng_sel);
411 }
412 
413 enum soc_family
414 mv_check_soc_family()
415 {
416 	uint32_t dev, rev;
417 
418 	soc_id(&dev, &rev);
419 	switch (dev) {
420 	case MV_DEV_MV78230:
421 	case MV_DEV_MV78260:
422 	case MV_DEV_MV78460:
423 		soc_decode_win_spec = &decode_win_specs[MV_SOC_ARMADA_XP];
424 		soc_family = MV_SOC_ARMADA_XP;
425 		break;
426 	case MV_DEV_88F6828:
427 	case MV_DEV_88F6820:
428 	case MV_DEV_88F6810:
429 		soc_decode_win_spec = &decode_win_specs[MV_SOC_ARMADA_38X];
430 		soc_family = MV_SOC_ARMADA_38X;
431 		break;
432 	case MV_DEV_88F5181:
433 	case MV_DEV_88F5182:
434 	case MV_DEV_88F5281:
435 	case MV_DEV_88F6281:
436 	case MV_DEV_88RC8180:
437 	case MV_DEV_88RC9480:
438 	case MV_DEV_88RC9580:
439 	case MV_DEV_88F6781:
440 	case MV_DEV_88F6282:
441 	case MV_DEV_MV78100_Z0:
442 	case MV_DEV_MV78100:
443 	case MV_DEV_MV78160:
444 		soc_decode_win_spec = &decode_win_specs[MV_SOC_ARMV5];
445 		soc_family = MV_SOC_ARMV5;
446 		break;
447 	default:
448 		soc_family = MV_SOC_UNSUPPORTED;
449 		return (MV_SOC_UNSUPPORTED);
450 	}
451 
452 	soc_identify(dev, rev);
453 
454 	return (soc_family);
455 }
456 
457 static __inline void
458 pm_disable_device(int mask)
459 {
460 #ifdef DIAGNOSTIC
461 	uint32_t reg;
462 
463 	reg = soc_power_ctrl_get(CPU_PM_CTRL_ALL);
464 	printf("Power Management Register: 0%x\n", reg);
465 
466 	reg &= ~mask;
467 	soc_power_ctrl_set(reg);
468 	printf("Device %x is disabled\n", mask);
469 
470 	reg = soc_power_ctrl_get(CPU_PM_CTRL_ALL);
471 	printf("Power Management Register: 0%x\n", reg);
472 #endif
473 }
474 
475 int
476 mv_fdt_is_type(phandle_t node, const char *typestr)
477 {
478 #define FDT_TYPE_LEN	64
479 	char type[FDT_TYPE_LEN];
480 
481 	if (OF_getproplen(node, "device_type") <= 0)
482 		return (0);
483 
484 	if (OF_getprop(node, "device_type", type, FDT_TYPE_LEN) < 0)
485 		return (0);
486 
487 	if (strncasecmp(type, typestr, FDT_TYPE_LEN) == 0)
488 		/* This fits. */
489 		return (1);
490 
491 	return (0);
492 #undef FDT_TYPE_LEN
493 }
494 
495 int
496 mv_fdt_pm(phandle_t node)
497 {
498 	uint32_t cpu_pm_ctrl;
499 	int i, ena, compat;
500 
501 	ena = 1;
502 	cpu_pm_ctrl = read_cpu_ctrl(CPU_PM_CTRL);
503 	for (i = 0; fdt_pm_mask_table[i].compat != NULL; i++) {
504 		if (dev_mask & (1 << i))
505 			continue;
506 
507 		compat = ofw_bus_node_is_compatible(node,
508 		    fdt_pm_mask_table[i].compat);
509 #if defined(SOC_MV_KIRKWOOD)
510 		if (compat && (cpu_pm_ctrl & fdt_pm_mask_table[i].mask)) {
511 			dev_mask |= (1 << i);
512 			ena = 0;
513 			break;
514 		} else if (compat) {
515 			dev_mask |= (1 << i);
516 			break;
517 		}
518 #else
519 		if (compat && (~cpu_pm_ctrl & fdt_pm_mask_table[i].mask)) {
520 			dev_mask |= (1 << i);
521 			ena = 0;
522 			break;
523 		} else if (compat) {
524 			dev_mask |= (1 << i);
525 			break;
526 		}
527 #endif
528 	}
529 
530 	return (ena);
531 }
532 
533 uint32_t
534 read_cpu_ctrl(uint32_t reg)
535 {
536 
537 	if (soc_decode_win_spec->read_cpu_ctrl != NULL)
538 		return (soc_decode_win_spec->read_cpu_ctrl(reg));
539 	return (-1);
540 }
541 
542 uint32_t
543 read_cpu_ctrl_armv5(uint32_t reg)
544 {
545 
546 	return (bus_space_read_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE, reg));
547 }
548 
549 uint32_t
550 read_cpu_ctrl_armv7(uint32_t reg)
551 {
552 
553 	return (bus_space_read_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE_ARMV7, reg));
554 }
555 
556 void
557 write_cpu_ctrl(uint32_t reg, uint32_t val)
558 {
559 
560 	if (soc_decode_win_spec->write_cpu_ctrl != NULL)
561 		soc_decode_win_spec->write_cpu_ctrl(reg, val);
562 }
563 
564 void
565 write_cpu_ctrl_armv5(uint32_t reg, uint32_t val)
566 {
567 
568 	bus_space_write_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE, reg, val);
569 }
570 
571 void
572 write_cpu_ctrl_armv7(uint32_t reg, uint32_t val)
573 {
574 
575 	bus_space_write_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE_ARMV7, reg, val);
576 }
577 
578 uint32_t
579 read_cpu_mp_clocks(uint32_t reg)
580 {
581 
582 	return (bus_space_read_4(fdtbus_bs_tag, MV_MP_CLOCKS_BASE, reg));
583 }
584 
585 void
586 write_cpu_mp_clocks(uint32_t reg, uint32_t val)
587 {
588 
589 	bus_space_write_4(fdtbus_bs_tag, MV_MP_CLOCKS_BASE, reg, val);
590 }
591 
592 uint32_t
593 read_cpu_misc(uint32_t reg)
594 {
595 
596 	return (bus_space_read_4(fdtbus_bs_tag, MV_MISC_BASE, reg));
597 }
598 
599 void
600 write_cpu_misc(uint32_t reg, uint32_t val)
601 {
602 
603 	bus_space_write_4(fdtbus_bs_tag, MV_MISC_BASE, reg, val);
604 }
605 
606 uint32_t
607 cpu_extra_feat(void)
608 {
609 	uint32_t dev, rev;
610 	uint32_t ef = 0;
611 
612 	soc_id(&dev, &rev);
613 
614 	switch (dev) {
615 	case MV_DEV_88F6281:
616 	case MV_DEV_88F6282:
617 	case MV_DEV_88RC8180:
618 	case MV_DEV_MV78100_Z0:
619 	case MV_DEV_MV78100:
620 		__asm __volatile("mrc p15, 1, %0, c15, c1, 0" : "=r" (ef));
621 		break;
622 	case MV_DEV_88F5182:
623 	case MV_DEV_88F5281:
624 		__asm __volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (ef));
625 		break;
626 	default:
627 		if (bootverbose)
628 			printf("This ARM Core does not support any extra features\n");
629 	}
630 
631 	return (ef);
632 }
633 
634 /*
635  * Get the power status of device. This feature is only supported on
636  * Kirkwood and Discovery SoCs.
637  */
638 uint32_t
639 soc_power_ctrl_get(uint32_t mask)
640 {
641 
642 #if SOC_MV_POWER_STAT_SUPPORTED
643 	if (mask != CPU_PM_CTRL_NONE)
644 		mask &= read_cpu_ctrl(CPU_PM_CTRL);
645 
646 	return (mask);
647 #else
648 	return (mask);
649 #endif
650 }
651 
652 /*
653  * Set the power status of device. This feature is only supported on
654  * Kirkwood and Discovery SoCs.
655  */
656 void
657 soc_power_ctrl_set(uint32_t mask)
658 {
659 
660 #if !defined(SOC_MV_ORION)
661 	if (mask != CPU_PM_CTRL_NONE)
662 		write_cpu_ctrl(CPU_PM_CTRL, mask);
663 #endif
664 }
665 
666 void
667 soc_id(uint32_t *dev, uint32_t *rev)
668 {
669 	uint64_t mv_pcie_base = MV_PCIE_BASE;
670 	phandle_t node;
671 
672 	/*
673 	 * Notice: system identifiers are available in the registers range of
674 	 * PCIE controller, so using this function is only allowed (and
675 	 * possible) after the internal registers range has been mapped in via
676 	 * devmap_bootstrap().
677 	 */
678 	*dev = 0;
679 	*rev = 0;
680 	if ((node = OF_finddevice("/")) == -1)
681 		return;
682 	if (ofw_bus_node_is_compatible(node, "marvell,armada380"))
683 		mv_pcie_base = MV_PCIE_BASE_ARMADA38X;
684 
685 	*dev = bus_space_read_4(fdtbus_bs_tag, mv_pcie_base, 0) >> 16;
686 	*rev = bus_space_read_4(fdtbus_bs_tag, mv_pcie_base, 8) & 0xff;
687 }
688 
689 static void
690 soc_identify(uint32_t d, uint32_t r)
691 {
692 	uint32_t size, mode, freq;
693 	const char *dev;
694 	const char *rev;
695 
696 	printf("SOC: ");
697 	if (bootverbose)
698 		printf("(0x%4x:0x%02x) ", d, r);
699 
700 	rev = "";
701 	switch (d) {
702 	case MV_DEV_88F5181:
703 		dev = "Marvell 88F5181";
704 		if (r == 3)
705 			rev = "B1";
706 		break;
707 	case MV_DEV_88F5182:
708 		dev = "Marvell 88F5182";
709 		if (r == 2)
710 			rev = "A2";
711 		break;
712 	case MV_DEV_88F5281:
713 		dev = "Marvell 88F5281";
714 		if (r == 4)
715 			rev = "D0";
716 		else if (r == 5)
717 			rev = "D1";
718 		else if (r == 6)
719 			rev = "D2";
720 		break;
721 	case MV_DEV_88F6281:
722 		dev = "Marvell 88F6281";
723 		if (r == 0)
724 			rev = "Z0";
725 		else if (r == 2)
726 			rev = "A0";
727 		else if (r == 3)
728 			rev = "A1";
729 		break;
730 	case MV_DEV_88RC8180:
731 		dev = "Marvell 88RC8180";
732 		break;
733 	case MV_DEV_88RC9480:
734 		dev = "Marvell 88RC9480";
735 		break;
736 	case MV_DEV_88RC9580:
737 		dev = "Marvell 88RC9580";
738 		break;
739 	case MV_DEV_88F6781:
740 		dev = "Marvell 88F6781";
741 		if (r == 2)
742 			rev = "Y0";
743 		break;
744 	case MV_DEV_88F6282:
745 		dev = "Marvell 88F6282";
746 		if (r == 0)
747 			rev = "A0";
748 		else if (r == 1)
749 			rev = "A1";
750 		break;
751 	case MV_DEV_88F6828:
752 		dev = "Marvell 88F6828";
753 		break;
754 	case MV_DEV_88F6820:
755 		dev = "Marvell 88F6820";
756 		break;
757 	case MV_DEV_88F6810:
758 		dev = "Marvell 88F6810";
759 		break;
760 	case MV_DEV_MV78100_Z0:
761 		dev = "Marvell MV78100 Z0";
762 		break;
763 	case MV_DEV_MV78100:
764 		dev = "Marvell MV78100";
765 		break;
766 	case MV_DEV_MV78160:
767 		dev = "Marvell MV78160";
768 		break;
769 	case MV_DEV_MV78260:
770 		dev = "Marvell MV78260";
771 		break;
772 	case MV_DEV_MV78460:
773 		dev = "Marvell MV78460";
774 		break;
775 	default:
776 		dev = "UNKNOWN";
777 		break;
778 	}
779 
780 	printf("%s", dev);
781 	if (*rev != '\0')
782 		printf(" rev %s", rev);
783 	printf(", TClock %dMHz", get_tclk() / 1000 / 1000);
784 	freq = get_cpu_freq();
785 	if (freq != 0)
786 		printf(", Frequency %dMHz", freq / 1000 / 1000);
787 	printf("\n");
788 
789 	mode = read_cpu_ctrl(CPU_CONFIG);
790 	printf("  Instruction cache prefetch %s, data cache prefetch %s\n",
791 	    (mode & CPU_CONFIG_IC_PREF) ? "enabled" : "disabled",
792 	    (mode & CPU_CONFIG_DC_PREF) ? "enabled" : "disabled");
793 
794 	switch (d) {
795 	case MV_DEV_88F6281:
796 	case MV_DEV_88F6282:
797 		mode = read_cpu_ctrl(CPU_L2_CONFIG) & CPU_L2_CONFIG_MODE;
798 		printf("  256KB 4-way set-associative %s unified L2 cache\n",
799 		    mode ? "write-through" : "write-back");
800 		break;
801 	case MV_DEV_MV78100:
802 		mode = read_cpu_ctrl(CPU_CONTROL);
803 		size = mode & CPU_CONTROL_L2_SIZE;
804 		mode = mode & CPU_CONTROL_L2_MODE;
805 		printf("  %s set-associative %s unified L2 cache\n",
806 		    size ? "256KB 4-way" : "512KB 8-way",
807 		    mode ? "write-through" : "write-back");
808 		break;
809 	default:
810 		break;
811 	}
812 }
813 
814 #ifdef KDB
815 static void
816 mv_enter_debugger(void *dummy)
817 {
818 
819 	if (boothowto & RB_KDB)
820 		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
821 }
822 SYSINIT(mv_enter_debugger, SI_SUB_CPU, SI_ORDER_ANY, mv_enter_debugger, NULL);
823 #endif
824 
825 int
826 soc_decode_win(void)
827 {
828 	uint32_t dev, rev;
829 	int mask, err;
830 
831 	mask = 0;
832 	TUNABLE_INT_FETCH("hw.pm-disable-mask", &mask);
833 
834 	if (mask != 0)
835 		pm_disable_device(mask);
836 
837 	/* Retrieve data about physical addresses from device tree. */
838 	if ((err = win_cpu_from_dt()) != 0)
839 		return (err);
840 
841 	/* Retrieve our ID: some windows facilities vary between SoC models */
842 	soc_id(&dev, &rev);
843 
844 	if (soc_family == MV_SOC_ARMADA_XP)
845 		if ((err = decode_win_sdram_fixup()) != 0)
846 			return(err);
847 
848 	decode_win_cpu_setup();
849 	if (MV_DUMP_WIN)
850 		soc_dump_decode_win();
851 
852 	eth_port = 0;
853 	usb_port = 0;
854 	if ((err = fdt_win_setup()) != 0)
855 		return (err);
856 
857 	return (0);
858 }
859 
860 /**************************************************************************
861  * Decode windows registers accessors
862  **************************************************************************/
863 WIN_REG_IDX_RD(win_cpu_armv5, cr, MV_WIN_CPU_CTRL_ARMV5, MV_MBUS_BRIDGE_BASE)
864 WIN_REG_IDX_RD(win_cpu_armv5, br, MV_WIN_CPU_BASE_ARMV5, MV_MBUS_BRIDGE_BASE)
865 WIN_REG_IDX_RD(win_cpu_armv5, remap_l, MV_WIN_CPU_REMAP_LO_ARMV5, MV_MBUS_BRIDGE_BASE)
866 WIN_REG_IDX_RD(win_cpu_armv5, remap_h, MV_WIN_CPU_REMAP_HI_ARMV5, MV_MBUS_BRIDGE_BASE)
867 WIN_REG_IDX_WR(win_cpu_armv5, cr, MV_WIN_CPU_CTRL_ARMV5, MV_MBUS_BRIDGE_BASE)
868 WIN_REG_IDX_WR(win_cpu_armv5, br, MV_WIN_CPU_BASE_ARMV5, MV_MBUS_BRIDGE_BASE)
869 WIN_REG_IDX_WR(win_cpu_armv5, remap_l, MV_WIN_CPU_REMAP_LO_ARMV5, MV_MBUS_BRIDGE_BASE)
870 WIN_REG_IDX_WR(win_cpu_armv5, remap_h, MV_WIN_CPU_REMAP_HI_ARMV5, MV_MBUS_BRIDGE_BASE)
871 
872 WIN_REG_IDX_RD(win_cpu_armv7, cr, MV_WIN_CPU_CTRL_ARMV7, MV_MBUS_BRIDGE_BASE)
873 WIN_REG_IDX_RD(win_cpu_armv7, br, MV_WIN_CPU_BASE_ARMV7, MV_MBUS_BRIDGE_BASE)
874 WIN_REG_IDX_RD(win_cpu_armv7, remap_l, MV_WIN_CPU_REMAP_LO_ARMV7, MV_MBUS_BRIDGE_BASE)
875 WIN_REG_IDX_RD(win_cpu_armv7, remap_h, MV_WIN_CPU_REMAP_HI_ARMV7, MV_MBUS_BRIDGE_BASE)
876 WIN_REG_IDX_WR(win_cpu_armv7, cr, MV_WIN_CPU_CTRL_ARMV7, MV_MBUS_BRIDGE_BASE)
877 WIN_REG_IDX_WR(win_cpu_armv7, br, MV_WIN_CPU_BASE_ARMV7, MV_MBUS_BRIDGE_BASE)
878 WIN_REG_IDX_WR(win_cpu_armv7, remap_l, MV_WIN_CPU_REMAP_LO_ARMV7, MV_MBUS_BRIDGE_BASE)
879 WIN_REG_IDX_WR(win_cpu_armv7, remap_h, MV_WIN_CPU_REMAP_HI_ARMV7, MV_MBUS_BRIDGE_BASE)
880 
881 static uint32_t
882 win_cpu_cr_read(int i)
883 {
884 
885 	if (soc_decode_win_spec->cr_read != NULL)
886 		return (soc_decode_win_spec->cr_read(i));
887 	return (-1);
888 }
889 
890 static uint32_t
891 win_cpu_br_read(int i)
892 {
893 
894 	if (soc_decode_win_spec->br_read != NULL)
895 		return (soc_decode_win_spec->br_read(i));
896 	return (-1);
897 }
898 
899 static uint32_t
900 win_cpu_remap_l_read(int i)
901 {
902 
903 	if (soc_decode_win_spec->remap_l_read != NULL)
904 		return (soc_decode_win_spec->remap_l_read(i));
905 	return (-1);
906 }
907 
908 static uint32_t
909 win_cpu_remap_h_read(int i)
910 {
911 
912 	if (soc_decode_win_spec->remap_h_read != NULL)
913 		return soc_decode_win_spec->remap_h_read(i);
914 	return (-1);
915 }
916 
917 static void
918 win_cpu_cr_write(int i, uint32_t val)
919 {
920 
921 	if (soc_decode_win_spec->cr_write != NULL)
922 		soc_decode_win_spec->cr_write(i, val);
923 }
924 
925 static void
926 win_cpu_br_write(int i, uint32_t val)
927 {
928 
929 	if (soc_decode_win_spec->br_write != NULL)
930 		soc_decode_win_spec->br_write(i, val);
931 }
932 
933 static void
934 win_cpu_remap_l_write(int i, uint32_t val)
935 {
936 
937 	if (soc_decode_win_spec->remap_l_write != NULL)
938 		soc_decode_win_spec->remap_l_write(i, val);
939 }
940 
941 static void
942 win_cpu_remap_h_write(int i, uint32_t val)
943 {
944 
945 	if (soc_decode_win_spec->remap_h_write != NULL)
946 		soc_decode_win_spec->remap_h_write(i, val);
947 }
948 
949 WIN_REG_BASE_IDX_RD(win_cesa, cr, MV_WIN_CESA_CTRL)
950 WIN_REG_BASE_IDX_RD(win_cesa, br, MV_WIN_CESA_BASE)
951 WIN_REG_BASE_IDX_WR(win_cesa, cr, MV_WIN_CESA_CTRL)
952 WIN_REG_BASE_IDX_WR(win_cesa, br, MV_WIN_CESA_BASE)
953 
954 WIN_REG_BASE_IDX_RD(win_usb, cr, MV_WIN_USB_CTRL)
955 WIN_REG_BASE_IDX_RD(win_usb, br, MV_WIN_USB_BASE)
956 WIN_REG_BASE_IDX_WR(win_usb, cr, MV_WIN_USB_CTRL)
957 WIN_REG_BASE_IDX_WR(win_usb, br, MV_WIN_USB_BASE)
958 
959 WIN_REG_BASE_IDX_RD(win_usb3, cr, MV_WIN_USB3_CTRL)
960 WIN_REG_BASE_IDX_RD(win_usb3, br, MV_WIN_USB3_BASE)
961 WIN_REG_BASE_IDX_WR(win_usb3, cr, MV_WIN_USB3_CTRL)
962 WIN_REG_BASE_IDX_WR(win_usb3, br, MV_WIN_USB3_BASE)
963 
964 WIN_REG_BASE_IDX_RD(win_eth, br, MV_WIN_ETH_BASE)
965 WIN_REG_BASE_IDX_RD(win_eth, sz, MV_WIN_ETH_SIZE)
966 WIN_REG_BASE_IDX_RD(win_eth, har, MV_WIN_ETH_REMAP)
967 WIN_REG_BASE_IDX_WR(win_eth, br, MV_WIN_ETH_BASE)
968 WIN_REG_BASE_IDX_WR(win_eth, sz, MV_WIN_ETH_SIZE)
969 WIN_REG_BASE_IDX_WR(win_eth, har, MV_WIN_ETH_REMAP)
970 
971 WIN_REG_BASE_RD(win_eth, bare, 0x290)
972 WIN_REG_BASE_RD(win_eth, epap, 0x294)
973 WIN_REG_BASE_WR(win_eth, bare, 0x290)
974 WIN_REG_BASE_WR(win_eth, epap, 0x294)
975 
976 WIN_REG_BASE_IDX_RD(win_pcie, cr, MV_WIN_PCIE_CTRL);
977 WIN_REG_BASE_IDX_RD(win_pcie, br, MV_WIN_PCIE_BASE);
978 WIN_REG_BASE_IDX_RD(win_pcie, remap, MV_WIN_PCIE_REMAP);
979 WIN_REG_BASE_IDX_WR(win_pcie, cr, MV_WIN_PCIE_CTRL);
980 WIN_REG_BASE_IDX_WR(win_pcie, br, MV_WIN_PCIE_BASE);
981 WIN_REG_BASE_IDX_WR(win_pcie, remap, MV_WIN_PCIE_REMAP);
982 WIN_REG_BASE_IDX_RD(pcie_bar, br, MV_PCIE_BAR_BASE);
983 WIN_REG_BASE_IDX_RD(pcie_bar, brh, MV_PCIE_BAR_BASE_H);
984 WIN_REG_BASE_IDX_RD(pcie_bar, cr, MV_PCIE_BAR_CTRL);
985 WIN_REG_BASE_IDX_WR(pcie_bar, br, MV_PCIE_BAR_BASE);
986 WIN_REG_BASE_IDX_WR(pcie_bar, brh, MV_PCIE_BAR_BASE_H);
987 WIN_REG_BASE_IDX_WR(pcie_bar, cr, MV_PCIE_BAR_CTRL);
988 
989 WIN_REG_BASE_IDX_RD(win_sata, cr, MV_WIN_SATA_CTRL);
990 WIN_REG_BASE_IDX_RD(win_sata, br, MV_WIN_SATA_BASE);
991 WIN_REG_BASE_IDX_WR(win_sata, cr, MV_WIN_SATA_CTRL);
992 WIN_REG_BASE_IDX_WR(win_sata, br, MV_WIN_SATA_BASE);
993 
994 WIN_REG_BASE_IDX_RD(win_sata_armada38x, sz, MV_WIN_SATA_SIZE_ARMADA38X);
995 WIN_REG_BASE_IDX_WR(win_sata_armada38x, sz, MV_WIN_SATA_SIZE_ARMADA38X);
996 WIN_REG_BASE_IDX_RD(win_sata_armada38x, cr, MV_WIN_SATA_CTRL_ARMADA38X);
997 WIN_REG_BASE_IDX_WR(win_sata_armada38x, cr, MV_WIN_SATA_CTRL_ARMADA38X);
998 WIN_REG_BASE_IDX_WR(win_sata_armada38x, br, MV_WIN_SATA_BASE_ARMADA38X);
999 
1000 WIN_REG_BASE_IDX_RD(win_sdhci, cr, MV_WIN_SDHCI_CTRL);
1001 WIN_REG_BASE_IDX_RD(win_sdhci, br, MV_WIN_SDHCI_BASE);
1002 WIN_REG_BASE_IDX_WR(win_sdhci, cr, MV_WIN_SDHCI_CTRL);
1003 WIN_REG_BASE_IDX_WR(win_sdhci, br, MV_WIN_SDHCI_BASE);
1004 
1005 #ifndef SOC_MV_DOVE
1006 WIN_REG_IDX_RD(ddr_armv5, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE)
1007 WIN_REG_IDX_RD(ddr_armv5, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE)
1008 WIN_REG_IDX_WR(ddr_armv5, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE)
1009 WIN_REG_IDX_WR(ddr_armv5, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE)
1010 
1011 WIN_REG_IDX_RD(ddr_armv7, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE_ARMV7)
1012 WIN_REG_IDX_RD(ddr_armv7, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE_ARMV7)
1013 WIN_REG_IDX_WR(ddr_armv7, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE_ARMV7)
1014 WIN_REG_IDX_WR(ddr_armv7, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE_ARMV7)
1015 
1016 static inline uint32_t
1017 ddr_br_read(int i)
1018 {
1019 
1020 	if (soc_decode_win_spec->ddr_br_read != NULL)
1021 		return (soc_decode_win_spec->ddr_br_read(i));
1022 	return (-1);
1023 }
1024 
1025 static inline uint32_t
1026 ddr_sz_read(int i)
1027 {
1028 
1029 	if (soc_decode_win_spec->ddr_sz_read != NULL)
1030 		return (soc_decode_win_spec->ddr_sz_read(i));
1031 	return (-1);
1032 }
1033 
1034 static inline void
1035 ddr_br_write(int i, uint32_t val)
1036 {
1037 
1038 	if (soc_decode_win_spec->ddr_br_write != NULL)
1039 		soc_decode_win_spec->ddr_br_write(i, val);
1040 }
1041 
1042 static inline void
1043 ddr_sz_write(int i, uint32_t val)
1044 {
1045 
1046 	if (soc_decode_win_spec->ddr_sz_write != NULL)
1047 		soc_decode_win_spec->ddr_sz_write(i, val);
1048 }
1049 #else
1050 /*
1051  * On 88F6781 (Dove) SoC DDR Controller is accessed through
1052  * single MBUS <-> AXI bridge. In this case we provide emulated
1053  * ddr_br_read() and ddr_sz_read() functions to keep compatibility
1054  * with common decoding windows setup code.
1055  */
1056 
1057 static inline uint32_t ddr_br_read(int i)
1058 {
1059 	uint32_t mmap;
1060 
1061 	/* Read Memory Address Map Register for CS i */
1062 	mmap = bus_space_read_4(fdtbus_bs_tag, MV_DDR_CADR_BASE + (i * 0x10), 0);
1063 
1064 	/* Return CS i base address */
1065 	return (mmap & 0xFF000000);
1066 }
1067 
1068 static inline uint32_t ddr_sz_read(int i)
1069 {
1070 	uint32_t mmap, size;
1071 
1072 	/* Read Memory Address Map Register for CS i */
1073 	mmap = bus_space_read_4(fdtbus_bs_tag, MV_DDR_CADR_BASE + (i * 0x10), 0);
1074 
1075 	/* Extract size of CS space in 64kB units */
1076 	size = (1 << ((mmap >> 16) & 0x0F));
1077 
1078 	/* Return CS size and enable/disable status */
1079 	return (((size - 1) << 16) | (mmap & 0x01));
1080 }
1081 #endif
1082 
1083 /**************************************************************************
1084  * Decode windows helper routines
1085  **************************************************************************/
1086 void
1087 soc_dump_decode_win(void)
1088 {
1089 	int i;
1090 
1091 	for (i = 0; i < soc_decode_win_spec->mv_win_cpu_max; i++) {
1092 		printf("CPU window#%d: c 0x%08x, b 0x%08x", i,
1093 		    win_cpu_cr_read(i),
1094 		    win_cpu_br_read(i));
1095 
1096 		if (win_cpu_can_remap(i))
1097 			printf(", rl 0x%08x, rh 0x%08x",
1098 			    win_cpu_remap_l_read(i),
1099 			    win_cpu_remap_h_read(i));
1100 
1101 		printf("\n");
1102 	}
1103 	printf("Internal regs base: 0x%08x\n",
1104 	    bus_space_read_4(fdtbus_bs_tag, MV_INTREGS_BASE, 0));
1105 
1106 	for (i = 0; i < MV_WIN_DDR_MAX; i++)
1107 		printf("DDR CS#%d: b 0x%08x, s 0x%08x\n", i,
1108 		    ddr_br_read(i), ddr_sz_read(i));
1109 }
1110 
1111 /**************************************************************************
1112  * CPU windows routines
1113  **************************************************************************/
1114 int
1115 win_cpu_can_remap(int i)
1116 {
1117 	uint32_t dev, rev;
1118 
1119 	soc_id(&dev, &rev);
1120 
1121 	/* Depending on the SoC certain windows have remap capability */
1122 	if ((dev == MV_DEV_88F5182 && i < 2) ||
1123 	    (dev == MV_DEV_88F5281 && i < 4) ||
1124 	    (dev == MV_DEV_88F6281 && i < 4) ||
1125 	    (dev == MV_DEV_88F6282 && i < 4) ||
1126 	    (dev == MV_DEV_88F6828 && i < 20) ||
1127 	    (dev == MV_DEV_88F6820 && i < 20) ||
1128 	    (dev == MV_DEV_88F6810 && i < 20) ||
1129 	    (dev == MV_DEV_88RC8180 && i < 2) ||
1130 	    (dev == MV_DEV_88F6781 && i < 4) ||
1131 	    (dev == MV_DEV_MV78100_Z0 && i < 8) ||
1132 	    ((dev & MV_DEV_FAMILY_MASK) == MV_DEV_DISCOVERY && i < 8))
1133 		return (1);
1134 
1135 	return (0);
1136 }
1137 
1138 /* XXX This should check for overlapping remap fields too.. */
1139 int
1140 decode_win_overlap(int win, int win_no, const struct decode_win *wintab)
1141 {
1142 	const struct decode_win *tab;
1143 	int i;
1144 
1145 	tab = wintab;
1146 
1147 	for (i = 0; i < win_no; i++, tab++) {
1148 		if (i == win)
1149 			/* Skip self */
1150 			continue;
1151 
1152 		if ((tab->base + tab->size - 1) < (wintab + win)->base)
1153 			continue;
1154 
1155 		else if (((wintab + win)->base + (wintab + win)->size - 1) <
1156 		    tab->base)
1157 			continue;
1158 		else
1159 			return (i);
1160 	}
1161 
1162 	return (-1);
1163 }
1164 
1165 int
1166 decode_win_cpu_set(int target, int attr, vm_paddr_t base, uint32_t size,
1167     vm_paddr_t remap)
1168 {
1169 	uint32_t br, cr;
1170 	int win, i;
1171 
1172 	if (remap == ~0) {
1173 		win = soc_decode_win_spec->mv_win_cpu_max - 1;
1174 		i = -1;
1175 	} else {
1176 		win = 0;
1177 		i = 1;
1178 	}
1179 
1180 	while ((win >= 0) && (win < soc_decode_win_spec->mv_win_cpu_max)) {
1181 		cr = win_cpu_cr_read(win);
1182 		if ((cr & MV_WIN_CPU_ENABLE_BIT) == 0)
1183 			break;
1184 		if ((cr & ((0xff << MV_WIN_CPU_ATTR_SHIFT) |
1185 		    (0x1f << MV_WIN_CPU_TARGET_SHIFT))) ==
1186 		    ((attr << MV_WIN_CPU_ATTR_SHIFT) |
1187 		    (target << MV_WIN_CPU_TARGET_SHIFT)))
1188 			break;
1189 		win += i;
1190 	}
1191 	if ((win < 0) || (win >= soc_decode_win_spec->mv_win_cpu_max) ||
1192 	    ((remap != ~0) && (win_cpu_can_remap(win) == 0)))
1193 		return (-1);
1194 
1195 	br = base & 0xffff0000;
1196 	win_cpu_br_write(win, br);
1197 
1198 	if (win_cpu_can_remap(win)) {
1199 		if (remap != ~0) {
1200 			win_cpu_remap_l_write(win, remap & 0xffff0000);
1201 			win_cpu_remap_h_write(win, 0);
1202 		} else {
1203 			/*
1204 			 * Remap function is not used for a given window
1205 			 * (capable of remapping) - set remap field with the
1206 			 * same value as base.
1207 			 */
1208 			win_cpu_remap_l_write(win, base & 0xffff0000);
1209 			win_cpu_remap_h_write(win, 0);
1210 		}
1211 	}
1212 
1213 	cr = ((size - 1) & 0xffff0000) | (attr << MV_WIN_CPU_ATTR_SHIFT) |
1214 	    (target << MV_WIN_CPU_TARGET_SHIFT) | MV_WIN_CPU_ENABLE_BIT;
1215 	win_cpu_cr_write(win, cr);
1216 
1217 	return (0);
1218 }
1219 
1220 static void
1221 decode_win_cpu_setup(void)
1222 {
1223 	int i;
1224 
1225 	/* Disable all CPU windows */
1226 	for (i = 0; i < soc_decode_win_spec->mv_win_cpu_max; i++) {
1227 		win_cpu_cr_write(i, 0);
1228 		win_cpu_br_write(i, 0);
1229 		if (win_cpu_can_remap(i)) {
1230 			win_cpu_remap_l_write(i, 0);
1231 			win_cpu_remap_h_write(i, 0);
1232 		}
1233 	}
1234 
1235 	for (i = 0; i < cpu_wins_no; i++)
1236 		if (cpu_wins[i].target > 0)
1237 			decode_win_cpu_set(cpu_wins[i].target,
1238 			    cpu_wins[i].attr, cpu_wins[i].base,
1239 			    cpu_wins[i].size, cpu_wins[i].remap);
1240 
1241 }
1242 
1243 static int
1244 decode_win_sdram_fixup(void)
1245 {
1246 	struct mem_region mr[FDT_MEM_REGIONS];
1247 	uint8_t window_valid[MV_WIN_DDR_MAX];
1248 	int mr_cnt, err, i, j;
1249 	uint32_t valid_win_num = 0;
1250 
1251 	/* Grab physical memory regions information from device tree. */
1252 	err = fdt_get_mem_regions(mr, &mr_cnt, NULL);
1253 	if (err != 0)
1254 		return (err);
1255 
1256 	for (i = 0; i < MV_WIN_DDR_MAX; i++)
1257 		window_valid[i] = 0;
1258 
1259 	/* Try to match entries from device tree with settings from u-boot */
1260 	for (i = 0; i < mr_cnt; i++) {
1261 		for (j = 0; j < MV_WIN_DDR_MAX; j++) {
1262 			if (ddr_is_active(j) &&
1263 			    (ddr_base(j) == mr[i].mr_start) &&
1264 			    (ddr_size(j) == mr[i].mr_size)) {
1265 				window_valid[j] = 1;
1266 				valid_win_num++;
1267 			}
1268 		}
1269 	}
1270 
1271 	if (mr_cnt != valid_win_num)
1272 		return (EINVAL);
1273 
1274 	/* Destroy windows without corresponding device tree entry */
1275 	for (j = 0; j < MV_WIN_DDR_MAX; j++) {
1276 		if (ddr_is_active(j) && (window_valid[j] != 1)) {
1277 			printf("Disabling SDRAM decoding window: %d\n", j);
1278 			ddr_disable(j);
1279 		}
1280 	}
1281 
1282 	return (0);
1283 }
1284 /*
1285  * Check if we're able to cover all active DDR banks.
1286  */
1287 static int
1288 decode_win_can_cover_ddr(int max)
1289 {
1290 	int i, c;
1291 
1292 	c = 0;
1293 	for (i = 0; i < MV_WIN_DDR_MAX; i++)
1294 		if (ddr_is_active(i))
1295 			c++;
1296 
1297 	if (c > max) {
1298 		printf("Unable to cover all active DDR banks: "
1299 		    "%d, available windows: %d\n", c, max);
1300 		return (0);
1301 	}
1302 
1303 	return (1);
1304 }
1305 
1306 /**************************************************************************
1307  * DDR windows routines
1308  **************************************************************************/
1309 int
1310 ddr_is_active(int i)
1311 {
1312 
1313 	if (ddr_sz_read(i) & 0x1)
1314 		return (1);
1315 
1316 	return (0);
1317 }
1318 
1319 void
1320 ddr_disable(int i)
1321 {
1322 
1323 	ddr_sz_write(i, 0);
1324 	ddr_br_write(i, 0);
1325 }
1326 
1327 uint32_t
1328 ddr_base(int i)
1329 {
1330 
1331 	return (ddr_br_read(i) & 0xff000000);
1332 }
1333 
1334 uint32_t
1335 ddr_size(int i)
1336 {
1337 
1338 	return ((ddr_sz_read(i) | 0x00ffffff) + 1);
1339 }
1340 
1341 uint32_t
1342 ddr_attr(int i)
1343 {
1344 	uint32_t dev, rev, attr;
1345 
1346 	soc_id(&dev, &rev);
1347 	if (dev == MV_DEV_88RC8180)
1348 		return ((ddr_sz_read(i) & 0xf0) >> 4);
1349 	if (dev == MV_DEV_88F6781)
1350 		return (0);
1351 
1352 	attr = (i == 0 ? 0xe :
1353 	    (i == 1 ? 0xd :
1354 	    (i == 2 ? 0xb :
1355 	    (i == 3 ? 0x7 : 0xff))));
1356 	if (platform_io_coherent)
1357 		attr |= 0x10;
1358 
1359 	return (attr);
1360 }
1361 
1362 uint32_t
1363 ddr_target(int i)
1364 {
1365 	uint32_t dev, rev;
1366 
1367 	soc_id(&dev, &rev);
1368 	if (dev == MV_DEV_88RC8180) {
1369 		i = (ddr_sz_read(i) & 0xf0) >> 4;
1370 		return (i == 0xe ? 0xc :
1371 		    (i == 0xd ? 0xd :
1372 		    (i == 0xb ? 0xe :
1373 		    (i == 0x7 ? 0xf : 0xc))));
1374 	}
1375 
1376 	/*
1377 	 * On SOCs other than 88RC8180 Mbus unit ID for
1378 	 * DDR SDRAM controller is always 0x0.
1379 	 */
1380 	return (0);
1381 }
1382 
1383 /**************************************************************************
1384  * CESA windows routines
1385  **************************************************************************/
1386 static int
1387 decode_win_cesa_valid(void)
1388 {
1389 
1390 	return (decode_win_can_cover_ddr(MV_WIN_CESA_MAX));
1391 }
1392 
1393 static void
1394 decode_win_cesa_dump(u_long base)
1395 {
1396 	int i;
1397 
1398 	for (i = 0; i < MV_WIN_CESA_MAX; i++)
1399 		printf("CESA window#%d: c 0x%08x, b 0x%08x\n", i,
1400 		    win_cesa_cr_read(base, i), win_cesa_br_read(base, i));
1401 }
1402 
1403 /*
1404  * Set CESA decode windows.
1405  */
1406 static void
1407 decode_win_cesa_setup(u_long base)
1408 {
1409 	uint32_t br, cr;
1410 	uint64_t size;
1411 	int i, j;
1412 
1413 	for (i = 0; i < MV_WIN_CESA_MAX; i++) {
1414 		win_cesa_cr_write(base, i, 0);
1415 		win_cesa_br_write(base, i, 0);
1416 	}
1417 
1418 	/* Only access to active DRAM banks is required */
1419 	for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1420 		if (ddr_is_active(i)) {
1421 			br = ddr_base(i);
1422 
1423 			size = ddr_size(i);
1424 			/*
1425 			 * Armada 38x SoC's equipped with 4GB DRAM
1426 			 * suffer freeze during CESA operation, if
1427 			 * MBUS window opened at given DRAM CS reaches
1428 			 * end of the address space. Apply a workaround
1429 			 * by setting the window size to the closest possible
1430 			 * value, i.e. divide it by 2.
1431 			 */
1432 			if ((soc_family == MV_SOC_ARMADA_38X) &&
1433 			    (size + ddr_base(i) == 0x100000000ULL))
1434 				size /= 2;
1435 
1436 			cr = (((size - 1) & 0xffff0000) |
1437 			    (ddr_attr(i) << IO_WIN_ATTR_SHIFT) |
1438 			    (ddr_target(i) << IO_WIN_TGT_SHIFT) |
1439 			    IO_WIN_ENA_MASK);
1440 
1441 			/* Set the first free CESA window */
1442 			for (j = 0; j < MV_WIN_CESA_MAX; j++) {
1443 				if (win_cesa_cr_read(base, j) & 0x1)
1444 					continue;
1445 
1446 				win_cesa_br_write(base, j, br);
1447 				win_cesa_cr_write(base, j, cr);
1448 				break;
1449 			}
1450 		}
1451 	}
1452 }
1453 
1454 static void
1455 decode_win_a38x_cesa_setup(u_long base)
1456 {
1457 	decode_win_cesa_setup(base);
1458 	decode_win_cesa_setup(base + MV_WIN_CESA_OFFSET);
1459 }
1460 
1461 static void
1462 decode_win_a38x_cesa_dump(u_long base)
1463 {
1464 	decode_win_cesa_dump(base);
1465 	decode_win_cesa_dump(base + MV_WIN_CESA_OFFSET);
1466 }
1467 
1468 /**************************************************************************
1469  * USB windows routines
1470  **************************************************************************/
1471 static int
1472 decode_win_usb_valid(void)
1473 {
1474 
1475 	return (decode_win_can_cover_ddr(MV_WIN_USB_MAX));
1476 }
1477 
1478 static void
1479 decode_win_usb_dump(u_long base)
1480 {
1481 	int i;
1482 
1483 	if (pm_is_disabled(CPU_PM_CTRL_USB(usb_port - 1)))
1484 		return;
1485 
1486 	for (i = 0; i < MV_WIN_USB_MAX; i++)
1487 		printf("USB window#%d: c 0x%08x, b 0x%08x\n", i,
1488 		    win_usb_cr_read(base, i), win_usb_br_read(base, i));
1489 }
1490 
1491 /*
1492  * Set USB decode windows.
1493  */
1494 static void
1495 decode_win_usb_setup(u_long base)
1496 {
1497 	uint32_t br, cr;
1498 	int i, j;
1499 
1500 	if (pm_is_disabled(CPU_PM_CTRL_USB(usb_port)))
1501 		return;
1502 
1503 	usb_port++;
1504 
1505 	for (i = 0; i < MV_WIN_USB_MAX; i++) {
1506 		win_usb_cr_write(base, i, 0);
1507 		win_usb_br_write(base, i, 0);
1508 	}
1509 
1510 	/* Only access to active DRAM banks is required */
1511 	for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1512 		if (ddr_is_active(i)) {
1513 			br = ddr_base(i);
1514 			/*
1515 			 * XXX for 6281 we should handle Mbus write
1516 			 * burst limit field in the ctrl reg
1517 			 */
1518 			cr = (((ddr_size(i) - 1) & 0xffff0000) |
1519 			    (ddr_attr(i) << 8) |
1520 			    (ddr_target(i) << 4) | 1);
1521 
1522 			/* Set the first free USB window */
1523 			for (j = 0; j < MV_WIN_USB_MAX; j++) {
1524 				if (win_usb_cr_read(base, j) & 0x1)
1525 					continue;
1526 
1527 				win_usb_br_write(base, j, br);
1528 				win_usb_cr_write(base, j, cr);
1529 				break;
1530 			}
1531 		}
1532 	}
1533 }
1534 
1535 /**************************************************************************
1536  * USB3 windows routines
1537  **************************************************************************/
1538 static int
1539 decode_win_usb3_valid(void)
1540 {
1541 
1542 	return (decode_win_can_cover_ddr(MV_WIN_USB3_MAX));
1543 }
1544 
1545 static void
1546 decode_win_usb3_dump(u_long base)
1547 {
1548 	int i;
1549 
1550 	for (i = 0; i < MV_WIN_USB3_MAX; i++)
1551 		printf("USB3.0 window#%d: c 0x%08x, b 0x%08x\n", i,
1552 		    win_usb3_cr_read(base, i), win_usb3_br_read(base, i));
1553 }
1554 
1555 /*
1556  * Set USB3 decode windows
1557  */
1558 static void
1559 decode_win_usb3_setup(u_long base)
1560 {
1561 	uint32_t br, cr;
1562 	int i, j;
1563 
1564 	for (i = 0; i < MV_WIN_USB3_MAX; i++) {
1565 		win_usb3_cr_write(base, i, 0);
1566 		win_usb3_br_write(base, i, 0);
1567 	}
1568 
1569 	/* Only access to active DRAM banks is required */
1570 	for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1571 		if (ddr_is_active(i)) {
1572 			br = ddr_base(i);
1573 			cr = (((ddr_size(i) - 1) &
1574 			    (IO_WIN_SIZE_MASK << IO_WIN_SIZE_SHIFT)) |
1575 			    (ddr_attr(i) << IO_WIN_ATTR_SHIFT) |
1576 			    (ddr_target(i) << IO_WIN_TGT_SHIFT) |
1577 			    IO_WIN_ENA_MASK);
1578 
1579 			/* Set the first free USB3.0 window */
1580 			for (j = 0; j < MV_WIN_USB3_MAX; j++) {
1581 				if (win_usb3_cr_read(base, j) & IO_WIN_ENA_MASK)
1582 					continue;
1583 
1584 				win_usb3_br_write(base, j, br);
1585 				win_usb3_cr_write(base, j, cr);
1586 				break;
1587 			}
1588 		}
1589 	}
1590 }
1591 
1592 /**************************************************************************
1593  * ETH windows routines
1594  **************************************************************************/
1595 
1596 static int
1597 win_eth_can_remap(int i)
1598 {
1599 
1600 	/* ETH encode windows 0-3 have remap capability */
1601 	if (i < 4)
1602 		return (1);
1603 
1604 	return (0);
1605 }
1606 
1607 static int
1608 eth_bare_read(uint32_t base, int i)
1609 {
1610 	uint32_t v;
1611 
1612 	v = win_eth_bare_read(base);
1613 	v &= (1 << i);
1614 
1615 	return (v >> i);
1616 }
1617 
1618 static void
1619 eth_bare_write(uint32_t base, int i, int val)
1620 {
1621 	uint32_t v;
1622 
1623 	v = win_eth_bare_read(base);
1624 	v &= ~(1 << i);
1625 	v |= (val << i);
1626 	win_eth_bare_write(base, v);
1627 }
1628 
1629 static void
1630 eth_epap_write(uint32_t base, int i, int val)
1631 {
1632 	uint32_t v;
1633 
1634 	v = win_eth_epap_read(base);
1635 	v &= ~(0x3 << (i * 2));
1636 	v |= (val << (i * 2));
1637 	win_eth_epap_write(base, v);
1638 }
1639 
1640 static void
1641 decode_win_eth_dump(u_long base)
1642 {
1643 	int i;
1644 
1645 	if (pm_is_disabled(CPU_PM_CTRL_GE(eth_port - 1)))
1646 		return;
1647 
1648 	for (i = 0; i < MV_WIN_ETH_MAX; i++) {
1649 		printf("ETH window#%d: b 0x%08x, s 0x%08x", i,
1650 		    win_eth_br_read(base, i),
1651 		    win_eth_sz_read(base, i));
1652 
1653 		if (win_eth_can_remap(i))
1654 			printf(", ha 0x%08x",
1655 			    win_eth_har_read(base, i));
1656 
1657 		printf("\n");
1658 	}
1659 	printf("ETH windows: bare 0x%08x, epap 0x%08x\n",
1660 	    win_eth_bare_read(base),
1661 	    win_eth_epap_read(base));
1662 }
1663 
1664 #define MV_WIN_ETH_DDR_TRGT(n)	ddr_target(n)
1665 
1666 static void
1667 decode_win_eth_setup(u_long base)
1668 {
1669 	uint32_t br, sz;
1670 	int i, j;
1671 
1672 	if (pm_is_disabled(CPU_PM_CTRL_GE(eth_port)))
1673 		return;
1674 
1675 	eth_port++;
1676 
1677 	/* Disable, clear and revoke protection for all ETH windows */
1678 	for (i = 0; i < MV_WIN_ETH_MAX; i++) {
1679 		eth_bare_write(base, i, 1);
1680 		eth_epap_write(base, i, 0);
1681 		win_eth_br_write(base, i, 0);
1682 		win_eth_sz_write(base, i, 0);
1683 		if (win_eth_can_remap(i))
1684 			win_eth_har_write(base, i, 0);
1685 	}
1686 
1687 	/* Only access to active DRAM banks is required */
1688 	for (i = 0; i < MV_WIN_DDR_MAX; i++)
1689 		if (ddr_is_active(i)) {
1690 			br = ddr_base(i) | (ddr_attr(i) << 8) | MV_WIN_ETH_DDR_TRGT(i);
1691 			sz = ((ddr_size(i) - 1) & 0xffff0000);
1692 
1693 			/* Set the first free ETH window */
1694 			for (j = 0; j < MV_WIN_ETH_MAX; j++) {
1695 				if (eth_bare_read(base, j) == 0)
1696 					continue;
1697 
1698 				win_eth_br_write(base, j, br);
1699 				win_eth_sz_write(base, j, sz);
1700 
1701 				/* XXX remapping ETH windows not supported */
1702 
1703 				/* Set protection RW */
1704 				eth_epap_write(base, j, 0x3);
1705 
1706 				/* Enable window */
1707 				eth_bare_write(base, j, 0);
1708 				break;
1709 			}
1710 		}
1711 }
1712 
1713 static void
1714 decode_win_neta_dump(u_long base)
1715 {
1716 
1717 	decode_win_eth_dump(base + MV_WIN_NETA_OFFSET);
1718 }
1719 
1720 static void
1721 decode_win_neta_setup(u_long base)
1722 {
1723 
1724 	decode_win_eth_setup(base + MV_WIN_NETA_OFFSET);
1725 }
1726 
1727 static int
1728 decode_win_eth_valid(void)
1729 {
1730 
1731 	return (decode_win_can_cover_ddr(MV_WIN_ETH_MAX));
1732 }
1733 
1734 /**************************************************************************
1735  * PCIE windows routines
1736  **************************************************************************/
1737 static void
1738 decode_win_pcie_dump(u_long base)
1739 {
1740 	int i;
1741 
1742 	printf("PCIE windows base 0x%08lx\n", base);
1743 	for (i = 0; i < MV_WIN_PCIE_MAX; i++)
1744 		printf("PCIE window#%d: cr 0x%08x br 0x%08x remap 0x%08x\n",
1745 		    i, win_pcie_cr_read(base, i),
1746 		    win_pcie_br_read(base, i), win_pcie_remap_read(base, i));
1747 
1748 	for (i = 0; i < MV_PCIE_BAR_MAX; i++)
1749 		printf("PCIE bar#%d: cr 0x%08x br 0x%08x brh 0x%08x\n",
1750 		    i, pcie_bar_cr_read(base, i),
1751 		    pcie_bar_br_read(base, i), pcie_bar_brh_read(base, i));
1752 }
1753 
1754 void
1755 decode_win_pcie_setup(u_long base)
1756 {
1757 	uint32_t size = 0, ddrbase = ~0;
1758 	uint32_t cr, br;
1759 	int i, j;
1760 
1761 	for (i = 0; i < MV_PCIE_BAR_MAX; i++) {
1762 		pcie_bar_br_write(base, i,
1763 		    MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
1764 		if (i < 3)
1765 			pcie_bar_brh_write(base, i, 0);
1766 		if (i > 0)
1767 			pcie_bar_cr_write(base, i, 0);
1768 	}
1769 
1770 	for (i = 0; i < MV_WIN_PCIE_MAX; i++) {
1771 		win_pcie_cr_write(base, i, 0);
1772 		win_pcie_br_write(base, i, 0);
1773 		win_pcie_remap_write(base, i, 0);
1774 	}
1775 
1776 	/* On End-Point only set BAR size to 1MB regardless of DDR size */
1777 	if ((bus_space_read_4(fdtbus_bs_tag, base, MV_PCIE_CONTROL)
1778 	    & MV_PCIE_ROOT_CMPLX) == 0) {
1779 		pcie_bar_cr_write(base, 1, 0xf0000 | 1);
1780 		return;
1781 	}
1782 
1783 	for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1784 		if (ddr_is_active(i)) {
1785 			/* Map DDR to BAR 1 */
1786 			cr = (ddr_size(i) - 1) & 0xffff0000;
1787 			size += ddr_size(i) & 0xffff0000;
1788 			cr |= (ddr_attr(i) << 8) | (ddr_target(i) << 4) | 1;
1789 			br = ddr_base(i);
1790 			if (br < ddrbase)
1791 				ddrbase = br;
1792 
1793 			/* Use the first available PCIE window */
1794 			for (j = 0; j < MV_WIN_PCIE_MAX; j++) {
1795 				if (win_pcie_cr_read(base, j) != 0)
1796 					continue;
1797 
1798 				win_pcie_br_write(base, j, br);
1799 				win_pcie_cr_write(base, j, cr);
1800 				break;
1801 			}
1802 		}
1803 	}
1804 
1805 	/*
1806 	 * Upper 16 bits in BAR register is interpreted as BAR size
1807 	 * (in 64 kB units) plus 64kB, so subtract 0x10000
1808 	 * form value passed to register to get correct value.
1809 	 */
1810 	size -= 0x10000;
1811 	pcie_bar_cr_write(base, 1, size | 1);
1812 	pcie_bar_br_write(base, 1, ddrbase |
1813 	    MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
1814 	pcie_bar_br_write(base, 0, fdt_immr_pa |
1815 	    MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
1816 }
1817 
1818 static int
1819 decode_win_pcie_valid(void)
1820 {
1821 
1822 	return (decode_win_can_cover_ddr(MV_WIN_PCIE_MAX));
1823 }
1824 
1825 /**************************************************************************
1826  * IDMA windows routines
1827  **************************************************************************/
1828 #if defined(SOC_MV_ORION) || defined(SOC_MV_DISCOVERY)
1829 static int
1830 idma_bare_read(u_long base, int i)
1831 {
1832 	uint32_t v;
1833 
1834 	v = win_idma_bare_read(base);
1835 	v &= (1 << i);
1836 
1837 	return (v >> i);
1838 }
1839 
1840 static void
1841 idma_bare_write(u_long base, int i, int val)
1842 {
1843 	uint32_t v;
1844 
1845 	v = win_idma_bare_read(base);
1846 	v &= ~(1 << i);
1847 	v |= (val << i);
1848 	win_idma_bare_write(base, v);
1849 }
1850 
1851 /*
1852  * Sets channel protection 'val' for window 'w' on channel 'c'
1853  */
1854 static void
1855 idma_cap_write(u_long base, int c, int w, int val)
1856 {
1857 	uint32_t v;
1858 
1859 	v = win_idma_cap_read(base, c);
1860 	v &= ~(0x3 << (w * 2));
1861 	v |= (val << (w * 2));
1862 	win_idma_cap_write(base, c, v);
1863 }
1864 
1865 /*
1866  * Set protection 'val' on all channels for window 'w'
1867  */
1868 static void
1869 idma_set_prot(u_long base, int w, int val)
1870 {
1871 	int c;
1872 
1873 	for (c = 0; c < MV_IDMA_CHAN_MAX; c++)
1874 		idma_cap_write(base, c, w, val);
1875 }
1876 
1877 static int
1878 win_idma_can_remap(int i)
1879 {
1880 
1881 	/* IDMA decode windows 0-3 have remap capability */
1882 	if (i < 4)
1883 		return (1);
1884 
1885 	return (0);
1886 }
1887 
1888 void
1889 decode_win_idma_setup(u_long base)
1890 {
1891 	uint32_t br, sz;
1892 	int i, j;
1893 
1894 	if (pm_is_disabled(CPU_PM_CTRL_IDMA))
1895 		return;
1896 	/*
1897 	 * Disable and clear all IDMA windows, revoke protection for all channels
1898 	 */
1899 	for (i = 0; i < MV_WIN_IDMA_MAX; i++) {
1900 		idma_bare_write(base, i, 1);
1901 		win_idma_br_write(base, i, 0);
1902 		win_idma_sz_write(base, i, 0);
1903 		if (win_idma_can_remap(i) == 1)
1904 			win_idma_har_write(base, i, 0);
1905 	}
1906 	for (i = 0; i < MV_IDMA_CHAN_MAX; i++)
1907 		win_idma_cap_write(base, i, 0);
1908 
1909 	/*
1910 	 * Set up access to all active DRAM banks
1911 	 */
1912 	for (i = 0; i < MV_WIN_DDR_MAX; i++)
1913 		if (ddr_is_active(i)) {
1914 			br = ddr_base(i) | (ddr_attr(i) << 8) | ddr_target(i);
1915 			sz = ((ddr_size(i) - 1) & 0xffff0000);
1916 
1917 			/* Place DDR entries in non-remapped windows */
1918 			for (j = 0; j < MV_WIN_IDMA_MAX; j++)
1919 				if (win_idma_can_remap(j) != 1 &&
1920 				    idma_bare_read(base, j) == 1) {
1921 					/* Configure window */
1922 					win_idma_br_write(base, j, br);
1923 					win_idma_sz_write(base, j, sz);
1924 
1925 					/* Set protection RW on all channels */
1926 					idma_set_prot(base, j, 0x3);
1927 
1928 					/* Enable window */
1929 					idma_bare_write(base, j, 0);
1930 					break;
1931 				}
1932 		}
1933 
1934 	/*
1935 	 * Remaining targets -- from statically defined table
1936 	 */
1937 	for (i = 0; i < idma_wins_no; i++)
1938 		if (idma_wins[i].target > 0) {
1939 			br = (idma_wins[i].base & 0xffff0000) |
1940 			    (idma_wins[i].attr << 8) | idma_wins[i].target;
1941 			sz = ((idma_wins[i].size - 1) & 0xffff0000);
1942 
1943 			/* Set the first free IDMA window */
1944 			for (j = 0; j < MV_WIN_IDMA_MAX; j++) {
1945 				if (idma_bare_read(base, j) == 0)
1946 					continue;
1947 
1948 				/* Configure window */
1949 				win_idma_br_write(base, j, br);
1950 				win_idma_sz_write(base, j, sz);
1951 				if (win_idma_can_remap(j) &&
1952 				    idma_wins[j].remap >= 0)
1953 					win_idma_har_write(base, j,
1954 					    idma_wins[j].remap);
1955 
1956 				/* Set protection RW on all channels */
1957 				idma_set_prot(base, j, 0x3);
1958 
1959 				/* Enable window */
1960 				idma_bare_write(base, j, 0);
1961 				break;
1962 			}
1963 		}
1964 }
1965 
1966 int
1967 decode_win_idma_valid(void)
1968 {
1969 	const struct decode_win *wintab;
1970 	int c, i, j, rv;
1971 	uint32_t b, e, s;
1972 
1973 	if (idma_wins_no > MV_WIN_IDMA_MAX) {
1974 		printf("IDMA windows: too many entries: %d\n", idma_wins_no);
1975 		return (0);
1976 	}
1977 	for (i = 0, c = 0; i < MV_WIN_DDR_MAX; i++)
1978 		if (ddr_is_active(i))
1979 			c++;
1980 
1981 	if (idma_wins_no > (MV_WIN_IDMA_MAX - c)) {
1982 		printf("IDMA windows: too many entries: %d, available: %d\n",
1983 		    idma_wins_no, MV_WIN_IDMA_MAX - c);
1984 		return (0);
1985 	}
1986 
1987 	wintab = idma_wins;
1988 	rv = 1;
1989 	for (i = 0; i < idma_wins_no; i++, wintab++) {
1990 		if (wintab->target == 0) {
1991 			printf("IDMA window#%d: DDR target window is not "
1992 			    "supposed to be reprogrammed!\n", i);
1993 			rv = 0;
1994 		}
1995 
1996 		if (wintab->remap >= 0 && win_cpu_can_remap(i) != 1) {
1997 			printf("IDMA window#%d: not capable of remapping, but "
1998 			    "val 0x%08x defined\n", i, wintab->remap);
1999 			rv = 0;
2000 		}
2001 
2002 		s = wintab->size;
2003 		b = wintab->base;
2004 		e = b + s - 1;
2005 		if (s > (0xFFFFFFFF - b + 1)) {
2006 			/* XXX this boundary check should account for 64bit and
2007 			 * remapping.. */
2008 			printf("IDMA window#%d: no space for size 0x%08x at "
2009 			    "0x%08x\n", i, s, b);
2010 			rv = 0;
2011 			continue;
2012 		}
2013 
2014 		j = decode_win_overlap(i, idma_wins_no, &idma_wins[0]);
2015 		if (j >= 0) {
2016 			printf("IDMA window#%d: (0x%08x - 0x%08x) overlaps "
2017 			    "with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
2018 			    idma_wins[j].base,
2019 			    idma_wins[j].base + idma_wins[j].size - 1);
2020 			rv = 0;
2021 		}
2022 	}
2023 
2024 	return (rv);
2025 }
2026 
2027 void
2028 decode_win_idma_dump(u_long base)
2029 {
2030 	int i;
2031 
2032 	if (pm_is_disabled(CPU_PM_CTRL_IDMA))
2033 		return;
2034 
2035 	for (i = 0; i < MV_WIN_IDMA_MAX; i++) {
2036 		printf("IDMA window#%d: b 0x%08x, s 0x%08x", i,
2037 		    win_idma_br_read(base, i), win_idma_sz_read(base, i));
2038 
2039 		if (win_idma_can_remap(i))
2040 			printf(", ha 0x%08x", win_idma_har_read(base, i));
2041 
2042 		printf("\n");
2043 	}
2044 	for (i = 0; i < MV_IDMA_CHAN_MAX; i++)
2045 		printf("IDMA channel#%d: ap 0x%08x\n", i,
2046 		    win_idma_cap_read(base, i));
2047 	printf("IDMA windows: bare 0x%08x\n", win_idma_bare_read(base));
2048 }
2049 #else
2050 
2051 /* Provide dummy functions to satisfy the build for SoCs not equipped with IDMA */
2052 int
2053 decode_win_idma_valid(void)
2054 {
2055 
2056 	return (1);
2057 }
2058 
2059 void
2060 decode_win_idma_setup(u_long base)
2061 {
2062 }
2063 
2064 void
2065 decode_win_idma_dump(u_long base)
2066 {
2067 }
2068 #endif
2069 
2070 /**************************************************************************
2071  * XOR windows routines
2072  **************************************************************************/
2073 #if defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY)
2074 static int
2075 xor_ctrl_read(u_long base, int i, int c, int e)
2076 {
2077 	uint32_t v;
2078 	v = win_xor_ctrl_read(base, c, e);
2079 	v &= (1 << i);
2080 
2081 	return (v >> i);
2082 }
2083 
2084 static void
2085 xor_ctrl_write(u_long base, int i, int c, int e, int val)
2086 {
2087 	uint32_t v;
2088 
2089 	v = win_xor_ctrl_read(base, c, e);
2090 	v &= ~(1 << i);
2091 	v |= (val << i);
2092 	win_xor_ctrl_write(base, c, e, v);
2093 }
2094 
2095 /*
2096  * Set channel protection 'val' for window 'w' on channel 'c'
2097  */
2098 static void
2099 xor_chan_write(u_long base, int c, int e, int w, int val)
2100 {
2101 	uint32_t v;
2102 
2103 	v = win_xor_ctrl_read(base, c, e);
2104 	v &= ~(0x3 << (w * 2 + 16));
2105 	v |= (val << (w * 2 + 16));
2106 	win_xor_ctrl_write(base, c, e, v);
2107 }
2108 
2109 /*
2110  * Set protection 'val' on all channels for window 'w' on engine 'e'
2111  */
2112 static void
2113 xor_set_prot(u_long base, int w, int e, int val)
2114 {
2115 	int c;
2116 
2117 	for (c = 0; c < MV_XOR_CHAN_MAX; c++)
2118 		xor_chan_write(base, c, e, w, val);
2119 }
2120 
2121 static int
2122 win_xor_can_remap(int i)
2123 {
2124 
2125 	/* XOR decode windows 0-3 have remap capability */
2126 	if (i < 4)
2127 		return (1);
2128 
2129 	return (0);
2130 }
2131 
2132 static int
2133 xor_max_eng(void)
2134 {
2135 	uint32_t dev, rev;
2136 
2137 	soc_id(&dev, &rev);
2138 	switch (dev) {
2139 	case MV_DEV_88F6281:
2140 	case MV_DEV_88F6282:
2141 	case MV_DEV_MV78130:
2142 	case MV_DEV_MV78160:
2143 	case MV_DEV_MV78230:
2144 	case MV_DEV_MV78260:
2145 	case MV_DEV_MV78460:
2146 		return (2);
2147 	case MV_DEV_MV78100:
2148 	case MV_DEV_MV78100_Z0:
2149 		return (1);
2150 	default:
2151 		return (0);
2152 	}
2153 }
2154 
2155 static void
2156 xor_active_dram(u_long base, int c, int e, int *window)
2157 {
2158 	uint32_t br, sz;
2159 	int i, m, w;
2160 
2161 	/*
2162 	 * Set up access to all active DRAM banks
2163 	 */
2164 	m = xor_max_eng();
2165 	for (i = 0; i < m; i++)
2166 		if (ddr_is_active(i)) {
2167 			br = ddr_base(i) | (ddr_attr(i) << 8) |
2168 			    ddr_target(i);
2169 			sz = ((ddr_size(i) - 1) & 0xffff0000);
2170 
2171 			/* Place DDR entries in non-remapped windows */
2172 			for (w = 0; w < MV_WIN_XOR_MAX; w++)
2173 				if (win_xor_can_remap(w) != 1 &&
2174 				    (xor_ctrl_read(base, w, c, e) == 0) &&
2175 				    w > *window) {
2176 					/* Configure window */
2177 					win_xor_br_write(base, w, e, br);
2178 					win_xor_sz_write(base, w, e, sz);
2179 
2180 					/* Set protection RW on all channels */
2181 					xor_set_prot(base, w, e, 0x3);
2182 
2183 					/* Enable window */
2184 					xor_ctrl_write(base, w, c, e, 1);
2185 					(*window)++;
2186 					break;
2187 				}
2188 		}
2189 }
2190 
2191 void
2192 decode_win_xor_setup(u_long base)
2193 {
2194 	uint32_t br, sz;
2195 	int i, j, z, e = 1, m, window;
2196 
2197 	if (pm_is_disabled(CPU_PM_CTRL_XOR))
2198 		return;
2199 
2200 	/*
2201 	 * Disable and clear all XOR windows, revoke protection for all
2202 	 * channels
2203 	 */
2204 	m = xor_max_eng();
2205 	for (j = 0; j < m; j++, e--) {
2206 		/* Number of non-remaped windows */
2207 		window = MV_XOR_NON_REMAP - 1;
2208 
2209 		for (i = 0; i < MV_WIN_XOR_MAX; i++) {
2210 			win_xor_br_write(base, i, e, 0);
2211 			win_xor_sz_write(base, i, e, 0);
2212 		}
2213 
2214 		if (win_xor_can_remap(i) == 1)
2215 			win_xor_har_write(base, i, e, 0);
2216 
2217 		for (i = 0; i < MV_XOR_CHAN_MAX; i++) {
2218 			win_xor_ctrl_write(base, i, e, 0);
2219 			xor_active_dram(base, i, e, &window);
2220 		}
2221 
2222 		/*
2223 		 * Remaining targets -- from a statically defined table
2224 		 */
2225 		for (i = 0; i < xor_wins_no; i++)
2226 			if (xor_wins[i].target > 0) {
2227 				br = (xor_wins[i].base & 0xffff0000) |
2228 				    (xor_wins[i].attr << 8) |
2229 				    xor_wins[i].target;
2230 				sz = ((xor_wins[i].size - 1) & 0xffff0000);
2231 
2232 				/* Set the first free XOR window */
2233 				for (z = 0; z < MV_WIN_XOR_MAX; z++) {
2234 					if (xor_ctrl_read(base, z, 0, e) &&
2235 					    xor_ctrl_read(base, z, 1, e))
2236 						continue;
2237 
2238 					/* Configure window */
2239 					win_xor_br_write(base, z, e, br);
2240 					win_xor_sz_write(base, z, e, sz);
2241 					if (win_xor_can_remap(z) &&
2242 					    xor_wins[z].remap >= 0)
2243 						win_xor_har_write(base, z, e,
2244 						    xor_wins[z].remap);
2245 
2246 					/* Set protection RW on all channels */
2247 					xor_set_prot(base, z, e, 0x3);
2248 
2249 					/* Enable window */
2250 					xor_ctrl_write(base, z, 0, e, 1);
2251 					xor_ctrl_write(base, z, 1, e, 1);
2252 					break;
2253 				}
2254 			}
2255 	}
2256 }
2257 
2258 int
2259 decode_win_xor_valid(void)
2260 {
2261 	const struct decode_win *wintab;
2262 	int c, i, j, rv;
2263 	uint32_t b, e, s;
2264 
2265 	if (xor_wins_no > MV_WIN_XOR_MAX) {
2266 		printf("XOR windows: too many entries: %d\n", xor_wins_no);
2267 		return (0);
2268 	}
2269 	for (i = 0, c = 0; i < MV_WIN_DDR_MAX; i++)
2270 		if (ddr_is_active(i))
2271 			c++;
2272 
2273 	if (xor_wins_no > (MV_WIN_XOR_MAX - c)) {
2274 		printf("XOR windows: too many entries: %d, available: %d\n",
2275 		    xor_wins_no, MV_WIN_IDMA_MAX - c);
2276 		return (0);
2277 	}
2278 
2279 	wintab = xor_wins;
2280 	rv = 1;
2281 	for (i = 0; i < xor_wins_no; i++, wintab++) {
2282 		if (wintab->target == 0) {
2283 			printf("XOR window#%d: DDR target window is not "
2284 			    "supposed to be reprogrammed!\n", i);
2285 			rv = 0;
2286 		}
2287 
2288 		if (wintab->remap >= 0 && win_cpu_can_remap(i) != 1) {
2289 			printf("XOR window#%d: not capable of remapping, but "
2290 			    "val 0x%08x defined\n", i, wintab->remap);
2291 			rv = 0;
2292 		}
2293 
2294 		s = wintab->size;
2295 		b = wintab->base;
2296 		e = b + s - 1;
2297 		if (s > (0xFFFFFFFF - b + 1)) {
2298 			/*
2299 			 * XXX this boundary check should account for 64bit
2300 			 * and remapping..
2301 			 */
2302 			printf("XOR window#%d: no space for size 0x%08x at "
2303 			    "0x%08x\n", i, s, b);
2304 			rv = 0;
2305 			continue;
2306 		}
2307 
2308 		j = decode_win_overlap(i, xor_wins_no, &xor_wins[0]);
2309 		if (j >= 0) {
2310 			printf("XOR window#%d: (0x%08x - 0x%08x) overlaps "
2311 			    "with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
2312 			    xor_wins[j].base,
2313 			    xor_wins[j].base + xor_wins[j].size - 1);
2314 			rv = 0;
2315 		}
2316 	}
2317 
2318 	return (rv);
2319 }
2320 
2321 void
2322 decode_win_xor_dump(u_long base)
2323 {
2324 	int i, j;
2325 	int e = 1;
2326 
2327 	if (pm_is_disabled(CPU_PM_CTRL_XOR))
2328 		return;
2329 
2330 	for (j = 0; j < xor_max_eng(); j++, e--) {
2331 		for (i = 0; i < MV_WIN_XOR_MAX; i++) {
2332 			printf("XOR window#%d: b 0x%08x, s 0x%08x", i,
2333 			    win_xor_br_read(base, i, e), win_xor_sz_read(base, i, e));
2334 
2335 			if (win_xor_can_remap(i))
2336 				printf(", ha 0x%08x", win_xor_har_read(base, i, e));
2337 
2338 			printf("\n");
2339 		}
2340 		for (i = 0; i < MV_XOR_CHAN_MAX; i++)
2341 			printf("XOR control#%d: 0x%08x\n", i,
2342 			    win_xor_ctrl_read(base, i, e));
2343 	}
2344 }
2345 
2346 #else
2347 /* Provide dummy functions to satisfy the build for SoCs not equipped with XOR */
2348 static int
2349 decode_win_xor_valid(void)
2350 {
2351 
2352 	return (1);
2353 }
2354 
2355 static void
2356 decode_win_xor_setup(u_long base)
2357 {
2358 }
2359 
2360 static void
2361 decode_win_xor_dump(u_long base)
2362 {
2363 }
2364 #endif
2365 
2366 /**************************************************************************
2367  * SATA windows routines
2368  **************************************************************************/
2369 static void
2370 decode_win_sata_setup(u_long base)
2371 {
2372 	uint32_t cr, br;
2373 	int i, j;
2374 
2375 	if (pm_is_disabled(CPU_PM_CTRL_SATA))
2376 		return;
2377 
2378 	for (i = 0; i < MV_WIN_SATA_MAX; i++) {
2379 		win_sata_cr_write(base, i, 0);
2380 		win_sata_br_write(base, i, 0);
2381 	}
2382 
2383 	for (i = 0; i < MV_WIN_DDR_MAX; i++)
2384 		if (ddr_is_active(i)) {
2385 			cr = ((ddr_size(i) - 1) & 0xffff0000) |
2386 			    (ddr_attr(i) << 8) | (ddr_target(i) << 4) | 1;
2387 			br = ddr_base(i);
2388 
2389 			/* Use the first available SATA window */
2390 			for (j = 0; j < MV_WIN_SATA_MAX; j++) {
2391 				if ((win_sata_cr_read(base, j) & 1) != 0)
2392 					continue;
2393 
2394 				win_sata_br_write(base, j, br);
2395 				win_sata_cr_write(base, j, cr);
2396 				break;
2397 			}
2398 		}
2399 }
2400 
2401 /*
2402  * Configure AHCI decoding windows
2403  */
2404 static void
2405 decode_win_ahci_setup(u_long base)
2406 {
2407 	uint32_t br, cr, sz;
2408 	int i, j;
2409 
2410 	for (i = 0; i < MV_WIN_SATA_MAX_ARMADA38X; i++) {
2411 		win_sata_armada38x_cr_write(base, i, 0);
2412 		win_sata_armada38x_br_write(base, i, 0);
2413 		win_sata_armada38x_sz_write(base, i, 0);
2414 	}
2415 
2416 	for (i = 0; i < MV_WIN_DDR_MAX; i++) {
2417 		if (ddr_is_active(i)) {
2418 			cr = (ddr_attr(i) << IO_WIN_ATTR_SHIFT) |
2419 			    (ddr_target(i) << IO_WIN_TGT_SHIFT) |
2420 			    IO_WIN_ENA_MASK;
2421 			br = ddr_base(i);
2422 			sz = (ddr_size(i) - 1) &
2423 			    (IO_WIN_SIZE_MASK << IO_WIN_SIZE_SHIFT);
2424 
2425 			/* Use first available SATA window */
2426 			for (j = 0; j < MV_WIN_SATA_MAX_ARMADA38X; j++) {
2427 				if (win_sata_armada38x_cr_read(base, j) & IO_WIN_ENA_MASK)
2428 					continue;
2429 
2430 				/* BASE is set to DRAM base (0x00000000) */
2431 				win_sata_armada38x_br_write(base, j, br);
2432 				/* CTRL targets DRAM ctrl with 0x0E or 0x0D */
2433 				win_sata_armada38x_cr_write(base, j, cr);
2434 				/* SIZE is set to 16MB - max value */
2435 				win_sata_armada38x_sz_write(base, j, sz);
2436 				break;
2437 			}
2438 		}
2439 	}
2440 }
2441 
2442 static void
2443 decode_win_ahci_dump(u_long base)
2444 {
2445 	int i;
2446 
2447 	for (i = 0; i < MV_WIN_SATA_MAX_ARMADA38X; i++)
2448 		printf("SATA window#%d: cr 0x%08x, br 0x%08x, sz 0x%08x\n", i,
2449 		    win_sata_armada38x_cr_read(base, i), win_sata_br_read(base, i),
2450 		    win_sata_armada38x_sz_read(base,i));
2451 }
2452 
2453 static int
2454 decode_win_sata_valid(void)
2455 {
2456 	uint32_t dev, rev;
2457 
2458 	soc_id(&dev, &rev);
2459 	if (dev == MV_DEV_88F5281)
2460 		return (1);
2461 
2462 	return (decode_win_can_cover_ddr(MV_WIN_SATA_MAX));
2463 }
2464 
2465 static void
2466 decode_win_sdhci_setup(u_long base)
2467 {
2468 	uint32_t cr, br;
2469 	int i, j;
2470 
2471 	for (i = 0; i < MV_WIN_SDHCI_MAX; i++) {
2472 		win_sdhci_cr_write(base, i, 0);
2473 		win_sdhci_br_write(base, i, 0);
2474 	}
2475 
2476 	for (i = 0; i < MV_WIN_DDR_MAX; i++)
2477 		if (ddr_is_active(i)) {
2478 			br = ddr_base(i);
2479 			cr = (((ddr_size(i) - 1) &
2480 			    (IO_WIN_SIZE_MASK << IO_WIN_SIZE_SHIFT)) |
2481 			    (ddr_attr(i) << IO_WIN_ATTR_SHIFT) |
2482 			    (ddr_target(i) << IO_WIN_TGT_SHIFT) |
2483 			    IO_WIN_ENA_MASK);
2484 
2485 			/* Use the first available SDHCI window */
2486 			for (j = 0; j < MV_WIN_SDHCI_MAX; j++) {
2487 				if (win_sdhci_cr_read(base, j) & IO_WIN_ENA_MASK)
2488 					continue;
2489 
2490 				win_sdhci_cr_write(base, j, cr);
2491 				win_sdhci_br_write(base, j, br);
2492 				break;
2493 			}
2494 		}
2495 }
2496 
2497 static void
2498 decode_win_sdhci_dump(u_long base)
2499 {
2500 	int i;
2501 
2502 	for (i = 0; i < MV_WIN_SDHCI_MAX; i++)
2503 		printf("SDHCI window#%d: c 0x%08x, b 0x%08x\n", i,
2504 		    win_sdhci_cr_read(base, i), win_sdhci_br_read(base, i));
2505 }
2506 
2507 static int
2508 decode_win_sdhci_valid(void)
2509 {
2510 
2511 	return (decode_win_can_cover_ddr(MV_WIN_SDHCI_MAX));
2512 }
2513 
2514 /**************************************************************************
2515  * FDT parsing routines.
2516  **************************************************************************/
2517 
2518 static int
2519 fdt_get_ranges(const char *nodename, void *buf, int size, int *tuples,
2520     int *tuplesize)
2521 {
2522 	phandle_t node;
2523 	pcell_t addr_cells, par_addr_cells, size_cells;
2524 	int len, tuple_size, tuples_count;
2525 
2526 	node = OF_finddevice(nodename);
2527 	if (node == -1)
2528 		return (EINVAL);
2529 
2530 	if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
2531 		return (ENXIO);
2532 
2533 	par_addr_cells = fdt_parent_addr_cells(node);
2534 	if (par_addr_cells > 2)
2535 		return (ERANGE);
2536 
2537 	tuple_size = sizeof(pcell_t) * (addr_cells + par_addr_cells +
2538 	    size_cells);
2539 
2540 	/* Note the OF_getprop_alloc() cannot be used at this early stage. */
2541 	len = OF_getprop(node, "ranges", buf, size);
2542 
2543 	/*
2544 	 * XXX this does not handle the empty 'ranges;' case, which is
2545 	 * legitimate and should be allowed.
2546 	 */
2547 	tuples_count = len / tuple_size;
2548 	if (tuples_count <= 0)
2549 		return (ERANGE);
2550 
2551 	if (par_addr_cells > 2 || addr_cells > 2 || size_cells > 2)
2552 		return (ERANGE);
2553 
2554 	*tuples = tuples_count;
2555 	*tuplesize = tuple_size;
2556 	return (0);
2557 }
2558 
2559 static int
2560 win_cpu_from_dt(void)
2561 {
2562 	pcell_t ranges[48];
2563 	phandle_t node;
2564 	int i, entry_size, err, t, tuple_size, tuples;
2565 	u_long sram_base, sram_size;
2566 
2567 	t = 0;
2568 	/* Retrieve 'ranges' property of '/localbus' node. */
2569 	if ((err = fdt_get_ranges("/localbus", ranges, sizeof(ranges),
2570 	    &tuples, &tuple_size)) == 0) {
2571 		/*
2572 		 * Fill CPU decode windows table.
2573 		 */
2574 		bzero((void *)&cpu_win_tbl, sizeof(cpu_win_tbl));
2575 
2576 		entry_size = tuple_size / sizeof(pcell_t);
2577 		cpu_wins_no = tuples;
2578 
2579 		/* Check range */
2580 		if (tuples > nitems(cpu_win_tbl)) {
2581 			debugf("too many tuples to fit into cpu_win_tbl\n");
2582 			return (ENOMEM);
2583 		}
2584 
2585 		for (i = 0, t = 0; t < tuples; i += entry_size, t++) {
2586 			cpu_win_tbl[t].target = 1;
2587 			cpu_win_tbl[t].attr = fdt32_to_cpu(ranges[i + 1]);
2588 			cpu_win_tbl[t].base = fdt32_to_cpu(ranges[i + 2]);
2589 			cpu_win_tbl[t].size = fdt32_to_cpu(ranges[i + 3]);
2590 			cpu_win_tbl[t].remap = ~0;
2591 			debugf("target = 0x%0x attr = 0x%0x base = 0x%0x "
2592 			    "size = 0x%0x remap = 0x%0x\n",
2593 			    cpu_win_tbl[t].target,
2594 			    cpu_win_tbl[t].attr, cpu_win_tbl[t].base,
2595 			    cpu_win_tbl[t].size, cpu_win_tbl[t].remap);
2596 		}
2597 	}
2598 
2599 	/*
2600 	 * Retrieve CESA SRAM data.
2601 	 */
2602 	if ((node = OF_finddevice("sram")) != -1)
2603 		if (ofw_bus_node_is_compatible(node, "mrvl,cesa-sram"))
2604 			goto moveon;
2605 
2606 	if ((node = OF_finddevice("/")) == -1)
2607 		return (ENXIO);
2608 
2609 	if ((node = fdt_find_compatible(node, "mrvl,cesa-sram", 0)) == 0)
2610 		/* SRAM block is not always present. */
2611 		return (0);
2612 moveon:
2613 	sram_base = sram_size = 0;
2614 	if (fdt_regsize(node, &sram_base, &sram_size) != 0)
2615 		return (EINVAL);
2616 
2617 	/* Check range */
2618 	if (t >= nitems(cpu_win_tbl)) {
2619 		debugf("cannot fit CESA tuple into cpu_win_tbl\n");
2620 		return (ENOMEM);
2621 	}
2622 
2623 	cpu_win_tbl[t].target = soc_decode_win_spec->win_cesa_target;
2624 	if (soc_family == MV_SOC_ARMADA_38X)
2625 		cpu_win_tbl[t].attr = soc_decode_win_spec->win_cesa_attr(0);
2626 	else
2627 		cpu_win_tbl[t].attr = soc_decode_win_spec->win_cesa_attr(1);
2628 	cpu_win_tbl[t].base = sram_base;
2629 	cpu_win_tbl[t].size = sram_size;
2630 	cpu_win_tbl[t].remap = ~0;
2631 	cpu_wins_no++;
2632 	debugf("sram: base = 0x%0lx size = 0x%0lx\n", sram_base, sram_size);
2633 
2634 	/* Check if there is a second CESA node */
2635 	while ((node = OF_peer(node)) != 0) {
2636 		if (ofw_bus_node_is_compatible(node, "mrvl,cesa-sram")) {
2637 			if (fdt_regsize(node, &sram_base, &sram_size) != 0)
2638 				return (EINVAL);
2639 			break;
2640 		}
2641 	}
2642 
2643 	if (node == 0)
2644 		return (0);
2645 
2646 	t++;
2647 	if (t >= nitems(cpu_win_tbl)) {
2648 		debugf("cannot fit CESA tuple into cpu_win_tbl\n");
2649 		return (ENOMEM);
2650 	}
2651 
2652 	/* Configure window for CESA1 */
2653 	cpu_win_tbl[t].target = soc_decode_win_spec->win_cesa_target;
2654 	cpu_win_tbl[t].attr = soc_decode_win_spec->win_cesa_attr(1);
2655 	cpu_win_tbl[t].base = sram_base;
2656 	cpu_win_tbl[t].size = sram_size;
2657 	cpu_win_tbl[t].remap = ~0;
2658 	cpu_wins_no++;
2659 	debugf("sram: base = 0x%0lx size = 0x%0lx\n", sram_base, sram_size);
2660 
2661 	return (0);
2662 }
2663 
2664 static int
2665 fdt_win_process(phandle_t child)
2666 {
2667 	int i, ret;
2668 
2669 	for (i = 0; soc_nodes[i].compat != NULL; i++) {
2670 		/* Setup only for enabled devices */
2671 		if (ofw_bus_node_status_okay(child) == 0)
2672 			continue;
2673 
2674 		if (!ofw_bus_node_is_compatible(child, soc_nodes[i].compat))
2675 			continue;
2676 
2677 		ret = fdt_win_process_child(child, &soc_nodes[i], "reg");
2678 		if (ret != 0)
2679 			return (ret);
2680 	}
2681 
2682 	return (0);
2683 }
2684 
2685 static int
2686 fdt_win_process_child(phandle_t child, struct soc_node_spec *soc_node,
2687     const char* mimo_reg_source)
2688 {
2689 	int addr_cells, size_cells;
2690 	pcell_t reg[8];
2691 	u_long size, base;
2692 
2693 	if (fdt_addrsize_cells(OF_parent(child), &addr_cells,
2694 	    &size_cells))
2695 		return (ENXIO);
2696 
2697 	if ((sizeof(pcell_t) * (addr_cells + size_cells)) > sizeof(reg))
2698 		return (ENOMEM);
2699 	if (OF_getprop(child, mimo_reg_source, &reg, sizeof(reg)) <= 0)
2700 		return (EINVAL);
2701 
2702 	if (addr_cells <= 2)
2703 		base = fdt_data_get(&reg[0], addr_cells);
2704 	else
2705 		base = fdt_data_get(&reg[addr_cells - 2], 2);
2706 	size = fdt_data_get(&reg[addr_cells], size_cells);
2707 
2708 	if (soc_node->valid_handler != NULL)
2709 		if (!soc_node->valid_handler())
2710 			return (EINVAL);
2711 
2712 	base = (base & 0x000fffff) | fdt_immr_va;
2713 	if (soc_node->decode_handler != NULL)
2714 		soc_node->decode_handler(base);
2715 	else
2716 		return (ENXIO);
2717 
2718 	if (MV_DUMP_WIN && (soc_node->dump_handler != NULL))
2719 		soc_node->dump_handler(base);
2720 
2721 	return (0);
2722 }
2723 
2724 static int
2725 fdt_win_setup(void)
2726 {
2727 	phandle_t node, child, sb;
2728 	phandle_t child_pci;
2729 	int err;
2730 
2731 	sb = 0;
2732 	node = OF_finddevice("/");
2733 	if (node == -1)
2734 		panic("fdt_win_setup: no root node");
2735 
2736 	/* Allow for coherent transactions on the A38x MBUS */
2737 	if (ofw_bus_node_is_compatible(node, "marvell,armada380"))
2738 		platform_io_coherent = true;
2739 
2740 	/*
2741 	 * Traverse through all children of root and simple-bus nodes.
2742 	 * For each found device retrieve decode windows data (if applicable).
2743 	 */
2744 	child = OF_child(node);
2745 	while (child != 0) {
2746 		/* Lookup for callback and run */
2747 		err = fdt_win_process(child);
2748 		if (err != 0)
2749 			return (err);
2750 
2751 		/* Process Marvell Armada-XP/38x PCIe controllers */
2752 		if (ofw_bus_node_is_compatible(child, "marvell,armada-370-pcie")) {
2753 			child_pci = OF_child(child);
2754 			while (child_pci != 0) {
2755 				err = fdt_win_process_child(child_pci,
2756 				    &soc_nodes[SOC_NODE_PCIE_ENTRY_IDX],
2757 				    "assigned-addresses");
2758 				if (err != 0)
2759 					return (err);
2760 
2761 				child_pci = OF_peer(child_pci);
2762 			}
2763 		}
2764 
2765 		/*
2766 		 * Once done with root-level children let's move down to
2767 		 * simple-bus and its children.
2768 		 */
2769 		child = OF_peer(child);
2770 		if ((child == 0) && (node == OF_finddevice("/"))) {
2771 			sb = node = fdt_find_compatible(node, "simple-bus", 0);
2772 			if (node == 0)
2773 				return (ENXIO);
2774 			child = OF_child(node);
2775 		}
2776 		/*
2777 		 * Next, move one more level down to internal-regs node (if
2778 		 * it is present) and its children. This node also have
2779 		 * "simple-bus" compatible.
2780 		 */
2781 		if ((child == 0) && (node == sb)) {
2782 			node = fdt_find_compatible(node, "simple-bus", 0);
2783 			if (node == 0)
2784 				return (0);
2785 			child = OF_child(node);
2786 		}
2787 	}
2788 
2789 	return (0);
2790 }
2791 
2792 static void
2793 fdt_fixup_busfreq(phandle_t root)
2794 {
2795 	phandle_t sb;
2796 	pcell_t freq;
2797 
2798 	freq = cpu_to_fdt32(get_tclk());
2799 
2800 	/*
2801 	 * Fix bus speed in cpu node
2802 	 */
2803 	if ((sb = OF_finddevice("cpu")) != -1)
2804 		if (fdt_is_compatible_strict(sb, "ARM,88VS584"))
2805 			OF_setprop(sb, "bus-frequency", (void *)&freq,
2806 			    sizeof(freq));
2807 
2808 	/*
2809 	 * This fixup sets the simple-bus bus-frequency property.
2810 	 */
2811 	if ((sb = fdt_find_compatible(root, "simple-bus", 1)) != 0)
2812 		OF_setprop(sb, "bus-frequency", (void *)&freq, sizeof(freq));
2813 }
2814 
2815 static void
2816 fdt_fixup_ranges(phandle_t root)
2817 {
2818 	phandle_t node;
2819 	pcell_t par_addr_cells, addr_cells, size_cells;
2820 	pcell_t ranges[3], reg[2], *rangesptr;
2821 	int len, tuple_size, tuples_count;
2822 	uint32_t base;
2823 
2824 	/* Fix-up SoC ranges according to real fdt_immr_pa */
2825 	if ((node = fdt_find_compatible(root, "simple-bus", 1)) != 0) {
2826 		if (fdt_addrsize_cells(node, &addr_cells, &size_cells) == 0 &&
2827 		    ((par_addr_cells = fdt_parent_addr_cells(node)) <= 2)) {
2828 			tuple_size = sizeof(pcell_t) * (par_addr_cells +
2829 			   addr_cells + size_cells);
2830 			len = OF_getprop(node, "ranges", ranges,
2831 			    sizeof(ranges));
2832 			tuples_count = len / tuple_size;
2833 			/* Unexpected settings are not supported */
2834 			if (tuples_count != 1)
2835 				goto fixup_failed;
2836 
2837 			rangesptr = &ranges[0];
2838 			rangesptr += par_addr_cells;
2839 			base = fdt_data_get((void *)rangesptr, addr_cells);
2840 			*rangesptr = cpu_to_fdt32(fdt_immr_pa);
2841 			if (OF_setprop(node, "ranges", (void *)&ranges[0],
2842 			    sizeof(ranges)) < 0)
2843 				goto fixup_failed;
2844 		}
2845 	}
2846 
2847 	/* Fix-up PCIe reg according to real PCIe registers' PA */
2848 	if ((node = fdt_find_compatible(root, "mrvl,pcie", 1)) != 0) {
2849 		if (fdt_addrsize_cells(OF_parent(node), &par_addr_cells,
2850 		    &size_cells) == 0) {
2851 			tuple_size = sizeof(pcell_t) * (par_addr_cells +
2852 			    size_cells);
2853 			len = OF_getprop(node, "reg", reg, sizeof(reg));
2854 			tuples_count = len / tuple_size;
2855 			/* Unexpected settings are not supported */
2856 			if (tuples_count != 1)
2857 				goto fixup_failed;
2858 
2859 			base = fdt_data_get((void *)&reg[0], par_addr_cells);
2860 			base &= ~0xFF000000;
2861 			base |= fdt_immr_pa;
2862 			reg[0] = cpu_to_fdt32(base);
2863 			if (OF_setprop(node, "reg", (void *)&reg[0],
2864 			    sizeof(reg)) < 0)
2865 				goto fixup_failed;
2866 		}
2867 	}
2868 	/* Fix-up succeeded. May return and continue */
2869 	return;
2870 
2871 fixup_failed:
2872 	while (1) {
2873 		/*
2874 		 * In case of any error while fixing ranges just hang.
2875 		 *	1. No message can be displayed yet since console
2876 		 *	   is not initialized.
2877 		 *	2. Going further will cause failure on bus_space_map()
2878 		 *	   relying on the wrong ranges or data abort when
2879 		 *	   accessing PCIe registers.
2880 		 */
2881 	}
2882 }
2883 
2884 struct fdt_fixup_entry fdt_fixup_table[] = {
2885 	{ "mrvl,DB-88F6281", &fdt_fixup_busfreq },
2886 	{ "mrvl,DB-78460", &fdt_fixup_busfreq },
2887 	{ "mrvl,DB-78460", &fdt_fixup_ranges },
2888 	{ NULL, NULL }
2889 };
2890 
2891 uint32_t
2892 get_tclk(void)
2893 {
2894 
2895 	if (soc_decode_win_spec->get_tclk != NULL)
2896 		return soc_decode_win_spec->get_tclk();
2897 	else
2898 		return -1;
2899 }
2900 
2901 uint32_t
2902 get_cpu_freq(void)
2903 {
2904 
2905 	if (soc_decode_win_spec->get_cpu_freq != NULL)
2906 		return soc_decode_win_spec->get_cpu_freq();
2907 	else
2908 		return -1;
2909 }
2910