xref: /freebsd/sys/arm/mv/mv_common.c (revision b5864e6de2f3aa8eb9bb269ec86282598b5201b1)
1 /*-
2  * Copyright (C) 2008-2011 MARVELL INTERNATIONAL LTD.
3  * All rights reserved.
4  *
5  * Developed by Semihalf.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of MARVELL nor the names of contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/kdb.h>
41 #include <sys/reboot.h>
42 
43 #include <dev/fdt/fdt_common.h>
44 #include <dev/ofw/openfirm.h>
45 
46 #include <machine/bus.h>
47 #include <machine/fdt.h>
48 #include <machine/vmparam.h>
49 #include <machine/intr.h>
50 
51 #include <arm/mv/mvreg.h>
52 #include <arm/mv/mvvar.h>
53 #include <arm/mv/mvwin.h>
54 
55 
56 MALLOC_DEFINE(M_IDMA, "idma", "idma dma test memory");
57 
58 #define IDMA_DEBUG
59 #undef IDMA_DEBUG
60 
61 #define MAX_CPU_WIN	5
62 
63 #ifdef DEBUG
64 #define debugf(fmt, args...) do { printf("%s(): ", __func__);	\
65     printf(fmt,##args); } while (0)
66 #else
67 #define debugf(fmt, args...)
68 #endif
69 
70 #ifdef DEBUG
71 #define MV_DUMP_WIN	1
72 #else
73 #define MV_DUMP_WIN	0
74 #endif
75 
76 static int win_eth_can_remap(int i);
77 
78 #ifndef SOC_MV_FREY
79 static int decode_win_cpu_valid(void);
80 #endif
81 static int decode_win_usb_valid(void);
82 static int decode_win_usb3_valid(void);
83 static int decode_win_eth_valid(void);
84 static int decode_win_pcie_valid(void);
85 static int decode_win_sata_valid(void);
86 
87 static int decode_win_idma_valid(void);
88 static int decode_win_xor_valid(void);
89 
90 #ifndef SOC_MV_FREY
91 static void decode_win_cpu_setup(void);
92 #endif
93 #ifdef SOC_MV_ARMADAXP
94 static int decode_win_sdram_fixup(void);
95 #endif
96 static void decode_win_usb_setup(u_long);
97 static void decode_win_usb3_setup(u_long);
98 static void decode_win_eth_setup(u_long);
99 static void decode_win_sata_setup(u_long);
100 
101 static void decode_win_idma_setup(u_long);
102 static void decode_win_xor_setup(u_long);
103 
104 static void decode_win_usb_dump(u_long);
105 static void decode_win_usb3_dump(u_long);
106 static void decode_win_eth_dump(u_long base);
107 static void decode_win_idma_dump(u_long base);
108 static void decode_win_xor_dump(u_long base);
109 
110 static int fdt_get_ranges(const char *, void *, int, int *, int *);
111 #ifdef SOC_MV_ARMADA38X
112 int gic_decode_fdt(phandle_t iparent, pcell_t *intr, int *interrupt,
113     int *trig, int *pol);
114 #endif
115 
116 static int win_cpu_from_dt(void);
117 static int fdt_win_setup(void);
118 
119 static uint32_t dev_mask = 0;
120 static int cpu_wins_no = 0;
121 static int eth_port = 0;
122 static int usb_port = 0;
123 
124 static struct decode_win cpu_win_tbl[MAX_CPU_WIN];
125 
126 const struct decode_win *cpu_wins = cpu_win_tbl;
127 
128 typedef void (*decode_win_setup_t)(u_long);
129 typedef void (*dump_win_t)(u_long);
130 
131 struct soc_node_spec {
132 	const char		*compat;
133 	decode_win_setup_t	decode_handler;
134 	dump_win_t		dump_handler;
135 };
136 
137 static struct soc_node_spec soc_nodes[] = {
138 	{ "mrvl,ge", &decode_win_eth_setup, &decode_win_eth_dump },
139 	{ "mrvl,usb-ehci", &decode_win_usb_setup, &decode_win_usb_dump },
140 	{ "marvell,armada-380-xhci", &decode_win_usb3_setup, &decode_win_usb3_dump },
141 	{ "mrvl,sata", &decode_win_sata_setup, NULL },
142 	{ "mrvl,xor", &decode_win_xor_setup, &decode_win_xor_dump },
143 	{ "mrvl,idma", &decode_win_idma_setup, &decode_win_idma_dump },
144 	{ "mrvl,pcie", &decode_win_pcie_setup, NULL },
145 	{ NULL, NULL, NULL },
146 };
147 
148 struct fdt_pm_mask_entry fdt_pm_mask_table[] = {
149 	{ "mrvl,ge",		CPU_PM_CTRL_GE(0) },
150 	{ "mrvl,ge",		CPU_PM_CTRL_GE(1) },
151 	{ "mrvl,usb-ehci",	CPU_PM_CTRL_USB(0) },
152 	{ "mrvl,usb-ehci",	CPU_PM_CTRL_USB(1) },
153 	{ "mrvl,usb-ehci",	CPU_PM_CTRL_USB(2) },
154 	{ "mrvl,xor",		CPU_PM_CTRL_XOR },
155 	{ "mrvl,sata",		CPU_PM_CTRL_SATA },
156 
157 	{ NULL, 0 }
158 };
159 
160 static __inline int
161 pm_is_disabled(uint32_t mask)
162 {
163 #if defined(SOC_MV_KIRKWOOD)
164 	return (soc_power_ctrl_get(mask) == mask);
165 #else
166 	return (soc_power_ctrl_get(mask) == mask ? 0 : 1);
167 #endif
168 }
169 
170 /*
171  * Disable device using power management register.
172  * 1 - Device Power On
173  * 0 - Device Power Off
174  * Mask can be set in loader.
175  * EXAMPLE:
176  * loader> set hw.pm-disable-mask=0x2
177  *
178  * Common mask:
179  * |-------------------------------|
180  * | Device | Kirkwood | Discovery |
181  * |-------------------------------|
182  * | USB0   | 0x00008  | 0x020000  |
183  * |-------------------------------|
184  * | USB1   |     -    | 0x040000  |
185  * |-------------------------------|
186  * | USB2   |     -    | 0x080000  |
187  * |-------------------------------|
188  * | GE0    | 0x00001  | 0x000002  |
189  * |-------------------------------|
190  * | GE1    |     -    | 0x000004  |
191  * |-------------------------------|
192  * | IDMA   |     -    | 0x100000  |
193  * |-------------------------------|
194  * | XOR    | 0x10000  | 0x200000  |
195  * |-------------------------------|
196  * | CESA   | 0x20000  | 0x400000  |
197  * |-------------------------------|
198  * | SATA   | 0x04000  | 0x004000  |
199  * --------------------------------|
200  * This feature can be used only on Kirkwood and Discovery
201  * machines.
202  */
203 static __inline void
204 pm_disable_device(int mask)
205 {
206 #ifdef DIAGNOSTIC
207 	uint32_t reg;
208 
209 	reg = soc_power_ctrl_get(CPU_PM_CTRL_ALL);
210 	printf("Power Management Register: 0%x\n", reg);
211 
212 	reg &= ~mask;
213 	soc_power_ctrl_set(reg);
214 	printf("Device %x is disabled\n", mask);
215 
216 	reg = soc_power_ctrl_get(CPU_PM_CTRL_ALL);
217 	printf("Power Management Register: 0%x\n", reg);
218 #endif
219 }
220 
221 int
222 fdt_pm(phandle_t node)
223 {
224 	uint32_t cpu_pm_ctrl;
225 	int i, ena, compat;
226 
227 	ena = 1;
228 	cpu_pm_ctrl = read_cpu_ctrl(CPU_PM_CTRL);
229 	for (i = 0; fdt_pm_mask_table[i].compat != NULL; i++) {
230 		if (dev_mask & (1 << i))
231 			continue;
232 
233 		compat = fdt_is_compatible(node, fdt_pm_mask_table[i].compat);
234 #if defined(SOC_MV_KIRKWOOD)
235 		if (compat && (cpu_pm_ctrl & fdt_pm_mask_table[i].mask)) {
236 			dev_mask |= (1 << i);
237 			ena = 0;
238 			break;
239 		} else if (compat) {
240 			dev_mask |= (1 << i);
241 			break;
242 		}
243 #else
244 		if (compat && (~cpu_pm_ctrl & fdt_pm_mask_table[i].mask)) {
245 			dev_mask |= (1 << i);
246 			ena = 0;
247 			break;
248 		} else if (compat) {
249 			dev_mask |= (1 << i);
250 			break;
251 		}
252 #endif
253 	}
254 
255 	return (ena);
256 }
257 
258 uint32_t
259 read_cpu_ctrl(uint32_t reg)
260 {
261 
262 	return (bus_space_read_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE, reg));
263 }
264 
265 void
266 write_cpu_ctrl(uint32_t reg, uint32_t val)
267 {
268 
269 	bus_space_write_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE, reg, val);
270 }
271 
272 #if defined(SOC_MV_ARMADAXP) || defined(SOC_MV_ARMADA38X)
273 uint32_t
274 read_cpu_mp_clocks(uint32_t reg)
275 {
276 
277 	return (bus_space_read_4(fdtbus_bs_tag, MV_MP_CLOCKS_BASE, reg));
278 }
279 
280 void
281 write_cpu_mp_clocks(uint32_t reg, uint32_t val)
282 {
283 
284 	bus_space_write_4(fdtbus_bs_tag, MV_MP_CLOCKS_BASE, reg, val);
285 }
286 
287 uint32_t
288 read_cpu_misc(uint32_t reg)
289 {
290 
291 	return (bus_space_read_4(fdtbus_bs_tag, MV_MISC_BASE, reg));
292 }
293 
294 void
295 write_cpu_misc(uint32_t reg, uint32_t val)
296 {
297 
298 	bus_space_write_4(fdtbus_bs_tag, MV_MISC_BASE, reg, val);
299 }
300 #endif
301 
302 void
303 cpu_reset(void)
304 {
305 
306 #if defined(SOC_MV_ARMADAXP) || defined (SOC_MV_ARMADA38X)
307 	write_cpu_misc(RSTOUTn_MASK, SOFT_RST_OUT_EN);
308 	write_cpu_misc(SYSTEM_SOFT_RESET, SYS_SOFT_RST);
309 #else
310 	write_cpu_ctrl(RSTOUTn_MASK, SOFT_RST_OUT_EN);
311 	write_cpu_ctrl(SYSTEM_SOFT_RESET, SYS_SOFT_RST);
312 #endif
313 	while (1);
314 }
315 
316 uint32_t
317 cpu_extra_feat(void)
318 {
319 	uint32_t dev, rev;
320 	uint32_t ef = 0;
321 
322 	soc_id(&dev, &rev);
323 
324 	switch (dev) {
325 	case MV_DEV_88F6281:
326 	case MV_DEV_88F6282:
327 	case MV_DEV_88RC8180:
328 	case MV_DEV_MV78100_Z0:
329 	case MV_DEV_MV78100:
330 		__asm __volatile("mrc p15, 1, %0, c15, c1, 0" : "=r" (ef));
331 		break;
332 	case MV_DEV_88F5182:
333 	case MV_DEV_88F5281:
334 		__asm __volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (ef));
335 		break;
336 	default:
337 		if (bootverbose)
338 			printf("This ARM Core does not support any extra features\n");
339 	}
340 
341 	return (ef);
342 }
343 
344 /*
345  * Get the power status of device. This feature is only supported on
346  * Kirkwood and Discovery SoCs.
347  */
348 uint32_t
349 soc_power_ctrl_get(uint32_t mask)
350 {
351 
352 #if !defined(SOC_MV_ORION) && !defined(SOC_MV_LOKIPLUS) && !defined(SOC_MV_FREY)
353 	if (mask != CPU_PM_CTRL_NONE)
354 		mask &= read_cpu_ctrl(CPU_PM_CTRL);
355 
356 	return (mask);
357 #else
358 	return (mask);
359 #endif
360 }
361 
362 /*
363  * Set the power status of device. This feature is only supported on
364  * Kirkwood and Discovery SoCs.
365  */
366 void
367 soc_power_ctrl_set(uint32_t mask)
368 {
369 
370 #if !defined(SOC_MV_ORION) && !defined(SOC_MV_LOKIPLUS)
371 	if (mask != CPU_PM_CTRL_NONE)
372 		write_cpu_ctrl(CPU_PM_CTRL, mask);
373 #endif
374 }
375 
376 void
377 soc_id(uint32_t *dev, uint32_t *rev)
378 {
379 
380 	/*
381 	 * Notice: system identifiers are available in the registers range of
382 	 * PCIE controller, so using this function is only allowed (and
383 	 * possible) after the internal registers range has been mapped in via
384 	 * devmap_bootstrap().
385 	 */
386 	*dev = bus_space_read_4(fdtbus_bs_tag, MV_PCIE_BASE, 0) >> 16;
387 	*rev = bus_space_read_4(fdtbus_bs_tag, MV_PCIE_BASE, 8) & 0xff;
388 }
389 
390 static void
391 soc_identify(void)
392 {
393 	uint32_t d, r, size, mode;
394 	const char *dev;
395 	const char *rev;
396 
397 	soc_id(&d, &r);
398 
399 	printf("SOC: ");
400 	if (bootverbose)
401 		printf("(0x%4x:0x%02x) ", d, r);
402 
403 	rev = "";
404 	switch (d) {
405 	case MV_DEV_88F5181:
406 		dev = "Marvell 88F5181";
407 		if (r == 3)
408 			rev = "B1";
409 		break;
410 	case MV_DEV_88F5182:
411 		dev = "Marvell 88F5182";
412 		if (r == 2)
413 			rev = "A2";
414 		break;
415 	case MV_DEV_88F5281:
416 		dev = "Marvell 88F5281";
417 		if (r == 4)
418 			rev = "D0";
419 		else if (r == 5)
420 			rev = "D1";
421 		else if (r == 6)
422 			rev = "D2";
423 		break;
424 	case MV_DEV_88F6281:
425 		dev = "Marvell 88F6281";
426 		if (r == 0)
427 			rev = "Z0";
428 		else if (r == 2)
429 			rev = "A0";
430 		else if (r == 3)
431 			rev = "A1";
432 		break;
433 	case MV_DEV_88RC8180:
434 		dev = "Marvell 88RC8180";
435 		break;
436 	case MV_DEV_88RC9480:
437 		dev = "Marvell 88RC9480";
438 		break;
439 	case MV_DEV_88RC9580:
440 		dev = "Marvell 88RC9580";
441 		break;
442 	case MV_DEV_88F6781:
443 		dev = "Marvell 88F6781";
444 		if (r == 2)
445 			rev = "Y0";
446 		break;
447 	case MV_DEV_88F6282:
448 		dev = "Marvell 88F6282";
449 		if (r == 0)
450 			rev = "A0";
451 		else if (r == 1)
452 			rev = "A1";
453 		break;
454 	case MV_DEV_88F6828:
455 		dev = "Marvell 88F6828";
456 		break;
457 	case MV_DEV_88F6820:
458 		dev = "Marvell 88F6820";
459 		break;
460 	case MV_DEV_88F6810:
461 		dev = "Marvell 88F6810";
462 		break;
463 	case MV_DEV_MV78100_Z0:
464 		dev = "Marvell MV78100 Z0";
465 		break;
466 	case MV_DEV_MV78100:
467 		dev = "Marvell MV78100";
468 		break;
469 	case MV_DEV_MV78160:
470 		dev = "Marvell MV78160";
471 		break;
472 	case MV_DEV_MV78260:
473 		dev = "Marvell MV78260";
474 		break;
475 	case MV_DEV_MV78460:
476 		dev = "Marvell MV78460";
477 		break;
478 	default:
479 		dev = "UNKNOWN";
480 		break;
481 	}
482 
483 	printf("%s", dev);
484 	if (*rev != '\0')
485 		printf(" rev %s", rev);
486 	printf(", TClock %dMHz\n", get_tclk() / 1000 / 1000);
487 
488 	mode = read_cpu_ctrl(CPU_CONFIG);
489 	printf("  Instruction cache prefetch %s, data cache prefetch %s\n",
490 	    (mode & CPU_CONFIG_IC_PREF) ? "enabled" : "disabled",
491 	    (mode & CPU_CONFIG_DC_PREF) ? "enabled" : "disabled");
492 
493 	switch (d) {
494 	case MV_DEV_88F6281:
495 	case MV_DEV_88F6282:
496 		mode = read_cpu_ctrl(CPU_L2_CONFIG) & CPU_L2_CONFIG_MODE;
497 		printf("  256KB 4-way set-associative %s unified L2 cache\n",
498 		    mode ? "write-through" : "write-back");
499 		break;
500 	case MV_DEV_MV78100:
501 		mode = read_cpu_ctrl(CPU_CONTROL);
502 		size = mode & CPU_CONTROL_L2_SIZE;
503 		mode = mode & CPU_CONTROL_L2_MODE;
504 		printf("  %s set-associative %s unified L2 cache\n",
505 		    size ? "256KB 4-way" : "512KB 8-way",
506 		    mode ? "write-through" : "write-back");
507 		break;
508 	default:
509 		break;
510 	}
511 }
512 
513 static void
514 platform_identify(void *dummy)
515 {
516 
517 	soc_identify();
518 
519 	/*
520 	 * XXX Board identification e.g. read out from FPGA or similar should
521 	 * go here
522 	 */
523 }
524 SYSINIT(platform_identify, SI_SUB_CPU, SI_ORDER_SECOND, platform_identify,
525     NULL);
526 
527 #ifdef KDB
528 static void
529 mv_enter_debugger(void *dummy)
530 {
531 
532 	if (boothowto & RB_KDB)
533 		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
534 }
535 SYSINIT(mv_enter_debugger, SI_SUB_CPU, SI_ORDER_ANY, mv_enter_debugger, NULL);
536 #endif
537 
538 int
539 soc_decode_win(void)
540 {
541 	uint32_t dev, rev;
542 	int mask, err;
543 
544 	mask = 0;
545 	TUNABLE_INT_FETCH("hw.pm-disable-mask", &mask);
546 
547 	if (mask != 0)
548 		pm_disable_device(mask);
549 
550 	/* Retrieve data about physical addresses from device tree. */
551 	if ((err = win_cpu_from_dt()) != 0)
552 		return (err);
553 
554 	/* Retrieve our ID: some windows facilities vary between SoC models */
555 	soc_id(&dev, &rev);
556 
557 #ifdef SOC_MV_ARMADAXP
558 	if ((err = decode_win_sdram_fixup()) != 0)
559 		return(err);
560 #endif
561 
562 #ifndef SOC_MV_FREY
563 	if (!decode_win_cpu_valid() || !decode_win_usb_valid() ||
564 	    !decode_win_eth_valid() || !decode_win_idma_valid() ||
565 	    !decode_win_pcie_valid() || !decode_win_sata_valid() ||
566 	    !decode_win_xor_valid() || !decode_win_usb3_valid())
567 		return (EINVAL);
568 
569 	decode_win_cpu_setup();
570 #else
571 	if (!decode_win_usb_valid() ||
572 	    !decode_win_eth_valid() || !decode_win_idma_valid() ||
573 	    !decode_win_pcie_valid() || !decode_win_sata_valid() ||
574 	    !decode_win_xor_valid() || !decode_win_usb3_valid())
575 		return (EINVAL);
576 #endif
577 	if (MV_DUMP_WIN)
578 		soc_dump_decode_win();
579 
580 	eth_port = 0;
581 	usb_port = 0;
582 	if ((err = fdt_win_setup()) != 0)
583 		return (err);
584 
585 	return (0);
586 }
587 
588 /**************************************************************************
589  * Decode windows registers accessors
590  **************************************************************************/
591 #if !defined(SOC_MV_FREY)
592 WIN_REG_IDX_RD(win_cpu, cr, MV_WIN_CPU_CTRL, MV_MBUS_BRIDGE_BASE)
593 WIN_REG_IDX_RD(win_cpu, br, MV_WIN_CPU_BASE, MV_MBUS_BRIDGE_BASE)
594 WIN_REG_IDX_RD(win_cpu, remap_l, MV_WIN_CPU_REMAP_LO, MV_MBUS_BRIDGE_BASE)
595 WIN_REG_IDX_RD(win_cpu, remap_h, MV_WIN_CPU_REMAP_HI, MV_MBUS_BRIDGE_BASE)
596 WIN_REG_IDX_WR(win_cpu, cr, MV_WIN_CPU_CTRL, MV_MBUS_BRIDGE_BASE)
597 WIN_REG_IDX_WR(win_cpu, br, MV_WIN_CPU_BASE, MV_MBUS_BRIDGE_BASE)
598 WIN_REG_IDX_WR(win_cpu, remap_l, MV_WIN_CPU_REMAP_LO, MV_MBUS_BRIDGE_BASE)
599 WIN_REG_IDX_WR(win_cpu, remap_h, MV_WIN_CPU_REMAP_HI, MV_MBUS_BRIDGE_BASE)
600 #endif
601 
602 WIN_REG_BASE_IDX_RD(win_usb, cr, MV_WIN_USB_CTRL)
603 WIN_REG_BASE_IDX_RD(win_usb, br, MV_WIN_USB_BASE)
604 WIN_REG_BASE_IDX_WR(win_usb, cr, MV_WIN_USB_CTRL)
605 WIN_REG_BASE_IDX_WR(win_usb, br, MV_WIN_USB_BASE)
606 
607 #ifdef SOC_MV_ARMADA38X
608 WIN_REG_BASE_IDX_RD(win_usb3, cr, MV_WIN_USB3_CTRL)
609 WIN_REG_BASE_IDX_RD(win_usb3, br, MV_WIN_USB3_BASE)
610 WIN_REG_BASE_IDX_WR(win_usb3, cr, MV_WIN_USB3_CTRL)
611 WIN_REG_BASE_IDX_WR(win_usb3, br, MV_WIN_USB3_BASE)
612 #endif
613 
614 WIN_REG_BASE_IDX_RD(win_eth, br, MV_WIN_ETH_BASE)
615 WIN_REG_BASE_IDX_RD(win_eth, sz, MV_WIN_ETH_SIZE)
616 WIN_REG_BASE_IDX_RD(win_eth, har, MV_WIN_ETH_REMAP)
617 WIN_REG_BASE_IDX_WR(win_eth, br, MV_WIN_ETH_BASE)
618 WIN_REG_BASE_IDX_WR(win_eth, sz, MV_WIN_ETH_SIZE)
619 WIN_REG_BASE_IDX_WR(win_eth, har, MV_WIN_ETH_REMAP)
620 
621 WIN_REG_BASE_IDX_RD2(win_xor, br, MV_WIN_XOR_BASE)
622 WIN_REG_BASE_IDX_RD2(win_xor, sz, MV_WIN_XOR_SIZE)
623 WIN_REG_BASE_IDX_RD2(win_xor, har, MV_WIN_XOR_REMAP)
624 WIN_REG_BASE_IDX_RD2(win_xor, ctrl, MV_WIN_XOR_CTRL)
625 WIN_REG_BASE_IDX_WR2(win_xor, br, MV_WIN_XOR_BASE)
626 WIN_REG_BASE_IDX_WR2(win_xor, sz, MV_WIN_XOR_SIZE)
627 WIN_REG_BASE_IDX_WR2(win_xor, har, MV_WIN_XOR_REMAP)
628 WIN_REG_BASE_IDX_WR2(win_xor, ctrl, MV_WIN_XOR_CTRL)
629 
630 WIN_REG_BASE_RD(win_eth, bare, 0x290)
631 WIN_REG_BASE_RD(win_eth, epap, 0x294)
632 WIN_REG_BASE_WR(win_eth, bare, 0x290)
633 WIN_REG_BASE_WR(win_eth, epap, 0x294)
634 
635 WIN_REG_BASE_IDX_RD(win_pcie, cr, MV_WIN_PCIE_CTRL);
636 WIN_REG_BASE_IDX_RD(win_pcie, br, MV_WIN_PCIE_BASE);
637 WIN_REG_BASE_IDX_RD(win_pcie, remap, MV_WIN_PCIE_REMAP);
638 WIN_REG_BASE_IDX_WR(win_pcie, cr, MV_WIN_PCIE_CTRL);
639 WIN_REG_BASE_IDX_WR(win_pcie, br, MV_WIN_PCIE_BASE);
640 WIN_REG_BASE_IDX_WR(win_pcie, remap, MV_WIN_PCIE_REMAP);
641 WIN_REG_BASE_IDX_RD(pcie_bar, br, MV_PCIE_BAR_BASE);
642 WIN_REG_BASE_IDX_WR(pcie_bar, br, MV_PCIE_BAR_BASE);
643 WIN_REG_BASE_IDX_WR(pcie_bar, brh, MV_PCIE_BAR_BASE_H);
644 WIN_REG_BASE_IDX_WR(pcie_bar, cr, MV_PCIE_BAR_CTRL);
645 
646 WIN_REG_BASE_IDX_RD(win_idma, br, MV_WIN_IDMA_BASE)
647 WIN_REG_BASE_IDX_RD(win_idma, sz, MV_WIN_IDMA_SIZE)
648 WIN_REG_BASE_IDX_RD(win_idma, har, MV_WIN_IDMA_REMAP)
649 WIN_REG_BASE_IDX_RD(win_idma, cap, MV_WIN_IDMA_CAP)
650 WIN_REG_BASE_IDX_WR(win_idma, br, MV_WIN_IDMA_BASE)
651 WIN_REG_BASE_IDX_WR(win_idma, sz, MV_WIN_IDMA_SIZE)
652 WIN_REG_BASE_IDX_WR(win_idma, har, MV_WIN_IDMA_REMAP)
653 WIN_REG_BASE_IDX_WR(win_idma, cap, MV_WIN_IDMA_CAP)
654 WIN_REG_BASE_RD(win_idma, bare, 0xa80)
655 WIN_REG_BASE_WR(win_idma, bare, 0xa80)
656 
657 WIN_REG_BASE_IDX_RD(win_sata, cr, MV_WIN_SATA_CTRL);
658 WIN_REG_BASE_IDX_RD(win_sata, br, MV_WIN_SATA_BASE);
659 WIN_REG_BASE_IDX_WR(win_sata, cr, MV_WIN_SATA_CTRL);
660 WIN_REG_BASE_IDX_WR(win_sata, br, MV_WIN_SATA_BASE);
661 #ifndef SOC_MV_DOVE
662 WIN_REG_IDX_RD(ddr, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE)
663 WIN_REG_IDX_RD(ddr, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE)
664 WIN_REG_IDX_WR(ddr, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE)
665 WIN_REG_IDX_WR(ddr, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE)
666 #else
667 /*
668  * On 88F6781 (Dove) SoC DDR Controller is accessed through
669  * single MBUS <-> AXI bridge. In this case we provide emulated
670  * ddr_br_read() and ddr_sz_read() functions to keep compatibility
671  * with common decoding windows setup code.
672  */
673 
674 static inline uint32_t ddr_br_read(int i)
675 {
676 	uint32_t mmap;
677 
678 	/* Read Memory Address Map Register for CS i */
679 	mmap = bus_space_read_4(fdtbus_bs_tag, MV_DDR_CADR_BASE + (i * 0x10), 0);
680 
681 	/* Return CS i base address */
682 	return (mmap & 0xFF000000);
683 }
684 
685 static inline uint32_t ddr_sz_read(int i)
686 {
687 	uint32_t mmap, size;
688 
689 	/* Read Memory Address Map Register for CS i */
690 	mmap = bus_space_read_4(fdtbus_bs_tag, MV_DDR_CADR_BASE + (i * 0x10), 0);
691 
692 	/* Extract size of CS space in 64kB units */
693 	size = (1 << ((mmap >> 16) & 0x0F));
694 
695 	/* Return CS size and enable/disable status */
696 	return (((size - 1) << 16) | (mmap & 0x01));
697 }
698 #endif
699 
700 #if !defined(SOC_MV_FREY)
701 /**************************************************************************
702  * Decode windows helper routines
703  **************************************************************************/
704 void
705 soc_dump_decode_win(void)
706 {
707 	uint32_t dev, rev;
708 	int i;
709 
710 	soc_id(&dev, &rev);
711 
712 	for (i = 0; i < MV_WIN_CPU_MAX; i++) {
713 		printf("CPU window#%d: c 0x%08x, b 0x%08x", i,
714 		    win_cpu_cr_read(i),
715 		    win_cpu_br_read(i));
716 
717 		if (win_cpu_can_remap(i))
718 			printf(", rl 0x%08x, rh 0x%08x",
719 			    win_cpu_remap_l_read(i),
720 			    win_cpu_remap_h_read(i));
721 
722 		printf("\n");
723 	}
724 	printf("Internal regs base: 0x%08x\n",
725 	    bus_space_read_4(fdtbus_bs_tag, MV_INTREGS_BASE, 0));
726 
727 	for (i = 0; i < MV_WIN_DDR_MAX; i++)
728 		printf("DDR CS#%d: b 0x%08x, s 0x%08x\n", i,
729 		    ddr_br_read(i), ddr_sz_read(i));
730 }
731 
732 /**************************************************************************
733  * CPU windows routines
734  **************************************************************************/
735 int
736 win_cpu_can_remap(int i)
737 {
738 	uint32_t dev, rev;
739 
740 	soc_id(&dev, &rev);
741 
742 	/* Depending on the SoC certain windows have remap capability */
743 	if ((dev == MV_DEV_88F5182 && i < 2) ||
744 	    (dev == MV_DEV_88F5281 && i < 4) ||
745 	    (dev == MV_DEV_88F6281 && i < 4) ||
746 	    (dev == MV_DEV_88F6282 && i < 4) ||
747 	    (dev == MV_DEV_88F6828 && i < 20) ||
748 	    (dev == MV_DEV_88F6820 && i < 20) ||
749 	    (dev == MV_DEV_88F6810 && i < 20) ||
750 	    (dev == MV_DEV_88RC8180 && i < 2) ||
751 	    (dev == MV_DEV_88F6781 && i < 4) ||
752 	    (dev == MV_DEV_MV78100_Z0 && i < 8) ||
753 	    ((dev & MV_DEV_FAMILY_MASK) == MV_DEV_DISCOVERY && i < 8))
754 		return (1);
755 
756 	return (0);
757 }
758 
759 /* XXX This should check for overlapping remap fields too.. */
760 int
761 decode_win_overlap(int win, int win_no, const struct decode_win *wintab)
762 {
763 	const struct decode_win *tab;
764 	int i;
765 
766 	tab = wintab;
767 
768 	for (i = 0; i < win_no; i++, tab++) {
769 		if (i == win)
770 			/* Skip self */
771 			continue;
772 
773 		if ((tab->base + tab->size - 1) < (wintab + win)->base)
774 			continue;
775 
776 		else if (((wintab + win)->base + (wintab + win)->size - 1) <
777 		    tab->base)
778 			continue;
779 		else
780 			return (i);
781 	}
782 
783 	return (-1);
784 }
785 
786 static int
787 decode_win_cpu_valid(void)
788 {
789 	int i, j, rv;
790 	uint32_t b, e, s;
791 
792 	if (cpu_wins_no > MV_WIN_CPU_MAX) {
793 		printf("CPU windows: too many entries: %d\n", cpu_wins_no);
794 		return (0);
795 	}
796 
797 	rv = 1;
798 	for (i = 0; i < cpu_wins_no; i++) {
799 
800 		if (cpu_wins[i].target == 0) {
801 			printf("CPU window#%d: DDR target window is not "
802 			    "supposed to be reprogrammed!\n", i);
803 			rv = 0;
804 		}
805 
806 		if (cpu_wins[i].remap != ~0 && win_cpu_can_remap(i) != 1) {
807 			printf("CPU window#%d: not capable of remapping, but "
808 			    "val 0x%08x defined\n", i, cpu_wins[i].remap);
809 			rv = 0;
810 		}
811 
812 		s = cpu_wins[i].size;
813 		b = cpu_wins[i].base;
814 		e = b + s - 1;
815 		if (s > (0xFFFFFFFF - b + 1)) {
816 			/*
817 			 * XXX this boundary check should account for 64bit
818 			 * and remapping..
819 			 */
820 			printf("CPU window#%d: no space for size 0x%08x at "
821 			    "0x%08x\n", i, s, b);
822 			rv = 0;
823 			continue;
824 		}
825 
826 		if (b != rounddown2(b, s)) {
827 			printf("CPU window#%d: address 0x%08x is not aligned "
828 			    "to 0x%08x\n", i, b, s);
829 			rv = 0;
830 			continue;
831 		}
832 
833 		j = decode_win_overlap(i, cpu_wins_no, &cpu_wins[0]);
834 		if (j >= 0) {
835 			printf("CPU window#%d: (0x%08x - 0x%08x) overlaps "
836 			    "with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
837 			    cpu_wins[j].base,
838 			    cpu_wins[j].base + cpu_wins[j].size - 1);
839 			rv = 0;
840 		}
841 	}
842 
843 	return (rv);
844 }
845 
846 int
847 decode_win_cpu_set(int target, int attr, vm_paddr_t base, uint32_t size,
848     vm_paddr_t remap)
849 {
850 	uint32_t br, cr;
851 	int win, i;
852 
853 	if (remap == ~0) {
854 		win = MV_WIN_CPU_MAX - 1;
855 		i = -1;
856 	} else {
857 		win = 0;
858 		i = 1;
859 	}
860 
861 	while ((win >= 0) && (win < MV_WIN_CPU_MAX)) {
862 		cr = win_cpu_cr_read(win);
863 		if ((cr & MV_WIN_CPU_ENABLE_BIT) == 0)
864 			break;
865 		if ((cr & ((0xff << MV_WIN_CPU_ATTR_SHIFT) |
866 		    (0x1f << MV_WIN_CPU_TARGET_SHIFT))) ==
867 		    ((attr << MV_WIN_CPU_ATTR_SHIFT) |
868 		    (target << MV_WIN_CPU_TARGET_SHIFT)))
869 			break;
870 		win += i;
871 	}
872 	if ((win < 0) || (win >= MV_WIN_CPU_MAX) ||
873 	    ((remap != ~0) && (win_cpu_can_remap(win) == 0)))
874 		return (-1);
875 
876 	br = base & 0xffff0000;
877 	win_cpu_br_write(win, br);
878 
879 	if (win_cpu_can_remap(win)) {
880 		if (remap != ~0) {
881 			win_cpu_remap_l_write(win, remap & 0xffff0000);
882 			win_cpu_remap_h_write(win, 0);
883 		} else {
884 			/*
885 			 * Remap function is not used for a given window
886 			 * (capable of remapping) - set remap field with the
887 			 * same value as base.
888 			 */
889 			win_cpu_remap_l_write(win, base & 0xffff0000);
890 			win_cpu_remap_h_write(win, 0);
891 		}
892 	}
893 
894 	cr = ((size - 1) & 0xffff0000) | (attr << MV_WIN_CPU_ATTR_SHIFT) |
895 	    (target << MV_WIN_CPU_TARGET_SHIFT) | MV_WIN_CPU_ENABLE_BIT;
896 	win_cpu_cr_write(win, cr);
897 
898 	return (0);
899 }
900 
901 static void
902 decode_win_cpu_setup(void)
903 {
904 	int i;
905 
906 	/* Disable all CPU windows */
907 	for (i = 0; i < MV_WIN_CPU_MAX; i++) {
908 		win_cpu_cr_write(i, 0);
909 		win_cpu_br_write(i, 0);
910 		if (win_cpu_can_remap(i)) {
911 			win_cpu_remap_l_write(i, 0);
912 			win_cpu_remap_h_write(i, 0);
913 		}
914 	}
915 
916 	for (i = 0; i < cpu_wins_no; i++)
917 		if (cpu_wins[i].target > 0)
918 			decode_win_cpu_set(cpu_wins[i].target,
919 			    cpu_wins[i].attr, cpu_wins[i].base,
920 			    cpu_wins[i].size, cpu_wins[i].remap);
921 
922 }
923 #endif
924 
925 #ifdef SOC_MV_ARMADAXP
926 static int
927 decode_win_sdram_fixup(void)
928 {
929 	struct mem_region mr[FDT_MEM_REGIONS];
930 	uint8_t window_valid[MV_WIN_DDR_MAX];
931 	int mr_cnt, err, i, j;
932 	uint32_t valid_win_num = 0;
933 
934 	/* Grab physical memory regions information from device tree. */
935 	err = fdt_get_mem_regions(mr, &mr_cnt, NULL);
936 	if (err != 0)
937 		return (err);
938 
939 	for (i = 0; i < MV_WIN_DDR_MAX; i++)
940 		window_valid[i] = 0;
941 
942 	/* Try to match entries from device tree with settings from u-boot */
943 	for (i = 0; i < mr_cnt; i++) {
944 		for (j = 0; j < MV_WIN_DDR_MAX; j++) {
945 			if (ddr_is_active(j) &&
946 			    (ddr_base(j) == mr[i].mr_start) &&
947 			    (ddr_size(j) == mr[i].mr_size)) {
948 				window_valid[j] = 1;
949 				valid_win_num++;
950 			}
951 		}
952 	}
953 
954 	if (mr_cnt != valid_win_num)
955 		return (EINVAL);
956 
957 	/* Destroy windows without corresponding device tree entry */
958 	for (j = 0; j < MV_WIN_DDR_MAX; j++) {
959 		if (ddr_is_active(j) && (window_valid[j] != 1)) {
960 			printf("Disabling SDRAM decoding window: %d\n", j);
961 			ddr_disable(j);
962 		}
963 	}
964 
965 	return (0);
966 }
967 #endif
968 /*
969  * Check if we're able to cover all active DDR banks.
970  */
971 static int
972 decode_win_can_cover_ddr(int max)
973 {
974 	int i, c;
975 
976 	c = 0;
977 	for (i = 0; i < MV_WIN_DDR_MAX; i++)
978 		if (ddr_is_active(i))
979 			c++;
980 
981 	if (c > max) {
982 		printf("Unable to cover all active DDR banks: "
983 		    "%d, available windows: %d\n", c, max);
984 		return (0);
985 	}
986 
987 	return (1);
988 }
989 
990 /**************************************************************************
991  * DDR windows routines
992  **************************************************************************/
993 int
994 ddr_is_active(int i)
995 {
996 
997 	if (ddr_sz_read(i) & 0x1)
998 		return (1);
999 
1000 	return (0);
1001 }
1002 
1003 void
1004 ddr_disable(int i)
1005 {
1006 
1007 	ddr_sz_write(i, 0);
1008 	ddr_br_write(i, 0);
1009 }
1010 
1011 uint32_t
1012 ddr_base(int i)
1013 {
1014 
1015 	return (ddr_br_read(i) & 0xff000000);
1016 }
1017 
1018 uint32_t
1019 ddr_size(int i)
1020 {
1021 
1022 	return ((ddr_sz_read(i) | 0x00ffffff) + 1);
1023 }
1024 
1025 uint32_t
1026 ddr_attr(int i)
1027 {
1028 	uint32_t dev, rev;
1029 
1030 	soc_id(&dev, &rev);
1031 	if (dev == MV_DEV_88RC8180)
1032 		return ((ddr_sz_read(i) & 0xf0) >> 4);
1033 	if (dev == MV_DEV_88F6781)
1034 		return (0);
1035 
1036 	return (i == 0 ? 0xe :
1037 	    (i == 1 ? 0xd :
1038 	    (i == 2 ? 0xb :
1039 	    (i == 3 ? 0x7 : 0xff))));
1040 }
1041 
1042 uint32_t
1043 ddr_target(int i)
1044 {
1045 	uint32_t dev, rev;
1046 
1047 	soc_id(&dev, &rev);
1048 	if (dev == MV_DEV_88RC8180) {
1049 		i = (ddr_sz_read(i) & 0xf0) >> 4;
1050 		return (i == 0xe ? 0xc :
1051 		    (i == 0xd ? 0xd :
1052 		    (i == 0xb ? 0xe :
1053 		    (i == 0x7 ? 0xf : 0xc))));
1054 	}
1055 
1056 	/*
1057 	 * On SOCs other than 88RC8180 Mbus unit ID for
1058 	 * DDR SDRAM controller is always 0x0.
1059 	 */
1060 	return (0);
1061 }
1062 
1063 /**************************************************************************
1064  * USB windows routines
1065  **************************************************************************/
1066 static int
1067 decode_win_usb_valid(void)
1068 {
1069 
1070 	return (decode_win_can_cover_ddr(MV_WIN_USB_MAX));
1071 }
1072 
1073 static void
1074 decode_win_usb_dump(u_long base)
1075 {
1076 	int i;
1077 
1078 	if (pm_is_disabled(CPU_PM_CTRL_USB(usb_port - 1)))
1079 		return;
1080 
1081 	for (i = 0; i < MV_WIN_USB_MAX; i++)
1082 		printf("USB window#%d: c 0x%08x, b 0x%08x\n", i,
1083 		    win_usb_cr_read(base, i), win_usb_br_read(base, i));
1084 }
1085 
1086 /*
1087  * Set USB decode windows.
1088  */
1089 static void
1090 decode_win_usb_setup(u_long base)
1091 {
1092 	uint32_t br, cr;
1093 	int i, j;
1094 
1095 
1096 	if (pm_is_disabled(CPU_PM_CTRL_USB(usb_port)))
1097 		return;
1098 
1099 	usb_port++;
1100 
1101 	for (i = 0; i < MV_WIN_USB_MAX; i++) {
1102 		win_usb_cr_write(base, i, 0);
1103 		win_usb_br_write(base, i, 0);
1104 	}
1105 
1106 	/* Only access to active DRAM banks is required */
1107 	for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1108 		if (ddr_is_active(i)) {
1109 			br = ddr_base(i);
1110 			/*
1111 			 * XXX for 6281 we should handle Mbus write
1112 			 * burst limit field in the ctrl reg
1113 			 */
1114 			cr = (((ddr_size(i) - 1) & 0xffff0000) |
1115 			    (ddr_attr(i) << 8) |
1116 			    (ddr_target(i) << 4) | 1);
1117 
1118 			/* Set the first free USB window */
1119 			for (j = 0; j < MV_WIN_USB_MAX; j++) {
1120 				if (win_usb_cr_read(base, j) & 0x1)
1121 					continue;
1122 
1123 				win_usb_br_write(base, j, br);
1124 				win_usb_cr_write(base, j, cr);
1125 				break;
1126 			}
1127 		}
1128 	}
1129 }
1130 
1131 /**************************************************************************
1132  * USB3 windows routines
1133  **************************************************************************/
1134 #ifdef SOC_MV_ARMADA38X
1135 static int
1136 decode_win_usb3_valid(void)
1137 {
1138 
1139 	return (decode_win_can_cover_ddr(MV_WIN_USB3_MAX));
1140 }
1141 
1142 static void
1143 decode_win_usb3_dump(u_long base)
1144 {
1145 	int i;
1146 
1147 	for (i = 0; i < MV_WIN_USB3_MAX; i++)
1148 		printf("USB3.0 window#%d: c 0x%08x, b 0x%08x\n", i,
1149 		    win_usb3_cr_read(base, i), win_usb3_br_read(base, i));
1150 }
1151 
1152 /*
1153  * Set USB3 decode windows
1154  */
1155 static void
1156 decode_win_usb3_setup(u_long base)
1157 {
1158 	uint32_t br, cr;
1159 	int i, j;
1160 
1161 	for (i = 0; i < MV_WIN_USB3_MAX; i++) {
1162 		win_usb3_cr_write(base, i, 0);
1163 		win_usb3_br_write(base, i, 0);
1164 	}
1165 
1166 	/* Only access to active DRAM banks is required */
1167 	for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1168 		if (ddr_is_active(i)) {
1169 			br = ddr_base(i);
1170 			cr = (((ddr_size(i) - 1) &
1171 			    (IO_WIN_SIZE_MASK << IO_WIN_SIZE_SHIFT)) |
1172 			    (ddr_attr(i) << IO_WIN_ATTR_SHIFT) |
1173 			    (ddr_target(i) << IO_WIN_TGT_SHIFT) |
1174 			    IO_WIN_ENA_MASK);
1175 
1176 			/* Set the first free USB3.0 window */
1177 			for (j = 0; j < MV_WIN_USB3_MAX; j++) {
1178 				if (win_usb3_cr_read(base, j) & IO_WIN_ENA_MASK)
1179 					continue;
1180 
1181 				win_usb3_br_write(base, j, br);
1182 				win_usb3_cr_write(base, j, cr);
1183 				break;
1184 			}
1185 		}
1186 	}
1187 }
1188 #else
1189 /*
1190  * Provide dummy functions to satisfy the build
1191  * for SoCs not equipped with USB3
1192  */
1193 static int
1194 decode_win_usb3_valid(void)
1195 {
1196 
1197 	return (1);
1198 }
1199 
1200 static void
1201 decode_win_usb3_setup(u_long base)
1202 {
1203 }
1204 
1205 static void
1206 decode_win_usb3_dump(u_long base)
1207 {
1208 }
1209 #endif
1210 /**************************************************************************
1211  * ETH windows routines
1212  **************************************************************************/
1213 
1214 static int
1215 win_eth_can_remap(int i)
1216 {
1217 
1218 	/* ETH encode windows 0-3 have remap capability */
1219 	if (i < 4)
1220 		return (1);
1221 
1222 	return (0);
1223 }
1224 
1225 static int
1226 eth_bare_read(uint32_t base, int i)
1227 {
1228 	uint32_t v;
1229 
1230 	v = win_eth_bare_read(base);
1231 	v &= (1 << i);
1232 
1233 	return (v >> i);
1234 }
1235 
1236 static void
1237 eth_bare_write(uint32_t base, int i, int val)
1238 {
1239 	uint32_t v;
1240 
1241 	v = win_eth_bare_read(base);
1242 	v &= ~(1 << i);
1243 	v |= (val << i);
1244 	win_eth_bare_write(base, v);
1245 }
1246 
1247 static void
1248 eth_epap_write(uint32_t base, int i, int val)
1249 {
1250 	uint32_t v;
1251 
1252 	v = win_eth_epap_read(base);
1253 	v &= ~(0x3 << (i * 2));
1254 	v |= (val << (i * 2));
1255 	win_eth_epap_write(base, v);
1256 }
1257 
1258 static void
1259 decode_win_eth_dump(u_long base)
1260 {
1261 	int i;
1262 
1263 	if (pm_is_disabled(CPU_PM_CTRL_GE(eth_port - 1)))
1264 		return;
1265 
1266 	for (i = 0; i < MV_WIN_ETH_MAX; i++) {
1267 		printf("ETH window#%d: b 0x%08x, s 0x%08x", i,
1268 		    win_eth_br_read(base, i),
1269 		    win_eth_sz_read(base, i));
1270 
1271 		if (win_eth_can_remap(i))
1272 			printf(", ha 0x%08x",
1273 			    win_eth_har_read(base, i));
1274 
1275 		printf("\n");
1276 	}
1277 	printf("ETH windows: bare 0x%08x, epap 0x%08x\n",
1278 	    win_eth_bare_read(base),
1279 	    win_eth_epap_read(base));
1280 }
1281 
1282 #if defined(SOC_MV_LOKIPLUS)
1283 #define MV_WIN_ETH_DDR_TRGT(n)	0
1284 #else
1285 #define MV_WIN_ETH_DDR_TRGT(n)	ddr_target(n)
1286 #endif
1287 
1288 static void
1289 decode_win_eth_setup(u_long base)
1290 {
1291 	uint32_t br, sz;
1292 	int i, j;
1293 
1294 	if (pm_is_disabled(CPU_PM_CTRL_GE(eth_port)))
1295 		return;
1296 
1297 	eth_port++;
1298 
1299 	/* Disable, clear and revoke protection for all ETH windows */
1300 	for (i = 0; i < MV_WIN_ETH_MAX; i++) {
1301 
1302 		eth_bare_write(base, i, 1);
1303 		eth_epap_write(base, i, 0);
1304 		win_eth_br_write(base, i, 0);
1305 		win_eth_sz_write(base, i, 0);
1306 		if (win_eth_can_remap(i))
1307 			win_eth_har_write(base, i, 0);
1308 	}
1309 
1310 	/* Only access to active DRAM banks is required */
1311 	for (i = 0; i < MV_WIN_DDR_MAX; i++)
1312 		if (ddr_is_active(i)) {
1313 
1314 			br = ddr_base(i) | (ddr_attr(i) << 8) | MV_WIN_ETH_DDR_TRGT(i);
1315 			sz = ((ddr_size(i) - 1) & 0xffff0000);
1316 
1317 			/* Set the first free ETH window */
1318 			for (j = 0; j < MV_WIN_ETH_MAX; j++) {
1319 				if (eth_bare_read(base, j) == 0)
1320 					continue;
1321 
1322 				win_eth_br_write(base, j, br);
1323 				win_eth_sz_write(base, j, sz);
1324 
1325 				/* XXX remapping ETH windows not supported */
1326 
1327 				/* Set protection RW */
1328 				eth_epap_write(base, j, 0x3);
1329 
1330 				/* Enable window */
1331 				eth_bare_write(base, j, 0);
1332 				break;
1333 			}
1334 		}
1335 }
1336 
1337 static int
1338 decode_win_eth_valid(void)
1339 {
1340 
1341 	return (decode_win_can_cover_ddr(MV_WIN_ETH_MAX));
1342 }
1343 
1344 /**************************************************************************
1345  * PCIE windows routines
1346  **************************************************************************/
1347 
1348 void
1349 decode_win_pcie_setup(u_long base)
1350 {
1351 	uint32_t size = 0, ddrbase = ~0;
1352 	uint32_t cr, br;
1353 	int i, j;
1354 
1355 	for (i = 0; i < MV_PCIE_BAR_MAX; i++) {
1356 		pcie_bar_br_write(base, i,
1357 		    MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
1358 		if (i < 3)
1359 			pcie_bar_brh_write(base, i, 0);
1360 		if (i > 0)
1361 			pcie_bar_cr_write(base, i, 0);
1362 	}
1363 
1364 	for (i = 0; i < MV_WIN_PCIE_MAX; i++) {
1365 		win_pcie_cr_write(base, i, 0);
1366 		win_pcie_br_write(base, i, 0);
1367 		win_pcie_remap_write(base, i, 0);
1368 	}
1369 
1370 	/* On End-Point only set BAR size to 1MB regardless of DDR size */
1371 	if ((bus_space_read_4(fdtbus_bs_tag, base, MV_PCIE_CONTROL)
1372 	    & MV_PCIE_ROOT_CMPLX) == 0) {
1373 		pcie_bar_cr_write(base, 1, 0xf0000 | 1);
1374 		return;
1375 	}
1376 
1377 	for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1378 		if (ddr_is_active(i)) {
1379 			/* Map DDR to BAR 1 */
1380 			cr = (ddr_size(i) - 1) & 0xffff0000;
1381 			size += ddr_size(i) & 0xffff0000;
1382 			cr |= (ddr_attr(i) << 8) | (ddr_target(i) << 4) | 1;
1383 			br = ddr_base(i);
1384 			if (br < ddrbase)
1385 				ddrbase = br;
1386 
1387 			/* Use the first available PCIE window */
1388 			for (j = 0; j < MV_WIN_PCIE_MAX; j++) {
1389 				if (win_pcie_cr_read(base, j) != 0)
1390 					continue;
1391 
1392 				win_pcie_br_write(base, j, br);
1393 				win_pcie_cr_write(base, j, cr);
1394 				break;
1395 			}
1396 		}
1397 	}
1398 
1399 	/*
1400 	 * Upper 16 bits in BAR register is interpreted as BAR size
1401 	 * (in 64 kB units) plus 64kB, so subtract 0x10000
1402 	 * form value passed to register to get correct value.
1403 	 */
1404 	size -= 0x10000;
1405 	pcie_bar_cr_write(base, 1, size | 1);
1406 	pcie_bar_br_write(base, 1, ddrbase |
1407 	    MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
1408 	pcie_bar_br_write(base, 0, fdt_immr_pa |
1409 	    MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
1410 }
1411 
1412 static int
1413 decode_win_pcie_valid(void)
1414 {
1415 
1416 	return (decode_win_can_cover_ddr(MV_WIN_PCIE_MAX));
1417 }
1418 
1419 /**************************************************************************
1420  * IDMA windows routines
1421  **************************************************************************/
1422 #if defined(SOC_MV_ORION) || defined(SOC_MV_DISCOVERY)
1423 static int
1424 idma_bare_read(u_long base, int i)
1425 {
1426 	uint32_t v;
1427 
1428 	v = win_idma_bare_read(base);
1429 	v &= (1 << i);
1430 
1431 	return (v >> i);
1432 }
1433 
1434 static void
1435 idma_bare_write(u_long base, int i, int val)
1436 {
1437 	uint32_t v;
1438 
1439 	v = win_idma_bare_read(base);
1440 	v &= ~(1 << i);
1441 	v |= (val << i);
1442 	win_idma_bare_write(base, v);
1443 }
1444 
1445 /*
1446  * Sets channel protection 'val' for window 'w' on channel 'c'
1447  */
1448 static void
1449 idma_cap_write(u_long base, int c, int w, int val)
1450 {
1451 	uint32_t v;
1452 
1453 	v = win_idma_cap_read(base, c);
1454 	v &= ~(0x3 << (w * 2));
1455 	v |= (val << (w * 2));
1456 	win_idma_cap_write(base, c, v);
1457 }
1458 
1459 /*
1460  * Set protection 'val' on all channels for window 'w'
1461  */
1462 static void
1463 idma_set_prot(u_long base, int w, int val)
1464 {
1465 	int c;
1466 
1467 	for (c = 0; c < MV_IDMA_CHAN_MAX; c++)
1468 		idma_cap_write(base, c, w, val);
1469 }
1470 
1471 static int
1472 win_idma_can_remap(int i)
1473 {
1474 
1475 	/* IDMA decode windows 0-3 have remap capability */
1476 	if (i < 4)
1477 		return (1);
1478 
1479 	return (0);
1480 }
1481 
1482 void
1483 decode_win_idma_setup(u_long base)
1484 {
1485 	uint32_t br, sz;
1486 	int i, j;
1487 
1488 	if (pm_is_disabled(CPU_PM_CTRL_IDMA))
1489 		return;
1490 	/*
1491 	 * Disable and clear all IDMA windows, revoke protection for all channels
1492 	 */
1493 	for (i = 0; i < MV_WIN_IDMA_MAX; i++) {
1494 
1495 		idma_bare_write(base, i, 1);
1496 		win_idma_br_write(base, i, 0);
1497 		win_idma_sz_write(base, i, 0);
1498 		if (win_idma_can_remap(i) == 1)
1499 			win_idma_har_write(base, i, 0);
1500 	}
1501 	for (i = 0; i < MV_IDMA_CHAN_MAX; i++)
1502 		win_idma_cap_write(base, i, 0);
1503 
1504 	/*
1505 	 * Set up access to all active DRAM banks
1506 	 */
1507 	for (i = 0; i < MV_WIN_DDR_MAX; i++)
1508 		if (ddr_is_active(i)) {
1509 			br = ddr_base(i) | (ddr_attr(i) << 8) | ddr_target(i);
1510 			sz = ((ddr_size(i) - 1) & 0xffff0000);
1511 
1512 			/* Place DDR entries in non-remapped windows */
1513 			for (j = 0; j < MV_WIN_IDMA_MAX; j++)
1514 				if (win_idma_can_remap(j) != 1 &&
1515 				    idma_bare_read(base, j) == 1) {
1516 
1517 					/* Configure window */
1518 					win_idma_br_write(base, j, br);
1519 					win_idma_sz_write(base, j, sz);
1520 
1521 					/* Set protection RW on all channels */
1522 					idma_set_prot(base, j, 0x3);
1523 
1524 					/* Enable window */
1525 					idma_bare_write(base, j, 0);
1526 					break;
1527 				}
1528 		}
1529 
1530 	/*
1531 	 * Remaining targets -- from statically defined table
1532 	 */
1533 	for (i = 0; i < idma_wins_no; i++)
1534 		if (idma_wins[i].target > 0) {
1535 			br = (idma_wins[i].base & 0xffff0000) |
1536 			    (idma_wins[i].attr << 8) | idma_wins[i].target;
1537 			sz = ((idma_wins[i].size - 1) & 0xffff0000);
1538 
1539 			/* Set the first free IDMA window */
1540 			for (j = 0; j < MV_WIN_IDMA_MAX; j++) {
1541 				if (idma_bare_read(base, j) == 0)
1542 					continue;
1543 
1544 				/* Configure window */
1545 				win_idma_br_write(base, j, br);
1546 				win_idma_sz_write(base, j, sz);
1547 				if (win_idma_can_remap(j) &&
1548 				    idma_wins[j].remap >= 0)
1549 					win_idma_har_write(base, j,
1550 					    idma_wins[j].remap);
1551 
1552 				/* Set protection RW on all channels */
1553 				idma_set_prot(base, j, 0x3);
1554 
1555 				/* Enable window */
1556 				idma_bare_write(base, j, 0);
1557 				break;
1558 			}
1559 		}
1560 }
1561 
1562 int
1563 decode_win_idma_valid(void)
1564 {
1565 	const struct decode_win *wintab;
1566 	int c, i, j, rv;
1567 	uint32_t b, e, s;
1568 
1569 	if (idma_wins_no > MV_WIN_IDMA_MAX) {
1570 		printf("IDMA windows: too many entries: %d\n", idma_wins_no);
1571 		return (0);
1572 	}
1573 	for (i = 0, c = 0; i < MV_WIN_DDR_MAX; i++)
1574 		if (ddr_is_active(i))
1575 			c++;
1576 
1577 	if (idma_wins_no > (MV_WIN_IDMA_MAX - c)) {
1578 		printf("IDMA windows: too many entries: %d, available: %d\n",
1579 		    idma_wins_no, MV_WIN_IDMA_MAX - c);
1580 		return (0);
1581 	}
1582 
1583 	wintab = idma_wins;
1584 	rv = 1;
1585 	for (i = 0; i < idma_wins_no; i++, wintab++) {
1586 
1587 		if (wintab->target == 0) {
1588 			printf("IDMA window#%d: DDR target window is not "
1589 			    "supposed to be reprogrammed!\n", i);
1590 			rv = 0;
1591 		}
1592 
1593 		if (wintab->remap >= 0 && win_cpu_can_remap(i) != 1) {
1594 			printf("IDMA window#%d: not capable of remapping, but "
1595 			    "val 0x%08x defined\n", i, wintab->remap);
1596 			rv = 0;
1597 		}
1598 
1599 		s = wintab->size;
1600 		b = wintab->base;
1601 		e = b + s - 1;
1602 		if (s > (0xFFFFFFFF - b + 1)) {
1603 			/* XXX this boundary check should account for 64bit and
1604 			 * remapping.. */
1605 			printf("IDMA window#%d: no space for size 0x%08x at "
1606 			    "0x%08x\n", i, s, b);
1607 			rv = 0;
1608 			continue;
1609 		}
1610 
1611 		j = decode_win_overlap(i, idma_wins_no, &idma_wins[0]);
1612 		if (j >= 0) {
1613 			printf("IDMA window#%d: (0x%08x - 0x%08x) overlaps "
1614 			    "with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
1615 			    idma_wins[j].base,
1616 			    idma_wins[j].base + idma_wins[j].size - 1);
1617 			rv = 0;
1618 		}
1619 	}
1620 
1621 	return (rv);
1622 }
1623 
1624 void
1625 decode_win_idma_dump(u_long base)
1626 {
1627 	int i;
1628 
1629 	if (pm_is_disabled(CPU_PM_CTRL_IDMA))
1630 		return;
1631 
1632 	for (i = 0; i < MV_WIN_IDMA_MAX; i++) {
1633 		printf("IDMA window#%d: b 0x%08x, s 0x%08x", i,
1634 		    win_idma_br_read(base, i), win_idma_sz_read(base, i));
1635 
1636 		if (win_idma_can_remap(i))
1637 			printf(", ha 0x%08x", win_idma_har_read(base, i));
1638 
1639 		printf("\n");
1640 	}
1641 	for (i = 0; i < MV_IDMA_CHAN_MAX; i++)
1642 		printf("IDMA channel#%d: ap 0x%08x\n", i,
1643 		    win_idma_cap_read(base, i));
1644 	printf("IDMA windows: bare 0x%08x\n", win_idma_bare_read(base));
1645 }
1646 #else
1647 
1648 /* Provide dummy functions to satisfy the build for SoCs not equipped with IDMA */
1649 int
1650 decode_win_idma_valid(void)
1651 {
1652 
1653 	return (1);
1654 }
1655 
1656 void
1657 decode_win_idma_setup(u_long base)
1658 {
1659 }
1660 
1661 void
1662 decode_win_idma_dump(u_long base)
1663 {
1664 }
1665 #endif
1666 
1667 /**************************************************************************
1668  * XOR windows routines
1669  **************************************************************************/
1670 #if defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY)
1671 static int
1672 xor_ctrl_read(u_long base, int i, int c, int e)
1673 {
1674 	uint32_t v;
1675 	v = win_xor_ctrl_read(base, c, e);
1676 	v &= (1 << i);
1677 
1678 	return (v >> i);
1679 }
1680 
1681 static void
1682 xor_ctrl_write(u_long base, int i, int c, int e, int val)
1683 {
1684 	uint32_t v;
1685 
1686 	v = win_xor_ctrl_read(base, c, e);
1687 	v &= ~(1 << i);
1688 	v |= (val << i);
1689 	win_xor_ctrl_write(base, c, e, v);
1690 }
1691 
1692 /*
1693  * Set channel protection 'val' for window 'w' on channel 'c'
1694  */
1695 static void
1696 xor_chan_write(u_long base, int c, int e, int w, int val)
1697 {
1698 	uint32_t v;
1699 
1700 	v = win_xor_ctrl_read(base, c, e);
1701 	v &= ~(0x3 << (w * 2 + 16));
1702 	v |= (val << (w * 2 + 16));
1703 	win_xor_ctrl_write(base, c, e, v);
1704 }
1705 
1706 /*
1707  * Set protection 'val' on all channels for window 'w' on engine 'e'
1708  */
1709 static void
1710 xor_set_prot(u_long base, int w, int e, int val)
1711 {
1712 	int c;
1713 
1714 	for (c = 0; c < MV_XOR_CHAN_MAX; c++)
1715 		xor_chan_write(base, c, e, w, val);
1716 }
1717 
1718 static int
1719 win_xor_can_remap(int i)
1720 {
1721 
1722 	/* XOR decode windows 0-3 have remap capability */
1723 	if (i < 4)
1724 		return (1);
1725 
1726 	return (0);
1727 }
1728 
1729 static int
1730 xor_max_eng(void)
1731 {
1732 	uint32_t dev, rev;
1733 
1734 	soc_id(&dev, &rev);
1735 	switch (dev) {
1736 	case MV_DEV_88F6281:
1737 	case MV_DEV_88F6282:
1738 	case MV_DEV_MV78130:
1739 	case MV_DEV_MV78160:
1740 	case MV_DEV_MV78230:
1741 	case MV_DEV_MV78260:
1742 	case MV_DEV_MV78460:
1743 		return (2);
1744 	case MV_DEV_MV78100:
1745 	case MV_DEV_MV78100_Z0:
1746 		return (1);
1747 	default:
1748 		return (0);
1749 	}
1750 }
1751 
1752 static void
1753 xor_active_dram(u_long base, int c, int e, int *window)
1754 {
1755 	uint32_t br, sz;
1756 	int i, m, w;
1757 
1758 	/*
1759 	 * Set up access to all active DRAM banks
1760 	 */
1761 	m = xor_max_eng();
1762 	for (i = 0; i < m; i++)
1763 		if (ddr_is_active(i)) {
1764 			br = ddr_base(i) | (ddr_attr(i) << 8) |
1765 			    ddr_target(i);
1766 			sz = ((ddr_size(i) - 1) & 0xffff0000);
1767 
1768 			/* Place DDR entries in non-remapped windows */
1769 			for (w = 0; w < MV_WIN_XOR_MAX; w++)
1770 				if (win_xor_can_remap(w) != 1 &&
1771 				    (xor_ctrl_read(base, w, c, e) == 0) &&
1772 				    w > *window) {
1773 					/* Configure window */
1774 					win_xor_br_write(base, w, e, br);
1775 					win_xor_sz_write(base, w, e, sz);
1776 
1777 					/* Set protection RW on all channels */
1778 					xor_set_prot(base, w, e, 0x3);
1779 
1780 					/* Enable window */
1781 					xor_ctrl_write(base, w, c, e, 1);
1782 					(*window)++;
1783 					break;
1784 				}
1785 		}
1786 }
1787 
1788 void
1789 decode_win_xor_setup(u_long base)
1790 {
1791 	uint32_t br, sz;
1792 	int i, j, z, e = 1, m, window;
1793 
1794 	if (pm_is_disabled(CPU_PM_CTRL_XOR))
1795 		return;
1796 
1797 	/*
1798 	 * Disable and clear all XOR windows, revoke protection for all
1799 	 * channels
1800 	 */
1801 	m = xor_max_eng();
1802 	for (j = 0; j < m; j++, e--) {
1803 
1804 		/* Number of non-remaped windows */
1805 		window = MV_XOR_NON_REMAP - 1;
1806 
1807 		for (i = 0; i < MV_WIN_XOR_MAX; i++) {
1808 			win_xor_br_write(base, i, e, 0);
1809 			win_xor_sz_write(base, i, e, 0);
1810 		}
1811 
1812 		if (win_xor_can_remap(i) == 1)
1813 			win_xor_har_write(base, i, e, 0);
1814 
1815 		for (i = 0; i < MV_XOR_CHAN_MAX; i++) {
1816 			win_xor_ctrl_write(base, i, e, 0);
1817 			xor_active_dram(base, i, e, &window);
1818 		}
1819 
1820 		/*
1821 		 * Remaining targets -- from a statically defined table
1822 		 */
1823 		for (i = 0; i < xor_wins_no; i++)
1824 			if (xor_wins[i].target > 0) {
1825 				br = (xor_wins[i].base & 0xffff0000) |
1826 				    (xor_wins[i].attr << 8) |
1827 				    xor_wins[i].target;
1828 				sz = ((xor_wins[i].size - 1) & 0xffff0000);
1829 
1830 				/* Set the first free XOR window */
1831 				for (z = 0; z < MV_WIN_XOR_MAX; z++) {
1832 					if (xor_ctrl_read(base, z, 0, e) &&
1833 					    xor_ctrl_read(base, z, 1, e))
1834 						continue;
1835 
1836 					/* Configure window */
1837 					win_xor_br_write(base, z, e, br);
1838 					win_xor_sz_write(base, z, e, sz);
1839 					if (win_xor_can_remap(z) &&
1840 					    xor_wins[z].remap >= 0)
1841 						win_xor_har_write(base, z, e,
1842 						    xor_wins[z].remap);
1843 
1844 					/* Set protection RW on all channels */
1845 					xor_set_prot(base, z, e, 0x3);
1846 
1847 					/* Enable window */
1848 					xor_ctrl_write(base, z, 0, e, 1);
1849 					xor_ctrl_write(base, z, 1, e, 1);
1850 					break;
1851 				}
1852 			}
1853 	}
1854 }
1855 
1856 int
1857 decode_win_xor_valid(void)
1858 {
1859 	const struct decode_win *wintab;
1860 	int c, i, j, rv;
1861 	uint32_t b, e, s;
1862 
1863 	if (xor_wins_no > MV_WIN_XOR_MAX) {
1864 		printf("XOR windows: too many entries: %d\n", xor_wins_no);
1865 		return (0);
1866 	}
1867 	for (i = 0, c = 0; i < MV_WIN_DDR_MAX; i++)
1868 		if (ddr_is_active(i))
1869 			c++;
1870 
1871 	if (xor_wins_no > (MV_WIN_XOR_MAX - c)) {
1872 		printf("XOR windows: too many entries: %d, available: %d\n",
1873 		    xor_wins_no, MV_WIN_IDMA_MAX - c);
1874 		return (0);
1875 	}
1876 
1877 	wintab = xor_wins;
1878 	rv = 1;
1879 	for (i = 0; i < xor_wins_no; i++, wintab++) {
1880 
1881 		if (wintab->target == 0) {
1882 			printf("XOR window#%d: DDR target window is not "
1883 			    "supposed to be reprogrammed!\n", i);
1884 			rv = 0;
1885 		}
1886 
1887 		if (wintab->remap >= 0 && win_cpu_can_remap(i) != 1) {
1888 			printf("XOR window#%d: not capable of remapping, but "
1889 			    "val 0x%08x defined\n", i, wintab->remap);
1890 			rv = 0;
1891 		}
1892 
1893 		s = wintab->size;
1894 		b = wintab->base;
1895 		e = b + s - 1;
1896 		if (s > (0xFFFFFFFF - b + 1)) {
1897 			/*
1898 			 * XXX this boundary check should account for 64bit
1899 			 * and remapping..
1900 			 */
1901 			printf("XOR window#%d: no space for size 0x%08x at "
1902 			    "0x%08x\n", i, s, b);
1903 			rv = 0;
1904 			continue;
1905 		}
1906 
1907 		j = decode_win_overlap(i, xor_wins_no, &xor_wins[0]);
1908 		if (j >= 0) {
1909 			printf("XOR window#%d: (0x%08x - 0x%08x) overlaps "
1910 			    "with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
1911 			    xor_wins[j].base,
1912 			    xor_wins[j].base + xor_wins[j].size - 1);
1913 			rv = 0;
1914 		}
1915 	}
1916 
1917 	return (rv);
1918 }
1919 
1920 void
1921 decode_win_xor_dump(u_long base)
1922 {
1923 	int i, j;
1924 	int e = 1;
1925 
1926 	if (pm_is_disabled(CPU_PM_CTRL_XOR))
1927 		return;
1928 
1929 	for (j = 0; j < xor_max_eng(); j++, e--) {
1930 		for (i = 0; i < MV_WIN_XOR_MAX; i++) {
1931 			printf("XOR window#%d: b 0x%08x, s 0x%08x", i,
1932 			    win_xor_br_read(base, i, e), win_xor_sz_read(base, i, e));
1933 
1934 			if (win_xor_can_remap(i))
1935 				printf(", ha 0x%08x", win_xor_har_read(base, i, e));
1936 
1937 			printf("\n");
1938 		}
1939 		for (i = 0; i < MV_XOR_CHAN_MAX; i++)
1940 			printf("XOR control#%d: 0x%08x\n", i,
1941 			    win_xor_ctrl_read(base, i, e));
1942 	}
1943 }
1944 
1945 #else
1946 /* Provide dummy functions to satisfy the build for SoCs not equipped with XOR */
1947 static int
1948 decode_win_xor_valid(void)
1949 {
1950 
1951 	return (1);
1952 }
1953 
1954 static void
1955 decode_win_xor_setup(u_long base)
1956 {
1957 }
1958 
1959 static void
1960 decode_win_xor_dump(u_long base)
1961 {
1962 }
1963 #endif
1964 
1965 /**************************************************************************
1966  * SATA windows routines
1967  **************************************************************************/
1968 static void
1969 decode_win_sata_setup(u_long base)
1970 {
1971 	uint32_t cr, br;
1972 	int i, j;
1973 
1974 	if (pm_is_disabled(CPU_PM_CTRL_SATA))
1975 		return;
1976 
1977 	for (i = 0; i < MV_WIN_SATA_MAX; i++) {
1978 		win_sata_cr_write(base, i, 0);
1979 		win_sata_br_write(base, i, 0);
1980 	}
1981 
1982 	for (i = 0; i < MV_WIN_DDR_MAX; i++)
1983 		if (ddr_is_active(i)) {
1984 			cr = ((ddr_size(i) - 1) & 0xffff0000) |
1985 			    (ddr_attr(i) << 8) | (ddr_target(i) << 4) | 1;
1986 			br = ddr_base(i);
1987 
1988 			/* Use the first available SATA window */
1989 			for (j = 0; j < MV_WIN_SATA_MAX; j++) {
1990 				if ((win_sata_cr_read(base, j) & 1) != 0)
1991 					continue;
1992 
1993 				win_sata_br_write(base, j, br);
1994 				win_sata_cr_write(base, j, cr);
1995 				break;
1996 			}
1997 		}
1998 }
1999 
2000 static int
2001 decode_win_sata_valid(void)
2002 {
2003 	uint32_t dev, rev;
2004 
2005 	soc_id(&dev, &rev);
2006 	if (dev == MV_DEV_88F5281)
2007 		return (1);
2008 
2009 	return (decode_win_can_cover_ddr(MV_WIN_SATA_MAX));
2010 }
2011 
2012 /**************************************************************************
2013  * FDT parsing routines.
2014  **************************************************************************/
2015 
2016 static int
2017 fdt_get_ranges(const char *nodename, void *buf, int size, int *tuples,
2018     int *tuplesize)
2019 {
2020 	phandle_t node;
2021 	pcell_t addr_cells, par_addr_cells, size_cells;
2022 	int len, tuple_size, tuples_count;
2023 
2024 	node = OF_finddevice(nodename);
2025 	if (node == -1)
2026 		return (EINVAL);
2027 
2028 	if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
2029 		return (ENXIO);
2030 
2031 	par_addr_cells = fdt_parent_addr_cells(node);
2032 	if (par_addr_cells > 2)
2033 		return (ERANGE);
2034 
2035 	tuple_size = sizeof(pcell_t) * (addr_cells + par_addr_cells +
2036 	    size_cells);
2037 
2038 	/* Note the OF_getprop_alloc() cannot be used at this early stage. */
2039 	len = OF_getprop(node, "ranges", buf, size);
2040 
2041 	/*
2042 	 * XXX this does not handle the empty 'ranges;' case, which is
2043 	 * legitimate and should be allowed.
2044 	 */
2045 	tuples_count = len / tuple_size;
2046 	if (tuples_count <= 0)
2047 		return (ERANGE);
2048 
2049 	if (par_addr_cells > 2 || addr_cells > 2 || size_cells > 2)
2050 		return (ERANGE);
2051 
2052 	*tuples = tuples_count;
2053 	*tuplesize = tuple_size;
2054 	return (0);
2055 }
2056 
2057 static int
2058 win_cpu_from_dt(void)
2059 {
2060 	pcell_t ranges[48];
2061 	phandle_t node;
2062 	int i, entry_size, err, t, tuple_size, tuples;
2063 	u_long sram_base, sram_size;
2064 
2065 	t = 0;
2066 	/* Retrieve 'ranges' property of '/localbus' node. */
2067 	if ((err = fdt_get_ranges("/localbus", ranges, sizeof(ranges),
2068 	    &tuples, &tuple_size)) == 0) {
2069 		/*
2070 		 * Fill CPU decode windows table.
2071 		 */
2072 		bzero((void *)&cpu_win_tbl, sizeof(cpu_win_tbl));
2073 
2074 		entry_size = tuple_size / sizeof(pcell_t);
2075 		cpu_wins_no = tuples;
2076 
2077 		for (i = 0, t = 0; t < tuples; i += entry_size, t++) {
2078 			cpu_win_tbl[t].target = 1;
2079 			cpu_win_tbl[t].attr = fdt32_to_cpu(ranges[i + 1]);
2080 			cpu_win_tbl[t].base = fdt32_to_cpu(ranges[i + 2]);
2081 			cpu_win_tbl[t].size = fdt32_to_cpu(ranges[i + 3]);
2082 			cpu_win_tbl[t].remap = ~0;
2083 			debugf("target = 0x%0x attr = 0x%0x base = 0x%0x "
2084 			    "size = 0x%0x remap = 0x%0x\n",
2085 			    cpu_win_tbl[t].target,
2086 			    cpu_win_tbl[t].attr, cpu_win_tbl[t].base,
2087 			    cpu_win_tbl[t].size, cpu_win_tbl[t].remap);
2088 		}
2089 	}
2090 
2091 	/*
2092 	 * Retrieve CESA SRAM data.
2093 	 */
2094 	if ((node = OF_finddevice("sram")) != -1)
2095 		if (fdt_is_compatible(node, "mrvl,cesa-sram"))
2096 			goto moveon;
2097 
2098 	if ((node = OF_finddevice("/")) == 0)
2099 		return (ENXIO);
2100 
2101 	if ((node = fdt_find_compatible(node, "mrvl,cesa-sram", 0)) == 0)
2102 		/* SRAM block is not always present. */
2103 		return (0);
2104 moveon:
2105 	sram_base = sram_size = 0;
2106 	if (fdt_regsize(node, &sram_base, &sram_size) != 0)
2107 		return (EINVAL);
2108 
2109 	cpu_win_tbl[t].target = MV_WIN_CESA_TARGET;
2110 #ifdef SOC_MV_ARMADA38X
2111 	cpu_win_tbl[t].attr = MV_WIN_CESA_ATTR(0);
2112 #else
2113 	cpu_win_tbl[t].attr = MV_WIN_CESA_ATTR(1);
2114 #endif
2115 	cpu_win_tbl[t].base = sram_base;
2116 	cpu_win_tbl[t].size = sram_size;
2117 	cpu_win_tbl[t].remap = ~0;
2118 	cpu_wins_no++;
2119 	debugf("sram: base = 0x%0lx size = 0x%0lx\n", sram_base, sram_size);
2120 
2121 	/* Check if there is a second CESA node */
2122 	while ((node = OF_peer(node)) != 0) {
2123 		if (fdt_is_compatible(node, "mrvl,cesa-sram")) {
2124 			if (fdt_regsize(node, &sram_base, &sram_size) != 0)
2125 				return (EINVAL);
2126 			break;
2127 		}
2128 	}
2129 
2130 	if (node == 0)
2131 		return (0);
2132 
2133 	t++;
2134 	if (t >= nitems(cpu_win_tbl)) {
2135 		debugf("cannot fit CESA tuple into cpu_win_tbl\n");
2136 		return (ENOMEM);
2137 	}
2138 
2139 	/* Configure window for CESA1 */
2140 	cpu_win_tbl[t].target = MV_WIN_CESA_TARGET;
2141 	cpu_win_tbl[t].attr = MV_WIN_CESA_ATTR(1);
2142 	cpu_win_tbl[t].base = sram_base;
2143 	cpu_win_tbl[t].size = sram_size;
2144 	cpu_win_tbl[t].remap = ~0;
2145 	cpu_wins_no++;
2146 	debugf("sram: base = 0x%0lx size = 0x%0lx\n", sram_base, sram_size);
2147 
2148 	return (0);
2149 }
2150 
2151 static int
2152 fdt_win_setup(void)
2153 {
2154 	phandle_t node, child;
2155 	struct soc_node_spec *soc_node;
2156 	u_long size, base;
2157 	int err, i;
2158 
2159 	node = OF_finddevice("/");
2160 	if (node == -1)
2161 		panic("fdt_win_setup: no root node");
2162 
2163 	/*
2164 	 * Traverse through all children of root and simple-bus nodes.
2165 	 * For each found device retrieve decode windows data (if applicable).
2166 	 */
2167 	child = OF_child(node);
2168 	while (child != 0) {
2169 		for (i = 0; soc_nodes[i].compat != NULL; i++) {
2170 
2171 			soc_node = &soc_nodes[i];
2172 
2173 			if (!fdt_is_compatible(child, soc_node->compat))
2174 				continue;
2175 
2176 			err = fdt_regsize(child, &base, &size);
2177 			if (err != 0)
2178 				return (err);
2179 
2180 			base = (base & 0x000fffff) | fdt_immr_va;
2181 			if (soc_node->decode_handler != NULL)
2182 				soc_node->decode_handler(base);
2183 			else
2184 				return (ENXIO);
2185 
2186 			if (MV_DUMP_WIN && (soc_node->dump_handler != NULL))
2187 				soc_node->dump_handler(base);
2188 		}
2189 
2190 		/*
2191 		 * Once done with root-level children let's move down to
2192 		 * simple-bus and its children.
2193 		 */
2194 		child = OF_peer(child);
2195 		if ((child == 0) && (node == OF_finddevice("/"))) {
2196 			node = fdt_find_compatible(node, "simple-bus", 0);
2197 			if (node == 0)
2198 				return (ENXIO);
2199 			child = OF_child(node);
2200 		}
2201 		/*
2202 		 * Next, move one more level down to internal-regs node (if
2203 		 * it is present) and its children. This node also have
2204 		 * "simple-bus" compatible.
2205 		 */
2206 		if ((child == 0) && (node == OF_finddevice("simple-bus"))) {
2207 			node = fdt_find_compatible(node, "simple-bus", 0);
2208 			if (node == 0)
2209 				return (0);
2210 			child = OF_child(node);
2211 		}
2212 	}
2213 
2214 	return (0);
2215 }
2216 
2217 static void
2218 fdt_fixup_busfreq(phandle_t root)
2219 {
2220 	phandle_t sb;
2221 	pcell_t freq;
2222 
2223 	freq = cpu_to_fdt32(get_tclk());
2224 
2225 	/*
2226 	 * Fix bus speed in cpu node
2227 	 */
2228 	if ((sb = OF_finddevice("cpu")) != 0)
2229 		if (fdt_is_compatible_strict(sb, "ARM,88VS584"))
2230 			OF_setprop(sb, "bus-frequency", (void *)&freq,
2231 			    sizeof(freq));
2232 
2233 	/*
2234 	 * This fixup sets the simple-bus bus-frequency property.
2235 	 */
2236 	if ((sb = fdt_find_compatible(root, "simple-bus", 1)) != 0)
2237 		OF_setprop(sb, "bus-frequency", (void *)&freq, sizeof(freq));
2238 }
2239 
2240 static void
2241 fdt_fixup_ranges(phandle_t root)
2242 {
2243 	phandle_t node;
2244 	pcell_t par_addr_cells, addr_cells, size_cells;
2245 	pcell_t ranges[3], reg[2], *rangesptr;
2246 	int len, tuple_size, tuples_count;
2247 	uint32_t base;
2248 
2249 	/* Fix-up SoC ranges according to real fdt_immr_pa */
2250 	if ((node = fdt_find_compatible(root, "simple-bus", 1)) != 0) {
2251 		if (fdt_addrsize_cells(node, &addr_cells, &size_cells) == 0 &&
2252 		    (par_addr_cells = fdt_parent_addr_cells(node) <= 2)) {
2253 			tuple_size = sizeof(pcell_t) * (par_addr_cells +
2254 			   addr_cells + size_cells);
2255 			len = OF_getprop(node, "ranges", ranges,
2256 			    sizeof(ranges));
2257 			tuples_count = len / tuple_size;
2258 			/* Unexpected settings are not supported */
2259 			if (tuples_count != 1)
2260 				goto fixup_failed;
2261 
2262 			rangesptr = &ranges[0];
2263 			rangesptr += par_addr_cells;
2264 			base = fdt_data_get((void *)rangesptr, addr_cells);
2265 			*rangesptr = cpu_to_fdt32(fdt_immr_pa);
2266 			if (OF_setprop(node, "ranges", (void *)&ranges[0],
2267 			    sizeof(ranges)) < 0)
2268 				goto fixup_failed;
2269 		}
2270 	}
2271 
2272 	/* Fix-up PCIe reg according to real PCIe registers' PA */
2273 	if ((node = fdt_find_compatible(root, "mrvl,pcie", 1)) != 0) {
2274 		if (fdt_addrsize_cells(OF_parent(node), &par_addr_cells,
2275 		    &size_cells) == 0) {
2276 			tuple_size = sizeof(pcell_t) * (par_addr_cells +
2277 			    size_cells);
2278 			len = OF_getprop(node, "reg", reg, sizeof(reg));
2279 			tuples_count = len / tuple_size;
2280 			/* Unexpected settings are not supported */
2281 			if (tuples_count != 1)
2282 				goto fixup_failed;
2283 
2284 			base = fdt_data_get((void *)&reg[0], par_addr_cells);
2285 			base &= ~0xFF000000;
2286 			base |= fdt_immr_pa;
2287 			reg[0] = cpu_to_fdt32(base);
2288 			if (OF_setprop(node, "reg", (void *)&reg[0],
2289 			    sizeof(reg)) < 0)
2290 				goto fixup_failed;
2291 		}
2292 	}
2293 	/* Fix-up succeeded. May return and continue */
2294 	return;
2295 
2296 fixup_failed:
2297 	while (1) {
2298 		/*
2299 		 * In case of any error while fixing ranges just hang.
2300 		 *	1. No message can be displayed yet since console
2301 		 *	   is not initialized.
2302 		 *	2. Going further will cause failure on bus_space_map()
2303 		 *	   relying on the wrong ranges or data abort when
2304 		 *	   accessing PCIe registers.
2305 		 */
2306 	}
2307 }
2308 
2309 struct fdt_fixup_entry fdt_fixup_table[] = {
2310 	{ "mrvl,DB-88F6281", &fdt_fixup_busfreq },
2311 	{ "mrvl,DB-78460", &fdt_fixup_busfreq },
2312 	{ "mrvl,DB-78460", &fdt_fixup_ranges },
2313 	{ NULL, NULL }
2314 };
2315 
2316 #ifndef INTRNG
2317 static int
2318 fdt_pic_decode_ic(phandle_t node, pcell_t *intr, int *interrupt, int *trig,
2319     int *pol)
2320 {
2321 
2322 	if (!fdt_is_compatible(node, "mrvl,pic") &&
2323 	    !fdt_is_compatible(node, "mrvl,mpic"))
2324 		return (ENXIO);
2325 
2326 	*interrupt = fdt32_to_cpu(intr[0]);
2327 	*trig = INTR_TRIGGER_CONFORM;
2328 	*pol = INTR_POLARITY_CONFORM;
2329 
2330 	return (0);
2331 }
2332 
2333 fdt_pic_decode_t fdt_pic_table[] = {
2334 #ifdef SOC_MV_ARMADA38X
2335 	&gic_decode_fdt,
2336 #endif
2337 	&fdt_pic_decode_ic,
2338 	NULL
2339 };
2340 #endif
2341 
2342 uint64_t
2343 get_sar_value(void)
2344 {
2345 	uint32_t sar_low, sar_high;
2346 
2347 #if defined(SOC_MV_ARMADAXP)
2348 	sar_high = bus_space_read_4(fdtbus_bs_tag, MV_MISC_BASE,
2349 	    SAMPLE_AT_RESET_HI);
2350 	sar_low = bus_space_read_4(fdtbus_bs_tag, MV_MISC_BASE,
2351 	    SAMPLE_AT_RESET_LO);
2352 #elif defined(SOC_MV_ARMADA38X)
2353 	sar_high = 0;
2354 	sar_low = bus_space_read_4(fdtbus_bs_tag, MV_MISC_BASE,
2355 	    SAMPLE_AT_RESET);
2356 #else
2357 	/*
2358 	 * TODO: Add getting proper values for other SoC configurations
2359 	 */
2360 	sar_high = 0;
2361 	sar_low = 0;
2362 #endif
2363 
2364 	return (((uint64_t)sar_high << 32) | sar_low);
2365 }
2366