xref: /freebsd/sys/arm/mv/mv_common.c (revision 28f4385e45a2681c14bd04b83fe1796eaefe8265)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (C) 2008-2011 MARVELL INTERNATIONAL LTD.
5  * All rights reserved.
6  *
7  * Developed by Semihalf.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of MARVELL nor the names of contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/kdb.h>
43 #include <sys/reboot.h>
44 
45 #include <dev/fdt/fdt_common.h>
46 #include <dev/ofw/openfirm.h>
47 #include <dev/ofw/ofw_bus_subr.h>
48 
49 #include <machine/bus.h>
50 #include <machine/fdt.h>
51 #include <machine/vmparam.h>
52 #include <machine/intr.h>
53 
54 #include <arm/mv/mvreg.h>
55 #include <arm/mv/mvvar.h>
56 #include <arm/mv/mvwin.h>
57 
58 
59 MALLOC_DEFINE(M_IDMA, "idma", "idma dma test memory");
60 
61 #define IDMA_DEBUG
62 #undef IDMA_DEBUG
63 
64 #define MAX_CPU_WIN	5
65 
66 #ifdef DEBUG
67 #define debugf(fmt, args...) do { printf("%s(): ", __func__);	\
68     printf(fmt,##args); } while (0)
69 #else
70 #define debugf(fmt, args...)
71 #endif
72 
73 #ifdef DEBUG
74 #define MV_DUMP_WIN	1
75 #else
76 #define MV_DUMP_WIN	0
77 #endif
78 
79 struct soc_node_spec;
80 
81 static enum soc_family soc_family;
82 
83 static int mv_win_cesa_attr(int wng_sel);
84 static int mv_win_cesa_attr_armv5(int eng_sel);
85 static int mv_win_cesa_attr_armada38x(int eng_sel);
86 static int mv_win_cesa_attr_armadaxp(int eng_sel);
87 
88 uint32_t read_cpu_ctrl_armv5(uint32_t reg);
89 uint32_t read_cpu_ctrl_armv7(uint32_t reg);
90 
91 void write_cpu_ctrl_armv5(uint32_t reg, uint32_t val);
92 void write_cpu_ctrl_armv7(uint32_t reg, uint32_t val);
93 
94 static int win_eth_can_remap(int i);
95 
96 static int decode_win_cesa_valid(void);
97 static int decode_win_cpu_valid(void);
98 static int decode_win_usb_valid(void);
99 static int decode_win_usb3_valid(void);
100 static int decode_win_eth_valid(void);
101 static int decode_win_pcie_valid(void);
102 static int decode_win_sata_valid(void);
103 static int decode_win_sdhci_valid(void);
104 
105 static int decode_win_idma_valid(void);
106 static int decode_win_xor_valid(void);
107 
108 static void decode_win_cpu_setup(void);
109 static int decode_win_sdram_fixup(void);
110 static void decode_win_cesa_setup(u_long);
111 static void decode_win_a38x_cesa_setup(u_long);
112 static void decode_win_usb_setup(u_long);
113 static void decode_win_usb3_setup(u_long);
114 static void decode_win_eth_setup(u_long);
115 static void decode_win_neta_setup(u_long);
116 static void decode_win_sata_setup(u_long);
117 static void decode_win_ahci_setup(u_long);
118 static void decode_win_sdhci_setup(u_long);
119 
120 static void decode_win_idma_setup(u_long);
121 static void decode_win_xor_setup(u_long);
122 
123 static void decode_win_cesa_dump(u_long);
124 static void decode_win_a38x_cesa_dump(u_long);
125 static void decode_win_usb_dump(u_long);
126 static void decode_win_usb3_dump(u_long);
127 static void decode_win_eth_dump(u_long base);
128 static void decode_win_neta_dump(u_long base);
129 static void decode_win_idma_dump(u_long base);
130 static void decode_win_xor_dump(u_long base);
131 static void decode_win_ahci_dump(u_long base);
132 static void decode_win_sdhci_dump(u_long);
133 static void decode_win_pcie_dump(u_long);
134 
135 static uint32_t win_cpu_cr_read(int);
136 static uint32_t win_cpu_armv5_cr_read(int);
137 static uint32_t win_cpu_armv7_cr_read(int);
138 static uint32_t win_cpu_br_read(int);
139 static uint32_t win_cpu_armv5_br_read(int);
140 static uint32_t win_cpu_armv7_br_read(int);
141 static uint32_t win_cpu_remap_l_read(int);
142 static uint32_t win_cpu_armv5_remap_l_read(int);
143 static uint32_t win_cpu_armv7_remap_l_read(int);
144 static uint32_t win_cpu_remap_h_read(int);
145 static uint32_t win_cpu_armv5_remap_h_read(int);
146 static uint32_t win_cpu_armv7_remap_h_read(int);
147 
148 static void win_cpu_cr_write(int, uint32_t);
149 static void win_cpu_armv5_cr_write(int, uint32_t);
150 static void win_cpu_armv7_cr_write(int, uint32_t);
151 static void win_cpu_br_write(int, uint32_t);
152 static void win_cpu_armv5_br_write(int, uint32_t);
153 static void win_cpu_armv7_br_write(int, uint32_t);
154 static void win_cpu_remap_l_write(int, uint32_t);
155 static void win_cpu_armv5_remap_l_write(int, uint32_t);
156 static void win_cpu_armv7_remap_l_write(int, uint32_t);
157 static void win_cpu_remap_h_write(int, uint32_t);
158 static void win_cpu_armv5_remap_h_write(int, uint32_t);
159 static void win_cpu_armv7_remap_h_write(int, uint32_t);
160 
161 static uint32_t ddr_br_read(int);
162 static uint32_t ddr_sz_read(int);
163 static uint32_t ddr_armv5_br_read(int);
164 static uint32_t ddr_armv5_sz_read(int);
165 static uint32_t ddr_armv7_br_read(int);
166 static uint32_t ddr_armv7_sz_read(int);
167 static void ddr_br_write(int, uint32_t);
168 static void ddr_sz_write(int, uint32_t);
169 static void ddr_armv5_br_write(int, uint32_t);
170 static void ddr_armv5_sz_write(int, uint32_t);
171 static void ddr_armv7_br_write(int, uint32_t);
172 static void ddr_armv7_sz_write(int, uint32_t);
173 
174 static int fdt_get_ranges(const char *, void *, int, int *, int *);
175 int gic_decode_fdt(phandle_t iparent, pcell_t *intr, int *interrupt,
176     int *trig, int *pol);
177 
178 static int win_cpu_from_dt(void);
179 static int fdt_win_setup(void);
180 
181 static int fdt_win_process_child(phandle_t, struct soc_node_spec *, const char*);
182 
183 static void soc_identify(uint32_t, uint32_t);
184 
185 static uint32_t dev_mask = 0;
186 static int cpu_wins_no = 0;
187 static int eth_port = 0;
188 static int usb_port = 0;
189 static boolean_t platform_io_coherent = false;
190 
191 static struct decode_win cpu_win_tbl[MAX_CPU_WIN];
192 
193 const struct decode_win *cpu_wins = cpu_win_tbl;
194 
195 typedef void (*decode_win_setup_t)(u_long);
196 typedef void (*dump_win_t)(u_long);
197 typedef int (*valid_t)(void);
198 
199 /*
200  * The power status of device feature is only supported on
201  * Kirkwood and Discovery SoCs.
202  */
203 #if defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY)
204 #define	SOC_MV_POWER_STAT_SUPPORTED		1
205 #else
206 #define	SOC_MV_POWER_STAT_SUPPORTED		0
207 #endif
208 
209 struct soc_node_spec {
210 	const char		*compat;
211 	decode_win_setup_t	decode_handler;
212 	dump_win_t		dump_handler;
213 	valid_t			valid_handler;
214 };
215 
216 static struct soc_node_spec soc_nodes[] = {
217 	{ "mrvl,ge", &decode_win_eth_setup, &decode_win_eth_dump, &decode_win_eth_valid},
218 	{ "marvell,armada-370-neta", &decode_win_neta_setup,
219 	    &decode_win_neta_dump, NULL },
220 	{ "mrvl,usb-ehci", &decode_win_usb_setup, &decode_win_usb_dump, &decode_win_usb_valid},
221 	{ "marvell,orion-ehci", &decode_win_usb_setup, &decode_win_usb_dump, &decode_win_usb_valid },
222 	{ "marvell,armada-380-xhci", &decode_win_usb3_setup,
223 	    &decode_win_usb3_dump, &decode_win_usb3_valid },
224 	{ "marvell,armada-380-ahci", &decode_win_ahci_setup,
225 	    &decode_win_ahci_dump, NULL },
226 	{ "marvell,armada-380-sdhci", &decode_win_sdhci_setup,
227 	    &decode_win_sdhci_dump, &decode_win_sdhci_valid},
228 	{ "mrvl,sata", &decode_win_sata_setup, NULL, &decode_win_sata_valid},
229 	{ "mrvl,xor", &decode_win_xor_setup, &decode_win_xor_dump, &decode_win_xor_valid},
230 	{ "mrvl,idma", &decode_win_idma_setup, &decode_win_idma_dump, &decode_win_idma_valid},
231 	{ "mrvl,cesa", &decode_win_cesa_setup, &decode_win_cesa_dump, &decode_win_cesa_valid},
232 	{ "mrvl,pcie", &decode_win_pcie_setup, &decode_win_pcie_dump, &decode_win_pcie_valid},
233 	{ "marvell,armada-38x-crypto", &decode_win_a38x_cesa_setup,
234 	    &decode_win_a38x_cesa_dump, &decode_win_cesa_valid},
235 	{ NULL, NULL, NULL, NULL },
236 };
237 
238 #define	SOC_NODE_PCIE_ENTRY_IDX		11
239 
240 typedef uint32_t(*read_cpu_ctrl_t)(uint32_t);
241 typedef void(*write_cpu_ctrl_t)(uint32_t, uint32_t);
242 typedef uint32_t (*win_read_t)(int);
243 typedef void (*win_write_t)(int, uint32_t);
244 typedef int (*win_cesa_attr_t)(int);
245 typedef uint32_t (*get_t)(void);
246 
247 struct decode_win_spec {
248 	read_cpu_ctrl_t  read_cpu_ctrl;
249 	write_cpu_ctrl_t write_cpu_ctrl;
250 	win_read_t	cr_read;
251 	win_read_t	br_read;
252 	win_read_t	remap_l_read;
253 	win_read_t	remap_h_read;
254 	win_write_t	cr_write;
255 	win_write_t	br_write;
256 	win_write_t	remap_l_write;
257 	win_write_t	remap_h_write;
258 	uint32_t	mv_win_cpu_max;
259 	win_cesa_attr_t win_cesa_attr;
260 	int 		win_cesa_target;
261 	win_read_t	ddr_br_read;
262 	win_read_t	ddr_sz_read;
263 	win_write_t	ddr_br_write;
264 	win_write_t	ddr_sz_write;
265 #if __ARM_ARCH >= 6
266 	get_t		get_tclk;
267 	get_t		get_cpu_freq;
268 #endif
269 };
270 
271 struct decode_win_spec *soc_decode_win_spec;
272 
273 static struct decode_win_spec decode_win_specs[] =
274 {
275 	{
276 		&read_cpu_ctrl_armv7,
277 		&write_cpu_ctrl_armv7,
278 		&win_cpu_armv7_cr_read,
279 		&win_cpu_armv7_br_read,
280 		&win_cpu_armv7_remap_l_read,
281 		&win_cpu_armv7_remap_h_read,
282 		&win_cpu_armv7_cr_write,
283 		&win_cpu_armv7_br_write,
284 		&win_cpu_armv7_remap_l_write,
285 		&win_cpu_armv7_remap_h_write,
286 		MV_WIN_CPU_MAX_ARMV7,
287 		&mv_win_cesa_attr_armada38x,
288 		MV_WIN_CESA_TARGET_ARMADA38X,
289 		&ddr_armv7_br_read,
290 		&ddr_armv7_sz_read,
291 		&ddr_armv7_br_write,
292 		&ddr_armv7_sz_write,
293 #if __ARM_ARCH >= 6
294 		&get_tclk_armada38x,
295 		&get_cpu_freq_armada38x,
296 #endif
297 	},
298 	{
299 		&read_cpu_ctrl_armv7,
300 		&write_cpu_ctrl_armv7,
301 		&win_cpu_armv7_cr_read,
302 		&win_cpu_armv7_br_read,
303 		&win_cpu_armv7_remap_l_read,
304 		&win_cpu_armv7_remap_h_read,
305 		&win_cpu_armv7_cr_write,
306 		&win_cpu_armv7_br_write,
307 		&win_cpu_armv7_remap_l_write,
308 		&win_cpu_armv7_remap_h_write,
309 		MV_WIN_CPU_MAX_ARMV7,
310 		&mv_win_cesa_attr_armadaxp,
311 		MV_WIN_CESA_TARGET_ARMADAXP,
312 		&ddr_armv7_br_read,
313 		&ddr_armv7_sz_read,
314 		&ddr_armv7_br_write,
315 		&ddr_armv7_sz_write,
316 #if __ARM_ARCH >= 6
317 		&get_tclk_armadaxp,
318 		&get_cpu_freq_armadaxp,
319 #endif
320 	},
321 	{
322 		&read_cpu_ctrl_armv5,
323 		&write_cpu_ctrl_armv5,
324 		&win_cpu_armv5_cr_read,
325 		&win_cpu_armv5_br_read,
326 		&win_cpu_armv5_remap_l_read,
327 		&win_cpu_armv5_remap_h_read,
328 		&win_cpu_armv5_cr_write,
329 		&win_cpu_armv5_br_write,
330 		&win_cpu_armv5_remap_l_write,
331 		&win_cpu_armv5_remap_h_write,
332 		MV_WIN_CPU_MAX,
333 		&mv_win_cesa_attr_armv5,
334 		MV_WIN_CESA_TARGET,
335 		&ddr_armv5_br_read,
336 		&ddr_armv5_sz_read,
337 		&ddr_armv5_br_write,
338 		&ddr_armv5_sz_write,
339 #if __ARM_ARCH >= 6
340 		NULL,
341 		NULL,
342 #endif
343 	},
344 };
345 
346 struct fdt_pm_mask_entry {
347 	char		*compat;
348 	uint32_t	mask;
349 };
350 
351 static struct fdt_pm_mask_entry fdt_pm_mask_table[] = {
352 	{ "mrvl,ge",		CPU_PM_CTRL_GE(0) },
353 	{ "mrvl,ge",		CPU_PM_CTRL_GE(1) },
354 	{ "mrvl,usb-ehci",	CPU_PM_CTRL_USB(0) },
355 	{ "mrvl,usb-ehci",	CPU_PM_CTRL_USB(1) },
356 	{ "mrvl,usb-ehci",	CPU_PM_CTRL_USB(2) },
357 	{ "mrvl,xor",		CPU_PM_CTRL_XOR },
358 	{ "mrvl,sata",		CPU_PM_CTRL_SATA },
359 
360 	{ NULL, 0 }
361 };
362 
363 static __inline int
364 pm_is_disabled(uint32_t mask)
365 {
366 #if SOC_MV_POWER_STAT_SUPPORTED
367 	return (soc_power_ctrl_get(mask) == mask ? 0 : 1);
368 #else
369 	return (0);
370 #endif
371 }
372 
373 /*
374  * Disable device using power management register.
375  * 1 - Device Power On
376  * 0 - Device Power Off
377  * Mask can be set in loader.
378  * EXAMPLE:
379  * loader> set hw.pm-disable-mask=0x2
380  *
381  * Common mask:
382  * |-------------------------------|
383  * | Device | Kirkwood | Discovery |
384  * |-------------------------------|
385  * | USB0   | 0x00008  | 0x020000  |
386  * |-------------------------------|
387  * | USB1   |     -    | 0x040000  |
388  * |-------------------------------|
389  * | USB2   |     -    | 0x080000  |
390  * |-------------------------------|
391  * | GE0    | 0x00001  | 0x000002  |
392  * |-------------------------------|
393  * | GE1    |     -    | 0x000004  |
394  * |-------------------------------|
395  * | IDMA   |     -    | 0x100000  |
396  * |-------------------------------|
397  * | XOR    | 0x10000  | 0x200000  |
398  * |-------------------------------|
399  * | CESA   | 0x20000  | 0x400000  |
400  * |-------------------------------|
401  * | SATA   | 0x04000  | 0x004000  |
402  * --------------------------------|
403  * This feature can be used only on Kirkwood and Discovery
404  * machines.
405  */
406 
407 static int mv_win_cesa_attr(int eng_sel)
408 {
409 
410 	if (soc_decode_win_spec->win_cesa_attr != NULL)
411 		return (soc_decode_win_spec->win_cesa_attr(eng_sel));
412 
413 	return (-1);
414 }
415 
416 static int mv_win_cesa_attr_armv5(int eng_sel)
417 {
418 
419 	return MV_WIN_CESA_ATTR(eng_sel);
420 }
421 
422 static int mv_win_cesa_attr_armada38x(int eng_sel)
423 {
424 
425 	return MV_WIN_CESA_ATTR_ARMADA38X(eng_sel);
426 }
427 
428 static int mv_win_cesa_attr_armadaxp(int eng_sel)
429 {
430 
431 	return MV_WIN_CESA_ATTR_ARMADAXP(eng_sel);
432 }
433 
434 enum soc_family
435 mv_check_soc_family()
436 {
437 	uint32_t dev, rev;
438 
439 	soc_id(&dev, &rev);
440 	switch (dev) {
441 	case MV_DEV_MV78230:
442 	case MV_DEV_MV78260:
443 	case MV_DEV_MV78460:
444 		soc_decode_win_spec = &decode_win_specs[MV_SOC_ARMADA_XP];
445 		soc_family = MV_SOC_ARMADA_XP;
446 		break;
447 	case MV_DEV_88F6828:
448 	case MV_DEV_88F6820:
449 	case MV_DEV_88F6810:
450 		soc_decode_win_spec = &decode_win_specs[MV_SOC_ARMADA_38X];
451 		soc_family = MV_SOC_ARMADA_38X;
452 		break;
453 	case MV_DEV_88F5181:
454 	case MV_DEV_88F5182:
455 	case MV_DEV_88F5281:
456 	case MV_DEV_88F6281:
457 	case MV_DEV_88RC8180:
458 	case MV_DEV_88RC9480:
459 	case MV_DEV_88RC9580:
460 	case MV_DEV_88F6781:
461 	case MV_DEV_88F6282:
462 	case MV_DEV_MV78100_Z0:
463 	case MV_DEV_MV78100:
464 	case MV_DEV_MV78160:
465 		soc_decode_win_spec = &decode_win_specs[MV_SOC_ARMV5];
466 		soc_family = MV_SOC_ARMV5;
467 		break;
468 	default:
469 		soc_family = MV_SOC_UNSUPPORTED;
470 		return (MV_SOC_UNSUPPORTED);
471 	}
472 
473 	soc_identify(dev, rev);
474 
475 	return (soc_family);
476 }
477 
478 static __inline void
479 pm_disable_device(int mask)
480 {
481 #ifdef DIAGNOSTIC
482 	uint32_t reg;
483 
484 	reg = soc_power_ctrl_get(CPU_PM_CTRL_ALL);
485 	printf("Power Management Register: 0%x\n", reg);
486 
487 	reg &= ~mask;
488 	soc_power_ctrl_set(reg);
489 	printf("Device %x is disabled\n", mask);
490 
491 	reg = soc_power_ctrl_get(CPU_PM_CTRL_ALL);
492 	printf("Power Management Register: 0%x\n", reg);
493 #endif
494 }
495 
496 int
497 mv_fdt_is_type(phandle_t node, const char *typestr)
498 {
499 #define FDT_TYPE_LEN	64
500 	char type[FDT_TYPE_LEN];
501 
502 	if (OF_getproplen(node, "device_type") <= 0)
503 		return (0);
504 
505 	if (OF_getprop(node, "device_type", type, FDT_TYPE_LEN) < 0)
506 		return (0);
507 
508 	if (strncasecmp(type, typestr, FDT_TYPE_LEN) == 0)
509 		/* This fits. */
510 		return (1);
511 
512 	return (0);
513 #undef FDT_TYPE_LEN
514 }
515 
516 int
517 mv_fdt_pm(phandle_t node)
518 {
519 	uint32_t cpu_pm_ctrl;
520 	int i, ena, compat;
521 
522 	ena = 1;
523 	cpu_pm_ctrl = read_cpu_ctrl(CPU_PM_CTRL);
524 	for (i = 0; fdt_pm_mask_table[i].compat != NULL; i++) {
525 		if (dev_mask & (1 << i))
526 			continue;
527 
528 		compat = ofw_bus_node_is_compatible(node,
529 		    fdt_pm_mask_table[i].compat);
530 #if defined(SOC_MV_KIRKWOOD)
531 		if (compat && (cpu_pm_ctrl & fdt_pm_mask_table[i].mask)) {
532 			dev_mask |= (1 << i);
533 			ena = 0;
534 			break;
535 		} else if (compat) {
536 			dev_mask |= (1 << i);
537 			break;
538 		}
539 #else
540 		if (compat && (~cpu_pm_ctrl & fdt_pm_mask_table[i].mask)) {
541 			dev_mask |= (1 << i);
542 			ena = 0;
543 			break;
544 		} else if (compat) {
545 			dev_mask |= (1 << i);
546 			break;
547 		}
548 #endif
549 	}
550 
551 	return (ena);
552 }
553 
554 uint32_t
555 read_cpu_ctrl(uint32_t reg)
556 {
557 
558 	if (soc_decode_win_spec->read_cpu_ctrl != NULL)
559 		return (soc_decode_win_spec->read_cpu_ctrl(reg));
560 	return (-1);
561 }
562 
563 uint32_t
564 read_cpu_ctrl_armv5(uint32_t reg)
565 {
566 
567 	return (bus_space_read_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE, reg));
568 }
569 
570 uint32_t
571 read_cpu_ctrl_armv7(uint32_t reg)
572 {
573 
574 	return (bus_space_read_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE_ARMV7, reg));
575 }
576 
577 void
578 write_cpu_ctrl(uint32_t reg, uint32_t val)
579 {
580 
581 	if (soc_decode_win_spec->write_cpu_ctrl != NULL)
582 		soc_decode_win_spec->write_cpu_ctrl(reg, val);
583 }
584 
585 void
586 write_cpu_ctrl_armv5(uint32_t reg, uint32_t val)
587 {
588 
589 	bus_space_write_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE, reg, val);
590 }
591 
592 void
593 write_cpu_ctrl_armv7(uint32_t reg, uint32_t val)
594 {
595 
596 	bus_space_write_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE_ARMV7, reg, val);
597 }
598 
599 uint32_t
600 read_cpu_mp_clocks(uint32_t reg)
601 {
602 
603 	return (bus_space_read_4(fdtbus_bs_tag, MV_MP_CLOCKS_BASE, reg));
604 }
605 
606 void
607 write_cpu_mp_clocks(uint32_t reg, uint32_t val)
608 {
609 
610 	bus_space_write_4(fdtbus_bs_tag, MV_MP_CLOCKS_BASE, reg, val);
611 }
612 
613 uint32_t
614 read_cpu_misc(uint32_t reg)
615 {
616 
617 	return (bus_space_read_4(fdtbus_bs_tag, MV_MISC_BASE, reg));
618 }
619 
620 void
621 write_cpu_misc(uint32_t reg, uint32_t val)
622 {
623 
624 	bus_space_write_4(fdtbus_bs_tag, MV_MISC_BASE, reg, val);
625 }
626 
627 uint32_t
628 cpu_extra_feat(void)
629 {
630 	uint32_t dev, rev;
631 	uint32_t ef = 0;
632 
633 	soc_id(&dev, &rev);
634 
635 	switch (dev) {
636 	case MV_DEV_88F6281:
637 	case MV_DEV_88F6282:
638 	case MV_DEV_88RC8180:
639 	case MV_DEV_MV78100_Z0:
640 	case MV_DEV_MV78100:
641 		__asm __volatile("mrc p15, 1, %0, c15, c1, 0" : "=r" (ef));
642 		break;
643 	case MV_DEV_88F5182:
644 	case MV_DEV_88F5281:
645 		__asm __volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (ef));
646 		break;
647 	default:
648 		if (bootverbose)
649 			printf("This ARM Core does not support any extra features\n");
650 	}
651 
652 	return (ef);
653 }
654 
655 /*
656  * Get the power status of device. This feature is only supported on
657  * Kirkwood and Discovery SoCs.
658  */
659 uint32_t
660 soc_power_ctrl_get(uint32_t mask)
661 {
662 
663 #if SOC_MV_POWER_STAT_SUPPORTED
664 	if (mask != CPU_PM_CTRL_NONE)
665 		mask &= read_cpu_ctrl(CPU_PM_CTRL);
666 
667 	return (mask);
668 #else
669 	return (mask);
670 #endif
671 }
672 
673 /*
674  * Set the power status of device. This feature is only supported on
675  * Kirkwood and Discovery SoCs.
676  */
677 void
678 soc_power_ctrl_set(uint32_t mask)
679 {
680 
681 #if !defined(SOC_MV_ORION)
682 	if (mask != CPU_PM_CTRL_NONE)
683 		write_cpu_ctrl(CPU_PM_CTRL, mask);
684 #endif
685 }
686 
687 void
688 soc_id(uint32_t *dev, uint32_t *rev)
689 {
690 	uint64_t mv_pcie_base = MV_PCIE_BASE;
691 	phandle_t node;
692 
693 	/*
694 	 * Notice: system identifiers are available in the registers range of
695 	 * PCIE controller, so using this function is only allowed (and
696 	 * possible) after the internal registers range has been mapped in via
697 	 * devmap_bootstrap().
698 	 */
699 	*dev = 0;
700 	*rev = 0;
701 	if ((node = OF_finddevice("/")) == -1)
702 		return;
703 	if (ofw_bus_node_is_compatible(node, "marvell,armada380"))
704 		mv_pcie_base = MV_PCIE_BASE_ARMADA38X;
705 
706 	*dev = bus_space_read_4(fdtbus_bs_tag, mv_pcie_base, 0) >> 16;
707 	*rev = bus_space_read_4(fdtbus_bs_tag, mv_pcie_base, 8) & 0xff;
708 }
709 
710 static void
711 soc_identify(uint32_t d, uint32_t r)
712 {
713 	uint32_t size, mode, freq;
714 	const char *dev;
715 	const char *rev;
716 
717 	printf("SOC: ");
718 	if (bootverbose)
719 		printf("(0x%4x:0x%02x) ", d, r);
720 
721 	rev = "";
722 	switch (d) {
723 	case MV_DEV_88F5181:
724 		dev = "Marvell 88F5181";
725 		if (r == 3)
726 			rev = "B1";
727 		break;
728 	case MV_DEV_88F5182:
729 		dev = "Marvell 88F5182";
730 		if (r == 2)
731 			rev = "A2";
732 		break;
733 	case MV_DEV_88F5281:
734 		dev = "Marvell 88F5281";
735 		if (r == 4)
736 			rev = "D0";
737 		else if (r == 5)
738 			rev = "D1";
739 		else if (r == 6)
740 			rev = "D2";
741 		break;
742 	case MV_DEV_88F6281:
743 		dev = "Marvell 88F6281";
744 		if (r == 0)
745 			rev = "Z0";
746 		else if (r == 2)
747 			rev = "A0";
748 		else if (r == 3)
749 			rev = "A1";
750 		break;
751 	case MV_DEV_88RC8180:
752 		dev = "Marvell 88RC8180";
753 		break;
754 	case MV_DEV_88RC9480:
755 		dev = "Marvell 88RC9480";
756 		break;
757 	case MV_DEV_88RC9580:
758 		dev = "Marvell 88RC9580";
759 		break;
760 	case MV_DEV_88F6781:
761 		dev = "Marvell 88F6781";
762 		if (r == 2)
763 			rev = "Y0";
764 		break;
765 	case MV_DEV_88F6282:
766 		dev = "Marvell 88F6282";
767 		if (r == 0)
768 			rev = "A0";
769 		else if (r == 1)
770 			rev = "A1";
771 		break;
772 	case MV_DEV_88F6828:
773 		dev = "Marvell 88F6828";
774 		break;
775 	case MV_DEV_88F6820:
776 		dev = "Marvell 88F6820";
777 		break;
778 	case MV_DEV_88F6810:
779 		dev = "Marvell 88F6810";
780 		break;
781 	case MV_DEV_MV78100_Z0:
782 		dev = "Marvell MV78100 Z0";
783 		break;
784 	case MV_DEV_MV78100:
785 		dev = "Marvell MV78100";
786 		break;
787 	case MV_DEV_MV78160:
788 		dev = "Marvell MV78160";
789 		break;
790 	case MV_DEV_MV78260:
791 		dev = "Marvell MV78260";
792 		break;
793 	case MV_DEV_MV78460:
794 		dev = "Marvell MV78460";
795 		break;
796 	default:
797 		dev = "UNKNOWN";
798 		break;
799 	}
800 
801 	printf("%s", dev);
802 	if (*rev != '\0')
803 		printf(" rev %s", rev);
804 	printf(", TClock %dMHz", get_tclk() / 1000 / 1000);
805 	freq = get_cpu_freq();
806 	if (freq != 0)
807 		printf(", Frequency %dMHz", freq / 1000 / 1000);
808 	printf("\n");
809 
810 	mode = read_cpu_ctrl(CPU_CONFIG);
811 	printf("  Instruction cache prefetch %s, data cache prefetch %s\n",
812 	    (mode & CPU_CONFIG_IC_PREF) ? "enabled" : "disabled",
813 	    (mode & CPU_CONFIG_DC_PREF) ? "enabled" : "disabled");
814 
815 	switch (d) {
816 	case MV_DEV_88F6281:
817 	case MV_DEV_88F6282:
818 		mode = read_cpu_ctrl(CPU_L2_CONFIG) & CPU_L2_CONFIG_MODE;
819 		printf("  256KB 4-way set-associative %s unified L2 cache\n",
820 		    mode ? "write-through" : "write-back");
821 		break;
822 	case MV_DEV_MV78100:
823 		mode = read_cpu_ctrl(CPU_CONTROL);
824 		size = mode & CPU_CONTROL_L2_SIZE;
825 		mode = mode & CPU_CONTROL_L2_MODE;
826 		printf("  %s set-associative %s unified L2 cache\n",
827 		    size ? "256KB 4-way" : "512KB 8-way",
828 		    mode ? "write-through" : "write-back");
829 		break;
830 	default:
831 		break;
832 	}
833 }
834 
835 #ifdef KDB
836 static void
837 mv_enter_debugger(void *dummy)
838 {
839 
840 	if (boothowto & RB_KDB)
841 		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
842 }
843 SYSINIT(mv_enter_debugger, SI_SUB_CPU, SI_ORDER_ANY, mv_enter_debugger, NULL);
844 #endif
845 
846 int
847 soc_decode_win(void)
848 {
849 	uint32_t dev, rev;
850 	int mask, err;
851 
852 	mask = 0;
853 	TUNABLE_INT_FETCH("hw.pm-disable-mask", &mask);
854 
855 	if (mask != 0)
856 		pm_disable_device(mask);
857 
858 	/* Retrieve data about physical addresses from device tree. */
859 	if ((err = win_cpu_from_dt()) != 0)
860 		return (err);
861 
862 	/* Retrieve our ID: some windows facilities vary between SoC models */
863 	soc_id(&dev, &rev);
864 
865 	if (soc_family == MV_SOC_ARMADA_XP)
866 		if ((err = decode_win_sdram_fixup()) != 0)
867 			return(err);
868 
869 
870 	decode_win_cpu_setup();
871 	if (MV_DUMP_WIN)
872 		soc_dump_decode_win();
873 
874 	eth_port = 0;
875 	usb_port = 0;
876 	if ((err = fdt_win_setup()) != 0)
877 		return (err);
878 
879 	return (0);
880 }
881 
882 /**************************************************************************
883  * Decode windows registers accessors
884  **************************************************************************/
885 WIN_REG_IDX_RD(win_cpu_armv5, cr, MV_WIN_CPU_CTRL_ARMV5, MV_MBUS_BRIDGE_BASE)
886 WIN_REG_IDX_RD(win_cpu_armv5, br, MV_WIN_CPU_BASE_ARMV5, MV_MBUS_BRIDGE_BASE)
887 WIN_REG_IDX_RD(win_cpu_armv5, remap_l, MV_WIN_CPU_REMAP_LO_ARMV5, MV_MBUS_BRIDGE_BASE)
888 WIN_REG_IDX_RD(win_cpu_armv5, remap_h, MV_WIN_CPU_REMAP_HI_ARMV5, MV_MBUS_BRIDGE_BASE)
889 WIN_REG_IDX_WR(win_cpu_armv5, cr, MV_WIN_CPU_CTRL_ARMV5, MV_MBUS_BRIDGE_BASE)
890 WIN_REG_IDX_WR(win_cpu_armv5, br, MV_WIN_CPU_BASE_ARMV5, MV_MBUS_BRIDGE_BASE)
891 WIN_REG_IDX_WR(win_cpu_armv5, remap_l, MV_WIN_CPU_REMAP_LO_ARMV5, MV_MBUS_BRIDGE_BASE)
892 WIN_REG_IDX_WR(win_cpu_armv5, remap_h, MV_WIN_CPU_REMAP_HI_ARMV5, MV_MBUS_BRIDGE_BASE)
893 
894 WIN_REG_IDX_RD(win_cpu_armv7, cr, MV_WIN_CPU_CTRL_ARMV7, MV_MBUS_BRIDGE_BASE)
895 WIN_REG_IDX_RD(win_cpu_armv7, br, MV_WIN_CPU_BASE_ARMV7, MV_MBUS_BRIDGE_BASE)
896 WIN_REG_IDX_RD(win_cpu_armv7, remap_l, MV_WIN_CPU_REMAP_LO_ARMV7, MV_MBUS_BRIDGE_BASE)
897 WIN_REG_IDX_RD(win_cpu_armv7, remap_h, MV_WIN_CPU_REMAP_HI_ARMV7, MV_MBUS_BRIDGE_BASE)
898 WIN_REG_IDX_WR(win_cpu_armv7, cr, MV_WIN_CPU_CTRL_ARMV7, MV_MBUS_BRIDGE_BASE)
899 WIN_REG_IDX_WR(win_cpu_armv7, br, MV_WIN_CPU_BASE_ARMV7, MV_MBUS_BRIDGE_BASE)
900 WIN_REG_IDX_WR(win_cpu_armv7, remap_l, MV_WIN_CPU_REMAP_LO_ARMV7, MV_MBUS_BRIDGE_BASE)
901 WIN_REG_IDX_WR(win_cpu_armv7, remap_h, MV_WIN_CPU_REMAP_HI_ARMV7, MV_MBUS_BRIDGE_BASE)
902 
903 static uint32_t
904 win_cpu_cr_read(int i)
905 {
906 
907 	if (soc_decode_win_spec->cr_read != NULL)
908 		return (soc_decode_win_spec->cr_read(i));
909 	return (-1);
910 }
911 
912 static uint32_t
913 win_cpu_br_read(int i)
914 {
915 
916 	if (soc_decode_win_spec->br_read != NULL)
917 		return (soc_decode_win_spec->br_read(i));
918 	return (-1);
919 }
920 
921 static uint32_t
922 win_cpu_remap_l_read(int i)
923 {
924 
925 	if (soc_decode_win_spec->remap_l_read != NULL)
926 		return (soc_decode_win_spec->remap_l_read(i));
927 	return (-1);
928 }
929 
930 static uint32_t
931 win_cpu_remap_h_read(int i)
932 {
933 
934 	if (soc_decode_win_spec->remap_h_read != NULL)
935 		return soc_decode_win_spec->remap_h_read(i);
936 	return (-1);
937 }
938 
939 static void
940 win_cpu_cr_write(int i, uint32_t val)
941 {
942 
943 	if (soc_decode_win_spec->cr_write != NULL)
944 		soc_decode_win_spec->cr_write(i, val);
945 }
946 
947 static void
948 win_cpu_br_write(int i, uint32_t val)
949 {
950 
951 	if (soc_decode_win_spec->br_write != NULL)
952 		soc_decode_win_spec->br_write(i, val);
953 }
954 
955 static void
956 win_cpu_remap_l_write(int i, uint32_t val)
957 {
958 
959 	if (soc_decode_win_spec->remap_l_write != NULL)
960 		soc_decode_win_spec->remap_l_write(i, val);
961 }
962 
963 static void
964 win_cpu_remap_h_write(int i, uint32_t val)
965 {
966 
967 	if (soc_decode_win_spec->remap_h_write != NULL)
968 		soc_decode_win_spec->remap_h_write(i, val);
969 }
970 
971 WIN_REG_BASE_IDX_RD(win_cesa, cr, MV_WIN_CESA_CTRL)
972 WIN_REG_BASE_IDX_RD(win_cesa, br, MV_WIN_CESA_BASE)
973 WIN_REG_BASE_IDX_WR(win_cesa, cr, MV_WIN_CESA_CTRL)
974 WIN_REG_BASE_IDX_WR(win_cesa, br, MV_WIN_CESA_BASE)
975 
976 WIN_REG_BASE_IDX_RD(win_usb, cr, MV_WIN_USB_CTRL)
977 WIN_REG_BASE_IDX_RD(win_usb, br, MV_WIN_USB_BASE)
978 WIN_REG_BASE_IDX_WR(win_usb, cr, MV_WIN_USB_CTRL)
979 WIN_REG_BASE_IDX_WR(win_usb, br, MV_WIN_USB_BASE)
980 
981 WIN_REG_BASE_IDX_RD(win_usb3, cr, MV_WIN_USB3_CTRL)
982 WIN_REG_BASE_IDX_RD(win_usb3, br, MV_WIN_USB3_BASE)
983 WIN_REG_BASE_IDX_WR(win_usb3, cr, MV_WIN_USB3_CTRL)
984 WIN_REG_BASE_IDX_WR(win_usb3, br, MV_WIN_USB3_BASE)
985 
986 WIN_REG_BASE_IDX_RD(win_eth, br, MV_WIN_ETH_BASE)
987 WIN_REG_BASE_IDX_RD(win_eth, sz, MV_WIN_ETH_SIZE)
988 WIN_REG_BASE_IDX_RD(win_eth, har, MV_WIN_ETH_REMAP)
989 WIN_REG_BASE_IDX_WR(win_eth, br, MV_WIN_ETH_BASE)
990 WIN_REG_BASE_IDX_WR(win_eth, sz, MV_WIN_ETH_SIZE)
991 WIN_REG_BASE_IDX_WR(win_eth, har, MV_WIN_ETH_REMAP)
992 
993 WIN_REG_BASE_IDX_RD2(win_xor, br, MV_WIN_XOR_BASE)
994 WIN_REG_BASE_IDX_RD2(win_xor, sz, MV_WIN_XOR_SIZE)
995 WIN_REG_BASE_IDX_RD2(win_xor, har, MV_WIN_XOR_REMAP)
996 WIN_REG_BASE_IDX_RD2(win_xor, ctrl, MV_WIN_XOR_CTRL)
997 WIN_REG_BASE_IDX_WR2(win_xor, br, MV_WIN_XOR_BASE)
998 WIN_REG_BASE_IDX_WR2(win_xor, sz, MV_WIN_XOR_SIZE)
999 WIN_REG_BASE_IDX_WR2(win_xor, har, MV_WIN_XOR_REMAP)
1000 WIN_REG_BASE_IDX_WR2(win_xor, ctrl, MV_WIN_XOR_CTRL)
1001 
1002 WIN_REG_BASE_RD(win_eth, bare, 0x290)
1003 WIN_REG_BASE_RD(win_eth, epap, 0x294)
1004 WIN_REG_BASE_WR(win_eth, bare, 0x290)
1005 WIN_REG_BASE_WR(win_eth, epap, 0x294)
1006 
1007 WIN_REG_BASE_IDX_RD(win_pcie, cr, MV_WIN_PCIE_CTRL);
1008 WIN_REG_BASE_IDX_RD(win_pcie, br, MV_WIN_PCIE_BASE);
1009 WIN_REG_BASE_IDX_RD(win_pcie, remap, MV_WIN_PCIE_REMAP);
1010 WIN_REG_BASE_IDX_WR(win_pcie, cr, MV_WIN_PCIE_CTRL);
1011 WIN_REG_BASE_IDX_WR(win_pcie, br, MV_WIN_PCIE_BASE);
1012 WIN_REG_BASE_IDX_WR(win_pcie, remap, MV_WIN_PCIE_REMAP);
1013 WIN_REG_BASE_IDX_RD(pcie_bar, br, MV_PCIE_BAR_BASE);
1014 WIN_REG_BASE_IDX_RD(pcie_bar, brh, MV_PCIE_BAR_BASE_H);
1015 WIN_REG_BASE_IDX_RD(pcie_bar, cr, MV_PCIE_BAR_CTRL);
1016 WIN_REG_BASE_IDX_WR(pcie_bar, br, MV_PCIE_BAR_BASE);
1017 WIN_REG_BASE_IDX_WR(pcie_bar, brh, MV_PCIE_BAR_BASE_H);
1018 WIN_REG_BASE_IDX_WR(pcie_bar, cr, MV_PCIE_BAR_CTRL);
1019 
1020 WIN_REG_BASE_IDX_RD(win_idma, br, MV_WIN_IDMA_BASE)
1021 WIN_REG_BASE_IDX_RD(win_idma, sz, MV_WIN_IDMA_SIZE)
1022 WIN_REG_BASE_IDX_RD(win_idma, har, MV_WIN_IDMA_REMAP)
1023 WIN_REG_BASE_IDX_RD(win_idma, cap, MV_WIN_IDMA_CAP)
1024 WIN_REG_BASE_IDX_WR(win_idma, br, MV_WIN_IDMA_BASE)
1025 WIN_REG_BASE_IDX_WR(win_idma, sz, MV_WIN_IDMA_SIZE)
1026 WIN_REG_BASE_IDX_WR(win_idma, har, MV_WIN_IDMA_REMAP)
1027 WIN_REG_BASE_IDX_WR(win_idma, cap, MV_WIN_IDMA_CAP)
1028 WIN_REG_BASE_RD(win_idma, bare, 0xa80)
1029 WIN_REG_BASE_WR(win_idma, bare, 0xa80)
1030 
1031 WIN_REG_BASE_IDX_RD(win_sata, cr, MV_WIN_SATA_CTRL);
1032 WIN_REG_BASE_IDX_RD(win_sata, br, MV_WIN_SATA_BASE);
1033 WIN_REG_BASE_IDX_WR(win_sata, cr, MV_WIN_SATA_CTRL);
1034 WIN_REG_BASE_IDX_WR(win_sata, br, MV_WIN_SATA_BASE);
1035 
1036 WIN_REG_BASE_IDX_RD(win_sata_armada38x, sz, MV_WIN_SATA_SIZE_ARMADA38X);
1037 WIN_REG_BASE_IDX_WR(win_sata_armada38x, sz, MV_WIN_SATA_SIZE_ARMADA38X);
1038 WIN_REG_BASE_IDX_RD(win_sata_armada38x, cr, MV_WIN_SATA_CTRL_ARMADA38X);
1039 WIN_REG_BASE_IDX_RD(win_sata_armada38x, br, MV_WIN_SATA_BASE_ARMADA38X);
1040 WIN_REG_BASE_IDX_WR(win_sata_armada38x, cr, MV_WIN_SATA_CTRL_ARMADA38X);
1041 WIN_REG_BASE_IDX_WR(win_sata_armada38x, br, MV_WIN_SATA_BASE_ARMADA38X);
1042 
1043 WIN_REG_BASE_IDX_RD(win_sdhci, cr, MV_WIN_SDHCI_CTRL);
1044 WIN_REG_BASE_IDX_RD(win_sdhci, br, MV_WIN_SDHCI_BASE);
1045 WIN_REG_BASE_IDX_WR(win_sdhci, cr, MV_WIN_SDHCI_CTRL);
1046 WIN_REG_BASE_IDX_WR(win_sdhci, br, MV_WIN_SDHCI_BASE);
1047 
1048 #ifndef SOC_MV_DOVE
1049 WIN_REG_IDX_RD(ddr_armv5, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE)
1050 WIN_REG_IDX_RD(ddr_armv5, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE)
1051 WIN_REG_IDX_WR(ddr_armv5, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE)
1052 WIN_REG_IDX_WR(ddr_armv5, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE)
1053 
1054 WIN_REG_IDX_RD(ddr_armv7, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE_ARMV7)
1055 WIN_REG_IDX_RD(ddr_armv7, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE_ARMV7)
1056 WIN_REG_IDX_WR(ddr_armv7, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE_ARMV7)
1057 WIN_REG_IDX_WR(ddr_armv7, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE_ARMV7)
1058 
1059 static inline uint32_t
1060 ddr_br_read(int i)
1061 {
1062 
1063 	if (soc_decode_win_spec->ddr_br_read != NULL)
1064 		return (soc_decode_win_spec->ddr_br_read(i));
1065 	return (-1);
1066 }
1067 
1068 static inline uint32_t
1069 ddr_sz_read(int i)
1070 {
1071 
1072 	if (soc_decode_win_spec->ddr_sz_read != NULL)
1073 		return (soc_decode_win_spec->ddr_sz_read(i));
1074 	return (-1);
1075 }
1076 
1077 static inline void
1078 ddr_br_write(int i, uint32_t val)
1079 {
1080 
1081 	if (soc_decode_win_spec->ddr_br_write != NULL)
1082 		soc_decode_win_spec->ddr_br_write(i, val);
1083 }
1084 
1085 static inline void
1086 ddr_sz_write(int i, uint32_t val)
1087 {
1088 
1089 	if (soc_decode_win_spec->ddr_sz_write != NULL)
1090 		soc_decode_win_spec->ddr_sz_write(i, val);
1091 }
1092 #else
1093 /*
1094  * On 88F6781 (Dove) SoC DDR Controller is accessed through
1095  * single MBUS <-> AXI bridge. In this case we provide emulated
1096  * ddr_br_read() and ddr_sz_read() functions to keep compatibility
1097  * with common decoding windows setup code.
1098  */
1099 
1100 static inline uint32_t ddr_br_read(int i)
1101 {
1102 	uint32_t mmap;
1103 
1104 	/* Read Memory Address Map Register for CS i */
1105 	mmap = bus_space_read_4(fdtbus_bs_tag, MV_DDR_CADR_BASE + (i * 0x10), 0);
1106 
1107 	/* Return CS i base address */
1108 	return (mmap & 0xFF000000);
1109 }
1110 
1111 static inline uint32_t ddr_sz_read(int i)
1112 {
1113 	uint32_t mmap, size;
1114 
1115 	/* Read Memory Address Map Register for CS i */
1116 	mmap = bus_space_read_4(fdtbus_bs_tag, MV_DDR_CADR_BASE + (i * 0x10), 0);
1117 
1118 	/* Extract size of CS space in 64kB units */
1119 	size = (1 << ((mmap >> 16) & 0x0F));
1120 
1121 	/* Return CS size and enable/disable status */
1122 	return (((size - 1) << 16) | (mmap & 0x01));
1123 }
1124 #endif
1125 
1126 /**************************************************************************
1127  * Decode windows helper routines
1128  **************************************************************************/
1129 void
1130 soc_dump_decode_win(void)
1131 {
1132 	int i;
1133 
1134 	for (i = 0; i < soc_decode_win_spec->mv_win_cpu_max; i++) {
1135 		printf("CPU window#%d: c 0x%08x, b 0x%08x", i,
1136 		    win_cpu_cr_read(i),
1137 		    win_cpu_br_read(i));
1138 
1139 		if (win_cpu_can_remap(i))
1140 			printf(", rl 0x%08x, rh 0x%08x",
1141 			    win_cpu_remap_l_read(i),
1142 			    win_cpu_remap_h_read(i));
1143 
1144 		printf("\n");
1145 	}
1146 	printf("Internal regs base: 0x%08x\n",
1147 	    bus_space_read_4(fdtbus_bs_tag, MV_INTREGS_BASE, 0));
1148 
1149 	for (i = 0; i < MV_WIN_DDR_MAX; i++)
1150 		printf("DDR CS#%d: b 0x%08x, s 0x%08x\n", i,
1151 		    ddr_br_read(i), ddr_sz_read(i));
1152 }
1153 
1154 /**************************************************************************
1155  * CPU windows routines
1156  **************************************************************************/
1157 int
1158 win_cpu_can_remap(int i)
1159 {
1160 	uint32_t dev, rev;
1161 
1162 	soc_id(&dev, &rev);
1163 
1164 	/* Depending on the SoC certain windows have remap capability */
1165 	if ((dev == MV_DEV_88F5182 && i < 2) ||
1166 	    (dev == MV_DEV_88F5281 && i < 4) ||
1167 	    (dev == MV_DEV_88F6281 && i < 4) ||
1168 	    (dev == MV_DEV_88F6282 && i < 4) ||
1169 	    (dev == MV_DEV_88F6828 && i < 20) ||
1170 	    (dev == MV_DEV_88F6820 && i < 20) ||
1171 	    (dev == MV_DEV_88F6810 && i < 20) ||
1172 	    (dev == MV_DEV_88RC8180 && i < 2) ||
1173 	    (dev == MV_DEV_88F6781 && i < 4) ||
1174 	    (dev == MV_DEV_MV78100_Z0 && i < 8) ||
1175 	    ((dev & MV_DEV_FAMILY_MASK) == MV_DEV_DISCOVERY && i < 8))
1176 		return (1);
1177 
1178 	return (0);
1179 }
1180 
1181 /* XXX This should check for overlapping remap fields too.. */
1182 int
1183 decode_win_overlap(int win, int win_no, const struct decode_win *wintab)
1184 {
1185 	const struct decode_win *tab;
1186 	int i;
1187 
1188 	tab = wintab;
1189 
1190 	for (i = 0; i < win_no; i++, tab++) {
1191 		if (i == win)
1192 			/* Skip self */
1193 			continue;
1194 
1195 		if ((tab->base + tab->size - 1) < (wintab + win)->base)
1196 			continue;
1197 
1198 		else if (((wintab + win)->base + (wintab + win)->size - 1) <
1199 		    tab->base)
1200 			continue;
1201 		else
1202 			return (i);
1203 	}
1204 
1205 	return (-1);
1206 }
1207 
1208 static int
1209 decode_win_cpu_valid(void)
1210 {
1211 	int i, j, rv;
1212 	uint32_t b, e, s;
1213 
1214 	if (cpu_wins_no > soc_decode_win_spec->mv_win_cpu_max) {
1215 		printf("CPU windows: too many entries: %d\n", cpu_wins_no);
1216 		return (0);
1217 	}
1218 
1219 	rv = 1;
1220 	for (i = 0; i < cpu_wins_no; i++) {
1221 
1222 		if (cpu_wins[i].target == 0) {
1223 			printf("CPU window#%d: DDR target window is not "
1224 			    "supposed to be reprogrammed!\n", i);
1225 			rv = 0;
1226 		}
1227 
1228 		if (cpu_wins[i].remap != ~0 && win_cpu_can_remap(i) != 1) {
1229 			printf("CPU window#%d: not capable of remapping, but "
1230 			    "val 0x%08x defined\n", i, cpu_wins[i].remap);
1231 			rv = 0;
1232 		}
1233 
1234 		s = cpu_wins[i].size;
1235 		b = cpu_wins[i].base;
1236 		e = b + s - 1;
1237 		if (s > (0xFFFFFFFF - b + 1)) {
1238 			/*
1239 			 * XXX this boundary check should account for 64bit
1240 			 * and remapping..
1241 			 */
1242 			printf("CPU window#%d: no space for size 0x%08x at "
1243 			    "0x%08x\n", i, s, b);
1244 			rv = 0;
1245 			continue;
1246 		}
1247 
1248 		if (b != rounddown2(b, s)) {
1249 			printf("CPU window#%d: address 0x%08x is not aligned "
1250 			    "to 0x%08x\n", i, b, s);
1251 			rv = 0;
1252 			continue;
1253 		}
1254 
1255 		j = decode_win_overlap(i, cpu_wins_no, &cpu_wins[0]);
1256 		if (j >= 0) {
1257 			printf("CPU window#%d: (0x%08x - 0x%08x) overlaps "
1258 			    "with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
1259 			    cpu_wins[j].base,
1260 			    cpu_wins[j].base + cpu_wins[j].size - 1);
1261 			rv = 0;
1262 		}
1263 	}
1264 
1265 	return (rv);
1266 }
1267 
1268 int
1269 decode_win_cpu_set(int target, int attr, vm_paddr_t base, uint32_t size,
1270     vm_paddr_t remap)
1271 {
1272 	uint32_t br, cr;
1273 	int win, i;
1274 
1275 	if (remap == ~0) {
1276 		win = soc_decode_win_spec->mv_win_cpu_max - 1;
1277 		i = -1;
1278 	} else {
1279 		win = 0;
1280 		i = 1;
1281 	}
1282 
1283 	while ((win >= 0) && (win < soc_decode_win_spec->mv_win_cpu_max)) {
1284 		cr = win_cpu_cr_read(win);
1285 		if ((cr & MV_WIN_CPU_ENABLE_BIT) == 0)
1286 			break;
1287 		if ((cr & ((0xff << MV_WIN_CPU_ATTR_SHIFT) |
1288 		    (0x1f << MV_WIN_CPU_TARGET_SHIFT))) ==
1289 		    ((attr << MV_WIN_CPU_ATTR_SHIFT) |
1290 		    (target << MV_WIN_CPU_TARGET_SHIFT)))
1291 			break;
1292 		win += i;
1293 	}
1294 	if ((win < 0) || (win >= soc_decode_win_spec->mv_win_cpu_max) ||
1295 	    ((remap != ~0) && (win_cpu_can_remap(win) == 0)))
1296 		return (-1);
1297 
1298 	br = base & 0xffff0000;
1299 	win_cpu_br_write(win, br);
1300 
1301 	if (win_cpu_can_remap(win)) {
1302 		if (remap != ~0) {
1303 			win_cpu_remap_l_write(win, remap & 0xffff0000);
1304 			win_cpu_remap_h_write(win, 0);
1305 		} else {
1306 			/*
1307 			 * Remap function is not used for a given window
1308 			 * (capable of remapping) - set remap field with the
1309 			 * same value as base.
1310 			 */
1311 			win_cpu_remap_l_write(win, base & 0xffff0000);
1312 			win_cpu_remap_h_write(win, 0);
1313 		}
1314 	}
1315 
1316 	cr = ((size - 1) & 0xffff0000) | (attr << MV_WIN_CPU_ATTR_SHIFT) |
1317 	    (target << MV_WIN_CPU_TARGET_SHIFT) | MV_WIN_CPU_ENABLE_BIT;
1318 	win_cpu_cr_write(win, cr);
1319 
1320 	return (0);
1321 }
1322 
1323 static void
1324 decode_win_cpu_setup(void)
1325 {
1326 	int i;
1327 
1328 	/* Disable all CPU windows */
1329 	for (i = 0; i < soc_decode_win_spec->mv_win_cpu_max; i++) {
1330 		win_cpu_cr_write(i, 0);
1331 		win_cpu_br_write(i, 0);
1332 		if (win_cpu_can_remap(i)) {
1333 			win_cpu_remap_l_write(i, 0);
1334 			win_cpu_remap_h_write(i, 0);
1335 		}
1336 	}
1337 
1338 	for (i = 0; i < cpu_wins_no; i++)
1339 		if (cpu_wins[i].target > 0)
1340 			decode_win_cpu_set(cpu_wins[i].target,
1341 			    cpu_wins[i].attr, cpu_wins[i].base,
1342 			    cpu_wins[i].size, cpu_wins[i].remap);
1343 
1344 }
1345 
1346 static int
1347 decode_win_sdram_fixup(void)
1348 {
1349 	struct mem_region mr[FDT_MEM_REGIONS];
1350 	uint8_t window_valid[MV_WIN_DDR_MAX];
1351 	int mr_cnt, err, i, j;
1352 	uint32_t valid_win_num = 0;
1353 
1354 	/* Grab physical memory regions information from device tree. */
1355 	err = fdt_get_mem_regions(mr, &mr_cnt, NULL);
1356 	if (err != 0)
1357 		return (err);
1358 
1359 	for (i = 0; i < MV_WIN_DDR_MAX; i++)
1360 		window_valid[i] = 0;
1361 
1362 	/* Try to match entries from device tree with settings from u-boot */
1363 	for (i = 0; i < mr_cnt; i++) {
1364 		for (j = 0; j < MV_WIN_DDR_MAX; j++) {
1365 			if (ddr_is_active(j) &&
1366 			    (ddr_base(j) == mr[i].mr_start) &&
1367 			    (ddr_size(j) == mr[i].mr_size)) {
1368 				window_valid[j] = 1;
1369 				valid_win_num++;
1370 			}
1371 		}
1372 	}
1373 
1374 	if (mr_cnt != valid_win_num)
1375 		return (EINVAL);
1376 
1377 	/* Destroy windows without corresponding device tree entry */
1378 	for (j = 0; j < MV_WIN_DDR_MAX; j++) {
1379 		if (ddr_is_active(j) && (window_valid[j] != 1)) {
1380 			printf("Disabling SDRAM decoding window: %d\n", j);
1381 			ddr_disable(j);
1382 		}
1383 	}
1384 
1385 	return (0);
1386 }
1387 /*
1388  * Check if we're able to cover all active DDR banks.
1389  */
1390 static int
1391 decode_win_can_cover_ddr(int max)
1392 {
1393 	int i, c;
1394 
1395 	c = 0;
1396 	for (i = 0; i < MV_WIN_DDR_MAX; i++)
1397 		if (ddr_is_active(i))
1398 			c++;
1399 
1400 	if (c > max) {
1401 		printf("Unable to cover all active DDR banks: "
1402 		    "%d, available windows: %d\n", c, max);
1403 		return (0);
1404 	}
1405 
1406 	return (1);
1407 }
1408 
1409 /**************************************************************************
1410  * DDR windows routines
1411  **************************************************************************/
1412 int
1413 ddr_is_active(int i)
1414 {
1415 
1416 	if (ddr_sz_read(i) & 0x1)
1417 		return (1);
1418 
1419 	return (0);
1420 }
1421 
1422 void
1423 ddr_disable(int i)
1424 {
1425 
1426 	ddr_sz_write(i, 0);
1427 	ddr_br_write(i, 0);
1428 }
1429 
1430 uint32_t
1431 ddr_base(int i)
1432 {
1433 
1434 	return (ddr_br_read(i) & 0xff000000);
1435 }
1436 
1437 uint32_t
1438 ddr_size(int i)
1439 {
1440 
1441 	return ((ddr_sz_read(i) | 0x00ffffff) + 1);
1442 }
1443 
1444 uint32_t
1445 ddr_attr(int i)
1446 {
1447 	uint32_t dev, rev, attr;
1448 
1449 	soc_id(&dev, &rev);
1450 	if (dev == MV_DEV_88RC8180)
1451 		return ((ddr_sz_read(i) & 0xf0) >> 4);
1452 	if (dev == MV_DEV_88F6781)
1453 		return (0);
1454 
1455 	attr = (i == 0 ? 0xe :
1456 	    (i == 1 ? 0xd :
1457 	    (i == 2 ? 0xb :
1458 	    (i == 3 ? 0x7 : 0xff))));
1459 	if (platform_io_coherent)
1460 		attr |= 0x10;
1461 
1462 	return (attr);
1463 }
1464 
1465 uint32_t
1466 ddr_target(int i)
1467 {
1468 	uint32_t dev, rev;
1469 
1470 	soc_id(&dev, &rev);
1471 	if (dev == MV_DEV_88RC8180) {
1472 		i = (ddr_sz_read(i) & 0xf0) >> 4;
1473 		return (i == 0xe ? 0xc :
1474 		    (i == 0xd ? 0xd :
1475 		    (i == 0xb ? 0xe :
1476 		    (i == 0x7 ? 0xf : 0xc))));
1477 	}
1478 
1479 	/*
1480 	 * On SOCs other than 88RC8180 Mbus unit ID for
1481 	 * DDR SDRAM controller is always 0x0.
1482 	 */
1483 	return (0);
1484 }
1485 
1486 /**************************************************************************
1487  * CESA windows routines
1488  **************************************************************************/
1489 static int
1490 decode_win_cesa_valid(void)
1491 {
1492 
1493 	return (decode_win_can_cover_ddr(MV_WIN_CESA_MAX));
1494 }
1495 
1496 static void
1497 decode_win_cesa_dump(u_long base)
1498 {
1499 	int i;
1500 
1501 	for (i = 0; i < MV_WIN_CESA_MAX; i++)
1502 		printf("CESA window#%d: c 0x%08x, b 0x%08x\n", i,
1503 		    win_cesa_cr_read(base, i), win_cesa_br_read(base, i));
1504 }
1505 
1506 /*
1507  * Set CESA decode windows.
1508  */
1509 static void
1510 decode_win_cesa_setup(u_long base)
1511 {
1512 	uint32_t br, cr;
1513 	uint64_t size;
1514 	int i, j;
1515 
1516 	for (i = 0; i < MV_WIN_CESA_MAX; i++) {
1517 		win_cesa_cr_write(base, i, 0);
1518 		win_cesa_br_write(base, i, 0);
1519 	}
1520 
1521 	/* Only access to active DRAM banks is required */
1522 	for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1523 		if (ddr_is_active(i)) {
1524 			br = ddr_base(i);
1525 
1526 			size = ddr_size(i);
1527 			/*
1528 			 * Armada 38x SoC's equipped with 4GB DRAM
1529 			 * suffer freeze during CESA operation, if
1530 			 * MBUS window opened at given DRAM CS reaches
1531 			 * end of the address space. Apply a workaround
1532 			 * by setting the window size to the closest possible
1533 			 * value, i.e. divide it by 2.
1534 			 */
1535 			if ((soc_family == MV_SOC_ARMADA_38X) &&
1536 			    (size + ddr_base(i) == 0x100000000ULL))
1537 				size /= 2;
1538 
1539 			cr = (((size - 1) & 0xffff0000) |
1540 			    (ddr_attr(i) << IO_WIN_ATTR_SHIFT) |
1541 			    (ddr_target(i) << IO_WIN_TGT_SHIFT) |
1542 			    IO_WIN_ENA_MASK);
1543 
1544 			/* Set the first free CESA window */
1545 			for (j = 0; j < MV_WIN_CESA_MAX; j++) {
1546 				if (win_cesa_cr_read(base, j) & 0x1)
1547 					continue;
1548 
1549 				win_cesa_br_write(base, j, br);
1550 				win_cesa_cr_write(base, j, cr);
1551 				break;
1552 			}
1553 		}
1554 	}
1555 }
1556 
1557 static void
1558 decode_win_a38x_cesa_setup(u_long base)
1559 {
1560 	decode_win_cesa_setup(base);
1561 	decode_win_cesa_setup(base + MV_WIN_CESA_OFFSET);
1562 }
1563 
1564 static void
1565 decode_win_a38x_cesa_dump(u_long base)
1566 {
1567 	decode_win_cesa_dump(base);
1568 	decode_win_cesa_dump(base + MV_WIN_CESA_OFFSET);
1569 }
1570 
1571 /**************************************************************************
1572  * USB windows routines
1573  **************************************************************************/
1574 static int
1575 decode_win_usb_valid(void)
1576 {
1577 
1578 	return (decode_win_can_cover_ddr(MV_WIN_USB_MAX));
1579 }
1580 
1581 static void
1582 decode_win_usb_dump(u_long base)
1583 {
1584 	int i;
1585 
1586 	if (pm_is_disabled(CPU_PM_CTRL_USB(usb_port - 1)))
1587 		return;
1588 
1589 	for (i = 0; i < MV_WIN_USB_MAX; i++)
1590 		printf("USB window#%d: c 0x%08x, b 0x%08x\n", i,
1591 		    win_usb_cr_read(base, i), win_usb_br_read(base, i));
1592 }
1593 
1594 /*
1595  * Set USB decode windows.
1596  */
1597 static void
1598 decode_win_usb_setup(u_long base)
1599 {
1600 	uint32_t br, cr;
1601 	int i, j;
1602 
1603 	if (pm_is_disabled(CPU_PM_CTRL_USB(usb_port)))
1604 		return;
1605 
1606 	usb_port++;
1607 
1608 	for (i = 0; i < MV_WIN_USB_MAX; i++) {
1609 		win_usb_cr_write(base, i, 0);
1610 		win_usb_br_write(base, i, 0);
1611 	}
1612 
1613 	/* Only access to active DRAM banks is required */
1614 	for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1615 		if (ddr_is_active(i)) {
1616 			br = ddr_base(i);
1617 			/*
1618 			 * XXX for 6281 we should handle Mbus write
1619 			 * burst limit field in the ctrl reg
1620 			 */
1621 			cr = (((ddr_size(i) - 1) & 0xffff0000) |
1622 			    (ddr_attr(i) << 8) |
1623 			    (ddr_target(i) << 4) | 1);
1624 
1625 			/* Set the first free USB window */
1626 			for (j = 0; j < MV_WIN_USB_MAX; j++) {
1627 				if (win_usb_cr_read(base, j) & 0x1)
1628 					continue;
1629 
1630 				win_usb_br_write(base, j, br);
1631 				win_usb_cr_write(base, j, cr);
1632 				break;
1633 			}
1634 		}
1635 	}
1636 }
1637 
1638 /**************************************************************************
1639  * USB3 windows routines
1640  **************************************************************************/
1641 static int
1642 decode_win_usb3_valid(void)
1643 {
1644 
1645 	return (decode_win_can_cover_ddr(MV_WIN_USB3_MAX));
1646 }
1647 
1648 static void
1649 decode_win_usb3_dump(u_long base)
1650 {
1651 	int i;
1652 
1653 	for (i = 0; i < MV_WIN_USB3_MAX; i++)
1654 		printf("USB3.0 window#%d: c 0x%08x, b 0x%08x\n", i,
1655 		    win_usb3_cr_read(base, i), win_usb3_br_read(base, i));
1656 }
1657 
1658 /*
1659  * Set USB3 decode windows
1660  */
1661 static void
1662 decode_win_usb3_setup(u_long base)
1663 {
1664 	uint32_t br, cr;
1665 	int i, j;
1666 
1667 	for (i = 0; i < MV_WIN_USB3_MAX; i++) {
1668 		win_usb3_cr_write(base, i, 0);
1669 		win_usb3_br_write(base, i, 0);
1670 	}
1671 
1672 	/* Only access to active DRAM banks is required */
1673 	for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1674 		if (ddr_is_active(i)) {
1675 			br = ddr_base(i);
1676 			cr = (((ddr_size(i) - 1) &
1677 			    (IO_WIN_SIZE_MASK << IO_WIN_SIZE_SHIFT)) |
1678 			    (ddr_attr(i) << IO_WIN_ATTR_SHIFT) |
1679 			    (ddr_target(i) << IO_WIN_TGT_SHIFT) |
1680 			    IO_WIN_ENA_MASK);
1681 
1682 			/* Set the first free USB3.0 window */
1683 			for (j = 0; j < MV_WIN_USB3_MAX; j++) {
1684 				if (win_usb3_cr_read(base, j) & IO_WIN_ENA_MASK)
1685 					continue;
1686 
1687 				win_usb3_br_write(base, j, br);
1688 				win_usb3_cr_write(base, j, cr);
1689 				break;
1690 			}
1691 		}
1692 	}
1693 }
1694 
1695 
1696 /**************************************************************************
1697  * ETH windows routines
1698  **************************************************************************/
1699 
1700 static int
1701 win_eth_can_remap(int i)
1702 {
1703 
1704 	/* ETH encode windows 0-3 have remap capability */
1705 	if (i < 4)
1706 		return (1);
1707 
1708 	return (0);
1709 }
1710 
1711 static int
1712 eth_bare_read(uint32_t base, int i)
1713 {
1714 	uint32_t v;
1715 
1716 	v = win_eth_bare_read(base);
1717 	v &= (1 << i);
1718 
1719 	return (v >> i);
1720 }
1721 
1722 static void
1723 eth_bare_write(uint32_t base, int i, int val)
1724 {
1725 	uint32_t v;
1726 
1727 	v = win_eth_bare_read(base);
1728 	v &= ~(1 << i);
1729 	v |= (val << i);
1730 	win_eth_bare_write(base, v);
1731 }
1732 
1733 static void
1734 eth_epap_write(uint32_t base, int i, int val)
1735 {
1736 	uint32_t v;
1737 
1738 	v = win_eth_epap_read(base);
1739 	v &= ~(0x3 << (i * 2));
1740 	v |= (val << (i * 2));
1741 	win_eth_epap_write(base, v);
1742 }
1743 
1744 static void
1745 decode_win_eth_dump(u_long base)
1746 {
1747 	int i;
1748 
1749 	if (pm_is_disabled(CPU_PM_CTRL_GE(eth_port - 1)))
1750 		return;
1751 
1752 	for (i = 0; i < MV_WIN_ETH_MAX; i++) {
1753 		printf("ETH window#%d: b 0x%08x, s 0x%08x", i,
1754 		    win_eth_br_read(base, i),
1755 		    win_eth_sz_read(base, i));
1756 
1757 		if (win_eth_can_remap(i))
1758 			printf(", ha 0x%08x",
1759 			    win_eth_har_read(base, i));
1760 
1761 		printf("\n");
1762 	}
1763 	printf("ETH windows: bare 0x%08x, epap 0x%08x\n",
1764 	    win_eth_bare_read(base),
1765 	    win_eth_epap_read(base));
1766 }
1767 
1768 #define MV_WIN_ETH_DDR_TRGT(n)	ddr_target(n)
1769 
1770 static void
1771 decode_win_eth_setup(u_long base)
1772 {
1773 	uint32_t br, sz;
1774 	int i, j;
1775 
1776 	if (pm_is_disabled(CPU_PM_CTRL_GE(eth_port)))
1777 		return;
1778 
1779 	eth_port++;
1780 
1781 	/* Disable, clear and revoke protection for all ETH windows */
1782 	for (i = 0; i < MV_WIN_ETH_MAX; i++) {
1783 
1784 		eth_bare_write(base, i, 1);
1785 		eth_epap_write(base, i, 0);
1786 		win_eth_br_write(base, i, 0);
1787 		win_eth_sz_write(base, i, 0);
1788 		if (win_eth_can_remap(i))
1789 			win_eth_har_write(base, i, 0);
1790 	}
1791 
1792 	/* Only access to active DRAM banks is required */
1793 	for (i = 0; i < MV_WIN_DDR_MAX; i++)
1794 		if (ddr_is_active(i)) {
1795 
1796 			br = ddr_base(i) | (ddr_attr(i) << 8) | MV_WIN_ETH_DDR_TRGT(i);
1797 			sz = ((ddr_size(i) - 1) & 0xffff0000);
1798 
1799 			/* Set the first free ETH window */
1800 			for (j = 0; j < MV_WIN_ETH_MAX; j++) {
1801 				if (eth_bare_read(base, j) == 0)
1802 					continue;
1803 
1804 				win_eth_br_write(base, j, br);
1805 				win_eth_sz_write(base, j, sz);
1806 
1807 				/* XXX remapping ETH windows not supported */
1808 
1809 				/* Set protection RW */
1810 				eth_epap_write(base, j, 0x3);
1811 
1812 				/* Enable window */
1813 				eth_bare_write(base, j, 0);
1814 				break;
1815 			}
1816 		}
1817 }
1818 
1819 static void
1820 decode_win_neta_dump(u_long base)
1821 {
1822 
1823 	decode_win_eth_dump(base + MV_WIN_NETA_OFFSET);
1824 }
1825 
1826 static void
1827 decode_win_neta_setup(u_long base)
1828 {
1829 
1830 	decode_win_eth_setup(base + MV_WIN_NETA_OFFSET);
1831 }
1832 
1833 static int
1834 decode_win_eth_valid(void)
1835 {
1836 
1837 	return (decode_win_can_cover_ddr(MV_WIN_ETH_MAX));
1838 }
1839 
1840 /**************************************************************************
1841  * PCIE windows routines
1842  **************************************************************************/
1843 static void
1844 decode_win_pcie_dump(u_long base)
1845 {
1846 	int i;
1847 
1848 	printf("PCIE windows base 0x%08lx\n", base);
1849 	for (i = 0; i < MV_WIN_PCIE_MAX; i++)
1850 		printf("PCIE window#%d: cr 0x%08x br 0x%08x remap 0x%08x\n",
1851 		    i, win_pcie_cr_read(base, i),
1852 		    win_pcie_br_read(base, i), win_pcie_remap_read(base, i));
1853 
1854 	for (i = 0; i < MV_PCIE_BAR_MAX; i++)
1855 		printf("PCIE bar#%d: cr 0x%08x br 0x%08x brh 0x%08x\n",
1856 		    i, pcie_bar_cr_read(base, i),
1857 		    pcie_bar_br_read(base, i), pcie_bar_brh_read(base, i));
1858 }
1859 
1860 void
1861 decode_win_pcie_setup(u_long base)
1862 {
1863 	uint32_t size = 0, ddrbase = ~0;
1864 	uint32_t cr, br;
1865 	int i, j;
1866 
1867 	for (i = 0; i < MV_PCIE_BAR_MAX; i++) {
1868 		pcie_bar_br_write(base, i,
1869 		    MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
1870 		if (i < 3)
1871 			pcie_bar_brh_write(base, i, 0);
1872 		if (i > 0)
1873 			pcie_bar_cr_write(base, i, 0);
1874 	}
1875 
1876 	for (i = 0; i < MV_WIN_PCIE_MAX; i++) {
1877 		win_pcie_cr_write(base, i, 0);
1878 		win_pcie_br_write(base, i, 0);
1879 		win_pcie_remap_write(base, i, 0);
1880 	}
1881 
1882 	/* On End-Point only set BAR size to 1MB regardless of DDR size */
1883 	if ((bus_space_read_4(fdtbus_bs_tag, base, MV_PCIE_CONTROL)
1884 	    & MV_PCIE_ROOT_CMPLX) == 0) {
1885 		pcie_bar_cr_write(base, 1, 0xf0000 | 1);
1886 		return;
1887 	}
1888 
1889 	for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1890 		if (ddr_is_active(i)) {
1891 			/* Map DDR to BAR 1 */
1892 			cr = (ddr_size(i) - 1) & 0xffff0000;
1893 			size += ddr_size(i) & 0xffff0000;
1894 			cr |= (ddr_attr(i) << 8) | (ddr_target(i) << 4) | 1;
1895 			br = ddr_base(i);
1896 			if (br < ddrbase)
1897 				ddrbase = br;
1898 
1899 			/* Use the first available PCIE window */
1900 			for (j = 0; j < MV_WIN_PCIE_MAX; j++) {
1901 				if (win_pcie_cr_read(base, j) != 0)
1902 					continue;
1903 
1904 				win_pcie_br_write(base, j, br);
1905 				win_pcie_cr_write(base, j, cr);
1906 				break;
1907 			}
1908 		}
1909 	}
1910 
1911 	/*
1912 	 * Upper 16 bits in BAR register is interpreted as BAR size
1913 	 * (in 64 kB units) plus 64kB, so subtract 0x10000
1914 	 * form value passed to register to get correct value.
1915 	 */
1916 	size -= 0x10000;
1917 	pcie_bar_cr_write(base, 1, size | 1);
1918 	pcie_bar_br_write(base, 1, ddrbase |
1919 	    MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
1920 	pcie_bar_br_write(base, 0, fdt_immr_pa |
1921 	    MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
1922 }
1923 
1924 static int
1925 decode_win_pcie_valid(void)
1926 {
1927 
1928 	return (decode_win_can_cover_ddr(MV_WIN_PCIE_MAX));
1929 }
1930 
1931 /**************************************************************************
1932  * IDMA windows routines
1933  **************************************************************************/
1934 #if defined(SOC_MV_ORION) || defined(SOC_MV_DISCOVERY)
1935 static int
1936 idma_bare_read(u_long base, int i)
1937 {
1938 	uint32_t v;
1939 
1940 	v = win_idma_bare_read(base);
1941 	v &= (1 << i);
1942 
1943 	return (v >> i);
1944 }
1945 
1946 static void
1947 idma_bare_write(u_long base, int i, int val)
1948 {
1949 	uint32_t v;
1950 
1951 	v = win_idma_bare_read(base);
1952 	v &= ~(1 << i);
1953 	v |= (val << i);
1954 	win_idma_bare_write(base, v);
1955 }
1956 
1957 /*
1958  * Sets channel protection 'val' for window 'w' on channel 'c'
1959  */
1960 static void
1961 idma_cap_write(u_long base, int c, int w, int val)
1962 {
1963 	uint32_t v;
1964 
1965 	v = win_idma_cap_read(base, c);
1966 	v &= ~(0x3 << (w * 2));
1967 	v |= (val << (w * 2));
1968 	win_idma_cap_write(base, c, v);
1969 }
1970 
1971 /*
1972  * Set protection 'val' on all channels for window 'w'
1973  */
1974 static void
1975 idma_set_prot(u_long base, int w, int val)
1976 {
1977 	int c;
1978 
1979 	for (c = 0; c < MV_IDMA_CHAN_MAX; c++)
1980 		idma_cap_write(base, c, w, val);
1981 }
1982 
1983 static int
1984 win_idma_can_remap(int i)
1985 {
1986 
1987 	/* IDMA decode windows 0-3 have remap capability */
1988 	if (i < 4)
1989 		return (1);
1990 
1991 	return (0);
1992 }
1993 
1994 void
1995 decode_win_idma_setup(u_long base)
1996 {
1997 	uint32_t br, sz;
1998 	int i, j;
1999 
2000 	if (pm_is_disabled(CPU_PM_CTRL_IDMA))
2001 		return;
2002 	/*
2003 	 * Disable and clear all IDMA windows, revoke protection for all channels
2004 	 */
2005 	for (i = 0; i < MV_WIN_IDMA_MAX; i++) {
2006 
2007 		idma_bare_write(base, i, 1);
2008 		win_idma_br_write(base, i, 0);
2009 		win_idma_sz_write(base, i, 0);
2010 		if (win_idma_can_remap(i) == 1)
2011 			win_idma_har_write(base, i, 0);
2012 	}
2013 	for (i = 0; i < MV_IDMA_CHAN_MAX; i++)
2014 		win_idma_cap_write(base, i, 0);
2015 
2016 	/*
2017 	 * Set up access to all active DRAM banks
2018 	 */
2019 	for (i = 0; i < MV_WIN_DDR_MAX; i++)
2020 		if (ddr_is_active(i)) {
2021 			br = ddr_base(i) | (ddr_attr(i) << 8) | ddr_target(i);
2022 			sz = ((ddr_size(i) - 1) & 0xffff0000);
2023 
2024 			/* Place DDR entries in non-remapped windows */
2025 			for (j = 0; j < MV_WIN_IDMA_MAX; j++)
2026 				if (win_idma_can_remap(j) != 1 &&
2027 				    idma_bare_read(base, j) == 1) {
2028 
2029 					/* Configure window */
2030 					win_idma_br_write(base, j, br);
2031 					win_idma_sz_write(base, j, sz);
2032 
2033 					/* Set protection RW on all channels */
2034 					idma_set_prot(base, j, 0x3);
2035 
2036 					/* Enable window */
2037 					idma_bare_write(base, j, 0);
2038 					break;
2039 				}
2040 		}
2041 
2042 	/*
2043 	 * Remaining targets -- from statically defined table
2044 	 */
2045 	for (i = 0; i < idma_wins_no; i++)
2046 		if (idma_wins[i].target > 0) {
2047 			br = (idma_wins[i].base & 0xffff0000) |
2048 			    (idma_wins[i].attr << 8) | idma_wins[i].target;
2049 			sz = ((idma_wins[i].size - 1) & 0xffff0000);
2050 
2051 			/* Set the first free IDMA window */
2052 			for (j = 0; j < MV_WIN_IDMA_MAX; j++) {
2053 				if (idma_bare_read(base, j) == 0)
2054 					continue;
2055 
2056 				/* Configure window */
2057 				win_idma_br_write(base, j, br);
2058 				win_idma_sz_write(base, j, sz);
2059 				if (win_idma_can_remap(j) &&
2060 				    idma_wins[j].remap >= 0)
2061 					win_idma_har_write(base, j,
2062 					    idma_wins[j].remap);
2063 
2064 				/* Set protection RW on all channels */
2065 				idma_set_prot(base, j, 0x3);
2066 
2067 				/* Enable window */
2068 				idma_bare_write(base, j, 0);
2069 				break;
2070 			}
2071 		}
2072 }
2073 
2074 int
2075 decode_win_idma_valid(void)
2076 {
2077 	const struct decode_win *wintab;
2078 	int c, i, j, rv;
2079 	uint32_t b, e, s;
2080 
2081 	if (idma_wins_no > MV_WIN_IDMA_MAX) {
2082 		printf("IDMA windows: too many entries: %d\n", idma_wins_no);
2083 		return (0);
2084 	}
2085 	for (i = 0, c = 0; i < MV_WIN_DDR_MAX; i++)
2086 		if (ddr_is_active(i))
2087 			c++;
2088 
2089 	if (idma_wins_no > (MV_WIN_IDMA_MAX - c)) {
2090 		printf("IDMA windows: too many entries: %d, available: %d\n",
2091 		    idma_wins_no, MV_WIN_IDMA_MAX - c);
2092 		return (0);
2093 	}
2094 
2095 	wintab = idma_wins;
2096 	rv = 1;
2097 	for (i = 0; i < idma_wins_no; i++, wintab++) {
2098 
2099 		if (wintab->target == 0) {
2100 			printf("IDMA window#%d: DDR target window is not "
2101 			    "supposed to be reprogrammed!\n", i);
2102 			rv = 0;
2103 		}
2104 
2105 		if (wintab->remap >= 0 && win_cpu_can_remap(i) != 1) {
2106 			printf("IDMA window#%d: not capable of remapping, but "
2107 			    "val 0x%08x defined\n", i, wintab->remap);
2108 			rv = 0;
2109 		}
2110 
2111 		s = wintab->size;
2112 		b = wintab->base;
2113 		e = b + s - 1;
2114 		if (s > (0xFFFFFFFF - b + 1)) {
2115 			/* XXX this boundary check should account for 64bit and
2116 			 * remapping.. */
2117 			printf("IDMA window#%d: no space for size 0x%08x at "
2118 			    "0x%08x\n", i, s, b);
2119 			rv = 0;
2120 			continue;
2121 		}
2122 
2123 		j = decode_win_overlap(i, idma_wins_no, &idma_wins[0]);
2124 		if (j >= 0) {
2125 			printf("IDMA window#%d: (0x%08x - 0x%08x) overlaps "
2126 			    "with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
2127 			    idma_wins[j].base,
2128 			    idma_wins[j].base + idma_wins[j].size - 1);
2129 			rv = 0;
2130 		}
2131 	}
2132 
2133 	return (rv);
2134 }
2135 
2136 void
2137 decode_win_idma_dump(u_long base)
2138 {
2139 	int i;
2140 
2141 	if (pm_is_disabled(CPU_PM_CTRL_IDMA))
2142 		return;
2143 
2144 	for (i = 0; i < MV_WIN_IDMA_MAX; i++) {
2145 		printf("IDMA window#%d: b 0x%08x, s 0x%08x", i,
2146 		    win_idma_br_read(base, i), win_idma_sz_read(base, i));
2147 
2148 		if (win_idma_can_remap(i))
2149 			printf(", ha 0x%08x", win_idma_har_read(base, i));
2150 
2151 		printf("\n");
2152 	}
2153 	for (i = 0; i < MV_IDMA_CHAN_MAX; i++)
2154 		printf("IDMA channel#%d: ap 0x%08x\n", i,
2155 		    win_idma_cap_read(base, i));
2156 	printf("IDMA windows: bare 0x%08x\n", win_idma_bare_read(base));
2157 }
2158 #else
2159 
2160 /* Provide dummy functions to satisfy the build for SoCs not equipped with IDMA */
2161 int
2162 decode_win_idma_valid(void)
2163 {
2164 
2165 	return (1);
2166 }
2167 
2168 void
2169 decode_win_idma_setup(u_long base)
2170 {
2171 }
2172 
2173 void
2174 decode_win_idma_dump(u_long base)
2175 {
2176 }
2177 #endif
2178 
2179 /**************************************************************************
2180  * XOR windows routines
2181  **************************************************************************/
2182 #if defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY)
2183 static int
2184 xor_ctrl_read(u_long base, int i, int c, int e)
2185 {
2186 	uint32_t v;
2187 	v = win_xor_ctrl_read(base, c, e);
2188 	v &= (1 << i);
2189 
2190 	return (v >> i);
2191 }
2192 
2193 static void
2194 xor_ctrl_write(u_long base, int i, int c, int e, int val)
2195 {
2196 	uint32_t v;
2197 
2198 	v = win_xor_ctrl_read(base, c, e);
2199 	v &= ~(1 << i);
2200 	v |= (val << i);
2201 	win_xor_ctrl_write(base, c, e, v);
2202 }
2203 
2204 /*
2205  * Set channel protection 'val' for window 'w' on channel 'c'
2206  */
2207 static void
2208 xor_chan_write(u_long base, int c, int e, int w, int val)
2209 {
2210 	uint32_t v;
2211 
2212 	v = win_xor_ctrl_read(base, c, e);
2213 	v &= ~(0x3 << (w * 2 + 16));
2214 	v |= (val << (w * 2 + 16));
2215 	win_xor_ctrl_write(base, c, e, v);
2216 }
2217 
2218 /*
2219  * Set protection 'val' on all channels for window 'w' on engine 'e'
2220  */
2221 static void
2222 xor_set_prot(u_long base, int w, int e, int val)
2223 {
2224 	int c;
2225 
2226 	for (c = 0; c < MV_XOR_CHAN_MAX; c++)
2227 		xor_chan_write(base, c, e, w, val);
2228 }
2229 
2230 static int
2231 win_xor_can_remap(int i)
2232 {
2233 
2234 	/* XOR decode windows 0-3 have remap capability */
2235 	if (i < 4)
2236 		return (1);
2237 
2238 	return (0);
2239 }
2240 
2241 static int
2242 xor_max_eng(void)
2243 {
2244 	uint32_t dev, rev;
2245 
2246 	soc_id(&dev, &rev);
2247 	switch (dev) {
2248 	case MV_DEV_88F6281:
2249 	case MV_DEV_88F6282:
2250 	case MV_DEV_MV78130:
2251 	case MV_DEV_MV78160:
2252 	case MV_DEV_MV78230:
2253 	case MV_DEV_MV78260:
2254 	case MV_DEV_MV78460:
2255 		return (2);
2256 	case MV_DEV_MV78100:
2257 	case MV_DEV_MV78100_Z0:
2258 		return (1);
2259 	default:
2260 		return (0);
2261 	}
2262 }
2263 
2264 static void
2265 xor_active_dram(u_long base, int c, int e, int *window)
2266 {
2267 	uint32_t br, sz;
2268 	int i, m, w;
2269 
2270 	/*
2271 	 * Set up access to all active DRAM banks
2272 	 */
2273 	m = xor_max_eng();
2274 	for (i = 0; i < m; i++)
2275 		if (ddr_is_active(i)) {
2276 			br = ddr_base(i) | (ddr_attr(i) << 8) |
2277 			    ddr_target(i);
2278 			sz = ((ddr_size(i) - 1) & 0xffff0000);
2279 
2280 			/* Place DDR entries in non-remapped windows */
2281 			for (w = 0; w < MV_WIN_XOR_MAX; w++)
2282 				if (win_xor_can_remap(w) != 1 &&
2283 				    (xor_ctrl_read(base, w, c, e) == 0) &&
2284 				    w > *window) {
2285 					/* Configure window */
2286 					win_xor_br_write(base, w, e, br);
2287 					win_xor_sz_write(base, w, e, sz);
2288 
2289 					/* Set protection RW on all channels */
2290 					xor_set_prot(base, w, e, 0x3);
2291 
2292 					/* Enable window */
2293 					xor_ctrl_write(base, w, c, e, 1);
2294 					(*window)++;
2295 					break;
2296 				}
2297 		}
2298 }
2299 
2300 void
2301 decode_win_xor_setup(u_long base)
2302 {
2303 	uint32_t br, sz;
2304 	int i, j, z, e = 1, m, window;
2305 
2306 	if (pm_is_disabled(CPU_PM_CTRL_XOR))
2307 		return;
2308 
2309 	/*
2310 	 * Disable and clear all XOR windows, revoke protection for all
2311 	 * channels
2312 	 */
2313 	m = xor_max_eng();
2314 	for (j = 0; j < m; j++, e--) {
2315 
2316 		/* Number of non-remaped windows */
2317 		window = MV_XOR_NON_REMAP - 1;
2318 
2319 		for (i = 0; i < MV_WIN_XOR_MAX; i++) {
2320 			win_xor_br_write(base, i, e, 0);
2321 			win_xor_sz_write(base, i, e, 0);
2322 		}
2323 
2324 		if (win_xor_can_remap(i) == 1)
2325 			win_xor_har_write(base, i, e, 0);
2326 
2327 		for (i = 0; i < MV_XOR_CHAN_MAX; i++) {
2328 			win_xor_ctrl_write(base, i, e, 0);
2329 			xor_active_dram(base, i, e, &window);
2330 		}
2331 
2332 		/*
2333 		 * Remaining targets -- from a statically defined table
2334 		 */
2335 		for (i = 0; i < xor_wins_no; i++)
2336 			if (xor_wins[i].target > 0) {
2337 				br = (xor_wins[i].base & 0xffff0000) |
2338 				    (xor_wins[i].attr << 8) |
2339 				    xor_wins[i].target;
2340 				sz = ((xor_wins[i].size - 1) & 0xffff0000);
2341 
2342 				/* Set the first free XOR window */
2343 				for (z = 0; z < MV_WIN_XOR_MAX; z++) {
2344 					if (xor_ctrl_read(base, z, 0, e) &&
2345 					    xor_ctrl_read(base, z, 1, e))
2346 						continue;
2347 
2348 					/* Configure window */
2349 					win_xor_br_write(base, z, e, br);
2350 					win_xor_sz_write(base, z, e, sz);
2351 					if (win_xor_can_remap(z) &&
2352 					    xor_wins[z].remap >= 0)
2353 						win_xor_har_write(base, z, e,
2354 						    xor_wins[z].remap);
2355 
2356 					/* Set protection RW on all channels */
2357 					xor_set_prot(base, z, e, 0x3);
2358 
2359 					/* Enable window */
2360 					xor_ctrl_write(base, z, 0, e, 1);
2361 					xor_ctrl_write(base, z, 1, e, 1);
2362 					break;
2363 				}
2364 			}
2365 	}
2366 }
2367 
2368 int
2369 decode_win_xor_valid(void)
2370 {
2371 	const struct decode_win *wintab;
2372 	int c, i, j, rv;
2373 	uint32_t b, e, s;
2374 
2375 	if (xor_wins_no > MV_WIN_XOR_MAX) {
2376 		printf("XOR windows: too many entries: %d\n", xor_wins_no);
2377 		return (0);
2378 	}
2379 	for (i = 0, c = 0; i < MV_WIN_DDR_MAX; i++)
2380 		if (ddr_is_active(i))
2381 			c++;
2382 
2383 	if (xor_wins_no > (MV_WIN_XOR_MAX - c)) {
2384 		printf("XOR windows: too many entries: %d, available: %d\n",
2385 		    xor_wins_no, MV_WIN_IDMA_MAX - c);
2386 		return (0);
2387 	}
2388 
2389 	wintab = xor_wins;
2390 	rv = 1;
2391 	for (i = 0; i < xor_wins_no; i++, wintab++) {
2392 
2393 		if (wintab->target == 0) {
2394 			printf("XOR window#%d: DDR target window is not "
2395 			    "supposed to be reprogrammed!\n", i);
2396 			rv = 0;
2397 		}
2398 
2399 		if (wintab->remap >= 0 && win_cpu_can_remap(i) != 1) {
2400 			printf("XOR window#%d: not capable of remapping, but "
2401 			    "val 0x%08x defined\n", i, wintab->remap);
2402 			rv = 0;
2403 		}
2404 
2405 		s = wintab->size;
2406 		b = wintab->base;
2407 		e = b + s - 1;
2408 		if (s > (0xFFFFFFFF - b + 1)) {
2409 			/*
2410 			 * XXX this boundary check should account for 64bit
2411 			 * and remapping..
2412 			 */
2413 			printf("XOR window#%d: no space for size 0x%08x at "
2414 			    "0x%08x\n", i, s, b);
2415 			rv = 0;
2416 			continue;
2417 		}
2418 
2419 		j = decode_win_overlap(i, xor_wins_no, &xor_wins[0]);
2420 		if (j >= 0) {
2421 			printf("XOR window#%d: (0x%08x - 0x%08x) overlaps "
2422 			    "with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
2423 			    xor_wins[j].base,
2424 			    xor_wins[j].base + xor_wins[j].size - 1);
2425 			rv = 0;
2426 		}
2427 	}
2428 
2429 	return (rv);
2430 }
2431 
2432 void
2433 decode_win_xor_dump(u_long base)
2434 {
2435 	int i, j;
2436 	int e = 1;
2437 
2438 	if (pm_is_disabled(CPU_PM_CTRL_XOR))
2439 		return;
2440 
2441 	for (j = 0; j < xor_max_eng(); j++, e--) {
2442 		for (i = 0; i < MV_WIN_XOR_MAX; i++) {
2443 			printf("XOR window#%d: b 0x%08x, s 0x%08x", i,
2444 			    win_xor_br_read(base, i, e), win_xor_sz_read(base, i, e));
2445 
2446 			if (win_xor_can_remap(i))
2447 				printf(", ha 0x%08x", win_xor_har_read(base, i, e));
2448 
2449 			printf("\n");
2450 		}
2451 		for (i = 0; i < MV_XOR_CHAN_MAX; i++)
2452 			printf("XOR control#%d: 0x%08x\n", i,
2453 			    win_xor_ctrl_read(base, i, e));
2454 	}
2455 }
2456 
2457 #else
2458 /* Provide dummy functions to satisfy the build for SoCs not equipped with XOR */
2459 static int
2460 decode_win_xor_valid(void)
2461 {
2462 
2463 	return (1);
2464 }
2465 
2466 static void
2467 decode_win_xor_setup(u_long base)
2468 {
2469 }
2470 
2471 static void
2472 decode_win_xor_dump(u_long base)
2473 {
2474 }
2475 #endif
2476 
2477 /**************************************************************************
2478  * SATA windows routines
2479  **************************************************************************/
2480 static void
2481 decode_win_sata_setup(u_long base)
2482 {
2483 	uint32_t cr, br;
2484 	int i, j;
2485 
2486 	if (pm_is_disabled(CPU_PM_CTRL_SATA))
2487 		return;
2488 
2489 	for (i = 0; i < MV_WIN_SATA_MAX; i++) {
2490 		win_sata_cr_write(base, i, 0);
2491 		win_sata_br_write(base, i, 0);
2492 	}
2493 
2494 	for (i = 0; i < MV_WIN_DDR_MAX; i++)
2495 		if (ddr_is_active(i)) {
2496 			cr = ((ddr_size(i) - 1) & 0xffff0000) |
2497 			    (ddr_attr(i) << 8) | (ddr_target(i) << 4) | 1;
2498 			br = ddr_base(i);
2499 
2500 			/* Use the first available SATA window */
2501 			for (j = 0; j < MV_WIN_SATA_MAX; j++) {
2502 				if ((win_sata_cr_read(base, j) & 1) != 0)
2503 					continue;
2504 
2505 				win_sata_br_write(base, j, br);
2506 				win_sata_cr_write(base, j, cr);
2507 				break;
2508 			}
2509 		}
2510 }
2511 
2512 /*
2513  * Configure AHCI decoding windows
2514  */
2515 static void
2516 decode_win_ahci_setup(u_long base)
2517 {
2518 	uint32_t br, cr, sz;
2519 	int i, j;
2520 
2521 	for (i = 0; i < MV_WIN_SATA_MAX_ARMADA38X; i++) {
2522 		win_sata_armada38x_cr_write(base, i, 0);
2523 		win_sata_armada38x_br_write(base, i, 0);
2524 		win_sata_armada38x_sz_write(base, i, 0);
2525 	}
2526 
2527 	for (i = 0; i < MV_WIN_DDR_MAX; i++) {
2528 		if (ddr_is_active(i)) {
2529 			cr = (ddr_attr(i) << IO_WIN_ATTR_SHIFT) |
2530 			    (ddr_target(i) << IO_WIN_TGT_SHIFT) |
2531 			    IO_WIN_ENA_MASK;
2532 			br = ddr_base(i);
2533 			sz = (ddr_size(i) - 1) &
2534 			    (IO_WIN_SIZE_MASK << IO_WIN_SIZE_SHIFT);
2535 
2536 			/* Use first available SATA window */
2537 			for (j = 0; j < MV_WIN_SATA_MAX_ARMADA38X; j++) {
2538 				if (win_sata_armada38x_cr_read(base, j) & IO_WIN_ENA_MASK)
2539 					continue;
2540 
2541 				/* BASE is set to DRAM base (0x00000000) */
2542 				win_sata_armada38x_br_write(base, j, br);
2543 				/* CTRL targets DRAM ctrl with 0x0E or 0x0D */
2544 				win_sata_armada38x_cr_write(base, j, cr);
2545 				/* SIZE is set to 16MB - max value */
2546 				win_sata_armada38x_sz_write(base, j, sz);
2547 				break;
2548 			}
2549 		}
2550 	}
2551 }
2552 
2553 static void
2554 decode_win_ahci_dump(u_long base)
2555 {
2556 	int i;
2557 
2558 	for (i = 0; i < MV_WIN_SATA_MAX_ARMADA38X; i++)
2559 		printf("SATA window#%d: cr 0x%08x, br 0x%08x, sz 0x%08x\n", i,
2560 		    win_sata_armada38x_cr_read(base, i), win_sata_br_read(base, i),
2561 		    win_sata_armada38x_sz_read(base,i));
2562 }
2563 
2564 static int
2565 decode_win_sata_valid(void)
2566 {
2567 	uint32_t dev, rev;
2568 
2569 	soc_id(&dev, &rev);
2570 	if (dev == MV_DEV_88F5281)
2571 		return (1);
2572 
2573 	return (decode_win_can_cover_ddr(MV_WIN_SATA_MAX));
2574 }
2575 
2576 static void
2577 decode_win_sdhci_setup(u_long base)
2578 {
2579 	uint32_t cr, br;
2580 	int i, j;
2581 
2582 	for (i = 0; i < MV_WIN_SDHCI_MAX; i++) {
2583 		win_sdhci_cr_write(base, i, 0);
2584 		win_sdhci_br_write(base, i, 0);
2585 	}
2586 
2587 	for (i = 0; i < MV_WIN_DDR_MAX; i++)
2588 		if (ddr_is_active(i)) {
2589 			br = ddr_base(i);
2590 			cr = (((ddr_size(i) - 1) &
2591 			    (IO_WIN_SIZE_MASK << IO_WIN_SIZE_SHIFT)) |
2592 			    (ddr_attr(i) << IO_WIN_ATTR_SHIFT) |
2593 			    (ddr_target(i) << IO_WIN_TGT_SHIFT) |
2594 			    IO_WIN_ENA_MASK);
2595 
2596 			/* Use the first available SDHCI window */
2597 			for (j = 0; j < MV_WIN_SDHCI_MAX; j++) {
2598 				if (win_sdhci_cr_read(base, j) & IO_WIN_ENA_MASK)
2599 					continue;
2600 
2601 				win_sdhci_cr_write(base, j, cr);
2602 				win_sdhci_br_write(base, j, br);
2603 				break;
2604 			}
2605 		}
2606 }
2607 
2608 static void
2609 decode_win_sdhci_dump(u_long base)
2610 {
2611 	int i;
2612 
2613 	for (i = 0; i < MV_WIN_SDHCI_MAX; i++)
2614 		printf("SDHCI window#%d: c 0x%08x, b 0x%08x\n", i,
2615 		    win_sdhci_cr_read(base, i), win_sdhci_br_read(base, i));
2616 }
2617 
2618 static int
2619 decode_win_sdhci_valid(void)
2620 {
2621 
2622 	return (decode_win_can_cover_ddr(MV_WIN_SDHCI_MAX));
2623 }
2624 
2625 /**************************************************************************
2626  * FDT parsing routines.
2627  **************************************************************************/
2628 
2629 static int
2630 fdt_get_ranges(const char *nodename, void *buf, int size, int *tuples,
2631     int *tuplesize)
2632 {
2633 	phandle_t node;
2634 	pcell_t addr_cells, par_addr_cells, size_cells;
2635 	int len, tuple_size, tuples_count;
2636 
2637 	node = OF_finddevice(nodename);
2638 	if (node == -1)
2639 		return (EINVAL);
2640 
2641 	if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
2642 		return (ENXIO);
2643 
2644 	par_addr_cells = fdt_parent_addr_cells(node);
2645 	if (par_addr_cells > 2)
2646 		return (ERANGE);
2647 
2648 	tuple_size = sizeof(pcell_t) * (addr_cells + par_addr_cells +
2649 	    size_cells);
2650 
2651 	/* Note the OF_getprop_alloc() cannot be used at this early stage. */
2652 	len = OF_getprop(node, "ranges", buf, size);
2653 
2654 	/*
2655 	 * XXX this does not handle the empty 'ranges;' case, which is
2656 	 * legitimate and should be allowed.
2657 	 */
2658 	tuples_count = len / tuple_size;
2659 	if (tuples_count <= 0)
2660 		return (ERANGE);
2661 
2662 	if (par_addr_cells > 2 || addr_cells > 2 || size_cells > 2)
2663 		return (ERANGE);
2664 
2665 	*tuples = tuples_count;
2666 	*tuplesize = tuple_size;
2667 	return (0);
2668 }
2669 
2670 static int
2671 win_cpu_from_dt(void)
2672 {
2673 	pcell_t ranges[48];
2674 	phandle_t node;
2675 	int i, entry_size, err, t, tuple_size, tuples;
2676 	u_long sram_base, sram_size;
2677 
2678 	t = 0;
2679 	/* Retrieve 'ranges' property of '/localbus' node. */
2680 	if ((err = fdt_get_ranges("/localbus", ranges, sizeof(ranges),
2681 	    &tuples, &tuple_size)) == 0) {
2682 		/*
2683 		 * Fill CPU decode windows table.
2684 		 */
2685 		bzero((void *)&cpu_win_tbl, sizeof(cpu_win_tbl));
2686 
2687 		entry_size = tuple_size / sizeof(pcell_t);
2688 		cpu_wins_no = tuples;
2689 
2690 		/* Check range */
2691 		if (tuples > nitems(cpu_win_tbl)) {
2692 			debugf("too many tuples to fit into cpu_win_tbl\n");
2693 			return (ENOMEM);
2694 		}
2695 
2696 		for (i = 0, t = 0; t < tuples; i += entry_size, t++) {
2697 			cpu_win_tbl[t].target = 1;
2698 			cpu_win_tbl[t].attr = fdt32_to_cpu(ranges[i + 1]);
2699 			cpu_win_tbl[t].base = fdt32_to_cpu(ranges[i + 2]);
2700 			cpu_win_tbl[t].size = fdt32_to_cpu(ranges[i + 3]);
2701 			cpu_win_tbl[t].remap = ~0;
2702 			debugf("target = 0x%0x attr = 0x%0x base = 0x%0x "
2703 			    "size = 0x%0x remap = 0x%0x\n",
2704 			    cpu_win_tbl[t].target,
2705 			    cpu_win_tbl[t].attr, cpu_win_tbl[t].base,
2706 			    cpu_win_tbl[t].size, cpu_win_tbl[t].remap);
2707 		}
2708 	}
2709 
2710 	/*
2711 	 * Retrieve CESA SRAM data.
2712 	 */
2713 	if ((node = OF_finddevice("sram")) != -1)
2714 		if (ofw_bus_node_is_compatible(node, "mrvl,cesa-sram"))
2715 			goto moveon;
2716 
2717 	if ((node = OF_finddevice("/")) == -1)
2718 		return (ENXIO);
2719 
2720 	if ((node = fdt_find_compatible(node, "mrvl,cesa-sram", 0)) == 0)
2721 		/* SRAM block is not always present. */
2722 		return (0);
2723 moveon:
2724 	sram_base = sram_size = 0;
2725 	if (fdt_regsize(node, &sram_base, &sram_size) != 0)
2726 		return (EINVAL);
2727 
2728 	/* Check range */
2729 	if (t >= nitems(cpu_win_tbl)) {
2730 		debugf("cannot fit CESA tuple into cpu_win_tbl\n");
2731 		return (ENOMEM);
2732 	}
2733 
2734 	cpu_win_tbl[t].target = soc_decode_win_spec->win_cesa_target;
2735 	if (soc_family == MV_SOC_ARMADA_38X)
2736 		cpu_win_tbl[t].attr = soc_decode_win_spec->win_cesa_attr(0);
2737 	else
2738 		cpu_win_tbl[t].attr = soc_decode_win_spec->win_cesa_attr(1);
2739 	cpu_win_tbl[t].base = sram_base;
2740 	cpu_win_tbl[t].size = sram_size;
2741 	cpu_win_tbl[t].remap = ~0;
2742 	cpu_wins_no++;
2743 	debugf("sram: base = 0x%0lx size = 0x%0lx\n", sram_base, sram_size);
2744 
2745 	/* Check if there is a second CESA node */
2746 	while ((node = OF_peer(node)) != 0) {
2747 		if (ofw_bus_node_is_compatible(node, "mrvl,cesa-sram")) {
2748 			if (fdt_regsize(node, &sram_base, &sram_size) != 0)
2749 				return (EINVAL);
2750 			break;
2751 		}
2752 	}
2753 
2754 	if (node == 0)
2755 		return (0);
2756 
2757 	t++;
2758 	if (t >= nitems(cpu_win_tbl)) {
2759 		debugf("cannot fit CESA tuple into cpu_win_tbl\n");
2760 		return (ENOMEM);
2761 	}
2762 
2763 	/* Configure window for CESA1 */
2764 	cpu_win_tbl[t].target = soc_decode_win_spec->win_cesa_target;
2765 	cpu_win_tbl[t].attr = soc_decode_win_spec->win_cesa_attr(1);
2766 	cpu_win_tbl[t].base = sram_base;
2767 	cpu_win_tbl[t].size = sram_size;
2768 	cpu_win_tbl[t].remap = ~0;
2769 	cpu_wins_no++;
2770 	debugf("sram: base = 0x%0lx size = 0x%0lx\n", sram_base, sram_size);
2771 
2772 	return (0);
2773 }
2774 
2775 static int
2776 fdt_win_process(phandle_t child)
2777 {
2778 	int i, ret;
2779 
2780 	for (i = 0; soc_nodes[i].compat != NULL; i++) {
2781 		/* Setup only for enabled devices */
2782 		if (ofw_bus_node_status_okay(child) == 0)
2783 			continue;
2784 
2785 		if (!ofw_bus_node_is_compatible(child, soc_nodes[i].compat))
2786 			continue;
2787 
2788 		ret = fdt_win_process_child(child, &soc_nodes[i], "reg");
2789 		if (ret != 0)
2790 			return (ret);
2791 	}
2792 
2793 	return (0);
2794 }
2795 
2796 static int
2797 fdt_win_process_child(phandle_t child, struct soc_node_spec *soc_node,
2798     const char* mimo_reg_source)
2799 {
2800 	int addr_cells, size_cells;
2801 	pcell_t reg[8];
2802 	u_long size, base;
2803 
2804 	if (fdt_addrsize_cells(OF_parent(child), &addr_cells,
2805 	    &size_cells))
2806 		return (ENXIO);
2807 
2808 	if ((sizeof(pcell_t) * (addr_cells + size_cells)) > sizeof(reg))
2809 		return (ENOMEM);
2810 	if (OF_getprop(child, mimo_reg_source, &reg, sizeof(reg)) <= 0)
2811 		return (EINVAL);
2812 
2813 	if (addr_cells <= 2)
2814 		base = fdt_data_get(&reg[0], addr_cells);
2815 	else
2816 		base = fdt_data_get(&reg[addr_cells - 2], 2);
2817 	size = fdt_data_get(&reg[addr_cells], size_cells);
2818 
2819 	if (soc_node->valid_handler != NULL)
2820 		if (!soc_node->valid_handler())
2821 			return (EINVAL);
2822 
2823 	base = (base & 0x000fffff) | fdt_immr_va;
2824 	if (soc_node->decode_handler != NULL)
2825 		soc_node->decode_handler(base);
2826 	else
2827 		return (ENXIO);
2828 
2829 	if (MV_DUMP_WIN && (soc_node->dump_handler != NULL))
2830 		soc_node->dump_handler(base);
2831 
2832 	return (0);
2833 }
2834 
2835 static int
2836 fdt_win_setup(void)
2837 {
2838 	phandle_t node, child, sb;
2839 	phandle_t child_pci;
2840 	int err;
2841 
2842 	sb = 0;
2843 	node = OF_finddevice("/");
2844 	if (node == -1)
2845 		panic("fdt_win_setup: no root node");
2846 
2847 	/* Allow for coherent transactions on the A38x MBUS */
2848 	if (ofw_bus_node_is_compatible(node, "marvell,armada380"))
2849 		platform_io_coherent = true;
2850 
2851 	/*
2852 	 * Traverse through all children of root and simple-bus nodes.
2853 	 * For each found device retrieve decode windows data (if applicable).
2854 	 */
2855 	child = OF_child(node);
2856 	while (child != 0) {
2857 		/* Lookup for callback and run */
2858 		err = fdt_win_process(child);
2859 		if (err != 0)
2860 			return (err);
2861 
2862 		/* Process Marvell Armada-XP/38x PCIe controllers */
2863 		if (ofw_bus_node_is_compatible(child, "marvell,armada-370-pcie")) {
2864 			child_pci = OF_child(child);
2865 			while (child_pci != 0) {
2866 				err = fdt_win_process_child(child_pci,
2867 				    &soc_nodes[SOC_NODE_PCIE_ENTRY_IDX],
2868 				    "assigned-addresses");
2869 				if (err != 0)
2870 					return (err);
2871 
2872 				child_pci = OF_peer(child_pci);
2873 			}
2874 		}
2875 
2876 		/*
2877 		 * Once done with root-level children let's move down to
2878 		 * simple-bus and its children.
2879 		 */
2880 		child = OF_peer(child);
2881 		if ((child == 0) && (node == OF_finddevice("/"))) {
2882 			sb = node = fdt_find_compatible(node, "simple-bus", 0);
2883 			if (node == 0)
2884 				return (ENXIO);
2885 			child = OF_child(node);
2886 		}
2887 		/*
2888 		 * Next, move one more level down to internal-regs node (if
2889 		 * it is present) and its children. This node also have
2890 		 * "simple-bus" compatible.
2891 		 */
2892 		if ((child == 0) && (node == sb)) {
2893 			node = fdt_find_compatible(node, "simple-bus", 0);
2894 			if (node == 0)
2895 				return (0);
2896 			child = OF_child(node);
2897 		}
2898 	}
2899 
2900 	return (0);
2901 }
2902 
2903 static void
2904 fdt_fixup_busfreq(phandle_t root)
2905 {
2906 	phandle_t sb;
2907 	pcell_t freq;
2908 
2909 	freq = cpu_to_fdt32(get_tclk());
2910 
2911 	/*
2912 	 * Fix bus speed in cpu node
2913 	 */
2914 	if ((sb = OF_finddevice("cpu")) != -1)
2915 		if (fdt_is_compatible_strict(sb, "ARM,88VS584"))
2916 			OF_setprop(sb, "bus-frequency", (void *)&freq,
2917 			    sizeof(freq));
2918 
2919 	/*
2920 	 * This fixup sets the simple-bus bus-frequency property.
2921 	 */
2922 	if ((sb = fdt_find_compatible(root, "simple-bus", 1)) != 0)
2923 		OF_setprop(sb, "bus-frequency", (void *)&freq, sizeof(freq));
2924 }
2925 
2926 static void
2927 fdt_fixup_ranges(phandle_t root)
2928 {
2929 	phandle_t node;
2930 	pcell_t par_addr_cells, addr_cells, size_cells;
2931 	pcell_t ranges[3], reg[2], *rangesptr;
2932 	int len, tuple_size, tuples_count;
2933 	uint32_t base;
2934 
2935 	/* Fix-up SoC ranges according to real fdt_immr_pa */
2936 	if ((node = fdt_find_compatible(root, "simple-bus", 1)) != 0) {
2937 		if (fdt_addrsize_cells(node, &addr_cells, &size_cells) == 0 &&
2938 		    ((par_addr_cells = fdt_parent_addr_cells(node)) <= 2)) {
2939 			tuple_size = sizeof(pcell_t) * (par_addr_cells +
2940 			   addr_cells + size_cells);
2941 			len = OF_getprop(node, "ranges", ranges,
2942 			    sizeof(ranges));
2943 			tuples_count = len / tuple_size;
2944 			/* Unexpected settings are not supported */
2945 			if (tuples_count != 1)
2946 				goto fixup_failed;
2947 
2948 			rangesptr = &ranges[0];
2949 			rangesptr += par_addr_cells;
2950 			base = fdt_data_get((void *)rangesptr, addr_cells);
2951 			*rangesptr = cpu_to_fdt32(fdt_immr_pa);
2952 			if (OF_setprop(node, "ranges", (void *)&ranges[0],
2953 			    sizeof(ranges)) < 0)
2954 				goto fixup_failed;
2955 		}
2956 	}
2957 
2958 	/* Fix-up PCIe reg according to real PCIe registers' PA */
2959 	if ((node = fdt_find_compatible(root, "mrvl,pcie", 1)) != 0) {
2960 		if (fdt_addrsize_cells(OF_parent(node), &par_addr_cells,
2961 		    &size_cells) == 0) {
2962 			tuple_size = sizeof(pcell_t) * (par_addr_cells +
2963 			    size_cells);
2964 			len = OF_getprop(node, "reg", reg, sizeof(reg));
2965 			tuples_count = len / tuple_size;
2966 			/* Unexpected settings are not supported */
2967 			if (tuples_count != 1)
2968 				goto fixup_failed;
2969 
2970 			base = fdt_data_get((void *)&reg[0], par_addr_cells);
2971 			base &= ~0xFF000000;
2972 			base |= fdt_immr_pa;
2973 			reg[0] = cpu_to_fdt32(base);
2974 			if (OF_setprop(node, "reg", (void *)&reg[0],
2975 			    sizeof(reg)) < 0)
2976 				goto fixup_failed;
2977 		}
2978 	}
2979 	/* Fix-up succeeded. May return and continue */
2980 	return;
2981 
2982 fixup_failed:
2983 	while (1) {
2984 		/*
2985 		 * In case of any error while fixing ranges just hang.
2986 		 *	1. No message can be displayed yet since console
2987 		 *	   is not initialized.
2988 		 *	2. Going further will cause failure on bus_space_map()
2989 		 *	   relying on the wrong ranges or data abort when
2990 		 *	   accessing PCIe registers.
2991 		 */
2992 	}
2993 }
2994 
2995 struct fdt_fixup_entry fdt_fixup_table[] = {
2996 	{ "mrvl,DB-88F6281", &fdt_fixup_busfreq },
2997 	{ "mrvl,DB-78460", &fdt_fixup_busfreq },
2998 	{ "mrvl,DB-78460", &fdt_fixup_ranges },
2999 	{ NULL, NULL }
3000 };
3001 
3002 #if __ARM_ARCH >= 6
3003 uint32_t
3004 get_tclk(void)
3005 {
3006 
3007 	if (soc_decode_win_spec->get_tclk != NULL)
3008 		return soc_decode_win_spec->get_tclk();
3009 	else
3010 		return -1;
3011 }
3012 
3013 uint32_t
3014 get_cpu_freq(void)
3015 {
3016 
3017 	if (soc_decode_win_spec->get_cpu_freq != NULL)
3018 		return soc_decode_win_spec->get_cpu_freq();
3019 	else
3020 		return -1;
3021 }
3022 #endif
3023 
3024 #ifndef INTRNG
3025 static int
3026 fdt_pic_decode_ic(phandle_t node, pcell_t *intr, int *interrupt, int *trig,
3027     int *pol)
3028 {
3029 
3030 	if (!ofw_bus_node_is_compatible(node, "mrvl,pic") &&
3031 	    !ofw_bus_node_is_compatible(node, "mrvl,mpic"))
3032 		return (ENXIO);
3033 
3034 	*interrupt = fdt32_to_cpu(intr[0]);
3035 	*trig = INTR_TRIGGER_CONFORM;
3036 	*pol = INTR_POLARITY_CONFORM;
3037 
3038 	return (0);
3039 }
3040 
3041 fdt_pic_decode_t fdt_pic_table[] = {
3042 	&fdt_pic_decode_ic,
3043 	NULL
3044 };
3045 #endif
3046