xref: /freebsd/sys/arm/include/pte.h (revision 7d99ab9fd0cc2c1ce2ecef0ed6d0672c2a50b0cb)
1 /*	$NetBSD: pte.h,v 1.1 2001/11/23 17:39:04 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1994 Mark Brinicombe.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the RiscBSD team.
18  * 4. The name "RiscBSD" nor the name of the author may be used to
19  *    endorse or promote products derived from this software without specific
20  *    prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY RISCBSD ``AS IS'' AND ANY EXPRESS OR IMPLIED
23  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL RISCBSD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
26  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
27  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
28  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $FreeBSD$
35  */
36 
37 #ifndef _MACHINE_PTE_H_
38 #define _MACHINE_PTE_H_
39 
40 #ifndef LOCORE
41 typedef	uint32_t	pd_entry_t;		/* page directory entry */
42 typedef	uint32_t	pt_entry_t;		/* page table entry */
43 #endif
44 
45 #define PG_FRAME	0xfffff000
46 
47 /* The PT_SIZE definition is misleading... A page table is only 0x400
48  * bytes long. But since VM mapping can only be done to 0x1000 a single
49  * 1KB blocks cannot be steered to a va by itself. Therefore the
50  * pages tables are allocated in blocks of 4. i.e. if a 1 KB block
51  * was allocated for a PT then the other 3KB would also get mapped
52  * whenever the 1KB was mapped.
53  */
54 
55 #define PT_RSIZE	0x0400		/* Real page table size */
56 #define PT_SIZE		0x1000
57 #define PD_SIZE		0x4000
58 
59 /* Page table types and masks */
60 #define L1_PAGE		0x01	/* L1 page table mapping */
61 #define L1_SECTION	0x02	/* L1 section mapping */
62 #define L1_FPAGE	0x03	/* L1 fine page mapping */
63 #define L1_MASK		0x03	/* Mask for L1 entry type */
64 #define L2_LPAGE	0x01	/* L2 large page (64KB) */
65 #define L2_SPAGE	0x02	/* L2 small page (4KB) */
66 #define L2_MASK		0x03	/* Mask for L2 entry type */
67 #define L2_INVAL	0x00	/* L2 invalid type */
68 
69 /* L1 and L2 address masks */
70 #define L1_ADDR_MASK		0xfffffc00
71 #define L2_ADDR_MASK		0xfffff000
72 
73 /*
74  * The ARM MMU architecture was introduced with ARM v3 (previous ARM
75  * architecture versions used an optional off-CPU memory controller
76  * to perform address translation).
77  *
78  * The ARM MMU consists of a TLB and translation table walking logic.
79  * There is typically one TLB per memory interface (or, put another
80  * way, one TLB per software-visible cache).
81  *
82  * The ARM MMU is capable of mapping memory in the following chunks:
83  *
84  *	1M	Sections (L1 table)
85  *
86  *	64K	Large Pages (L2 table)
87  *
88  *	4K	Small Pages (L2 table)
89  *
90  *	1K	Tiny Pages (L2 table)
91  *
92  * There are two types of L2 tables: Coarse Tables and Fine Tables.
93  * Coarse Tables can map Large and Small Pages.  Fine Tables can
94  * map Tiny Pages.
95  *
96  * Coarse Tables can define 4 Subpages within Large and Small pages.
97  * Subpages define different permissions for each Subpage within
98  * a Page.
99  *
100  * Coarse Tables are 1K in length.  Fine tables are 4K in length.
101  *
102  * The Translation Table Base register holds the pointer to the
103  * L1 Table.  The L1 Table is a 16K contiguous chunk of memory
104  * aligned to a 16K boundary.  Each entry in the L1 Table maps
105  * 1M of virtual address space, either via a Section mapping or
106  * via an L2 Table.
107  *
108  * In addition, the Fast Context Switching Extension (FCSE) is available
109  * on some ARM v4 and ARM v5 processors.  FCSE is a way of eliminating
110  * TLB/cache flushes on context switch by use of a smaller address space
111  * and a "process ID" that modifies the virtual address before being
112  * presented to the translation logic.
113  */
114 
115 /* ARMv6 super-sections. */
116 #define L1_SUP_SIZE	0x01000000	/* 16M */
117 #define L1_SUP_OFFSET	(L1_SUP_SIZE - 1)
118 #define L1_SUP_FRAME	(~L1_SUP_OFFSET)
119 #define L1_SUP_SHIFT	24
120 
121 #define	L1_S_SIZE	0x00100000	/* 1M */
122 #define	L1_S_OFFSET	(L1_S_SIZE - 1)
123 #define	L1_S_FRAME	(~L1_S_OFFSET)
124 #define	L1_S_SHIFT	20
125 
126 #define	L2_L_SIZE	0x00010000	/* 64K */
127 #define	L2_L_OFFSET	(L2_L_SIZE - 1)
128 #define	L2_L_FRAME	(~L2_L_OFFSET)
129 #define	L2_L_SHIFT	16
130 
131 #define	L2_S_SIZE	0x00001000	/* 4K */
132 #define	L2_S_OFFSET	(L2_S_SIZE - 1)
133 #define	L2_S_FRAME	(~L2_S_OFFSET)
134 #define	L2_S_SHIFT	12
135 
136 #define	L2_T_SIZE	0x00000400	/* 1K */
137 #define	L2_T_OFFSET	(L2_T_SIZE - 1)
138 #define	L2_T_FRAME	(~L2_T_OFFSET)
139 #define	L2_T_SHIFT	10
140 
141 /*
142  * The NetBSD VM implementation only works on whole pages (4K),
143  * whereas the ARM MMU's Coarse tables are sized in terms of 1K
144  * (16K L1 table, 1K L2 table).
145  *
146  * So, we allocate L2 tables 4 at a time, thus yielding a 4K L2
147  * table.
148  */
149 #define	L1_ADDR_BITS	0xfff00000	/* L1 PTE address bits */
150 #define	L2_ADDR_BITS	0x000ff000	/* L2 PTE address bits */
151 
152 #define	L1_TABLE_SIZE	0x4000		/* 16K */
153 #define	L2_TABLE_SIZE	0x1000		/* 4K */
154 /*
155  * The new pmap deals with the 1KB coarse L2 tables by
156  * allocating them from a pool. Until every port has been converted,
157  * keep the old L2_TABLE_SIZE define lying around. Converted ports
158  * should use L2_TABLE_SIZE_REAL until then.
159  */
160 #define	L2_TABLE_SIZE_REAL	0x400	/* 1K */
161 
162 /*
163  * ARM L1 Descriptors
164  */
165 
166 #define	L1_TYPE_INV	0x00		/* Invalid (fault) */
167 #define	L1_TYPE_C	0x01		/* Coarse L2 */
168 #define	L1_TYPE_S	0x02		/* Section */
169 #define	L1_TYPE_F	0x03		/* Fine L2 */
170 #define	L1_TYPE_MASK	0x03		/* mask of type bits */
171 
172 /* L1 Section Descriptor */
173 #define	L1_S_B		0x00000004	/* bufferable Section */
174 #define	L1_S_C		0x00000008	/* cacheable Section */
175 #define	L1_S_IMP	0x00000010	/* implementation defined */
176 #define	L1_S_DOM(x)	((x) << 5)	/* domain */
177 #define	L1_S_DOM_MASK	L1_S_DOM(0xf)
178 #define	L1_S_AP(x)	((x) << 10)	/* access permissions */
179 #define	L1_S_ADDR_MASK	0xfff00000	/* phys address of section */
180 #define	L1_S_TEX(x)	(((x) & 0x7) << 12)	/* Type Extension */
181 #define	L1_S_TEX_MASK	(0x7 << 12)	/* Type Extension */
182 #define	L1_S_APX	(1 << 15)
183 #define	L1_SHARED	(1 << 16)
184 
185 #define	L1_S_XSCALE_P	0x00000200	/* ECC enable for this section */
186 #define	L1_S_XSCALE_TEX(x) ((x) << 12)	/* Type Extension */
187 
188 #define L1_S_SUPERSEC	((1) << 18)	/* Section is a super-section. */
189 
190 /* L1 Coarse Descriptor */
191 #define	L1_C_IMP0	0x00000004	/* implementation defined */
192 #define	L1_C_IMP1	0x00000008	/* implementation defined */
193 #define	L1_C_IMP2	0x00000010	/* implementation defined */
194 #define	L1_C_DOM(x)	((x) << 5)	/* domain */
195 #define	L1_C_DOM_MASK	L1_C_DOM(0xf)
196 #define	L1_C_ADDR_MASK	0xfffffc00	/* phys address of L2 Table */
197 
198 #define	L1_C_XSCALE_P	0x00000200	/* ECC enable for this section */
199 
200 /* L1 Fine Descriptor */
201 #define	L1_F_IMP0	0x00000004	/* implementation defined */
202 #define	L1_F_IMP1	0x00000008	/* implementation defined */
203 #define	L1_F_IMP2	0x00000010	/* implementation defined */
204 #define	L1_F_DOM(x)	((x) << 5)	/* domain */
205 #define	L1_F_DOM_MASK	L1_F_DOM(0xf)
206 #define	L1_F_ADDR_MASK	0xfffff000	/* phys address of L2 Table */
207 
208 #define	L1_F_XSCALE_P	0x00000200	/* ECC enable for this section */
209 
210 /*
211  * ARM L2 Descriptors
212  */
213 
214 #define	L2_TYPE_INV	0x00		/* Invalid (fault) */
215 #define	L2_TYPE_L	0x01		/* Large Page */
216 #define	L2_TYPE_S	0x02		/* Small Page */
217 #define	L2_TYPE_T	0x03		/* Tiny Page */
218 #define	L2_TYPE_MASK	0x03		/* mask of type bits */
219 
220 	/*
221 	 * This L2 Descriptor type is available on XScale processors
222 	 * when using a Coarse L1 Descriptor.  The Extended Small
223 	 * Descriptor has the same format as the XScale Tiny Descriptor,
224 	 * but describes a 4K page, rather than a 1K page.
225 	 */
226 #define	L2_TYPE_XSCALE_XS 0x03		/* XScale Extended Small Page */
227 
228 #define	L2_B		0x00000004	/* Bufferable page */
229 #define	L2_C		0x00000008	/* Cacheable page */
230 #define	L2_AP0(x)	((x) << 4)	/* access permissions (sp 0) */
231 #define	L2_AP1(x)	((x) << 6)	/* access permissions (sp 1) */
232 #define	L2_AP2(x)	((x) << 8)	/* access permissions (sp 2) */
233 #define	L2_AP3(x)	((x) << 10)	/* access permissions (sp 3) */
234 
235 #define	L2_SHARED	(1 << 10)
236 #define	L2_APX		(1 << 9)
237 #define	L2_XN		(1 << 0)
238 #define	L2_L_TEX_MASK	(0x7 << 12)	/* Type Extension */
239 #define	L2_L_TEX(x)	(((x) & 0x7) << 12)
240 #define	L2_S_TEX_MASK	(0x7 << 6)	/* Type Extension */
241 #define	L2_S_TEX(x)	(((x) & 0x7) << 6)
242 
243 #define	L2_XSCALE_L_TEX(x) ((x) << 12)	/* Type Extension */
244 #define L2_XSCALE_L_S(x)   (1 << 15)	/* Shared */
245 #define	L2_XSCALE_T_TEX(x) ((x) << 6)	/* Type Extension */
246 
247 /*
248  * Access Permissions for L1 and L2 Descriptors.
249  */
250 #define	AP_W		0x01		/* writable */
251 #define	AP_U		0x02		/* user */
252 
253 /*
254  * Short-hand for common AP_* constants.
255  *
256  * Note: These values assume the S (System) bit is set and
257  * the R (ROM) bit is clear in CP15 register 1.
258  */
259 #define	AP_KR		0x00		/* kernel read */
260 #define	AP_KRW		0x01		/* kernel read/write */
261 #define	AP_KRWUR	0x02		/* kernel read/write usr read */
262 #define	AP_KRWURW	0x03		/* kernel read/write usr read/write */
263 
264 /*
265  * Domain Types for the Domain Access Control Register.
266  */
267 #define	DOMAIN_FAULT	0x00		/* no access */
268 #define	DOMAIN_CLIENT	0x01		/* client */
269 #define	DOMAIN_RESERVED	0x02		/* reserved */
270 #define	DOMAIN_MANAGER	0x03		/* manager */
271 
272 /*
273  * Type Extension bits for XScale processors.
274  *
275  * Behavior of C and B when X == 0:
276  *
277  * C B  Cacheable  Bufferable  Write Policy  Line Allocate Policy
278  * 0 0      N          N            -                 -
279  * 0 1      N          Y            -                 -
280  * 1 0      Y          Y       Write-through    Read Allocate
281  * 1 1      Y          Y        Write-back      Read Allocate
282  *
283  * Behavior of C and B when X == 1:
284  * C B  Cacheable  Bufferable  Write Policy  Line Allocate Policy
285  * 0 0      -          -            -                 -           DO NOT USE
286  * 0 1      N          Y            -                 -
287  * 1 0  Mini-Data      -            -                 -
288  * 1 1      Y          Y        Write-back       R/W Allocate
289  */
290 #define	TEX_XSCALE_X	0x01		/* X modifies C and B */
291 #define TEX_XSCALE_E	0x02
292 #define TEX_XSCALE_T	0x04
293 
294 /* Xscale core 3 */
295 
296 /*
297  *
298  * Cache attributes with L2 present, S = 0
299  * T E X C B   L1 i-cache L1 d-cache L1 DC WP  L2 cacheable write coalesce
300  * 0 0 0 0 0 	N	  N 		- 	N		N
301  * 0 0 0 0 1	N	  N		-	N		Y
302  * 0 0 0 1 0	Y	  Y		WT	N		Y
303  * 0 0 0 1 1	Y	  Y		WB	Y		Y
304  * 0 0 1 0 0	N	  N		-	Y		Y
305  * 0 0 1 0 1	N	  N		-	N		N
306  * 0 0 1 1 0	Y	  Y		-	-		N
307  * 0 0 1 1 1	Y	  Y		WT	Y		Y
308  * 0 1 0 0 0	N	  N		-	N		N
309  * 0 1 0 0 1	N/A	N/A		N/A	N/A		N/A
310  * 0 1 0 1 0	N/A	N/A		N/A	N/A		N/A
311  * 0 1 0 1 1	N/A	N/A		N/A	N/A		N/A
312  * 0 1 1 X X	N/A	N/A		N/A	N/A		N/A
313  * 1 X 0 0 0	N	  N		-	N		Y
314  * 1 X 0 0 1	Y	  N		WB	N		Y
315  * 1 X 0 1 0	Y	  N		WT	N		Y
316  * 1 X 0 1 1	Y	  N		WB	Y		Y
317  * 1 X 1 0 0	N	  N		-	Y		Y
318  * 1 X 1 0 1	Y	  Y		WB	Y		Y
319  * 1 X 1 1 0	Y	  Y		WT	Y		Y
320  * 1 X 1 1 1	Y	  Y		WB	Y		Y
321  *
322  *
323  *
324  *
325   * Cache attributes with L2 present, S = 1
326  * T E X C B   L1 i-cache L1 d-cache L1 DC WP  L2 cacheable write coalesce
327  * 0 0 0 0 0 	N	  N 		- 	N		N
328  * 0 0 0 0 1	N	  N		-	N		Y
329  * 0 0 0 1 0	Y	  Y		-	N		Y
330  * 0 0 0 1 1	Y	  Y		WT	Y		Y
331  * 0 0 1 0 0	N	  N		-	Y		Y
332  * 0 0 1 0 1	N	  N		-	N		N
333  * 0 0 1 1 0	Y	  Y		-	-		N
334  * 0 0 1 1 1	Y	  Y		WT	Y		Y
335  * 0 1 0 0 0	N	  N		-	N		N
336  * 0 1 0 0 1	N/A	N/A		N/A	N/A		N/A
337  * 0 1 0 1 0	N/A	N/A		N/A	N/A		N/A
338  * 0 1 0 1 1	N/A	N/A		N/A	N/A		N/A
339  * 0 1 1 X X	N/A	N/A		N/A	N/A		N/A
340  * 1 X 0 0 0	N	  N		-	N		Y
341  * 1 X 0 0 1	Y	  N		-	N		Y
342  * 1 X 0 1 0	Y	  N		-	N		Y
343  * 1 X 0 1 1	Y	  N		-	Y		Y
344  * 1 X 1 0 0	N	  N		-	Y		Y
345  * 1 X 1 0 1	Y	  Y		WT	Y		Y
346  * 1 X 1 1 0	Y	  Y		WT	Y		Y
347  * 1 X 1 1 1	Y	  Y		WT	Y		Y
348  */
349 #endif /* !_MACHINE_PTE_H_ */
350 
351 /* End of pte.h */
352