xref: /freebsd/sys/arm/include/pte.h (revision 2e1417489338b971e5fd599ff48b5f65df9e8d3b)
1 /*	$NetBSD: pte.h,v 1.1 2001/11/23 17:39:04 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1994 Mark Brinicombe.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the RiscBSD team.
18  * 4. The name "RiscBSD" nor the name of the author may be used to
19  *    endorse or promote products derived from this software without specific
20  *    prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY RISCBSD ``AS IS'' AND ANY EXPRESS OR IMPLIED
23  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL RISCBSD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
26  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
27  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
28  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $FreeBSD$
35  */
36 
37 #ifndef _MACHINE_PTE_H_
38 #define _MACHINE_PTE_H_
39 
40 #define PDSHIFT		20		/* LOG2(NBPDR) */
41 #define NBPD		(1 << PDSHIFT)	/* bytes/page dir */
42 #define NPTEPD		(NBPD / PAGE_SIZE)
43 
44 #ifndef LOCORE
45 typedef	uint32_t	pd_entry_t;		/* page directory entry */
46 typedef	uint32_t	pt_entry_t;		/* page table entry */
47 #endif
48 
49 #define PD_MASK		0xfff00000	/* page directory address bits */
50 #define PT_MASK		0x000ff000	/* page table address bits */
51 
52 #define PG_FRAME	0xfffff000
53 
54 /* The PT_SIZE definition is misleading... A page table is only 0x400
55  * bytes long. But since VM mapping can only be done to 0x1000 a single
56  * 1KB blocks cannot be steered to a va by itself. Therefore the
57  * pages tables are allocated in blocks of 4. i.e. if a 1 KB block
58  * was allocated for a PT then the other 3KB would also get mapped
59  * whenever the 1KB was mapped.
60  */
61 
62 #define PT_RSIZE	0x0400		/* Real page table size */
63 #define PT_SIZE		0x1000
64 #define PD_SIZE		0x4000
65 
66 /* Page table types and masks */
67 #define L1_PAGE		0x01	/* L1 page table mapping */
68 #define L1_SECTION	0x02	/* L1 section mapping */
69 #define L1_FPAGE	0x03	/* L1 fine page mapping */
70 #define L1_MASK		0x03	/* Mask for L1 entry type */
71 #define L2_LPAGE	0x01	/* L2 large page (64KB) */
72 #define L2_SPAGE	0x02	/* L2 small page (4KB) */
73 #define L2_MASK		0x03	/* Mask for L2 entry type */
74 #define L2_INVAL	0x00	/* L2 invalid type */
75 
76 /* PTE construction macros */
77 #define	L2_LPTE(p, a, f)	((p) | PT_AP(a) | L2_LPAGE | (f))
78 #define L2_SPTE(p, a, f)	((p) | PT_AP(a) | L2_SPAGE | (f))
79 #define L2_PTE(p, a)		L2_SPTE((p), (a), PT_CACHEABLE)
80 #define L2_PTE_NC(p, a)		L2_SPTE((p), (a), PT_B)
81 #define L2_PTE_NC_NB(p, a)	L2_SPTE((p), (a), 0)
82 #define L1_SECPTE(p, a, f)	((p) | ((a) << AP_SECTION_SHIFT) | (f) \
83 				| L1_SECTION | PT_U)
84 
85 #define L1_PTE(p)	((p) | 0x00 | L1_PAGE | PT_U)
86 #define L1_SEC(p, c)	L1_SECPTE((p), AP_KRW, (c))
87 
88 #define L1_SEC_SIZE	(1 << PDSHIFT)
89 #define L2_LPAGE_SIZE	(NBPG * 16)
90 
91 /* Domain types */
92 #define DOMAIN_FAULT		0x00
93 #define DOMAIN_CLIENT		0x01
94 #define DOMAIN_RESERVED		0x02
95 #define DOMAIN_MANAGER		0x03
96 
97 /* L1 and L2 address masks */
98 #define L1_ADDR_MASK		0xfffffc00
99 #define L2_ADDR_MASK		0xfffff000
100 
101 /*
102  * The ARM MMU architecture was introduced with ARM v3 (previous ARM
103  * architecture versions used an optional off-CPU memory controller
104  * to perform address translation).
105  *
106  * The ARM MMU consists of a TLB and translation table walking logic.
107  * There is typically one TLB per memory interface (or, put another
108  * way, one TLB per software-visible cache).
109  *
110  * The ARM MMU is capable of mapping memory in the following chunks:
111  *
112  *	1M	Sections (L1 table)
113  *
114  *	64K	Large Pages (L2 table)
115  *
116  *	4K	Small Pages (L2 table)
117  *
118  *	1K	Tiny Pages (L2 table)
119  *
120  * There are two types of L2 tables: Coarse Tables and Fine Tables.
121  * Coarse Tables can map Large and Small Pages.  Fine Tables can
122  * map Tiny Pages.
123  *
124  * Coarse Tables can define 4 Subpages within Large and Small pages.
125  * Subpages define different permissions for each Subpage within
126  * a Page.
127  *
128  * Coarse Tables are 1K in length.  Fine tables are 4K in length.
129  *
130  * The Translation Table Base register holds the pointer to the
131  * L1 Table.  The L1 Table is a 16K contiguous chunk of memory
132  * aligned to a 16K boundary.  Each entry in the L1 Table maps
133  * 1M of virtual address space, either via a Section mapping or
134  * via an L2 Table.
135  *
136  * In addition, the Fast Context Switching Extension (FCSE) is available
137  * on some ARM v4 and ARM v5 processors.  FCSE is a way of eliminating
138  * TLB/cache flushes on context switch by use of a smaller address space
139  * and a "process ID" that modifies the virtual address before being
140  * presented to the translation logic.
141  */
142 
143 /* ARMv6 super-sections. */
144 #define L1_SUP_SIZE	0x01000000	/* 16M */
145 #define L1_SUP_OFFSET	(L1_SUP_SIZE - 1)
146 #define L1_SUP_FRAME	(~L1_SUP_OFFSET)
147 #define L1_SUP_SHIFT	24
148 
149 #define	L1_S_SIZE	0x00100000	/* 1M */
150 #define	L1_S_OFFSET	(L1_S_SIZE - 1)
151 #define	L1_S_FRAME	(~L1_S_OFFSET)
152 #define	L1_S_SHIFT	20
153 
154 #define	L2_L_SIZE	0x00010000	/* 64K */
155 #define	L2_L_OFFSET	(L2_L_SIZE - 1)
156 #define	L2_L_FRAME	(~L2_L_OFFSET)
157 #define	L2_L_SHIFT	16
158 
159 #define	L2_S_SIZE	0x00001000	/* 4K */
160 #define	L2_S_OFFSET	(L2_S_SIZE - 1)
161 #define	L2_S_FRAME	(~L2_S_OFFSET)
162 #define	L2_S_SHIFT	12
163 
164 #define	L2_T_SIZE	0x00000400	/* 1K */
165 #define	L2_T_OFFSET	(L2_T_SIZE - 1)
166 #define	L2_T_FRAME	(~L2_T_OFFSET)
167 #define	L2_T_SHIFT	10
168 
169 /*
170  * The NetBSD VM implementation only works on whole pages (4K),
171  * whereas the ARM MMU's Coarse tables are sized in terms of 1K
172  * (16K L1 table, 1K L2 table).
173  *
174  * So, we allocate L2 tables 4 at a time, thus yielding a 4K L2
175  * table.
176  */
177 #define	L1_ADDR_BITS	0xfff00000	/* L1 PTE address bits */
178 #define	L2_ADDR_BITS	0x000ff000	/* L2 PTE address bits */
179 
180 #define	L1_TABLE_SIZE	0x4000		/* 16K */
181 #define	L2_TABLE_SIZE	0x1000		/* 4K */
182 /*
183  * The new pmap deals with the 1KB coarse L2 tables by
184  * allocating them from a pool. Until every port has been converted,
185  * keep the old L2_TABLE_SIZE define lying around. Converted ports
186  * should use L2_TABLE_SIZE_REAL until then.
187  */
188 #define	L2_TABLE_SIZE_REAL	0x400	/* 1K */
189 
190 /*
191  * ARM L1 Descriptors
192  */
193 
194 #define	L1_TYPE_INV	0x00		/* Invalid (fault) */
195 #define	L1_TYPE_C	0x01		/* Coarse L2 */
196 #define	L1_TYPE_S	0x02		/* Section */
197 #define	L1_TYPE_F	0x03		/* Fine L2 */
198 #define	L1_TYPE_MASK	0x03		/* mask of type bits */
199 
200 /* L1 Section Descriptor */
201 #define	L1_S_B		0x00000004	/* bufferable Section */
202 #define	L1_S_C		0x00000008	/* cacheable Section */
203 #define	L1_S_IMP	0x00000010	/* implementation defined */
204 #define	L1_S_DOM(x)	((x) << 5)	/* domain */
205 #define	L1_S_DOM_MASK	L1_S_DOM(0xf)
206 #define	L1_S_AP(x)	((x) << 10)	/* access permissions */
207 #define	L1_S_ADDR_MASK	0xfff00000	/* phys address of section */
208 #define L1_SHARED	(1 << 16)
209 
210 #define	L1_S_XSCALE_P	0x00000200	/* ECC enable for this section */
211 #define	L1_S_XSCALE_TEX(x) ((x) << 12)	/* Type Extension */
212 
213 #define L1_S_SUPERSEC	((1) << 18)	/* Section is a super-section. */
214 
215 /* L1 Coarse Descriptor */
216 #define	L1_C_IMP0	0x00000004	/* implementation defined */
217 #define	L1_C_IMP1	0x00000008	/* implementation defined */
218 #define	L1_C_IMP2	0x00000010	/* implementation defined */
219 #define	L1_C_DOM(x)	((x) << 5)	/* domain */
220 #define	L1_C_DOM_MASK	L1_C_DOM(0xf)
221 #define	L1_C_ADDR_MASK	0xfffffc00	/* phys address of L2 Table */
222 
223 #define	L1_C_XSCALE_P	0x00000200	/* ECC enable for this section */
224 
225 /* L1 Fine Descriptor */
226 #define	L1_F_IMP0	0x00000004	/* implementation defined */
227 #define	L1_F_IMP1	0x00000008	/* implementation defined */
228 #define	L1_F_IMP2	0x00000010	/* implementation defined */
229 #define	L1_F_DOM(x)	((x) << 5)	/* domain */
230 #define	L1_F_DOM_MASK	L1_F_DOM(0xf)
231 #define	L1_F_ADDR_MASK	0xfffff000	/* phys address of L2 Table */
232 
233 #define	L1_F_XSCALE_P	0x00000200	/* ECC enable for this section */
234 
235 /*
236  * ARM L2 Descriptors
237  */
238 
239 #define	L2_TYPE_INV	0x00		/* Invalid (fault) */
240 #define	L2_TYPE_L	0x01		/* Large Page */
241 #define	L2_TYPE_S	0x02		/* Small Page */
242 #define	L2_TYPE_T	0x03		/* Tiny Page */
243 #define	L2_TYPE_MASK	0x03		/* mask of type bits */
244 
245 	/*
246 	 * This L2 Descriptor type is available on XScale processors
247 	 * when using a Coarse L1 Descriptor.  The Extended Small
248 	 * Descriptor has the same format as the XScale Tiny Descriptor,
249 	 * but describes a 4K page, rather than a 1K page.
250 	 */
251 #define	L2_TYPE_XSCALE_XS 0x03		/* XScale Extended Small Page */
252 
253 #define	L2_B		0x00000004	/* Bufferable page */
254 #define	L2_C		0x00000008	/* Cacheable page */
255 #define	L2_AP0(x)	((x) << 4)	/* access permissions (sp 0) */
256 #define	L2_AP1(x)	((x) << 6)	/* access permissions (sp 1) */
257 #define	L2_AP2(x)	((x) << 8)	/* access permissions (sp 2) */
258 #define	L2_AP3(x)	((x) << 10)	/* access permissions (sp 3) */
259 #define	L2_AP(x)	(L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
260 
261 #define	L2_XSCALE_L_TEX(x) ((x) << 12)	/* Type Extension */
262 #define L2_XSCALE_L_S(x)   (1 << 15)	/* Shared */
263 #define	L2_XSCALE_T_TEX(x) ((x) << 6)	/* Type Extension */
264 
265 /*
266  * Access Permissions for L1 and L2 Descriptors.
267  */
268 #define	AP_W		0x01		/* writable */
269 #define	AP_U		0x02		/* user */
270 
271 /*
272  * Short-hand for common AP_* constants.
273  *
274  * Note: These values assume the S (System) bit is set and
275  * the R (ROM) bit is clear in CP15 register 1.
276  */
277 #define	AP_KR		0x00		/* kernel read */
278 #define	AP_KRW		0x01		/* kernel read/write */
279 #define	AP_KRWUR	0x02		/* kernel read/write usr read */
280 #define	AP_KRWURW	0x03		/* kernel read/write usr read/write */
281 
282 /*
283  * Domain Types for the Domain Access Control Register.
284  */
285 #define	DOMAIN_FAULT	0x00		/* no access */
286 #define	DOMAIN_CLIENT	0x01		/* client */
287 #define	DOMAIN_RESERVED	0x02		/* reserved */
288 #define	DOMAIN_MANAGER	0x03		/* manager */
289 
290 /*
291  * Type Extension bits for XScale processors.
292  *
293  * Behavior of C and B when X == 0:
294  *
295  * C B  Cacheable  Bufferable  Write Policy  Line Allocate Policy
296  * 0 0      N          N            -                 -
297  * 0 1      N          Y            -                 -
298  * 1 0      Y          Y       Write-through    Read Allocate
299  * 1 1      Y          Y        Write-back      Read Allocate
300  *
301  * Behavior of C and B when X == 1:
302  * C B  Cacheable  Bufferable  Write Policy  Line Allocate Policy
303  * 0 0      -          -            -                 -           DO NOT USE
304  * 0 1      N          Y            -                 -
305  * 1 0  Mini-Data      -            -                 -
306  * 1 1      Y          Y        Write-back       R/W Allocate
307  */
308 #define	TEX_XSCALE_X	0x01		/* X modifies C and B */
309 #define TEX_XSCALE_E	0x02
310 #define TEX_XSCALE_T	0x04
311 
312 /* Xscale core 3 */
313 
314 /*
315  *
316  * Cache attributes with L2 present, S = 0
317  * T E X C B   L1 i-cache L1 d-cache L1 DC WP  L2 cacheable write coalesce
318  * 0 0 0 0 0 	N	  N 		- 	N		N
319  * 0 0 0 0 1	N	  N		-	N		Y
320  * 0 0 0 1 0	Y	  Y		WT	N		Y
321  * 0 0 0 1 1	Y	  Y		WB	Y		Y
322  * 0 0 1 0 0	N	  N		-	Y		Y
323  * 0 0 1 0 1	N	  N		-	N		N
324  * 0 0 1 1 0	Y	  Y		-	-		N
325  * 0 0 1 1 1	Y	  Y		WT	Y		Y
326  * 0 1 0 0 0	N	  N		-	N		N
327  * 0 1 0 0 1	N/A	N/A		N/A	N/A		N/A
328  * 0 1 0 1 0	N/A	N/A		N/A	N/A		N/A
329  * 0 1 0 1 1	N/A	N/A		N/A	N/A		N/A
330  * 0 1 1 X X	N/A	N/A		N/A	N/A		N/A
331  * 1 X 0 0 0	N	  N		-	N		Y
332  * 1 X 0 0 1	Y	  N		WB	N		Y
333  * 1 X 0 1 0	Y	  N		WT	N		Y
334  * 1 X 0 1 1	Y	  N		WB	Y		Y
335  * 1 X 1 0 0	N	  N		-	Y		Y
336  * 1 X 1 0 1	Y	  Y		WB	Y		Y
337  * 1 X 1 1 0	Y	  Y		WT	Y		Y
338  * 1 X 1 1 1	Y	  Y		WB	Y		Y
339  *
340  *
341  *
342  *
343   * Cache attributes with L2 present, S = 1
344  * T E X C B   L1 i-cache L1 d-cache L1 DC WP  L2 cacheable write coalesce
345  * 0 0 0 0 0 	N	  N 		- 	N		N
346  * 0 0 0 0 1	N	  N		-	N		Y
347  * 0 0 0 1 0	Y	  Y		-	N		Y
348  * 0 0 0 1 1	Y	  Y		WT	Y		Y
349  * 0 0 1 0 0	N	  N		-	Y		Y
350  * 0 0 1 0 1	N	  N		-	N		N
351  * 0 0 1 1 0	Y	  Y		-	-		N
352  * 0 0 1 1 1	Y	  Y		WT	Y		Y
353  * 0 1 0 0 0	N	  N		-	N		N
354  * 0 1 0 0 1	N/A	N/A		N/A	N/A		N/A
355  * 0 1 0 1 0	N/A	N/A		N/A	N/A		N/A
356  * 0 1 0 1 1	N/A	N/A		N/A	N/A		N/A
357  * 0 1 1 X X	N/A	N/A		N/A	N/A		N/A
358  * 1 X 0 0 0	N	  N		-	N		Y
359  * 1 X 0 0 1	Y	  N		-	N		Y
360  * 1 X 0 1 0	Y	  N		-	N		Y
361  * 1 X 0 1 1	Y	  N		-	Y		Y
362  * 1 X 1 0 0	N	  N		-	Y		Y
363  * 1 X 1 0 1	Y	  Y		WT	Y		Y
364  * 1 X 1 1 0	Y	  Y		WT	Y		Y
365  * 1 X 1 1 1	Y	  Y		WT	Y		Y
366  */
367 #endif /* !_MACHINE_PTE_H_ */
368 
369 /* End of pte.h */
370