xref: /freebsd/sys/arm/include/pte.h (revision 1f4bcc459a76b7aa664f3fd557684cd0ba6da352)
1 /*	$NetBSD: pte.h,v 1.1 2001/11/23 17:39:04 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1994 Mark Brinicombe.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the RiscBSD team.
18  * 4. The name "RiscBSD" nor the name of the author may be used to
19  *    endorse or promote products derived from this software without specific
20  *    prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY RISCBSD ``AS IS'' AND ANY EXPRESS OR IMPLIED
23  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL RISCBSD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
26  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
27  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
28  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $FreeBSD$
35  */
36 #include <machine/acle-compat.h>
37 
38 #if __ARM_ARCH >= 6
39 #include <machine/pte-v6.h>
40 #else /* __ARM_ARCH >= 6 */
41 
42 #ifndef _MACHINE_PTE_H_
43 #define _MACHINE_PTE_H_
44 
45 #ifndef LOCORE
46 typedef	uint32_t	pd_entry_t;		/* page directory entry */
47 typedef	uint32_t	pt_entry_t;		/* page table entry */
48 typedef	pt_entry_t	pt2_entry_t;		/* compatibility with v6 */
49 #endif
50 
51 #define PG_FRAME	0xfffff000
52 
53 /* The PT_SIZE definition is misleading... A page table is only 0x400
54  * bytes long. But since VM mapping can only be done to 0x1000 a single
55  * 1KB blocks cannot be steered to a va by itself. Therefore the
56  * pages tables are allocated in blocks of 4. i.e. if a 1 KB block
57  * was allocated for a PT then the other 3KB would also get mapped
58  * whenever the 1KB was mapped.
59  */
60 
61 #define PT_RSIZE	0x0400		/* Real page table size */
62 #define PT_SIZE		0x1000
63 #define PD_SIZE		0x4000
64 
65 /* Page table types and masks */
66 #define L1_PAGE		0x01	/* L1 page table mapping */
67 #define L1_SECTION	0x02	/* L1 section mapping */
68 #define L1_FPAGE	0x03	/* L1 fine page mapping */
69 #define L1_MASK		0x03	/* Mask for L1 entry type */
70 #define L2_LPAGE	0x01	/* L2 large page (64KB) */
71 #define L2_SPAGE	0x02	/* L2 small page (4KB) */
72 #define L2_MASK		0x03	/* Mask for L2 entry type */
73 #define L2_INVAL	0x00	/* L2 invalid type */
74 
75 /* L1 and L2 address masks */
76 #define L1_ADDR_MASK		0xfffffc00
77 #define L2_ADDR_MASK		0xfffff000
78 
79 /*
80  * The ARM MMU architecture was introduced with ARM v3 (previous ARM
81  * architecture versions used an optional off-CPU memory controller
82  * to perform address translation).
83  *
84  * The ARM MMU consists of a TLB and translation table walking logic.
85  * There is typically one TLB per memory interface (or, put another
86  * way, one TLB per software-visible cache).
87  *
88  * The ARM MMU is capable of mapping memory in the following chunks:
89  *
90  *	1M	Sections (L1 table)
91  *
92  *	64K	Large Pages (L2 table)
93  *
94  *	4K	Small Pages (L2 table)
95  *
96  *	1K	Tiny Pages (L2 table)
97  *
98  * There are two types of L2 tables: Coarse Tables and Fine Tables.
99  * Coarse Tables can map Large and Small Pages.  Fine Tables can
100  * map Tiny Pages.
101  *
102  * Coarse Tables can define 4 Subpages within Large and Small pages.
103  * Subpages define different permissions for each Subpage within
104  * a Page.
105  *
106  * Coarse Tables are 1K in length.  Fine tables are 4K in length.
107  *
108  * The Translation Table Base register holds the pointer to the
109  * L1 Table.  The L1 Table is a 16K contiguous chunk of memory
110  * aligned to a 16K boundary.  Each entry in the L1 Table maps
111  * 1M of virtual address space, either via a Section mapping or
112  * via an L2 Table.
113  *
114  * In addition, the Fast Context Switching Extension (FCSE) is available
115  * on some ARM v4 and ARM v5 processors.  FCSE is a way of eliminating
116  * TLB/cache flushes on context switch by use of a smaller address space
117  * and a "process ID" that modifies the virtual address before being
118  * presented to the translation logic.
119  */
120 
121 /* ARMv6 super-sections. */
122 #define L1_SUP_SIZE	0x01000000	/* 16M */
123 #define L1_SUP_OFFSET	(L1_SUP_SIZE - 1)
124 #define L1_SUP_FRAME	(~L1_SUP_OFFSET)
125 #define L1_SUP_SHIFT	24
126 
127 #define	L1_S_SIZE	0x00100000	/* 1M */
128 #define	L1_S_OFFSET	(L1_S_SIZE - 1)
129 #define	L1_S_FRAME	(~L1_S_OFFSET)
130 #define	L1_S_SHIFT	20
131 
132 #define	L2_L_SIZE	0x00010000	/* 64K */
133 #define	L2_L_OFFSET	(L2_L_SIZE - 1)
134 #define	L2_L_FRAME	(~L2_L_OFFSET)
135 #define	L2_L_SHIFT	16
136 
137 #define	L2_S_SIZE	0x00001000	/* 4K */
138 #define	L2_S_OFFSET	(L2_S_SIZE - 1)
139 #define	L2_S_FRAME	(~L2_S_OFFSET)
140 #define	L2_S_SHIFT	12
141 
142 #define	L2_T_SIZE	0x00000400	/* 1K */
143 #define	L2_T_OFFSET	(L2_T_SIZE - 1)
144 #define	L2_T_FRAME	(~L2_T_OFFSET)
145 #define	L2_T_SHIFT	10
146 
147 /*
148  * The NetBSD VM implementation only works on whole pages (4K),
149  * whereas the ARM MMU's Coarse tables are sized in terms of 1K
150  * (16K L1 table, 1K L2 table).
151  *
152  * So, we allocate L2 tables 4 at a time, thus yielding a 4K L2
153  * table.
154  */
155 #define	L1_ADDR_BITS	0xfff00000	/* L1 PTE address bits */
156 #define	L2_ADDR_BITS	0x000ff000	/* L2 PTE address bits */
157 
158 #define	L1_TABLE_SIZE	0x4000		/* 16K */
159 #define	L2_TABLE_SIZE	0x1000		/* 4K */
160 /*
161  * The new pmap deals with the 1KB coarse L2 tables by
162  * allocating them from a pool. Until every port has been converted,
163  * keep the old L2_TABLE_SIZE define lying around. Converted ports
164  * should use L2_TABLE_SIZE_REAL until then.
165  */
166 #define	L2_TABLE_SIZE_REAL	0x400	/* 1K */
167 
168 /* Total number of page table entries in L2 table */
169 #define	L2_PTE_NUM_TOTAL	(L2_TABLE_SIZE_REAL / sizeof(pt_entry_t))
170 
171 /*
172  * ARM L1 Descriptors
173  */
174 
175 #define	L1_TYPE_INV	0x00		/* Invalid (fault) */
176 #define	L1_TYPE_C	0x01		/* Coarse L2 */
177 #define	L1_TYPE_S	0x02		/* Section */
178 #define	L1_TYPE_F	0x03		/* Fine L2 */
179 #define	L1_TYPE_MASK	0x03		/* mask of type bits */
180 
181 /* L1 Section Descriptor */
182 #define	L1_S_B		0x00000004	/* bufferable Section */
183 #define	L1_S_C		0x00000008	/* cacheable Section */
184 #define	L1_S_IMP	0x00000010	/* implementation defined */
185 #define	L1_S_XN		(1 << 4)	/* execute not */
186 #define	L1_S_DOM(x)	((x) << 5)	/* domain */
187 #define	L1_S_DOM_MASK	L1_S_DOM(0xf)
188 #define	L1_S_AP(x)	((x) << 10)	/* access permissions */
189 #define	L1_S_ADDR_MASK	0xfff00000	/* phys address of section */
190 #define	L1_S_TEX(x)	(((x) & 0x7) << 12)	/* Type Extension */
191 #define	L1_S_TEX_MASK	(0x7 << 12)	/* Type Extension */
192 #define	L1_S_APX	(1 << 15)
193 #define	L1_SHARED	(1 << 16)
194 
195 #define	L1_S_XSCALE_P	0x00000200	/* ECC enable for this section */
196 #define	L1_S_XSCALE_TEX(x) ((x) << 12)	/* Type Extension */
197 
198 #define L1_S_SUPERSEC	((1) << 18)	/* Section is a super-section. */
199 
200 /* L1 Coarse Descriptor */
201 #define	L1_C_IMP0	0x00000004	/* implementation defined */
202 #define	L1_C_IMP1	0x00000008	/* implementation defined */
203 #define	L1_C_IMP2	0x00000010	/* implementation defined */
204 #define	L1_C_DOM(x)	((x) << 5)	/* domain */
205 #define	L1_C_DOM_MASK	L1_C_DOM(0xf)
206 #define	L1_C_ADDR_MASK	0xfffffc00	/* phys address of L2 Table */
207 
208 #define	L1_C_XSCALE_P	0x00000200	/* ECC enable for this section */
209 
210 /* L1 Fine Descriptor */
211 #define	L1_F_IMP0	0x00000004	/* implementation defined */
212 #define	L1_F_IMP1	0x00000008	/* implementation defined */
213 #define	L1_F_IMP2	0x00000010	/* implementation defined */
214 #define	L1_F_DOM(x)	((x) << 5)	/* domain */
215 #define	L1_F_DOM_MASK	L1_F_DOM(0xf)
216 #define	L1_F_ADDR_MASK	0xfffff000	/* phys address of L2 Table */
217 
218 #define	L1_F_XSCALE_P	0x00000200	/* ECC enable for this section */
219 
220 /*
221  * ARM L2 Descriptors
222  */
223 
224 #define	L2_TYPE_INV	0x00		/* Invalid (fault) */
225 #define	L2_TYPE_L	0x01		/* Large Page */
226 #define	L2_TYPE_S	0x02		/* Small Page */
227 #define	L2_TYPE_T	0x03		/* Tiny Page */
228 #define	L2_TYPE_MASK	0x03		/* mask of type bits */
229 
230 	/*
231 	 * This L2 Descriptor type is available on XScale processors
232 	 * when using a Coarse L1 Descriptor.  The Extended Small
233 	 * Descriptor has the same format as the XScale Tiny Descriptor,
234 	 * but describes a 4K page, rather than a 1K page.
235 	 */
236 #define	L2_TYPE_XSCALE_XS 0x03		/* XScale Extended Small Page */
237 
238 #define	L2_B		0x00000004	/* Bufferable page */
239 #define	L2_C		0x00000008	/* Cacheable page */
240 #define	L2_AP0(x)	((x) << 4)	/* access permissions (sp 0) */
241 #define	L2_AP1(x)	((x) << 6)	/* access permissions (sp 1) */
242 #define	L2_AP2(x)	((x) << 8)	/* access permissions (sp 2) */
243 #define	L2_AP3(x)	((x) << 10)	/* access permissions (sp 3) */
244 
245 #define	L2_SHARED	(1 << 10)
246 #define	L2_APX		(1 << 9)
247 #define	L2_XN		(1 << 0)
248 #define	L2_L_TEX_MASK	(0x7 << 12)	/* Type Extension */
249 #define	L2_L_TEX(x)	(((x) & 0x7) << 12)
250 #define	L2_S_TEX_MASK	(0x7 << 6)	/* Type Extension */
251 #define	L2_S_TEX(x)	(((x) & 0x7) << 6)
252 
253 #define	L2_XSCALE_L_TEX(x) ((x) << 12)	/* Type Extension */
254 #define L2_XSCALE_L_S(x)   (1 << 15)	/* Shared */
255 #define	L2_XSCALE_T_TEX(x) ((x) << 6)	/* Type Extension */
256 
257 /*
258  * Access Permissions for L1 and L2 Descriptors.
259  */
260 #define	AP_W		0x01		/* writable */
261 #define	AP_REF		0x01		/* referenced flag */
262 #define	AP_U		0x02		/* user */
263 
264 /*
265  * Short-hand for common AP_* constants.
266  *
267  * Note: These values assume the S (System) bit is set and
268  * the R (ROM) bit is clear in CP15 register 1.
269  */
270 #define	AP_KR		0x00		/* kernel read */
271 #define	AP_KRW		0x01		/* kernel read/write */
272 #define	AP_KRWUR	0x02		/* kernel read/write usr read */
273 #define	AP_KRWURW	0x03		/* kernel read/write usr read/write */
274 
275 /*
276  * Domain Types for the Domain Access Control Register.
277  */
278 #define	DOMAIN_FAULT	0x00		/* no access */
279 #define	DOMAIN_CLIENT	0x01		/* client */
280 #define	DOMAIN_RESERVED	0x02		/* reserved */
281 #define	DOMAIN_MANAGER	0x03		/* manager */
282 
283 /*
284  * Type Extension bits for XScale processors.
285  *
286  * Behavior of C and B when X == 0:
287  *
288  * C B  Cacheable  Bufferable  Write Policy  Line Allocate Policy
289  * 0 0      N          N            -                 -
290  * 0 1      N          Y            -                 -
291  * 1 0      Y          Y       Write-through    Read Allocate
292  * 1 1      Y          Y        Write-back      Read Allocate
293  *
294  * Behavior of C and B when X == 1:
295  * C B  Cacheable  Bufferable  Write Policy  Line Allocate Policy
296  * 0 0      -          -            -                 -           DO NOT USE
297  * 0 1      N          Y            -                 -
298  * 1 0  Mini-Data      -            -                 -
299  * 1 1      Y          Y        Write-back       R/W Allocate
300  */
301 #define	TEX_XSCALE_X	0x01		/* X modifies C and B */
302 #define TEX_XSCALE_E	0x02
303 #define TEX_XSCALE_T	0x04
304 
305 /* Xscale core 3 */
306 
307 /*
308  *
309  * Cache attributes with L2 present, S = 0
310  * T E X C B   L1 i-cache L1 d-cache L1 DC WP  L2 cacheable write coalesce
311  * 0 0 0 0 0 	N	  N 		- 	N		N
312  * 0 0 0 0 1	N	  N		-	N		Y
313  * 0 0 0 1 0	Y	  Y		WT	N		Y
314  * 0 0 0 1 1	Y	  Y		WB	Y		Y
315  * 0 0 1 0 0	N	  N		-	Y		Y
316  * 0 0 1 0 1	N	  N		-	N		N
317  * 0 0 1 1 0	Y	  Y		-	-		N
318  * 0 0 1 1 1	Y	  Y		WT	Y		Y
319  * 0 1 0 0 0	N	  N		-	N		N
320  * 0 1 0 0 1	N/A	N/A		N/A	N/A		N/A
321  * 0 1 0 1 0	N/A	N/A		N/A	N/A		N/A
322  * 0 1 0 1 1	N/A	N/A		N/A	N/A		N/A
323  * 0 1 1 X X	N/A	N/A		N/A	N/A		N/A
324  * 1 X 0 0 0	N	  N		-	N		Y
325  * 1 X 0 0 1	Y	  N		WB	N		Y
326  * 1 X 0 1 0	Y	  N		WT	N		Y
327  * 1 X 0 1 1	Y	  N		WB	Y		Y
328  * 1 X 1 0 0	N	  N		-	Y		Y
329  * 1 X 1 0 1	Y	  Y		WB	Y		Y
330  * 1 X 1 1 0	Y	  Y		WT	Y		Y
331  * 1 X 1 1 1	Y	  Y		WB	Y		Y
332  *
333  *
334  *
335  *
336   * Cache attributes with L2 present, S = 1
337  * T E X C B   L1 i-cache L1 d-cache L1 DC WP  L2 cacheable write coalesce
338  * 0 0 0 0 0 	N	  N 		- 	N		N
339  * 0 0 0 0 1	N	  N		-	N		Y
340  * 0 0 0 1 0	Y	  Y		-	N		Y
341  * 0 0 0 1 1	Y	  Y		WT	Y		Y
342  * 0 0 1 0 0	N	  N		-	Y		Y
343  * 0 0 1 0 1	N	  N		-	N		N
344  * 0 0 1 1 0	Y	  Y		-	-		N
345  * 0 0 1 1 1	Y	  Y		WT	Y		Y
346  * 0 1 0 0 0	N	  N		-	N		N
347  * 0 1 0 0 1	N/A	N/A		N/A	N/A		N/A
348  * 0 1 0 1 0	N/A	N/A		N/A	N/A		N/A
349  * 0 1 0 1 1	N/A	N/A		N/A	N/A		N/A
350  * 0 1 1 X X	N/A	N/A		N/A	N/A		N/A
351  * 1 X 0 0 0	N	  N		-	N		Y
352  * 1 X 0 0 1	Y	  N		-	N		Y
353  * 1 X 0 1 0	Y	  N		-	N		Y
354  * 1 X 0 1 1	Y	  N		-	Y		Y
355  * 1 X 1 0 0	N	  N		-	Y		Y
356  * 1 X 1 0 1	Y	  Y		WT	Y		Y
357  * 1 X 1 1 0	Y	  Y		WT	Y		Y
358  * 1 X 1 1 1	Y	  Y		WT	Y		Y
359  */
360 #endif /* !_MACHINE_PTE_H_ */
361 #endif /* __ARM_ARCH >= 6 */
362 
363 /* End of pte.h */
364