1 /* $NetBSD: pte.h,v 1.1 2001/11/23 17:39:04 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 1994 Mark Brinicombe. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by the RiscBSD team. 18 * 4. The name "RiscBSD" nor the name of the author may be used to 19 * endorse or promote products derived from this software without specific 20 * prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY RISCBSD ``AS IS'' AND ANY EXPRESS OR IMPLIED 23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 24 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL RISCBSD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 26 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 27 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 28 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * $FreeBSD$ 35 */ 36 37 #ifndef _MACHINE_PTE_H_ 38 #define _MACHINE_PTE_H_ 39 40 #define PDSHIFT 20 /* LOG2(NBPDR) */ 41 #define NBPD (1 << PDSHIFT) /* bytes/page dir */ 42 #define NPTEPD (NBPD / PAGE_SIZE) 43 44 #ifndef LOCORE 45 typedef uint32_t pd_entry_t; /* page directory entry */ 46 typedef uint32_t pt_entry_t; /* page table entry */ 47 #endif 48 49 #define PD_MASK 0xfff00000 /* page directory address bits */ 50 #define PT_MASK 0x000ff000 /* page table address bits */ 51 52 #define PG_FRAME 0xfffff000 53 54 /* The PT_SIZE definition is misleading... A page table is only 0x400 55 * bytes long. But since VM mapping can only be done to 0x1000 a single 56 * 1KB blocks cannot be steered to a va by itself. Therefore the 57 * pages tables are allocated in blocks of 4. i.e. if a 1 KB block 58 * was allocated for a PT then the other 3KB would also get mapped 59 * whenever the 1KB was mapped. 60 */ 61 62 #define PT_RSIZE 0x0400 /* Real page table size */ 63 #define PT_SIZE 0x1000 64 #define PD_SIZE 0x4000 65 66 /* Page table types and masks */ 67 #define L1_PAGE 0x01 /* L1 page table mapping */ 68 #define L1_SECTION 0x02 /* L1 section mapping */ 69 #define L1_FPAGE 0x03 /* L1 fine page mapping */ 70 #define L1_MASK 0x03 /* Mask for L1 entry type */ 71 #define L2_LPAGE 0x01 /* L2 large page (64KB) */ 72 #define L2_SPAGE 0x02 /* L2 small page (4KB) */ 73 #define L2_MASK 0x03 /* Mask for L2 entry type */ 74 #define L2_INVAL 0x00 /* L2 invalid type */ 75 76 /* PTE construction macros */ 77 #define L2_LPTE(p, a, f) ((p) | PT_AP(a) | L2_LPAGE | (f)) 78 #define L2_SPTE(p, a, f) ((p) | PT_AP(a) | L2_SPAGE | (f)) 79 #define L2_PTE(p, a) L2_SPTE((p), (a), PT_CACHEABLE) 80 #define L2_PTE_NC(p, a) L2_SPTE((p), (a), PT_B) 81 #define L2_PTE_NC_NB(p, a) L2_SPTE((p), (a), 0) 82 #define L1_SECPTE(p, a, f) ((p) | ((a) << AP_SECTION_SHIFT) | (f) \ 83 | L1_SECTION | PT_U) 84 85 #define L1_PTE(p) ((p) | 0x00 | L1_PAGE | PT_U) 86 #define L1_SEC(p, c) L1_SECPTE((p), AP_KRW, (c)) 87 88 #define L1_SEC_SIZE (1 << PDSHIFT) 89 #define L2_LPAGE_SIZE (NBPG * 16) 90 91 /* Domain types */ 92 #define DOMAIN_FAULT 0x00 93 #define DOMAIN_CLIENT 0x01 94 #define DOMAIN_RESERVED 0x02 95 #define DOMAIN_MANAGER 0x03 96 97 /* L1 and L2 address masks */ 98 #define L1_ADDR_MASK 0xfffffc00 99 #define L2_ADDR_MASK 0xfffff000 100 101 /* 102 * The ARM MMU architecture was introduced with ARM v3 (previous ARM 103 * architecture versions used an optional off-CPU memory controller 104 * to perform address translation). 105 * 106 * The ARM MMU consists of a TLB and translation table walking logic. 107 * There is typically one TLB per memory interface (or, put another 108 * way, one TLB per software-visible cache). 109 * 110 * The ARM MMU is capable of mapping memory in the following chunks: 111 * 112 * 1M Sections (L1 table) 113 * 114 * 64K Large Pages (L2 table) 115 * 116 * 4K Small Pages (L2 table) 117 * 118 * 1K Tiny Pages (L2 table) 119 * 120 * There are two types of L2 tables: Coarse Tables and Fine Tables. 121 * Coarse Tables can map Large and Small Pages. Fine Tables can 122 * map Tiny Pages. 123 * 124 * Coarse Tables can define 4 Subpages within Large and Small pages. 125 * Subpages define different permissions for each Subpage within 126 * a Page. 127 * 128 * Coarse Tables are 1K in length. Fine tables are 4K in length. 129 * 130 * The Translation Table Base register holds the pointer to the 131 * L1 Table. The L1 Table is a 16K contiguous chunk of memory 132 * aligned to a 16K boundary. Each entry in the L1 Table maps 133 * 1M of virtual address space, either via a Section mapping or 134 * via an L2 Table. 135 * 136 * In addition, the Fast Context Switching Extension (FCSE) is available 137 * on some ARM v4 and ARM v5 processors. FCSE is a way of eliminating 138 * TLB/cache flushes on context switch by use of a smaller address space 139 * and a "process ID" that modifies the virtual address before being 140 * presented to the translation logic. 141 */ 142 143 /* ARMv6 super-sections. */ 144 #define L1_SUP_SIZE 0x01000000 /* 16M */ 145 #define L1_SUP_OFFSET (L1_SUP_SIZE - 1) 146 #define L1_SUP_FRAME (~L1_SUP_OFFSET) 147 #define L1_SUP_SHIFT 24 148 149 #define L1_S_SIZE 0x00100000 /* 1M */ 150 #define L1_S_OFFSET (L1_S_SIZE - 1) 151 #define L1_S_FRAME (~L1_S_OFFSET) 152 #define L1_S_SHIFT 20 153 154 #define L2_L_SIZE 0x00010000 /* 64K */ 155 #define L2_L_OFFSET (L2_L_SIZE - 1) 156 #define L2_L_FRAME (~L2_L_OFFSET) 157 #define L2_L_SHIFT 16 158 159 #define L2_S_SIZE 0x00001000 /* 4K */ 160 #define L2_S_OFFSET (L2_S_SIZE - 1) 161 #define L2_S_FRAME (~L2_S_OFFSET) 162 #define L2_S_SHIFT 12 163 164 #define L2_T_SIZE 0x00000400 /* 1K */ 165 #define L2_T_OFFSET (L2_T_SIZE - 1) 166 #define L2_T_FRAME (~L2_T_OFFSET) 167 #define L2_T_SHIFT 10 168 169 /* 170 * The NetBSD VM implementation only works on whole pages (4K), 171 * whereas the ARM MMU's Coarse tables are sized in terms of 1K 172 * (16K L1 table, 1K L2 table). 173 * 174 * So, we allocate L2 tables 4 at a time, thus yielding a 4K L2 175 * table. 176 */ 177 #define L1_ADDR_BITS 0xfff00000 /* L1 PTE address bits */ 178 #define L2_ADDR_BITS 0x000ff000 /* L2 PTE address bits */ 179 180 #define L1_TABLE_SIZE 0x4000 /* 16K */ 181 #define L2_TABLE_SIZE 0x1000 /* 4K */ 182 /* 183 * The new pmap deals with the 1KB coarse L2 tables by 184 * allocating them from a pool. Until every port has been converted, 185 * keep the old L2_TABLE_SIZE define lying around. Converted ports 186 * should use L2_TABLE_SIZE_REAL until then. 187 */ 188 #define L2_TABLE_SIZE_REAL 0x400 /* 1K */ 189 190 /* 191 * ARM L1 Descriptors 192 */ 193 194 #define L1_TYPE_INV 0x00 /* Invalid (fault) */ 195 #define L1_TYPE_C 0x01 /* Coarse L2 */ 196 #define L1_TYPE_S 0x02 /* Section */ 197 #define L1_TYPE_F 0x03 /* Fine L2 */ 198 #define L1_TYPE_MASK 0x03 /* mask of type bits */ 199 200 /* L1 Section Descriptor */ 201 #define L1_S_B 0x00000004 /* bufferable Section */ 202 #define L1_S_C 0x00000008 /* cacheable Section */ 203 #define L1_S_IMP 0x00000010 /* implementation defined */ 204 #define L1_S_DOM(x) ((x) << 5) /* domain */ 205 #define L1_S_DOM_MASK L1_S_DOM(0xf) 206 #define L1_S_AP(x) ((x) << 10) /* access permissions */ 207 #define L1_S_ADDR_MASK 0xfff00000 /* phys address of section */ 208 #define L1_SHARED (1 << 16) 209 210 #define L1_S_XSCALE_P 0x00000200 /* ECC enable for this section */ 211 #define L1_S_XSCALE_TEX(x) ((x) << 12) /* Type Extension */ 212 213 #define L1_S_SUPERSEC ((1) << 18) /* Section is a super-section. */ 214 215 /* L1 Coarse Descriptor */ 216 #define L1_C_IMP0 0x00000004 /* implementation defined */ 217 #define L1_C_IMP1 0x00000008 /* implementation defined */ 218 #define L1_C_IMP2 0x00000010 /* implementation defined */ 219 #define L1_C_DOM(x) ((x) << 5) /* domain */ 220 #define L1_C_DOM_MASK L1_C_DOM(0xf) 221 #define L1_C_ADDR_MASK 0xfffffc00 /* phys address of L2 Table */ 222 223 #define L1_C_XSCALE_P 0x00000200 /* ECC enable for this section */ 224 225 /* L1 Fine Descriptor */ 226 #define L1_F_IMP0 0x00000004 /* implementation defined */ 227 #define L1_F_IMP1 0x00000008 /* implementation defined */ 228 #define L1_F_IMP2 0x00000010 /* implementation defined */ 229 #define L1_F_DOM(x) ((x) << 5) /* domain */ 230 #define L1_F_DOM_MASK L1_F_DOM(0xf) 231 #define L1_F_ADDR_MASK 0xfffff000 /* phys address of L2 Table */ 232 233 #define L1_F_XSCALE_P 0x00000200 /* ECC enable for this section */ 234 235 /* 236 * ARM L2 Descriptors 237 */ 238 239 #define L2_TYPE_INV 0x00 /* Invalid (fault) */ 240 #define L2_TYPE_L 0x01 /* Large Page */ 241 #define L2_TYPE_S 0x02 /* Small Page */ 242 #define L2_TYPE_T 0x03 /* Tiny Page */ 243 #define L2_TYPE_MASK 0x03 /* mask of type bits */ 244 245 /* 246 * This L2 Descriptor type is available on XScale processors 247 * when using a Coarse L1 Descriptor. The Extended Small 248 * Descriptor has the same format as the XScale Tiny Descriptor, 249 * but describes a 4K page, rather than a 1K page. 250 */ 251 #define L2_TYPE_XSCALE_XS 0x03 /* XScale Extended Small Page */ 252 253 #define L2_B 0x00000004 /* Bufferable page */ 254 #define L2_C 0x00000008 /* Cacheable page */ 255 #define L2_AP0(x) ((x) << 4) /* access permissions (sp 0) */ 256 #define L2_AP1(x) ((x) << 6) /* access permissions (sp 1) */ 257 #define L2_AP2(x) ((x) << 8) /* access permissions (sp 2) */ 258 #define L2_AP3(x) ((x) << 10) /* access permissions (sp 3) */ 259 #define L2_AP(x) (L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x)) 260 261 #define L2_XSCALE_L_TEX(x) ((x) << 12) /* Type Extension */ 262 #define L2_XSCALE_L_S(x) (1 << 15) /* Shared */ 263 #define L2_XSCALE_T_TEX(x) ((x) << 6) /* Type Extension */ 264 265 /* 266 * Access Permissions for L1 and L2 Descriptors. 267 */ 268 #define AP_W 0x01 /* writable */ 269 #define AP_U 0x02 /* user */ 270 271 /* 272 * Short-hand for common AP_* constants. 273 * 274 * Note: These values assume the S (System) bit is set and 275 * the R (ROM) bit is clear in CP15 register 1. 276 */ 277 #define AP_KR 0x00 /* kernel read */ 278 #define AP_KRW 0x01 /* kernel read/write */ 279 #define AP_KRWUR 0x02 /* kernel read/write usr read */ 280 #define AP_KRWURW 0x03 /* kernel read/write usr read/write */ 281 282 /* 283 * Domain Types for the Domain Access Control Register. 284 */ 285 #define DOMAIN_FAULT 0x00 /* no access */ 286 #define DOMAIN_CLIENT 0x01 /* client */ 287 #define DOMAIN_RESERVED 0x02 /* reserved */ 288 #define DOMAIN_MANAGER 0x03 /* manager */ 289 290 /* 291 * Type Extension bits for XScale processors. 292 * 293 * Behavior of C and B when X == 0: 294 * 295 * C B Cacheable Bufferable Write Policy Line Allocate Policy 296 * 0 0 N N - - 297 * 0 1 N Y - - 298 * 1 0 Y Y Write-through Read Allocate 299 * 1 1 Y Y Write-back Read Allocate 300 * 301 * Behavior of C and B when X == 1: 302 * C B Cacheable Bufferable Write Policy Line Allocate Policy 303 * 0 0 - - - - DO NOT USE 304 * 0 1 N Y - - 305 * 1 0 Mini-Data - - - 306 * 1 1 Y Y Write-back R/W Allocate 307 */ 308 #define TEX_XSCALE_X 0x01 /* X modifies C and B */ 309 #define TEX_XSCALE_E 0x02 310 #define TEX_XSCALE_T 0x04 311 312 /* Xscale core 3 */ 313 314 /* 315 * 316 * Cache attributes with L2 present, S = 0 317 * T E X C B L1 i-cache L1 d-cache L1 DC WP L2 cacheable write coalesce 318 * 0 0 0 0 0 N N - N N 319 * 0 0 0 0 1 N N - N Y 320 * 0 0 0 1 0 Y Y WT N Y 321 * 0 0 0 1 1 Y Y WB Y Y 322 * 0 0 1 0 0 N N - Y Y 323 * 0 0 1 0 1 N N - N N 324 * 0 0 1 1 0 Y Y - - N 325 * 0 0 1 1 1 Y Y WT Y Y 326 * 0 1 0 0 0 N N - N N 327 * 0 1 0 0 1 N/A N/A N/A N/A N/A 328 * 0 1 0 1 0 N/A N/A N/A N/A N/A 329 * 0 1 0 1 1 N/A N/A N/A N/A N/A 330 * 0 1 1 X X N/A N/A N/A N/A N/A 331 * 1 X 0 0 0 N N - N Y 332 * 1 X 0 0 1 Y N WB N Y 333 * 1 X 0 1 0 Y N WT N Y 334 * 1 X 0 1 1 Y N WB Y Y 335 * 1 X 1 0 0 N N - Y Y 336 * 1 X 1 0 1 Y Y WB Y Y 337 * 1 X 1 1 0 Y Y WT Y Y 338 * 1 X 1 1 1 Y Y WB Y Y 339 * 340 * 341 * 342 * 343 * Cache attributes with L2 present, S = 1 344 * T E X C B L1 i-cache L1 d-cache L1 DC WP L2 cacheable write coalesce 345 * 0 0 0 0 0 N N - N N 346 * 0 0 0 0 1 N N - N Y 347 * 0 0 0 1 0 Y Y - N Y 348 * 0 0 0 1 1 Y Y WT Y Y 349 * 0 0 1 0 0 N N - Y Y 350 * 0 0 1 0 1 N N - N N 351 * 0 0 1 1 0 Y Y - - N 352 * 0 0 1 1 1 Y Y WT Y Y 353 * 0 1 0 0 0 N N - N N 354 * 0 1 0 0 1 N/A N/A N/A N/A N/A 355 * 0 1 0 1 0 N/A N/A N/A N/A N/A 356 * 0 1 0 1 1 N/A N/A N/A N/A N/A 357 * 0 1 1 X X N/A N/A N/A N/A N/A 358 * 1 X 0 0 0 N N - N Y 359 * 1 X 0 0 1 Y N - N Y 360 * 1 X 0 1 0 Y N - N Y 361 * 1 X 0 1 1 Y N - Y Y 362 * 1 X 1 0 0 N N - Y Y 363 * 1 X 1 0 1 Y Y WT Y Y 364 * 1 X 1 1 0 Y Y WT Y Y 365 * 1 X 1 1 1 Y Y WT Y Y 366 */ 367 #endif /* !_MACHINE_PTE_H_ */ 368 369 /* End of pte.h */ 370