xref: /freebsd/sys/arm/include/pmap.h (revision f4c01f15087cdc4831e45ea1642525e77c5cfaf9)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * the Systems Programming Group of the University of Utah Computer
7  * Science Department and William Jolitz of UUNET Technologies Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * Derived from hp300 version by Mike Hibler, this version by William
38  * Jolitz uses a recursive map [a pde points to the page directory] to
39  * map the page tables using the pagetables themselves. This is done to
40  * reduce the impact on kernel virtual memory for lots of sparse address
41  * space, and to reduce the cost of memory to each process.
42  *
43  *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44  *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45  * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46  *
47  * $FreeBSD$
48  */
49 
50 #ifndef _MACHINE_PMAP_H_
51 #define _MACHINE_PMAP_H_
52 
53 #include <machine/pte.h>
54 
55 /*
56  * Pte related macros
57  */
58 #define PTE_NOCACHE	0
59 #define PTE_CACHE	1
60 #define PTE_PAGETABLE	2
61 
62 #ifndef LOCORE
63 
64 #include <sys/queue.h>
65 
66 #define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
67 #define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
68 
69 #ifdef _KERNEL
70 
71 #define vtophys(va)	pmap_extract(pmap_kernel(), (vm_offset_t)(va))
72 #define pmap_kextract(va)	pmap_extract(pmap_kernel(), (vm_offset_t)(va))
73 
74 #endif
75 
76 #define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
77 /*
78  * Pmap stuff
79  */
80 
81 /*
82  * This structure is used to hold a virtual<->physical address
83  * association and is used mostly by bootstrap code
84  */
85 struct pv_addr {
86 	SLIST_ENTRY(pv_addr) pv_list;
87 	vm_offset_t	pv_va;
88 	vm_paddr_t	pv_pa;
89 };
90 
91 struct	pv_entry;
92 
93 struct	md_page {
94 	int pvh_attrs;
95 	u_int uro_mappings;
96 	u_int urw_mappings;
97 	union {
98 		u_short s_mappings[2]; /* Assume kernel count <= 65535 */
99 		u_int i_mappings;
100 	} k_u;
101 #define	kro_mappings	k_u.s_mappings[0]
102 #define	krw_mappings	k_u.s_mappings[1]
103 #define	k_mappings	k_u.i_mappings
104 	int			pv_list_count;
105 	TAILQ_HEAD(,pv_entry)	pv_list;
106 };
107 
108 #define	VM_MDPAGE_INIT(pg)						\
109 do {									\
110 	TAILQ_INIT(&pg->pv_list);					\
111 	mtx_init(&(pg)->md_page.pvh_mtx, "MDPAGE Mutex", NULL, MTX_DEV);\
112 	(pg)->mdpage.pvh_attrs = 0;					\
113 	(pg)->mdpage.uro_mappings = 0;					\
114 	(pg)->mdpage.urw_mappings = 0;					\
115 	(pg)->mdpage.k_mappings = 0;					\
116 } while (/*CONSTCOND*/0)
117 
118 struct l1_ttable;
119 struct l2_dtable;
120 
121 
122 /*
123  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
124  * A bucket size of 16 provides for 16MB of contiguous virtual address
125  * space per l2_dtable. Most processes will, therefore, require only two or
126  * three of these to map their whole working set.
127  */
128 #define	L2_BUCKET_LOG2	4
129 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
130 /*
131  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
132  * of l2_dtable structures required to track all possible page descriptors
133  * mappable by an L1 translation table is given by the following constants:
134  */
135 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
136 #define	L2_SIZE		(1 << L2_LOG2)
137 
138 struct	pmap {
139 	u_int8_t		pm_domain;
140 	struct l1_ttable	*pm_l1;
141 	struct l2_dtable	*pm_l2[L2_SIZE];
142 	pd_entry_t		*pm_pdir;	/* KVA of page directory */
143 	int			pm_count;	/* reference count */
144 	int			pm_active;	/* active on cpus */
145 	struct pmap_statistics	pm_stats;	/* pmap statictics */
146 	LIST_ENTRY(pmap)	pm_list;	/* List of all pmaps */
147 };
148 
149 typedef struct pmap *pmap_t;
150 
151 #ifdef _KERNEL
152 extern pmap_t	kernel_pmap;
153 #define pmap_kernel() kernel_pmap
154 
155 #endif
156 
157 
158 /*
159  * For each vm_page_t, there is a list of all currently valid virtual
160  * mappings of that page.  An entry is a pv_entry_t, the list is pv_table.
161  */
162 typedef struct pv_entry {
163 	pmap_t          pv_pmap;        /* pmap where mapping lies */
164 	vm_offset_t     pv_va;          /* virtual address for mapping */
165 	TAILQ_ENTRY(pv_entry)   pv_list;
166 	int		pv_flags;	/* flags (wired, etc...) */
167 } *pv_entry_t;
168 
169 #define PV_ENTRY_NULL   ((pv_entry_t) 0)
170 
171 #ifdef _KERNEL
172 
173 boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
174 
175 /*
176  * virtual address to page table entry and
177  * to physical address. Likewise for alternate address space.
178  * Note: these work recursively, thus vtopte of a pte will give
179  * the corresponding pde that in turn maps it.
180  */
181 
182 /*
183  * The current top of kernel VM.
184  */
185 extern vm_offset_t pmap_curmaxkvaddr;
186 
187 struct pcb;
188 
189 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
190 /* Virtual address to page table entry */
191 static __inline pt_entry_t *
192 vtopte(vm_offset_t va)
193 {
194 	pd_entry_t *pdep;
195 	pt_entry_t *ptep;
196 
197 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
198 		return (NULL);
199 	return (ptep);
200 }
201 
202 extern vm_offset_t avail_end;
203 extern vm_offset_t clean_eva;
204 extern vm_offset_t clean_sva;
205 extern vm_offset_t phys_avail[];
206 extern vm_offset_t virtual_avail;
207 extern vm_offset_t virtual_end;
208 
209 void	pmap_bootstrap(vm_offset_t, vm_offset_t, struct pv_addr *);
210 void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
211 void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
212 void	pmap_kremove(vm_offset_t);
213 void	*pmap_mapdev(vm_offset_t, vm_size_t);
214 void	pmap_unmapdev(vm_offset_t, vm_size_t);
215 vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
216 void	pmap_debug(int);
217 void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
218 void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
219 vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
220 void
221 pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
222     int cache);
223 int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
224 
225 /*
226  * Definitions for MMU domains
227  */
228 #define	PMAP_DOMAINS		15	/* 15 'user' domains (0-14) */
229 #define	PMAP_DOMAIN_KERNEL	15	/* The kernel uses domain #15 */
230 
231 /*
232  * The new pmap ensures that page-tables are always mapping Write-Thru.
233  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
234  * on every change.
235  *
236  * Unfortunately, not all CPUs have a write-through cache mode.  So we
237  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
238  * and if there is the chance for PTE syncs to be needed, we define
239  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
240  * the code.
241  */
242 extern int pmap_needs_pte_sync;
243 
244 /*
245  * These macros define the various bit masks in the PTE.
246  *
247  * We use these macros since we use different bits on different processor
248  * models.
249  */
250 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
251 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
252 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
253 
254 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
255 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
256 
257 #define	L2_L_PROT_U		(L2_AP(AP_U))
258 #define	L2_L_PROT_W		(L2_AP(AP_W))
259 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
260 
261 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
262 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
263 
264 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
265 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
266 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
267 
268 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
269 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
270 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
271 
272 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
273 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
274 
275 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
276 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
277 
278 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
279 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
280 
281 #define	L2_L_PROTO		(L2_TYPE_L)
282 
283 #define	L2_S_PROTO_generic	(L2_TYPE_S)
284 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
285 
286 /*
287  * User-visible names for the ones that vary with MMU class.
288  */
289 
290 #if ARM_NMMUS > 1
291 /* More than one MMU class configured; use variables. */
292 #define	L2_S_PROT_U		pte_l2_s_prot_u
293 #define	L2_S_PROT_W		pte_l2_s_prot_w
294 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
295 
296 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
297 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
298 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
299 
300 #define	L1_S_PROTO		pte_l1_s_proto
301 #define	L1_C_PROTO		pte_l1_c_proto
302 #define	L2_S_PROTO		pte_l2_s_proto
303 
304 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
305 #define	L2_S_PROT_U		L2_S_PROT_U_generic
306 #define	L2_S_PROT_W		L2_S_PROT_W_generic
307 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
308 
309 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
310 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
311 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
312 
313 #define	L1_S_PROTO		L1_S_PROTO_generic
314 #define	L1_C_PROTO		L1_C_PROTO_generic
315 #define	L2_S_PROTO		L2_S_PROTO_generic
316 
317 #elif ARM_MMU_XSCALE == 1
318 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
319 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
320 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
321 
322 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
323 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
324 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
325 
326 #define	L1_S_PROTO		L1_S_PROTO_xscale
327 #define	L1_C_PROTO		L1_C_PROTO_xscale
328 #define	L2_S_PROTO		L2_S_PROTO_xscale
329 
330 #endif /* ARM_NMMUS > 1 */
331 
332 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
333 #define	PMAP_NEEDS_PTE_SYNC	1
334 #define	PMAP_INCLUDE_PTE_SYNC
335 #elif (ARM_MMU_SA1 == 0)
336 #define	PMAP_NEEDS_PTE_SYNC	0
337 #endif
338 
339 /*
340  * These macros return various bits based on kernel/user and protection.
341  * Note that the compiler will usually fold these at compile time.
342  */
343 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
344 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
345 
346 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
347 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
348 
349 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
350 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
351 
352 /*
353  * Macros to test if a mapping is mappable with an L1 Section mapping
354  * or an L2 Large Page mapping.
355  */
356 #define	L1_S_MAPPABLE_P(va, pa, size)					\
357 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
358 
359 #define	L2_L_MAPPABLE_P(va, pa, size)					\
360 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
361 
362 /*
363  * Provide a fallback in case we were not able to determine it at
364  * compile-time.
365  */
366 #ifndef PMAP_NEEDS_PTE_SYNC
367 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
368 #define	PMAP_INCLUDE_PTE_SYNC
369 #endif
370 
371 #define	PTE_SYNC(pte)							\
372 do {									\
373 	if (PMAP_NEEDS_PTE_SYNC)					\
374 		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
375 } while (/*CONSTCOND*/0)
376 
377 #define	PTE_SYNC_RANGE(pte, cnt)					\
378 do {									\
379 	if (PMAP_NEEDS_PTE_SYNC) {					\
380 		cpu_dcache_wb_range((vm_offset_t)(pte),			\
381 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
382 	}								\
383 } while (/*CONSTCOND*/0)
384 
385 extern pt_entry_t		pte_l1_s_cache_mode;
386 extern pt_entry_t		pte_l1_s_cache_mask;
387 
388 extern pt_entry_t		pte_l2_l_cache_mode;
389 extern pt_entry_t		pte_l2_l_cache_mask;
390 
391 extern pt_entry_t		pte_l2_s_cache_mode;
392 extern pt_entry_t		pte_l2_s_cache_mask;
393 
394 extern pt_entry_t		pte_l1_s_cache_mode_pt;
395 extern pt_entry_t		pte_l2_l_cache_mode_pt;
396 extern pt_entry_t		pte_l2_s_cache_mode_pt;
397 
398 extern pt_entry_t		pte_l2_s_prot_u;
399 extern pt_entry_t		pte_l2_s_prot_w;
400 extern pt_entry_t		pte_l2_s_prot_mask;
401 
402 extern pt_entry_t		pte_l1_s_proto;
403 extern pt_entry_t		pte_l1_c_proto;
404 extern pt_entry_t		pte_l2_s_proto;
405 
406 extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
407 extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
408 
409 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
410 void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
411 void	pmap_zero_page_generic(vm_paddr_t, int, int);
412 
413 void	pmap_pte_init_generic(void);
414 #if defined(CPU_ARM8)
415 void	pmap_pte_init_arm8(void);
416 #endif
417 #if defined(CPU_ARM9)
418 void	pmap_pte_init_arm9(void);
419 #endif /* CPU_ARM9 */
420 #if defined(CPU_ARM10)
421 void	pmap_pte_init_arm10(void);
422 #endif /* CPU_ARM10 */
423 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
424 
425 #if /* ARM_MMU_SA1 == */1
426 void	pmap_pte_init_sa1(void);
427 #endif /* ARM_MMU_SA1 == 1 */
428 
429 #if ARM_MMU_XSCALE == 1
430 void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
431 void	pmap_zero_page_xscale(vm_paddr_t, int, int);
432 
433 void	pmap_pte_init_xscale(void);
434 
435 void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
436 
437 void	pmap_use_minicache(vm_offset_t, vm_size_t);
438 #endif /* ARM_MMU_XSCALE == 1 */
439 #define PTE_KERNEL	0
440 #define PTE_USER	1
441 #define	l1pte_valid(pde)	((pde) != 0)
442 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
443 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
444 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
445 
446 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
447 #define	l2pte_valid(pte)	((pte) != 0)
448 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
449 #define l2pte_minidata(pte)	(((pte) & \
450 				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
451 				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
452 
453 /* L1 and L2 page table macros */
454 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
455 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
456 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
457 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
458 
459 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
460 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
461 
462 /*
463  * Flags that indicate attributes of pages or mappings of pages.
464  *
465  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
466  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
467  * pv_entry's for each page.  They live in the same "namespace" so
468  * that we can clear multiple attributes at a time.
469  *
470  * Note the "non-cacheable" flag generally means the page has
471  * multiple mappings in a given address space.
472  */
473 #define	PVF_MOD		0x01		/* page is modified */
474 #define	PVF_REF		0x02		/* page is referenced */
475 #define	PVF_WIRED	0x04		/* mapping is wired */
476 #define	PVF_WRITE	0x08		/* mapping is writable */
477 #define	PVF_EXEC	0x10		/* mapping is executable */
478 #define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
479 #define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
480 #define	PVF_NC		(PVF_UNC|PVF_KNC)
481 
482 void vector_page_setprot(int);
483 
484 void pmap_update(pmap_t);
485 
486 /*
487  * This structure is used by machine-dependent code to describe
488  * static mappings of devices, created at bootstrap time.
489  */
490 struct pmap_devmap {
491 	vm_offset_t	pd_va;		/* virtual address */
492 	vm_paddr_t	pd_pa;		/* physical address */
493 	vm_size_t	pd_size;	/* size of region */
494 	vm_prot_t	pd_prot;	/* protection code */
495 	int		pd_cache;	/* cache attributes */
496 };
497 
498 const struct pmap_devmap *pmap_devmap_find_pa(vm_paddr_t, vm_size_t);
499 const struct pmap_devmap *pmap_devmap_find_va(vm_offset_t, vm_size_t);
500 
501 void	pmap_devmap_bootstrap(vm_offset_t, const struct pmap_devmap *);
502 void	pmap_devmap_register(const struct pmap_devmap *);
503 
504 extern char *_tmppt;
505 
506 #endif	/* _KERNEL */
507 
508 #endif	/* !LOCORE */
509 
510 #endif	/* !_MACHINE_PMAP_H_ */
511