xref: /freebsd/sys/arm/include/pmap.h (revision f10a77bb82dac2ecab9c2ccfa25a920eb77765ef)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * the Systems Programming Group of the University of Utah Computer
7  * Science Department and William Jolitz of UUNET Technologies Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * Derived from hp300 version by Mike Hibler, this version by William
38  * Jolitz uses a recursive map [a pde points to the page directory] to
39  * map the page tables using the pagetables themselves. This is done to
40  * reduce the impact on kernel virtual memory for lots of sparse address
41  * space, and to reduce the cost of memory to each process.
42  *
43  *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44  *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45  * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46  *
47  * $FreeBSD$
48  */
49 
50 #ifndef _MACHINE_PMAP_H_
51 #define _MACHINE_PMAP_H_
52 
53 #include <machine/pte.h>
54 #include <machine/cpuconf.h>
55 /*
56  * Pte related macros
57  */
58 #if ARM_ARCH_6 || ARM_ARCH_7A
59 #ifdef SMP
60 #define PTE_NOCACHE	2
61 #else
62 #define PTE_NOCACHE	1
63 #endif
64 #define PTE_CACHE	6
65 #define PTE_DEVICE	2
66 #define PTE_PAGETABLE	4
67 #else
68 #define PTE_NOCACHE	1
69 #define PTE_CACHE	2
70 #define PTE_PAGETABLE	3
71 #endif
72 
73 enum mem_type {
74 	STRONG_ORD = 0,
75 	DEVICE_NOSHARE,
76 	DEVICE_SHARE,
77 	NRML_NOCACHE,
78 	NRML_IWT_OWT,
79 	NRML_IWB_OWB,
80 	NRML_IWBA_OWBA
81 };
82 
83 #ifndef LOCORE
84 
85 #include <sys/queue.h>
86 #include <sys/_cpuset.h>
87 #include <sys/_lock.h>
88 #include <sys/_mutex.h>
89 
90 #define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
91 #define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
92 
93 #ifdef _KERNEL
94 
95 #define vtophys(va)	pmap_kextract((vm_offset_t)(va))
96 
97 #endif
98 
99 #define	pmap_page_get_memattr(m)	((m)->md.pv_memattr)
100 #define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
101 #define	pmap_page_is_write_mapped(m)	(((m)->aflags & PGA_WRITEABLE) != 0)
102 void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
103 
104 /*
105  * Pmap stuff
106  */
107 
108 /*
109  * This structure is used to hold a virtual<->physical address
110  * association and is used mostly by bootstrap code
111  */
112 struct pv_addr {
113 	SLIST_ENTRY(pv_addr) pv_list;
114 	vm_offset_t	pv_va;
115 	vm_paddr_t	pv_pa;
116 };
117 
118 struct	pv_entry;
119 struct	pv_chunk;
120 
121 struct	md_page {
122 	int pvh_attrs;
123 	vm_memattr_t	 pv_memattr;
124 	vm_offset_t pv_kva;		/* first kernel VA mapping */
125 	TAILQ_HEAD(,pv_entry)	pv_list;
126 };
127 
128 struct l1_ttable;
129 struct l2_dtable;
130 
131 
132 /*
133  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
134  * A bucket size of 16 provides for 16MB of contiguous virtual address
135  * space per l2_dtable. Most processes will, therefore, require only two or
136  * three of these to map their whole working set.
137  */
138 #define	L2_BUCKET_LOG2	4
139 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
140 /*
141  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
142  * of l2_dtable structures required to track all possible page descriptors
143  * mappable by an L1 translation table is given by the following constants:
144  */
145 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
146 #define	L2_SIZE		(1 << L2_LOG2)
147 
148 struct	pmap {
149 	struct mtx		pm_mtx;
150 	u_int8_t		pm_domain;
151 	struct l1_ttable	*pm_l1;
152 	struct l2_dtable	*pm_l2[L2_SIZE];
153 	pd_entry_t		*pm_pdir;	/* KVA of page directory */
154 	cpuset_t		pm_active;	/* active on cpus */
155 	struct pmap_statistics	pm_stats;	/* pmap statictics */
156 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
157 	TAILQ_HEAD(,pv_chunk)	pm_pvchunk;	/* list of mappings in pmap */
158 #else
159 	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
160 #endif
161 };
162 
163 typedef struct pmap *pmap_t;
164 
165 #ifdef _KERNEL
166 extern struct pmap	kernel_pmap_store;
167 #define kernel_pmap	(&kernel_pmap_store)
168 #define pmap_kernel() kernel_pmap
169 
170 #define	PMAP_ASSERT_LOCKED(pmap) \
171 				mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
172 #define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
173 #define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
174 #define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
175 				    NULL, MTX_DEF | MTX_DUPOK)
176 #define	PMAP_OWNED(pmap)	mtx_owned(&(pmap)->pm_mtx)
177 #define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
178 #define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
179 #define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
180 #endif
181 
182 
183 /*
184  * For each vm_page_t, there is a list of all currently valid virtual
185  * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
186  */
187 typedef struct pv_entry {
188 	vm_offset_t     pv_va;          /* virtual address for mapping */
189 	TAILQ_ENTRY(pv_entry)   pv_list;
190 	int		pv_flags;	/* flags (wired, etc...) */
191 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
192 	pmap_t          pv_pmap;        /* pmap where mapping lies */
193 	TAILQ_ENTRY(pv_entry)	pv_plist;
194 #endif
195 } *pv_entry_t;
196 
197 /*
198  * pv_entries are allocated in chunks per-process.  This avoids the
199  * need to track per-pmap assignments.
200  */
201 #define	_NPCM	8
202 #define	_NPCPV	252
203 
204 struct pv_chunk {
205 	pmap_t			pc_pmap;
206 	TAILQ_ENTRY(pv_chunk)	pc_list;
207 	uint32_t		pc_map[_NPCM];	/* bitmap; 1 = free */
208 	uint32_t		pc_dummy[3];	/* aligns pv_chunk to 4KB */
209 	TAILQ_ENTRY(pv_chunk)	pc_lru;
210 	struct pv_entry		pc_pventry[_NPCPV];
211 };
212 
213 #ifdef _KERNEL
214 
215 boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
216 
217 /*
218  * virtual address to page table entry and
219  * to physical address. Likewise for alternate address space.
220  * Note: these work recursively, thus vtopte of a pte will give
221  * the corresponding pde that in turn maps it.
222  */
223 
224 /*
225  * The current top of kernel VM.
226  */
227 extern vm_offset_t pmap_curmaxkvaddr;
228 
229 struct pcb;
230 
231 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
232 /* Virtual address to page table entry */
233 static __inline pt_entry_t *
234 vtopte(vm_offset_t va)
235 {
236 	pd_entry_t *pdep;
237 	pt_entry_t *ptep;
238 
239 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
240 		return (NULL);
241 	return (ptep);
242 }
243 
244 extern vm_paddr_t phys_avail[];
245 extern vm_offset_t virtual_avail;
246 extern vm_offset_t virtual_end;
247 
248 void	pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt);
249 int	pmap_change_attr(vm_offset_t, vm_size_t, int);
250 void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
251 void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
252 void	*pmap_kenter_temp(vm_paddr_t pa, int i);
253 void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
254 vm_paddr_t pmap_kextract(vm_offset_t va);
255 void	pmap_kremove(vm_offset_t);
256 void	*pmap_mapdev(vm_offset_t, vm_size_t);
257 void	pmap_unmapdev(vm_offset_t, vm_size_t);
258 vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
259 void	pmap_debug(int);
260 void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
261 void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
262 vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
263 void
264 pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
265     int cache);
266 int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
267 int pmap_dmap_iscurrent(pmap_t pmap);
268 
269 /*
270  * Definitions for MMU domains
271  */
272 #define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
273 #define	PMAP_DOMAIN_KERNEL	0	/* The kernel uses domain #0 */
274 
275 /*
276  * The new pmap ensures that page-tables are always mapping Write-Thru.
277  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
278  * on every change.
279  *
280  * Unfortunately, not all CPUs have a write-through cache mode.  So we
281  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
282  * and if there is the chance for PTE syncs to be needed, we define
283  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
284  * the code.
285  */
286 extern int pmap_needs_pte_sync;
287 
288 /*
289  * These macros define the various bit masks in the PTE.
290  *
291  * We use these macros since we use different bits on different processor
292  * models.
293  */
294 
295 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
296 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
297     				L1_S_XSCALE_TEX(TEX_XSCALE_T))
298 
299 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
300 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
301     				L2_XSCALE_L_TEX(TEX_XSCALE_T))
302 
303 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
304 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
305 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
306 
307 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
308 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
309 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
310 
311 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
312 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
313     				 L2_XSCALE_T_TEX(TEX_XSCALE_X))
314 
315 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
316 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
317 
318 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
319 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
320 
321 #define	L2_L_PROTO		(L2_TYPE_L)
322 
323 #define	L2_S_PROTO_generic	(L2_TYPE_S)
324 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
325 
326 /*
327  * User-visible names for the ones that vary with MMU class.
328  */
329 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
330 #define	L2_AP(x)	(L2_AP0(x))
331 #else
332 #define	L2_AP(x)	(L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
333 #endif
334 
335 #if ARM_NMMUS > 1
336 /* More than one MMU class configured; use variables. */
337 #define	L2_S_PROT_U		pte_l2_s_prot_u
338 #define	L2_S_PROT_W		pte_l2_s_prot_w
339 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
340 
341 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
342 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
343 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
344 
345 #define	L1_S_PROTO		pte_l1_s_proto
346 #define	L1_C_PROTO		pte_l1_c_proto
347 #define	L2_S_PROTO		pte_l2_s_proto
348 
349 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
350 #define	L2_S_PROT_U		L2_S_PROT_U_generic
351 #define	L2_S_PROT_W		L2_S_PROT_W_generic
352 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
353 
354 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
355 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
356 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
357 
358 #define	L1_S_PROTO		L1_S_PROTO_generic
359 #define	L1_C_PROTO		L1_C_PROTO_generic
360 #define	L2_S_PROTO		L2_S_PROTO_generic
361 
362 #elif ARM_MMU_XSCALE == 1
363 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
364 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
365 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
366 
367 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
368 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
369 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
370 
371 #define	L1_S_PROTO		L1_S_PROTO_xscale
372 #define	L1_C_PROTO		L1_C_PROTO_xscale
373 #define	L2_S_PROTO		L2_S_PROTO_xscale
374 
375 #elif (ARM_MMU_V6 + ARM_MMU_V7) != 0
376 
377 #define	L2_S_PROT_U		(L2_AP0(2))		/* user access */
378 #define	L2_S_PROT_R		(L2_AP0(1))		/* read access */
379 
380 #define	L2_S_PROT_MASK		(L2_S_PROT_U|L2_S_PROT_R)
381 #define	L2_S_WRITABLE(pte)	(!(pte & L2_APX))
382 
383 #ifndef SMP
384 #define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C)
385 #define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C)
386 #define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C)
387 #else
388 #define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C|L1_SHARED)
389 #define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C|L2_SHARED)
390 #define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C|L2_SHARED)
391 #endif  /* SMP */
392 
393 #define	L1_S_PROTO		(L1_TYPE_S)
394 #define	L1_C_PROTO		(L1_TYPE_C)
395 #define	L2_S_PROTO		(L2_TYPE_S)
396 
397 #ifndef SMP
398 #define ARM_L1S_STRONG_ORD	(0)
399 #define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
400 #define ARM_L1S_DEVICE_SHARE	(L1_S_B)
401 #define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1))
402 #define ARM_L1S_NRML_IWT_OWT	(L1_S_C)
403 #define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B)
404 #define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B)
405 
406 #define ARM_L2L_STRONG_ORD	(0)
407 #define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
408 #define ARM_L2L_DEVICE_SHARE	(L2_B)
409 #define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1))
410 #define ARM_L2L_NRML_IWT_OWT	(L2_C)
411 #define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B)
412 #define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B)
413 
414 #define ARM_L2S_STRONG_ORD	(0)
415 #define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
416 #define ARM_L2S_DEVICE_SHARE	(L2_B)
417 #define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1))
418 #define ARM_L2S_NRML_IWT_OWT	(L2_C)
419 #define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B)
420 #define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B)
421 #else
422 #define ARM_L1S_STRONG_ORD	(0)
423 #define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
424 #define ARM_L1S_DEVICE_SHARE	(L1_S_B)
425 #define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1)|L1_SHARED)
426 #define ARM_L1S_NRML_IWT_OWT	(L1_S_C|L1_SHARED)
427 #define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B|L1_SHARED)
428 #define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B|L1_SHARED)
429 
430 #define ARM_L2L_STRONG_ORD	(0)
431 #define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
432 #define ARM_L2L_DEVICE_SHARE	(L2_B)
433 #define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1)|L2_SHARED)
434 #define ARM_L2L_NRML_IWT_OWT	(L2_C|L2_SHARED)
435 #define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
436 #define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B|L2_SHARED)
437 
438 #define ARM_L2S_STRONG_ORD	(0)
439 #define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
440 #define ARM_L2S_DEVICE_SHARE	(L2_B)
441 #define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1)|L2_SHARED)
442 #define ARM_L2S_NRML_IWT_OWT	(L2_C|L2_SHARED)
443 #define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
444 #define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B|L2_SHARED)
445 #endif /* SMP */
446 #endif /* ARM_NMMUS > 1 */
447 
448 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
449 #define	PMAP_NEEDS_PTE_SYNC	1
450 #define	PMAP_INCLUDE_PTE_SYNC
451 #elif defined(CPU_XSCALE_81342)
452 #define PMAP_NEEDS_PTE_SYNC	1
453 #define PMAP_INCLUDE_PTE_SYNC
454 #elif (ARM_MMU_SA1 == 0)
455 #define	PMAP_NEEDS_PTE_SYNC	0
456 #endif
457 
458 /*
459  * These macros return various bits based on kernel/user and protection.
460  * Note that the compiler will usually fold these at compile time.
461  */
462 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
463 
464 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
465 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
466 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
467 #define	L1_S_WRITABLE(pd)	((pd) & L1_S_PROT_W)
468 
469 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
470 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
471 
472 #define	L2_L_PROT_U		(L2_AP(AP_U))
473 #define	L2_L_PROT_W		(L2_AP(AP_W))
474 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
475 
476 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
477 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
478 
479 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
480 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
481 #else
482 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
483 #define	L1_S_PROT_MASK		(L1_S_APX|L1_S_AP(0x3))
484 #define	L1_S_WRITABLE(pd)	(!((pd) & L1_S_APX))
485 
486 #define	L1_S_PROT(ku, pr)	(L1_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L1_S_PROT_U : 0) | \
487 				 (((pr) & VM_PROT_WRITE) ? L1_S_APX : 0)))
488 
489 #define	L2_L_PROT_MASK		(L2_APX|L2_AP0(0x3))
490 #define	L2_L_PROT(ku, pr)	(L2_L_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
491 				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
492 
493 #define	L2_S_PROT(ku, pr)	(L2_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
494 				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
495 
496 #endif
497 
498 /*
499  * Macros to test if a mapping is mappable with an L1 Section mapping
500  * or an L2 Large Page mapping.
501  */
502 #define	L1_S_MAPPABLE_P(va, pa, size)					\
503 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
504 
505 #define	L2_L_MAPPABLE_P(va, pa, size)					\
506 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
507 
508 /*
509  * Provide a fallback in case we were not able to determine it at
510  * compile-time.
511  */
512 #ifndef PMAP_NEEDS_PTE_SYNC
513 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
514 #define	PMAP_INCLUDE_PTE_SYNC
515 #endif
516 
517 #define	PTE_SYNC(pte)							\
518 do {									\
519 	if (PMAP_NEEDS_PTE_SYNC) {					\
520 		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
521 		cpu_l2cache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
522 	} else								\
523 		cpu_drain_writebuf();					\
524 } while (/*CONSTCOND*/0)
525 
526 #define	PTE_SYNC_RANGE(pte, cnt)					\
527 do {									\
528 	if (PMAP_NEEDS_PTE_SYNC) {					\
529 		cpu_dcache_wb_range((vm_offset_t)(pte),			\
530 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
531 		cpu_l2cache_wb_range((vm_offset_t)(pte), 		\
532 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
533 	} else								\
534 		cpu_drain_writebuf();					\
535 } while (/*CONSTCOND*/0)
536 
537 extern pt_entry_t		pte_l1_s_cache_mode;
538 extern pt_entry_t		pte_l1_s_cache_mask;
539 
540 extern pt_entry_t		pte_l2_l_cache_mode;
541 extern pt_entry_t		pte_l2_l_cache_mask;
542 
543 extern pt_entry_t		pte_l2_s_cache_mode;
544 extern pt_entry_t		pte_l2_s_cache_mask;
545 
546 extern pt_entry_t		pte_l1_s_cache_mode_pt;
547 extern pt_entry_t		pte_l2_l_cache_mode_pt;
548 extern pt_entry_t		pte_l2_s_cache_mode_pt;
549 
550 extern pt_entry_t		pte_l2_s_prot_u;
551 extern pt_entry_t		pte_l2_s_prot_w;
552 extern pt_entry_t		pte_l2_s_prot_mask;
553 
554 extern pt_entry_t		pte_l1_s_proto;
555 extern pt_entry_t		pte_l1_c_proto;
556 extern pt_entry_t		pte_l2_s_proto;
557 
558 extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
559 extern void (*pmap_copy_page_offs_func)(vm_paddr_t a_phys,
560     vm_offset_t a_offs, vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
561 extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
562 
563 #if (ARM_MMU_GENERIC + ARM_MMU_V6 + ARM_MMU_V7 + ARM_MMU_SA1) != 0 || defined(CPU_XSCALE_81342)
564 void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
565 void	pmap_zero_page_generic(vm_paddr_t, int, int);
566 
567 void	pmap_pte_init_generic(void);
568 #if defined(CPU_ARM8)
569 void	pmap_pte_init_arm8(void);
570 #endif
571 #if defined(CPU_ARM9)
572 void	pmap_pte_init_arm9(void);
573 #endif /* CPU_ARM9 */
574 #if defined(CPU_ARM10)
575 void	pmap_pte_init_arm10(void);
576 #endif /* CPU_ARM10 */
577 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
578 void	pmap_pte_init_mmu_v6(void);
579 #endif /* (ARM_MMU_V6 + ARM_MMU_V7) != 0 */
580 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
581 
582 #if /* ARM_MMU_SA1 == */1
583 void	pmap_pte_init_sa1(void);
584 #endif /* ARM_MMU_SA1 == 1 */
585 
586 #if ARM_MMU_XSCALE == 1
587 void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
588 void	pmap_zero_page_xscale(vm_paddr_t, int, int);
589 
590 void	pmap_pte_init_xscale(void);
591 
592 void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
593 
594 void	pmap_use_minicache(vm_offset_t, vm_size_t);
595 #endif /* ARM_MMU_XSCALE == 1 */
596 #if defined(CPU_XSCALE_81342)
597 #define ARM_HAVE_SUPERSECTIONS
598 #endif
599 
600 #define PTE_KERNEL	0
601 #define PTE_USER	1
602 #define	l1pte_valid(pde)	((pde) != 0)
603 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
604 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
605 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
606 
607 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
608 #define	l2pte_valid(pte)	((pte) != 0)
609 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
610 #define l2pte_minidata(pte)	(((pte) & \
611 				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
612 				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
613 
614 /* L1 and L2 page table macros */
615 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
616 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
617 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
618 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
619 
620 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
621 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
622 
623 /*
624  * Flags that indicate attributes of pages or mappings of pages.
625  *
626  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
627  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
628  * pv_entry's for each page.  They live in the same "namespace" so
629  * that we can clear multiple attributes at a time.
630  *
631  * Note the "non-cacheable" flag generally means the page has
632  * multiple mappings in a given address space.
633  */
634 #define	PVF_MOD		0x01		/* page is modified */
635 #define	PVF_REF		0x02		/* page is referenced */
636 #define	PVF_WIRED	0x04		/* mapping is wired */
637 #define	PVF_WRITE	0x08		/* mapping is writable */
638 #define	PVF_EXEC	0x10		/* mapping is executable */
639 #define	PVF_NC		0x20		/* mapping is non-cacheable */
640 #define	PVF_MWC		0x40		/* mapping is used multiple times in userland */
641 #define	PVF_UNMAN	0x80		/* mapping is unmanaged */
642 
643 void vector_page_setprot(int);
644 
645 /*
646  * This structure is used by machine-dependent code to describe
647  * static mappings of devices, created at bootstrap time.
648  */
649 struct pmap_devmap {
650 	vm_offset_t	pd_va;		/* virtual address */
651 	vm_paddr_t	pd_pa;		/* physical address */
652 	vm_size_t	pd_size;	/* size of region */
653 	vm_prot_t	pd_prot;	/* protection code */
654 	int		pd_cache;	/* cache attributes */
655 };
656 
657 const struct pmap_devmap *pmap_devmap_find_pa(vm_paddr_t, vm_size_t);
658 const struct pmap_devmap *pmap_devmap_find_va(vm_offset_t, vm_size_t);
659 
660 void	pmap_devmap_bootstrap(vm_offset_t, const struct pmap_devmap *);
661 void	pmap_devmap_register(const struct pmap_devmap *);
662 
663 #define SECTION_CACHE	0x1
664 #define SECTION_PT	0x2
665 void	pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
666 #ifdef ARM_HAVE_SUPERSECTIONS
667 void	pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
668 #endif
669 
670 extern char *_tmppt;
671 
672 void	pmap_postinit(void);
673 
674 #ifdef ARM_USE_SMALL_ALLOC
675 void	arm_add_smallalloc_pages(void *, void *, int, int);
676 vm_offset_t arm_ptovirt(vm_paddr_t);
677 void arm_init_smallalloc(void);
678 struct arm_small_page {
679 	void *addr;
680 	TAILQ_ENTRY(arm_small_page) pg_list;
681 };
682 
683 #endif
684 
685 #define ARM_NOCACHE_KVA_SIZE 0x1000000
686 extern vm_offset_t arm_nocache_startaddr;
687 void *arm_remap_nocache(void *, vm_size_t);
688 void arm_unmap_nocache(void *, vm_size_t);
689 
690 extern vm_paddr_t dump_avail[];
691 #endif	/* _KERNEL */
692 
693 #endif	/* !LOCORE */
694 
695 #endif	/* !_MACHINE_PMAP_H_ */
696