xref: /freebsd/sys/arm/include/pmap.h (revision e1fe3dba5ce2826061f6489765be9b4a341736a9)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * the Systems Programming Group of the University of Utah Computer
7  * Science Department and William Jolitz of UUNET Technologies Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * Derived from hp300 version by Mike Hibler, this version by William
38  * Jolitz uses a recursive map [a pde points to the page directory] to
39  * map the page tables using the pagetables themselves. This is done to
40  * reduce the impact on kernel virtual memory for lots of sparse address
41  * space, and to reduce the cost of memory to each process.
42  *
43  *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44  *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45  * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46  *
47  * $FreeBSD$
48  */
49 
50 #ifndef _MACHINE_PMAP_H_
51 #define _MACHINE_PMAP_H_
52 
53 #include <machine/pte.h>
54 
55 /*
56  * Pte related macros
57  */
58 #define PTE_NOCACHE	0
59 #define PTE_CACHE	1
60 #define PTE_PAGETABLE	2
61 
62 #ifndef LOCORE
63 
64 #include <sys/queue.h>
65 
66 #define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
67 #define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
68 
69 #ifdef _KERNEL
70 
71 #define vtophys(va)	pmap_extract(pmap_kernel(), (vm_offset_t)(va))
72 #define pmap_kextract(va)	pmap_extract(pmap_kernel(), (vm_offset_t)(va))
73 
74 #endif
75 
76 #define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
77 /*
78  * Pmap stuff
79  */
80 
81 /*
82  * This structure is used to hold a virtual<->physical address
83  * association and is used mostly by bootstrap code
84  */
85 struct pv_addr {
86 	SLIST_ENTRY(pv_addr) pv_list;
87 	vm_offset_t	pv_va;
88 	vm_paddr_t	pv_pa;
89 };
90 
91 struct	pv_entry;
92 
93 struct	md_page {
94 	int pvh_attrs;
95 	u_int uro_mappings;
96 	u_int urw_mappings;
97 	union {
98 		u_short s_mappings[2]; /* Assume kernel count <= 65535 */
99 		u_int i_mappings;
100 	} k_u;
101 #define	kro_mappings	k_u.s_mappings[0]
102 #define	krw_mappings	k_u.s_mappings[1]
103 #define	k_mappings	k_u.i_mappings
104 	int			pv_list_count;
105 	TAILQ_HEAD(,pv_entry)	pv_list;
106 };
107 
108 #define	VM_MDPAGE_INIT(pg)						\
109 do {									\
110 	TAILQ_INIT(&pg->pv_list);					\
111 	mtx_init(&(pg)->md_page.pvh_mtx, "MDPAGE Mutex", NULL, MTX_DEV);\
112 	(pg)->mdpage.pvh_attrs = 0;					\
113 	(pg)->mdpage.uro_mappings = 0;					\
114 	(pg)->mdpage.urw_mappings = 0;					\
115 	(pg)->mdpage.k_mappings = 0;					\
116 } while (/*CONSTCOND*/0)
117 
118 struct l1_ttable;
119 struct l2_dtable;
120 
121 
122 /*
123  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
124  * A bucket size of 16 provides for 16MB of contiguous virtual address
125  * space per l2_dtable. Most processes will, therefore, require only two or
126  * three of these to map their whole working set.
127  */
128 #define	L2_BUCKET_LOG2	4
129 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
130 /*
131  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
132  * of l2_dtable structures required to track all possible page descriptors
133  * mappable by an L1 translation table is given by the following constants:
134  */
135 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
136 #define	L2_SIZE		(1 << L2_LOG2)
137 
138 struct	pmap {
139 	u_int8_t		pm_domain;
140 	struct l1_ttable	*pm_l1;
141 	struct l2_dtable	*pm_l2[L2_SIZE];
142 	pd_entry_t		*pm_pdir;	/* KVA of page directory */
143 	int			pm_count;	/* reference count */
144 	int			pm_active;	/* active on cpus */
145 	struct pmap_statistics	pm_stats;	/* pmap statictics */
146 	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
147 	LIST_ENTRY(pmap)	pm_list;	/* List of all pmaps */
148 };
149 
150 typedef struct pmap *pmap_t;
151 
152 #ifdef _KERNEL
153 extern pmap_t	kernel_pmap;
154 #define pmap_kernel() kernel_pmap
155 
156 #endif
157 
158 
159 /*
160  * For each vm_page_t, there is a list of all currently valid virtual
161  * mappings of that page.  An entry is a pv_entry_t, the list is pv_table.
162  */
163 typedef struct pv_entry {
164 	pmap_t          pv_pmap;        /* pmap where mapping lies */
165 	vm_offset_t     pv_va;          /* virtual address for mapping */
166 	TAILQ_ENTRY(pv_entry)   pv_list;
167 	TAILQ_ENTRY(pv_entry)	pv_plist;
168 	int		pv_flags;	/* flags (wired, etc...) */
169 } *pv_entry_t;
170 
171 #define PV_ENTRY_NULL   ((pv_entry_t) 0)
172 
173 #ifdef _KERNEL
174 
175 boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
176 
177 /*
178  * virtual address to page table entry and
179  * to physical address. Likewise for alternate address space.
180  * Note: these work recursively, thus vtopte of a pte will give
181  * the corresponding pde that in turn maps it.
182  */
183 
184 /*
185  * The current top of kernel VM.
186  */
187 extern vm_offset_t pmap_curmaxkvaddr;
188 
189 struct pcb;
190 
191 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
192 /* Virtual address to page table entry */
193 static __inline pt_entry_t *
194 vtopte(vm_offset_t va)
195 {
196 	pd_entry_t *pdep;
197 	pt_entry_t *ptep;
198 
199 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
200 		return (NULL);
201 	return (ptep);
202 }
203 
204 extern vm_offset_t avail_end;
205 extern vm_offset_t clean_eva;
206 extern vm_offset_t clean_sva;
207 extern vm_offset_t phys_avail[];
208 extern vm_offset_t virtual_avail;
209 extern vm_offset_t virtual_end;
210 
211 void	pmap_bootstrap(vm_offset_t, vm_offset_t, struct pv_addr *);
212 void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
213 void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
214 void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
215 void	pmap_kremove(vm_offset_t);
216 void	*pmap_mapdev(vm_offset_t, vm_size_t);
217 void	pmap_unmapdev(vm_offset_t, vm_size_t);
218 vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
219 void	pmap_debug(int);
220 void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
221 void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
222 vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
223 void
224 pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
225     int cache);
226 int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
227 
228 /*
229  * Definitions for MMU domains
230  */
231 #define	PMAP_DOMAINS		15	/* 15 'user' domains (0-14) */
232 #define	PMAP_DOMAIN_KERNEL	15	/* The kernel uses domain #15 */
233 
234 /*
235  * The new pmap ensures that page-tables are always mapping Write-Thru.
236  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
237  * on every change.
238  *
239  * Unfortunately, not all CPUs have a write-through cache mode.  So we
240  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
241  * and if there is the chance for PTE syncs to be needed, we define
242  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
243  * the code.
244  */
245 extern int pmap_needs_pte_sync;
246 
247 /*
248  * These macros define the various bit masks in the PTE.
249  *
250  * We use these macros since we use different bits on different processor
251  * models.
252  */
253 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
254 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
255 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
256 
257 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
258 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
259 
260 #define	L2_L_PROT_U		(L2_AP(AP_U))
261 #define	L2_L_PROT_W		(L2_AP(AP_W))
262 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
263 
264 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
265 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
266 
267 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
268 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
269 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
270 
271 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
272 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
273 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
274 
275 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
276 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
277 
278 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
279 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
280 
281 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
282 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
283 
284 #define	L2_L_PROTO		(L2_TYPE_L)
285 
286 #define	L2_S_PROTO_generic	(L2_TYPE_S)
287 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
288 
289 /*
290  * User-visible names for the ones that vary with MMU class.
291  */
292 
293 #if ARM_NMMUS > 1
294 /* More than one MMU class configured; use variables. */
295 #define	L2_S_PROT_U		pte_l2_s_prot_u
296 #define	L2_S_PROT_W		pte_l2_s_prot_w
297 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
298 
299 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
300 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
301 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
302 
303 #define	L1_S_PROTO		pte_l1_s_proto
304 #define	L1_C_PROTO		pte_l1_c_proto
305 #define	L2_S_PROTO		pte_l2_s_proto
306 
307 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
308 #define	L2_S_PROT_U		L2_S_PROT_U_generic
309 #define	L2_S_PROT_W		L2_S_PROT_W_generic
310 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
311 
312 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
313 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
314 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
315 
316 #define	L1_S_PROTO		L1_S_PROTO_generic
317 #define	L1_C_PROTO		L1_C_PROTO_generic
318 #define	L2_S_PROTO		L2_S_PROTO_generic
319 
320 #elif ARM_MMU_XSCALE == 1
321 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
322 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
323 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
324 
325 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
326 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
327 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
328 
329 #define	L1_S_PROTO		L1_S_PROTO_xscale
330 #define	L1_C_PROTO		L1_C_PROTO_xscale
331 #define	L2_S_PROTO		L2_S_PROTO_xscale
332 
333 #endif /* ARM_NMMUS > 1 */
334 
335 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
336 #define	PMAP_NEEDS_PTE_SYNC	1
337 #define	PMAP_INCLUDE_PTE_SYNC
338 #elif (ARM_MMU_SA1 == 0)
339 #if defined(CPU_ARM9) && !defined(ARM9_CACHE_WRITE_THROUGH)
340 #define PMAP_NEEDS_PTE_SYNC	1
341 #define PMAP_INCLUDE_PTE_SYNC
342 #else
343 #define	PMAP_NEEDS_PTE_SYNC	0
344 #endif
345 #endif
346 
347 /*
348  * These macros return various bits based on kernel/user and protection.
349  * Note that the compiler will usually fold these at compile time.
350  */
351 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
352 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
353 
354 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
355 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
356 
357 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
358 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
359 
360 /*
361  * Macros to test if a mapping is mappable with an L1 Section mapping
362  * or an L2 Large Page mapping.
363  */
364 #define	L1_S_MAPPABLE_P(va, pa, size)					\
365 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
366 
367 #define	L2_L_MAPPABLE_P(va, pa, size)					\
368 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
369 
370 /*
371  * Provide a fallback in case we were not able to determine it at
372  * compile-time.
373  */
374 #ifndef PMAP_NEEDS_PTE_SYNC
375 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
376 #define	PMAP_INCLUDE_PTE_SYNC
377 #endif
378 
379 #define	PTE_SYNC(pte)							\
380 do {									\
381 	if (PMAP_NEEDS_PTE_SYNC)					\
382 		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
383 } while (/*CONSTCOND*/0)
384 
385 #define	PTE_SYNC_RANGE(pte, cnt)					\
386 do {									\
387 	if (PMAP_NEEDS_PTE_SYNC) {					\
388 		cpu_dcache_wb_range((vm_offset_t)(pte),			\
389 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
390 	}								\
391 } while (/*CONSTCOND*/0)
392 
393 extern pt_entry_t		pte_l1_s_cache_mode;
394 extern pt_entry_t		pte_l1_s_cache_mask;
395 
396 extern pt_entry_t		pte_l2_l_cache_mode;
397 extern pt_entry_t		pte_l2_l_cache_mask;
398 
399 extern pt_entry_t		pte_l2_s_cache_mode;
400 extern pt_entry_t		pte_l2_s_cache_mask;
401 
402 extern pt_entry_t		pte_l1_s_cache_mode_pt;
403 extern pt_entry_t		pte_l2_l_cache_mode_pt;
404 extern pt_entry_t		pte_l2_s_cache_mode_pt;
405 
406 extern pt_entry_t		pte_l2_s_prot_u;
407 extern pt_entry_t		pte_l2_s_prot_w;
408 extern pt_entry_t		pte_l2_s_prot_mask;
409 
410 extern pt_entry_t		pte_l1_s_proto;
411 extern pt_entry_t		pte_l1_c_proto;
412 extern pt_entry_t		pte_l2_s_proto;
413 
414 extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
415 extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
416 
417 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
418 void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
419 void	pmap_zero_page_generic(vm_paddr_t, int, int);
420 
421 void	pmap_pte_init_generic(void);
422 #if defined(CPU_ARM8)
423 void	pmap_pte_init_arm8(void);
424 #endif
425 #if defined(CPU_ARM9)
426 void	pmap_pte_init_arm9(void);
427 #endif /* CPU_ARM9 */
428 #if defined(CPU_ARM10)
429 void	pmap_pte_init_arm10(void);
430 #endif /* CPU_ARM10 */
431 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
432 
433 #if /* ARM_MMU_SA1 == */1
434 void	pmap_pte_init_sa1(void);
435 #endif /* ARM_MMU_SA1 == 1 */
436 
437 #if ARM_MMU_XSCALE == 1
438 void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
439 void	pmap_zero_page_xscale(vm_paddr_t, int, int);
440 
441 void	pmap_pte_init_xscale(void);
442 
443 void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
444 
445 void	pmap_use_minicache(vm_offset_t, vm_size_t);
446 #endif /* ARM_MMU_XSCALE == 1 */
447 #define PTE_KERNEL	0
448 #define PTE_USER	1
449 #define	l1pte_valid(pde)	((pde) != 0)
450 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
451 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
452 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
453 
454 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
455 #define	l2pte_valid(pte)	((pte) != 0)
456 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
457 #define l2pte_minidata(pte)	(((pte) & \
458 				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
459 				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
460 
461 /* L1 and L2 page table macros */
462 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
463 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
464 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
465 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
466 
467 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
468 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
469 
470 /*
471  * Flags that indicate attributes of pages or mappings of pages.
472  *
473  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
474  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
475  * pv_entry's for each page.  They live in the same "namespace" so
476  * that we can clear multiple attributes at a time.
477  *
478  * Note the "non-cacheable" flag generally means the page has
479  * multiple mappings in a given address space.
480  */
481 #define	PVF_MOD		0x01		/* page is modified */
482 #define	PVF_REF		0x02		/* page is referenced */
483 #define	PVF_WIRED	0x04		/* mapping is wired */
484 #define	PVF_WRITE	0x08		/* mapping is writable */
485 #define	PVF_EXEC	0x10		/* mapping is executable */
486 #define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
487 #define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
488 #define	PVF_NC		(PVF_UNC|PVF_KNC)
489 
490 void vector_page_setprot(int);
491 
492 void pmap_update(pmap_t);
493 
494 /*
495  * This structure is used by machine-dependent code to describe
496  * static mappings of devices, created at bootstrap time.
497  */
498 struct pmap_devmap {
499 	vm_offset_t	pd_va;		/* virtual address */
500 	vm_paddr_t	pd_pa;		/* physical address */
501 	vm_size_t	pd_size;	/* size of region */
502 	vm_prot_t	pd_prot;	/* protection code */
503 	int		pd_cache;	/* cache attributes */
504 };
505 
506 const struct pmap_devmap *pmap_devmap_find_pa(vm_paddr_t, vm_size_t);
507 const struct pmap_devmap *pmap_devmap_find_va(vm_offset_t, vm_size_t);
508 
509 void	pmap_devmap_bootstrap(vm_offset_t, const struct pmap_devmap *);
510 void	pmap_devmap_register(const struct pmap_devmap *);
511 
512 #define SECTION_CACHE	0x1
513 #define SECTION_PT	0x2
514 void	pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
515 
516 extern char *_tmppt;
517 
518 void	pmap_postinit(void);
519 
520 #ifdef ARM_USE_SMALL_ALLOC
521 void	arm_add_smallalloc_pages(void *, void *, int, int);
522 void 	arm_busy_pages(void);
523 struct arm_small_page {
524 	void *addr;
525 	TAILQ_ENTRY(arm_small_page) pg_list;
526 };
527 
528 #endif
529 
530 #define ARM_NOCACHE_KVA_SIZE 0x600000
531 extern vm_offset_t arm_nocache_startaddr;
532 void *arm_remap_nocache(void *, vm_size_t);
533 void arm_unmap_nocache(void *, vm_size_t);
534 
535 extern vm_paddr_t dump_avail[];
536 #endif	/* _KERNEL */
537 
538 #endif	/* !LOCORE */
539 
540 #endif	/* !_MACHINE_PMAP_H_ */
541